Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota

Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The ai...

Full description

Saved in:
Bibliographic Details
Published inBMC veterinary research Vol. 18; no. 1; p. 52
Main Authors Ricigliano, Vincent A., Williams, Steven T., Oliver, Randy
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 21.01.2022
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1746-6148
1746-6148
DOI10.1186/s12917-022-03151-5

Cover

Loading…
Abstract Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
AbstractList Background Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial “pollen substitute” diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Results Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Conclusions Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
Abstract Background Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial “pollen substitute” diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Results Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Conclusions Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels.BACKGROUNDHoney bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels.Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa.RESULTSReplicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa.Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.CONCLUSIONSMultiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial "pollen substitute" diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies.
ArticleNumber 52
Audience Academic
Author Ricigliano, Vincent A.
Williams, Steven T.
Oliver, Randy
Author_xml – sequence: 1
  givenname: Vincent A.
  surname: Ricigliano
  fullname: Ricigliano, Vincent A.
– sequence: 2
  givenname: Steven T.
  surname: Williams
  fullname: Williams, Steven T.
– sequence: 3
  givenname: Randy
  surname: Oliver
  fullname: Oliver, Randy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062935$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUjFAR_YA_wAFZ4sKhKf6OfUGqqgKVKnGBs-XYz7teknhxsqD99zi7S9WtECiHWPPmjZ_nzXl1MqQBquo1wVeEKPl-JFSTpsaU1pgRQWrxrDojDZe1JFydPDqfVufjuMKYc93IF9UpE1hSzcRZ9es2BHDTiFJAPpZzhmFCNk8xRBdtV0CYqwNyqe8h77BlmWOLWoACdmnYojXkkHJvBweXaAm2m5aojam3-Tvk8RLZwaPFZkJ9dDmVwmRfVs-D7UZ4dfhfVN8-3n69-Vzff_l0d3N9Xzuh5VQ70Iqz1smWy9YrwIIE4qVrBPVMUReUYA33VmEFBHvKoQkUC956bCmmjF1Ud3tdn-zKrHMsM21NstHsgJQXZn6s68B4oilQjx1pPbfCKWltuUwT7MBLLovWh73WetP24F1xKtvuSPS4MsSlWaSfRjUKN3gWeHcQyOnHBsbJ9HF00HV2gLQZDVWq0Uoowf9PlZRSRSluCvXtE-oqbfJQXC0shgVTenf3gbWw5a1xCKmM6GZRcy0145oxTgvr6i-s8nkouytrD7HgRw1vHnvyYMafhBUC3RPK5scxQ3igEGzmGJt9jE2JsdnF2MxN6kmTi5OdYpp9jd2_Wn8D2wj2Fw
CitedBy_id crossref_primary_10_3390_insects15020101
crossref_primary_10_3390_insects15110905
crossref_primary_10_3390_insects16020112
crossref_primary_10_1007_s12602_025_10507_4
crossref_primary_10_1016_j_aspen_2022_101967
crossref_primary_10_3390_microorganisms12081567
crossref_primary_10_3390_ani13050885
crossref_primary_10_1007_s10113_024_02242_3
crossref_primary_10_18006_2023_11_6__884_918
crossref_primary_10_3389_fcimb_2024_1323157
