基于气象因子的马尾松毛虫发生率空间格局研究

[目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面...

Full description

Saved in:
Bibliographic Details
Published in林业科学研究 Vol. 29; no. 2; pp. 256 - 260
Main Author 王庆 毕猛 杜婷 廖怀建 石雷
Format Journal Article
LanguageChinese
Published 中国林业科学研究院资源昆虫研究所,云南 昆明,650224 2016
Subjects
Online AccessGet full text
ISSN1001-1498

Cover

Abstract [目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面积总体为缩减;而华南部分地区虫害轻度发生面积扩增。[结论]以偏最小二乘回归方法所得的空间格局模型具有实际预测意义,可以预测我国未来马尾松毛虫平均发生率的变化趋势。
AbstractList S791.248; [目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s 的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面积总体为缩减;而华南部分地区虫害轻度发生面积扩增。[结论]以偏最小二乘回归方法所得的空间格局模型具有实际预测意义,可以预测我国未来马尾松毛虫平均发生率的变化趋势。
[目的]为预测未来我国马尾松毛虫的潜在变化趋势,以2002—2012年全国范围内马尾松毛虫的地级逐年平均发生率作为预测指标,[方法]运用偏最小二乘回归方法,获得马尾松毛虫平均发生率与相关气象因子的回归方程,并结合地理空间数据与未来气象数据,得到马尾松毛虫平均发生率空间格局模型。[结果]表明:以筛选后的12个气象因子建立的马尾松毛虫平均发生率空间格局模型精度达到86.98%,具有较强的可靠性。据此预测2020s,2050s,2080s的马尾松毛虫平均发生率空间格局,并与2002—2012年的空间格局相比,结果显示:华东及华中地区虫害中度和重度发生面积均明显增加,有扩散的趋势;华东地区的轻度发生面积总体为缩减;而华南部分地区虫害轻度发生面积扩增。[结论]以偏最小二乘回归方法所得的空间格局模型具有实际预测意义,可以预测我国未来马尾松毛虫平均发生率的变化趋势。
Abstract_FL [Objective]Taking the average incidence rate based on China’s nationwide data from 2002 -201 2 as indicator to predict the potential trend of Dendrolimus punctatus incidence rate.[Method]By means of partial least squares regression,the regression equation about average incidence rate and the related meteorological factors was obtained.Combined with the geographic spatial data and future meteorological data,the spatial pattern model of the average incidence rate of D.punctatus was established.[Result]The spatial pattern model of D.punctatus’aver-age incidence rate built by 1 2 selected meteorological factors has the prediction accuracy of 86.98%.Based on this model,the spatial pattern models for 2020s,2050s,and 2080s were established.It was predicted that compared with 2002 -201 2,the area of moderate and severe insect pests in East and Central China would significantly in-crease,and there would be a trend of spreading.The mild incidence area would decrease in East China,while the mild incidence area would has a trend of amplification in parts of Southern China.[Conclusion]The spatial pattern model obtained by partial least squares regression method can be used to predict the potential changes of the average incidence rate of D.punctatus in China.
Author 王庆 毕猛 杜婷 廖怀建 石雷
AuthorAffiliation 中国林业科学研究院资源昆虫研究所,云南昆明650224
AuthorAffiliation_xml – name: 中国林业科学研究院资源昆虫研究所,云南 昆明,650224
Author_FL LIAO Huai-jian
SHI Lei
DU Ting
WANG Qing
BI Meng
Author_FL_xml – sequence: 1
  fullname: WANG Qing
– sequence: 2
  fullname: BI Meng
– sequence: 3
  fullname: DU Ting
– sequence: 4
  fullname: LIAO Huai-jian
– sequence: 5
  fullname: SHI Lei
Author_xml – sequence: 1
  fullname: 王庆 毕猛 杜婷 廖怀建 石雷
BookMark eNrjYmDJy89LZWHgNDQwMNQ1NLG04GDgKi7OMjAwMjc1MuRksH86f9eTXX3PNkx5sXHh09kLnq6d8HxWy8uVa55u2Pds7r5n62e_mLn6af_E51PmP-9rf75y18vpW54t2PN0Y8PzBVOer9zGw8CalphTnMoLpbkZQtxcQ5w9dH383T2dHX10k00tzXUtDMzNjY2MDcxNjCxNUwwsTAxMjUySzUyNDSwTDdIsklINTUwTzZNMjS3SDC0MgOxUSwNDM3PTJCOQlkRTY24GdYix5Yl5aYl56fFZ-aVFeUAL43Mqsysqs4yAyg2AhDlQpRJEZXJGfl56YSZQbUFRZm5iUWW8mZmFqaWhsZmBMQC2hWYk
ClassificationCodes S791.248
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Forestry
DocumentTitleAlternate Spatial Pattern of Dendrolimus punctatus Incidence Rate Based on Meteorological Factors
DocumentTitle_FL Spatial Pattern of Dendrolimus punctatus Incidence Rate Based on Meteorological Factors
EndPage 260
ExternalDocumentID lykxyj201602017
668591360
GrantInformation_xml – fundername: 国家林业局林业公益性行业科研专项“重大森林病虫害防控技术的关键理论基础”; 云南省技术创新人才培养计划.
  funderid: (201204501); (2012HB054).
GroupedDBID -04
2B.
2B~
2RA
3V.
5GY
5XA
5XE
7X2
92G
92I
92L
ABUWG
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BPHCQ
BVBZV
CCEZO
CCPQU
CHDYS
CQIGP
CW9
ECGQY
HCIFZ
M0K
PATMY
PQQKQ
PROAC
PYCSY
TCJ
TGD
U1G
U5N
W95
~WA
4A8
93N
AEUYN
PHGZM
PHGZT
PMFND
PSX
ID FETCH-LOGICAL-c597-8077323074295d0840524c65309a0f8be145a7b538f18045ae901675b20742a53
