基于气象因子的马尾松毛虫发生率空间格局研究
[目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面...
Saved in:
Published in | 林业科学研究 Vol. 29; no. 2; pp. 256 - 260 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国林业科学研究院资源昆虫研究所,云南 昆明,650224
2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1498 |
Cover
Abstract | [目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面积总体为缩减;而华南部分地区虫害轻度发生面积扩增。[结论]以偏最小二乘回归方法所得的空间格局模型具有实际预测意义,可以预测我国未来马尾松毛虫平均发生率的变化趋势。 |
---|---|
AbstractList | S791.248; [目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s 的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面积总体为缩减;而华南部分地区虫害轻度发生面积扩增。[结论]以偏最小二乘回归方法所得的空间格局模型具有实际预测意义,可以预测我国未来马尾松毛虫平均发生率的变化趋势。 [目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面积总体为缩减;而华南部分地区虫害轻度发生面积扩增。[结论]以偏最小二乘回归方法所得的空间格局模型具有实际预测意义,可以预测我国未来马尾松毛虫平均发生率的变化趋势。 |
Abstract_FL | [Objective]Taking the average incidence rate based on China’s nationwide data from 2002 -201 2 as indicator to predict the potential trend of Dendrolimus punctatus incidence rate.[Method]By means of partial least squares regression,the regression equation about average incidence rate and the related meteorological factors was obtained.Combined with the geographic spatial data and future meteorological data,the spatial pattern model of the average incidence rate of D.punctatus was established.[Result]The spatial pattern model of D.punctatus’aver-age incidence rate built by 1 2 selected meteorological factors has the prediction accuracy of 86.98%.Based on this model,the spatial pattern models for 2020s,2050s,and 2080s were established.It was predicted that compared with 2002 -201 2,the area of moderate and severe insect pests in East and Central China would significantly in-crease,and there would be a trend of spreading.The mild incidence area would decrease in East China,while the mild incidence area would has a trend of amplification in parts of Southern China.[Conclusion]The spatial pattern model obtained by partial least squares regression method can be used to predict the potential changes of the average incidence rate of D.punctatus in China. |
Author | 王庆 毕猛 杜婷 廖怀建 石雷 |
AuthorAffiliation | 中国林业科学研究院资源昆虫研究所,云南昆明650224 |
AuthorAffiliation_xml | – name: 中国林业科学研究院资源昆虫研究所,云南 昆明,650224 |
Author_FL | LIAO Huai-jian SHI Lei DU Ting WANG Qing BI Meng |
Author_FL_xml | – sequence: 1 fullname: WANG Qing – sequence: 2 fullname: BI Meng – sequence: 3 fullname: DU Ting – sequence: 4 fullname: LIAO Huai-jian – sequence: 5 fullname: SHI Lei |
Author_xml | – sequence: 1 fullname: 王庆 毕猛 杜婷 廖怀建 石雷 |
BookMark | eNrjYmDJy89LZWHgNDQwMNQ1NLG04GDgKi7OMjAwMjc1MuRksH86f9eTXX3PNkx5sXHh09kLnq6d8HxWy8uVa55u2Pds7r5n62e_mLn6af_E51PmP-9rf75y18vpW54t2PN0Y8PzBVOer9zGw8CalphTnMoLpbkZQtxcQ5w9dH383T2dHX10k00tzXUtDMzNjY2MDcxNjCxNUwwsTAxMjUySzUyNDSwTDdIsklINTUwTzZNMjS3SDC0MgOxUSwNDM3PTJCOQlkRTY24GdYix5Yl5aYl56fFZ-aVFeUAL43Mqsysqs4yAyg2AhDlQpRJEZXJGfl56YSZQbUFRZm5iUWW8mZmFqaWhsZmBMQC2hWYk |
ClassificationCodes | S791.248 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
DocumentTitleAlternate | Spatial Pattern of Dendrolimus punctatus Incidence Rate Based on Meteorological Factors |
DocumentTitle_FL | Spatial Pattern of Dendrolimus punctatus Incidence Rate Based on Meteorological Factors |
EndPage | 260 |
ExternalDocumentID | lykxyj201602017 668591360 |
GrantInformation_xml | – fundername: 国家林业局林业公益性行业科研专项“重大森林病虫害防控技术的关键理论基础”; 云南省技术创新人才培养计划. funderid: (201204501); (2012HB054). |
GroupedDBID | -04 2B. 2B~ 2RA 3V. 5GY 5XA 5XE 7X2 92G 92I 92L ABUWG ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BPHCQ BVBZV CCEZO CCPQU CHDYS CQIGP CW9 ECGQY HCIFZ M0K PATMY PQQKQ PROAC PYCSY TCJ TGD U1G U5N W95 ~WA 4A8 93N AEUYN PHGZM PHGZT PMFND PSX |
ID | FETCH-LOGICAL-c597-8077323074295d0840524c65309a0f8be145a7b538f18045ae901675b20742a53 |
ISSN | 1001-1498 |