crossref_primary_10_3390_jof8050424
crossref_primary_10_3389_fevo_2022_1028037
crossref_primary_10_1080_00218839_2024_2395188
crossref_primary_10_1021_acs_jafc_2c02583
crossref_primary_10_1080_00218839_2024_2374478
crossref_primary_10_3390_insects15090715
crossref_primary_10_1093_jee_toac126
crossref_primary_10_1007_s00203_024_03926_4
crossref_primary_10_1098_rstb_2021_0170
crossref_primary_10_3389_frbee_2023_1118292
crossref_primary_10_3390_genes15081001
crossref_primary_10_1021_acsagscitech_3c00082
crossref_primary_10_1371_journal_pone_0286070
crossref_primary_10_1038_s41396_023_01422_z
crossref_primary_10_3390_d15101088
crossref_primary_10_1007_s00248_023_02222_w
crossref_primary_10_1093_jee_toae176
crossref_primary_10_1038_s41598_024_74824_4
crossref_primary_10_3390_ijms241612731
crossref_primary_10_3390_insects15050361
crossref_primary_10_1128_mmbr_00080_23
crossref_primary_10_3390_ani14192836
crossref_primary_10_1007_s00248_023_02309_4
crossref_primary_10_1093_jambio_lxad303
crossref_primary_10_3390_insects14060493
crossref_primary_10_31861_biosystems2024_01_046
crossref_primary_10_1007_s00248_023_02323_6
crossref_primary_10_3389_fsufs_2022_1005058
crossref_primary_10_3390_insects16010036
crossref_primary_10_1080_00218839_2025_2464347
crossref_primary_10_1002_arch_70026
crossref_primary_10_1128_spectrum_00742_23
crossref_primary_10_3390_insects13110985
crossref_primary_10_3389_fphys_2022_1004150
Cites_doi 10.1038/s41598-017-15358-w
10.1080/00218839.2017.1344496
10.1007/s13592-012-0126-0
10.1051/apido/2010012
10.1038/s41598-019-41281-3
10.1073/pnas.1115559108
10.1007/s11306-019-1590-6
10.1017/S1464793104006578
10.1051/apido:19900504
10.2307/3493440
10.1021/jf960265q
10.1073/pnas.0333979100
10.1007/s00040-005-0812-2
10.1371/journal.pone.0162818
10.1038/s41598-018-28732-z
10.1007/s13592-021-00853-x
10.1006/meth.2001.1262
10.1007/978-3-7091-6306-1_10
10.1007/s00248-018-1287-9
10.1371/journal.pone.0153531
10.1163/187498312X639568
10.3390/insects11050291
10.1093/jee/toy341
10.1371/journal.pbio.2003467
10.1098/rsos.170003
10.1002/ece3.1293
10.1016/j.jinsphys.2019.103906
10.1186/s12864-018-5007-0
10.1080/00218839.2019.1644938
10.1186/s40168-020-0791-6
10.1038/srep40568
10.1016/j.jinsphys.2010.03.017
10.1128/mBio.01326-16
10.1016/j.cois.2018.02.012
10.1099/ijs.0.044875-0
10.1051/apido/2010018
10.1016/j.cois.2017.05.020
10.1093/jn/19.4.385
10.1186/1471-2164-12-496
10.1007/s13592-016-0431-0
10.1371/journal.pone.0152685
10.1080/00218839.1974.11099758
10.1371/journal.pone.0044229
10.1007/s10646-016-1742-7
10.1007/s13592-021-00877-3
10.1016/j.tifs.2020.03.006
10.1242/jeb.242040
10.1146/annurev-ento-112408-085356
10.3896/IBRA.1.48.1.08
10.1073/pnas.1405838111
10.1007/s00040-018-0623-x
10.1186/1471-2164-15-134
10.1002/ece3.3597
10.1111/1758-2229.12169
10.1093/jee/99.3.604
10.1016/j.jinsphys.2020.104074
10.1016/j.cois.2018.02.006
10.1038/nplants.2016.92
10.3389/fsufs.2021.772897
10.1146/annurev-animal-020518-115045
10.1016/j.jinsphys.2014.07.001
10.1016/j.cois.2017.05.008
10.7717/peerj.838
10.3923/jbs.2006.734.737
10.1016/j.foodpol.2018.12.008