ISSN 1001-1498
IngestDate Thu May 29 03:59:41 EDT 2025
Wed Feb 14 10:20:21 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords 发生率
空间格局
insect incidence rate
气象因子
马尾松毛虫
Dendrolimus punctatus Walker
meteorological factor
partial least squares
偏最小二乘
spa-tial pattern
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c597-8077323074295d0840524c65309a0f8be145a7b538f18045ae901675b20742a53
Notes 11-1221/S
[Objective]Taking the average incidence rate based on China's nationwide data from 2002- 2012 as indicator to predict the potential trend of Dendrolimus punctatus incidence rate. [Method]By means of partial least squares regression,the regression equation about average incidence rate and the related meteorological factors was obtained. Combined with the geographic spatial data and future meteorological data,the spatial pattern model of the average incidence rate of D. punctatus was established. [Result]The spatial pattern model of D. punctatus' average incidence rate built by 12 selected meteorological factors has the prediction accuracy of 86. 98%. Based on this model,the spatial pattern models for 2020 s,2050s,and 2080 s were established. It was predicted that compared with 2002- 2012,the area of moderate and severe insect pests in East and Central China would significantly increase,and there would be a trend of spreading. The mild incidence area would decrease in East China,while the mild incidenc
PageCount 5
ParticipantIDs wanfang_journals_lykxyj201602017
chongqing_primary_668591360
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 林业科学研究
PublicationTitleAlternate Forest Research
PublicationYear 2016
Publisher 中国林业科学研究院资源昆虫研究所,云南 昆明,650224
Publisher_xml – name: 中国林业科学研究院资源昆虫研究所,云南 昆明,650224
SSID ssj0027521
ssib051373067
ssib001101254
ssib002263439
Score 2.0494266
Snippet ...
S791.248;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 256
SubjectTerms 偏最小二乘
发生率
气象因子
空间格局
马尾松毛虫
Title 基于气象因子的马尾松毛虫发生率空间格局研究
URI http://lib.cqvip.com/qk/96135X/201602/668591360.html
https://d.wanfangdata.com.cn/periodical/lykxyj201602017
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsIkRxIv4xBiVHOyTrMyrXyeZ2UwIgkFkhdyW6dnZxCgbHxswOYkI3qJCQDRI4jGomIB4WCRf4-4mf2FVd28yREUNLEPRXVVd1dU7U9V0VRNyReGi4QWvhCETlUhoeA_yLK9ALFJ4WjfCwJTYuDnFJ-9EN6bZ9NCRZ6VTSwttfS1f-m1eyWGsCm1gV8yS_Q_L7jGFBoDBvvAEC8Pzn2xMU0bVBE1imkb4lClNOU08qiKaSpr4NPYNTkJjD4F4nCoABFWADDiKxvCrYhdQJYZcjTsgnkBC4KMAJ0EcCS2-IY9wXABgRCkQAD4ohqJK0CQy5MDQcvbxOAXiWMEsMi-7xWbcFGlREYniIZowwxmxY_4HDrBYBoIYGXEaSj1WDWZQqqBPuQc0VUZC5Cb2e4BJQhVHFBBceq7FbWm4LRKbu2mWsxMapLRznYwfTh8zfTDXgTEeMxbiqBDaDBhK0Kxkj1_JQV6F8gZVtyDscBL0FFdLLCyA52DBcw5sdrn7MuHZNwhnZfnT5TaL7pZ2ENx3iPGSSxPYKxsOFBa_v3jvyeIczheEDD4WZABnVQ6To0k6dev2vk-NFeDKNfcCHkb7pWSZH4rQXAEw2OVgNtlxIC8WLZmdb808BFfMZMa1mllrpuTE1U6SEy76GovtX-kUGVqaPU2O4fW0eOfhGXK9u9b50Vnuba7sbH3orq53P7_qv3u-u_Gpu7nde7_d-7K68_Zj9-Xr_spaf_lFf6Oz--Zrb_17d-tpf32lv_HtLKlNpLXqZMVdMVLJIZLGStwixFQI8MpYw5MQvQRRzlnoqcxrSl34EcuEBqeg6UsIfrJCYdoO0wGSZCw8R4Zb863iPBnLm36oPc10IYJIyyjLmRY5IDebXLJGOEJG96ah_sBWkqlzjuUjQ-6NkDE3MXX3fnlcP2CfC39HGSXHEbY7hBfJcPvRQnEJfOa2vuys-hMVAZGz
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B0%94%E8%B1%A1%E5%9B%A0%E5%AD%90%E7%9A%84%E9%A9%AC%E5%B0%BE%E6%9D%BE%E6%AF%9B%E8%99%AB%E5%8F%91%E7%94%9F%E7%8E%87%E7%A9%BA%E9%97%B4%E6%A0%BC%E5%B1%80%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%9E%97%E4%B8%9A%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6&rft.au=%E7%8E%8B%E5%BA%86&rft.au=%E6%AF%95%E7%8C%9B&rft.au=%E6%9D%9C%E5%A9%B7&rft.au=%E5%BB%96%E6%80%80%E5%BB%BA&rft.date=2016&rft.pub=%E4%B8%AD%E5%9B%BD%E6%9E%97%E4%B8%9A%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E8%B5%84%E6%BA%90%E6%98%86%E8%99%AB%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%BA%91%E5%8D%97+%E6%98%86%E6%98%8E%2C650224&rft.issn=1001-1498&rft.volume=29&rft.issue=2&rft.spage=256&rft.epage=260&rft.externalDocID=lykxyj201602017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F96135X%2F96135X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Flykxyj%2Flykxyj.jpg