IngestDate | Thu May 29 03:59:41 EDT 2025 Wed Feb 14 10:20:21 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | 发生率 空间格局 insect incidence rate 气象因子 马尾松毛虫 Dendrolimus punctatus Walker meteorological factor partial least squares 偏最小二乘 spa-tial pattern |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c597-8077323074295d0840524c65309a0f8be145a7b538f18045ae901675b20742a53 |
Notes | 11-1221/S [Objective]Taking the average incidence rate based on China's nationwide data from 2002- 2012 as indicator to predict the potential trend of Dendrolimus punctatus incidence rate. [Method]By means of partial least squares regression,the regression equation about average incidence rate and the related meteorological factors was obtained. Combined with the geographic spatial data and future meteorological data,the spatial pattern model of the average incidence rate of D. punctatus was established. [Result]The spatial pattern model of D. punctatus' average incidence rate built by 12 selected meteorological factors has the prediction accuracy of 86. 98%. Based on this model,the spatial pattern models for 2020 s,2050s,and 2080 s were established. It was predicted that compared with 2002- 2012,the area of moderate and severe insect pests in East and Central China would significantly increase,and there would be a trend of spreading. The mild incidence area would decrease in East China,while the mild incidenc |
PageCount | 5 |
ParticipantIDs | wanfang_journals_lykxyj201602017 chongqing_primary_668591360 |
PublicationCentury | 2000 |
PublicationDate | 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – year: 2016 text: 2016 |
PublicationDecade | 2010 |
PublicationTitle | 林业科学研究 |
PublicationTitleAlternate | Forest Research |
PublicationYear | 2016 |
Publisher | 中国林业科学研究院资源昆虫研究所,云南 昆明,650224 |
Publisher_xml | – name: 中国林业科学研究院资源昆虫研究所,云南 昆明,650224 |
SSID | ssj0027521 ssib051373067 ssib001101254 ssib002263439 |
Score | 2.0494266 |
Snippet | ... S791.248;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 256 |
SubjectTerms | 偏最小二乘 发生率 气象因子 空间格局 马尾松毛虫 |
Title | 基于气象因子的马尾松毛虫发生率空间格局研究 |
URI | http://lib.cqvip.com/qk/96135X/201602/668591360.html https://d.wanfangdata.com.cn/periodical/lykxyj201602017 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsIkRxIv4xBiVHOyTrMyrXyeZ2UwIgkFkhdyW6dnZxCgbHxswOYkI3qJCQDRI4jGomIB4WCRf4-4mf2FVd28yREUNLEPRXVVd1dU7U9V0VRNyReGi4QWvhCETlUhoeA_yLK9ALFJ4WjfCwJTYuDnFJ-9EN6bZ9NCRZ6VTSwttfS1f-m1eyWGsCm1gV8yS_Q_L7jGFBoDBvvAEC8Pzn2xMU0bVBE1imkb4lClNOU08qiKaSpr4NPYNTkJjD4F4nCoABFWADDiKxvCrYhdQJYZcjTsgnkBC4KMAJ0EcCS2-IY9wXABgRCkQAD4ohqJK0CQy5MDQcvbxOAXiWMEsMi-7xWbcFGlREYniIZowwxmxY_4HDrBYBoIYGXEaSj1WDWZQqqBPuQc0VUZC5Cb2e4BJQhVHFBBceq7FbWm4LRKbu2mWsxMapLRznYwfTh8zfTDXgTEeMxbiqBDaDBhK0Kxkj1_JQV6F8gZVtyDscBL0FFdLLCyA52DBcw5sdrn7MuHZNwhnZfnT5TaL7pZ2ENx3iPGSSxPYKxsOFBa_v3jvyeIczheEDD4WZABnVQ6To0k6dev2vk-NFeDKNfcCHkb7pWSZH4rQXAEw2OVgNtlxIC8WLZmdb808BFfMZMa1mllrpuTE1U6SEy76GovtX-kUGVqaPU2O4fW0eOfhGXK9u9b50Vnuba7sbH3orq53P7_qv3u-u_Gpu7nde7_d-7K68_Zj9-Xr_spaf_lFf6Oz--Zrb_17d-tpf32lv_HtLKlNpLXqZMVdMVLJIZLGStwixFQI8MpYw5MQvQRRzlnoqcxrSl34EcuEBqeg6UsIfrJCYdoO0wGSZCw8R4Zb863iPBnLm36oPc10IYJIyyjLmRY5IDebXLJGOEJG96ah_sBWkqlzjuUjQ-6NkDE3MXX3fnlcP2CfC39HGSXHEbY7hBfJcPvRQnEJfOa2vuys-hMVAZGz |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B0%94%E8%B1%A1%E5%9B%A0%E5%AD%90%E7%9A%84%E9%A9%AC%E5%B0%BE%E6%9D%BE%E6%AF%9B%E8%99%AB%E5%8F%91%E7%94%9F%E7%8E%87%E7%A9%BA%E9%97%B4%E6%A0%BC%E5%B1%80%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%9E%97%E4%B8%9A%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6&rft.au=%E7%8E%8B%E5%BA%86&rft.au=%E6%AF%95%E7%8C%9B&rft.au=%E6%9D%9C%E5%A9%B7&rft.au=%E5%BB%96%E6%80%80%E5%BB%BA&rft.date=2016&rft.pub=%E4%B8%AD%E5%9B%BD%E6%9E%97%E4%B8%9A%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E8%B5%84%E6%BA%90%E6%98%86%E8%99%AB%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E%2C650224&rft.issn=1001-1498&rft.volume=29&rft.issue=2&rft.spage=256&rft.epage=260&rft.externalDocID=lykxyj201602017 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F96135X%2F96135X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flykxyj%2Flykxyj.jpg |