10.1007/s00248-020-01538-1
10.1016/0022-1910(92)90117-V
10.1093/jee/toab083
10.1007/s13592-017-0512-8
10.1016/j.cois.2015.05.007
10.1016/j.jip.2008.12.001
10.1371/journal.pone.0072016
10.1002/arch.21658
10.1073/pnas.1517375112
ContentType Journal Article
Copyright 2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12917-022-03151-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database



AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1746-6148
EndPage 52
ExternalDocumentID oai_doaj_org_article_d192e2d0c1bd4a5c86aaf1d910ced646
PMC8780706
A693493342
35062935
10_1186_s12917_022_03151_5
Genre Journal Article
GeographicLocations California
United States--US
GeographicLocations_xml – name: California
– name: United States--US
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECGQY
EMB
EMK
EMOBN
ESX
EYRJQ
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAG
IAO
IHR
INH
INR
ITC
ITG
ITH
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QG
7U9
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c596t-ce9843bc6b46bd8e051f1d6c752d382cf85374da808e10d24e7f2054bd0a20233
IEDL.DBID M48
ISSN 1746-6148
IngestDate Wed Aug 27 01:26:15 EDT 2025
Thu Aug 21 18:22:21 EDT 2025
Fri Jul 11 12:36:54 EDT 2025
Fri Jul 11 04:03:09 EDT 2025
Fri Jul 25 09:16:51 EDT 2025
Tue Jun 17 21:30:33 EDT 2025
Tue Jun 10 20:29:26 EDT 2025
Thu Apr 03 07:04:14 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Tue Jul 01 03:24:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-ce9843bc6b46bd8e051f1d6c752d382cf85374da808e10d24e7f2054bd0a20233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/d192e2d0c1bd4a5c86aaf1d910ced646
PMID 35062935
PQID 2630538906
PQPubID 55144
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d192e2d0c1bd4a5c86aaf1d910ced646
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8780706
proquest_miscellaneous_2887985854
proquest_miscellaneous_2622282207
proquest_journals_2630538906
gale_infotracmisc_A693493342
gale_infotracacademiconefile_A693493342
pubmed_primary_35062935
crossref_primary_10_1186_s12917_022_03151_5
crossref_citationtrail_10_1186_s12917_022_03151_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-21
PublicationDateYYYYMMDD 2022-01-21
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC veterinary research
PublicationTitleAlternate BMC Vet Res
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References G DeGrandi-Hoffman (3151_CR51) 2010; 56
M Smart (3151_CR65) 2016; 11
K Crailsheim (3151_CR66) 1992; 38
H Zheng (3151_CR78) 2016; 7
M Lamontagne-Drolet (3151_CR27) 2019; 58
3151_CR49
3151_CR48
EW Burroughs (3151_CR63) 1940; 19
D De Jong (3151_CR52) 2015; 48
KS Traynor (3151_CR2) 2016; 47
Z Huang (3151_CR15) 2012; 5
H Koch (3151_CR9) 2017; 21
C Alaux (3151_CR16) 2011; 12
P Donkersley (3151_CR20) 2014; 4
VA Ricigliano (3151_CR38) 2018; 8
VA Ricigliano (3151_CR40) 2019; 9
P Chakrabarti (3151_CR58) 2019; 15
M Basualdo (3151_CR84) 2014; 6
DB Sponsler (3151_CR21) 2015; 3
3151_CR19
V Corby-Harris (3151_CR42) 2014; 15
R Brodschneider (3151_CR13) 2010; 41
I Bartomeus (3151_CR24) 2011; 108
L Kešnerová (3151_CR79) 2017; 15
C Ribière (3151_CR75) 2019; 78
BK Goodrich (3151_CR37) 2019; 83
F Bottacini (3151_CR77) 2012; 7
L Castelli (3151_CR44) 2020; 80
Y Gong (3151_CR10) 2017; 26
SJ Bonvehi (3151_CR61) 1997; 45
J Wegener (3151_CR33) 2018; 65
TH Roulston (3151_CR18) 2000; 4
WK Kwong (3151_CR47) 2017; 4
3151_CR54
F Azzouz-Olden (3151_CR41) 2018; 19
3151_CR50
G Di Pasquale (3151_CR12) 2016; 11
GV Amdam (3151_CR69) 2003; 100
GV Amdam (3151_CR70) 2005; 52
G Di Pasquale (3151_CR11) 2013; 8
AJ Hulbert (3151_CR59) 1999; 80
C Mayack (3151_CR83) 2009; 100
AG Dolezal (3151_CR5) 2018; 26
WK Kwong (3151_CR72) 2016; 14
T Ischebeck (3151_CR57) 2016; 1861
AP De Groot (3151_CR30) 1953; 3
3151_CR23
J Settele (3151_CR25) 2016; 2
Y Arien (3151_CR55) 2020; 124
ER Noordyke (3151_CR67) 2021; 114
VA Ricigliano (3151_CR81) 2020; 104
K Kulhanek (3151_CR1) 2017; 56
WK Kwong (3151_CR74) 2013; 63
VA Ricigliano (3151_CR43) 2020; 12
3151_CR62
WG Meikle (3151_CR17) 2017; 48
MM López-Uribe (3151_CR4) 2020; 8
HR Mattila (3151_CR28) 2006; 99
RM Johnson (3151_CR3) 2010; 41
3151_CR8
AS Alqarni (3151_CR35) 2006; 6
D Avni (3151_CR31) 2014; 69
K Raymann (3151_CR71) 2018; 26
KE Anderson (3151_CR46) 2017; 22
3151_CR39
3151_CR34
HP Hendriksma (3151_CR68) 2019; 117
Y Arien (3151_CR32) 2015; 112
K Crailsheim (3151_CR14) 1990; 21
AG Dolezal (3151_CR22) 2016; 11
ER Noordyke (3151_CR29) 2021; 5
B Sheesley (3151_CR36) 1970; 24
FA Robinson (3151_CR64) 1966; 49
VA Ricigliano (3151_CR45) 2020; 11
KE Morrison (3151_CR60) 2020; 8
VA Ricigliano (3151_CR80) 2021; 52
C Li (3151_CR53) 2012; 43
Y Cao (3151_CR82) 2020; 99
G DeGrandi-Hoffman (3151_CR7) 2015; 10
EL Arrese (3151_CR56) 2010; 55
AN Mortensen (3151_CR26) 2019; 112
C Vodovnik (3151_CR6) 2021; 52
WK Kwong (3151_CR73) 2014; 111
JC Jones (3151_CR76) 2018; 8
References_xml – ident: 3151_CR8
  doi: 10.1038/s41598-017-15358-w
– volume: 3
  start-page: 1
  year: 1953
  ident: 3151_CR30
  publication-title: Oecol.
– volume: 56
  start-page: 328
  year: 2017
  ident: 3151_CR1
  publication-title: J Apic Res
  doi: 10.1080/00218839.2017.1344496
– ident: 3151_CR34
– volume: 43
  start-page: 576
  year: 2012
  ident: 3151_CR53
  publication-title: Apidologie.
  doi: 10.1007/s13592-012-0126-0
– volume: 41
  start-page: 278
  year: 2010
  ident: 3151_CR13
  publication-title: Apidologie.
  doi: 10.1051/apido/2010012
– volume: 9
  start-page: 4894
  year: 2019
  ident: 3151_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41281-3
– volume: 108
  start-page: 20645
  issue: 51
  year: 2011
  ident: 3151_CR24
  publication-title: PNAS.
  doi: 10.1073/pnas.1115559108
– volume: 15
  start-page: 1
  issue: 10
  year: 2019
  ident: 3151_CR58
  publication-title: Metabolomics
  doi: 10.1007/s11306-019-1590-6
– volume: 80
  start-page: 155
  year: 1999
  ident: 3151_CR59
  publication-title: Biol Rev Camb Philos Soc
  doi: 10.1017/S1464793104006578
– volume: 24
  start-page: 5
  year: 1970
  ident: 3151_CR36
  publication-title: Calif Agric
– volume: 21
  start-page: 417
  year: 1990
  ident: 3151_CR14
  publication-title: Apidologie.
  doi: 10.1051/apido:19900504
– volume: 49
  start-page: 175
  issue: 3
  year: 1966
  ident: 3151_CR64
  publication-title: Fla Entomol
  doi: 10.2307/3493440
– volume: 45
  start-page: 725
  issue: 3
  year: 1997
  ident: 3151_CR61
  publication-title: J Agric Food Chem
  doi: 10.1021/jf960265q
– volume: 100
  start-page: 1799
  year: 2003
  ident: 3151_CR69
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0333979100
– volume: 52
  start-page: 316
  year: 2005
  ident: 3151_CR70
  publication-title: Insect Soc
  doi: 10.1007/s00040-005-0812-2
– volume: 11
  start-page: e0162818
  year: 2016
  ident: 3151_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162818
– volume: 8
  start-page: 88
  year: 2018
  ident: 3151_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-28732-z
– volume: 52
  start-page: 658
  year: 2021
  ident: 3151_CR6
  publication-title: Apidologie.
  doi: 10.1007/s13592-021-00853-x
– ident: 3151_CR50
  doi: 10.1006/meth.2001.1262
– ident: 3151_CR19
  doi: 10.1007/978-3-7091-6306-1_10
– volume: 78
  start-page: 195
  year: 2019
  ident: 3151_CR75
  publication-title: Microb Ecol
  doi: 10.1007/s00248-018-1287-9
– volume: 11
  start-page: e0153531
  year: 2016
  ident: 3151_CR22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153531
– volume: 5
  start-page: 175
  year: 2012
  ident: 3151_CR15
  publication-title: Terr Arthropod Rev
  doi: 10.1163/187498312X639568
– volume: 11
  start-page: 291
  year: 2020
  ident: 3151_CR45
  publication-title: Insects.
  doi: 10.3390/insects11050291
– volume: 1861
  start-page: 1315
  year: 2016
  ident: 3151_CR57
  publication-title: BBA.
– volume: 112
  start-page: 60
  issue: 1
  year: 2019
  ident: 3151_CR26
  publication-title: J Econ Entomol
  doi: 10.1093/jee/toy341
– volume: 15
  start-page: e2003467
  year: 2017
  ident: 3151_CR79
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2003467
– volume: 4
  start-page: 170003
  year: 2017
  ident: 3151_CR47
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.170003
– ident: 3151_CR48
– volume: 4
  start-page: 4195
  year: 2014
  ident: 3151_CR20
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1293
– volume: 117
  start-page: 103906
  year: 2019
  ident: 3151_CR68
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2019.103906
– volume: 19
  start-page: 628
  year: 2018
  ident: 3151_CR41
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5007-0
– volume: 58
  start-page: 800
  issue: 5
  year: 2019
  ident: 3151_CR27
  publication-title: J Apic Res
  doi: 10.1080/00218839.2019.1644938
– volume: 8
  start-page: 15
  year: 2020
  ident: 3151_CR60
  publication-title: Microbiome.
  doi: 10.1186/s40168-020-0791-6
– ident: 3151_CR39
  doi: 10.1038/srep40568
– volume: 12
  start-page: 496
  year: 2020
  ident: 3151_CR43
  publication-title: Apidologie.
– volume: 56
  start-page: 1184
  year: 2010
  ident: 3151_CR51
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2010.03.017
– volume: 7
  start-page: e01326
  year: 2016
  ident: 3151_CR78
  publication-title: mBio.
  doi: 10.1128/mBio.01326-16
– volume: 26
  start-page: 97
  year: 2018
  ident: 3151_CR71
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2018.02.012
– volume: 63
  start-page: 2008
  year: 2013
  ident: 3151_CR74
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.044875-0
– volume: 41
  start-page: 312
  year: 2010
  ident: 3151_CR3
  publication-title: Apidologie.
  doi: 10.1051/apido/2010018
– volume: 22
  start-page: 125
  year: 2017
  ident: 3151_CR46
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2017.05.020
– volume: 19
  start-page: 385
  issue: 4
  year: 1940
  ident: 3151_CR63
  publication-title: J Nutr
  doi: 10.1093/jn/19.4.385
– volume: 14
  start-page: 374
  year: 2016
  ident: 3151_CR72
  publication-title: Nature
– volume: 12
  start-page: 496
  year: 2011
  ident: 3151_CR16
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-496
– volume: 47
  start-page: 325
  year: 2016
  ident: 3151_CR2
  publication-title: Apidologie.
  doi: 10.1007/s13592-016-0431-0
– volume: 11
  start-page: e0152685
  year: 2016
  ident: 3151_CR65
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152685
– ident: 3151_CR49
– ident: 3151_CR62
  doi: 10.1080/00218839.1974.11099758
– volume: 7
  start-page: e44229
  year: 2012
  ident: 3151_CR77
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0044229
– volume: 26
  start-page: 1
  year: 2017
  ident: 3151_CR10
  publication-title: Ecotoxicology.
  doi: 10.1007/s10646-016-1742-7
– volume: 52
  start-page: 873
  year: 2021
  ident: 3151_CR80
  publication-title: Apidologie.
  doi: 10.1007/s13592-021-00877-3
– volume: 99
  start-page: 295
  year: 2020
  ident: 3151_CR82
  publication-title: Trends Food Sci Technol
  doi: 10.1016/j.tifs.2020.03.006
– ident: 3151_CR54
  doi: 10.1242/jeb.242040
– volume: 55
  start-page: 207
  year: 2010
  ident: 3151_CR56
  publication-title: Annu Rev Entomol
  doi: 10.1146/annurev-ento-112408-085356
– ident: 3151_CR23
– volume: 48
  start-page: 34
  year: 2015
  ident: 3151_CR52
  publication-title: J Apic Res
  doi: 10.3896/IBRA.1.48.1.08
– volume: 111
  start-page: 11509
  year: 2014
  ident: 3151_CR73
  publication-title: PNAS.
  doi: 10.1073/pnas.1405838111
– volume: 65
  start-page: 381
  year: 2018
  ident: 3151_CR33
  publication-title: Insect Soc
  doi: 10.1007/s00040-018-0623-x
– volume: 15
  start-page: 134
  year: 2014
  ident: 3151_CR42
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-134
– volume: 8
  start-page: 441
  year: 2018
  ident: 3151_CR76
  publication-title: Ecol Evol
  doi: 10.1002/ece3.3597
– volume: 6
  start-page: 396
  year: 2014
  ident: 3151_CR84
  publication-title: Environ Microbiol Rep
  doi: 10.1111/1758-2229.12169
– volume: 4
  start-page: 617
  year: 2000
  ident: 3151_CR18
  publication-title: Ecol Monogr
– volume: 99
  start-page: 604
  issue: 3
  year: 2006
  ident: 3151_CR28
  publication-title: J Econ Entomol
  doi: 10.1093/jee/99.3.604
– volume: 124
  start-page: 104074
  year: 2020
  ident: 3151_CR55
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2020.104074
– volume: 26
  start-page: 114
  year: 2018
  ident: 3151_CR5
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2018.02.006
– volume: 2
  start-page: 16092
  year: 2016
  ident: 3151_CR25
  publication-title: Nat Plants
  doi: 10.1038/nplants.2016.92
– volume: 5
  start-page: 772897
  year: 2021
  ident: 3151_CR29
  publication-title: Front Sustain Food Syst
  doi: 10.3389/fsufs.2021.772897
– volume: 8
  start-page: 269
  year: 2020
  ident: 3151_CR4
  publication-title: Annu Rev Anim Biosci
  doi: 10.1146/annurev-animal-020518-115045
– volume: 69
  start-page: 65
  year: 2014
  ident: 3151_CR31
  publication-title: J Insect Physiol
  doi: 10.1016/j.jinsphys.2014.07.001
– volume: 21
  start-page: 60
  year: 2017
  ident: 3151_CR9
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2017.05.008
– volume: 3
  start-page: e838
  year: 2015
  ident: 3151_CR21
  publication-title: Peer J
  doi: 10.7717/peerj.838
– volume: 6
  start-page: 734
  issue: 4
  year: 2006
  ident: 3151_CR35
  publication-title: J Biol Sci
  doi: 10.3923/jbs.2006.734.737
– volume: 83
  start-page: 150
  year: 2019
  ident: 3151_CR37
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2018.12.008
– volume: 80
  start-page: 908
  issue: 4
  year: 2020
  ident: 3151_CR44
  publication-title: Microb Ecol
  doi: 10.1007/s00248-020-01538-1
– volume: 38
  start-page: 409
  year: 1992
  ident: 3151_CR66
  publication-title: J Insect Physiol
  doi: 10.1016/0022-1910(92)90117-V
– volume: 114
  start-page: 1421
  year: 2021
  ident: 3151_CR67
  publication-title: J Econ Entomol
  doi: 10.1093/jee/toab083
– volume: 48
  start-page: 666
  year: 2017
  ident: 3151_CR17
  publication-title: Apidologie.
  doi: 10.1007/s13592-017-0512-8
– volume: 10
  start-page: 170
  year: 2015
  ident: 3151_CR7
  publication-title: Curr Opin Insect Sci
  doi: 10.1016/j.cois.2015.05.007
– volume: 100
  start-page: 185
  year: 2009
  ident: 3151_CR83
  publication-title: J Invertebr Pathol
  doi: 10.1016/j.jip.2008.12.001
– volume: 8
  start-page: e72016
  year: 2013
  ident: 3151_CR11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072016
– volume: 104
  start-page: e21658
  year: 2020
  ident: 3151_CR81
  publication-title: Arch Insect Biochem Physiol
  doi: 10.1002/arch.21658
– volume: 112
  start-page: 15761
  year: 2015
  ident: 3151_CR32
  publication-title: PNAS.
  doi: 10.1073/pnas.1517375112
SSID ssj0044976
Score 2.4958832
Snippet Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives...
Background Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental...
BACKGROUND: Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental...
Abstract Background Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 52
SubjectTerms almonds
amino acid composition
Amino acids
Analysis
Animal nutrition
Animals
apiaries
Apis mellifera
Artificial diets
Beekeeping
Bees
Bifidobacterium
Biological markers
Biomarkers
California
Colonies
Diet
Diet - veterinary
digestive system
Disease control
Disease susceptibility
essential amino acids
experimental diets
forage
Gastrointestinal Microbiome
Gene expression
Gilliamella
Growth
Gut microbiota
Health aspects
honey bee colonies
honey bees
Honeybee
humans
Intestinal microflora
intestinal microorganisms
Leucine
Microbiota
Microbiota (Symbiotic organisms)
Nutrition
Observations
Pathogens
Plant reproduction
Pollen
Pollination
population size
spring
Sugars
Testing
Tryptophan
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKm77cpEWFQA-NiCVLsnxMQ0MIJKek5Cb0chNovCHrpeTfd8ayt2sK6aVXScbSPPRJ9sw3hOyb6NvIuWMxKceQEZwZ7xVrW5kAraQRHBOczy_06ZU8u1bXG6W-MCYs0wNnwR1GOIIkEcvAfZROBaOda3kElAspajmQbQPmTZepvAdLCSg7pcgYfbgEVIPdGCPXsaoBZ2oGQwNb_9978gYozQMmNxDo5AV5Ph4d6VGe8kvyLHU7ZOc7xrMMSbX0fPxP_or8yqTES7po6VQCpae42EwYAY0JezsKBneHRZeg7WbRpUfqU6LIZN090vs_SQUHNCdMUkzXx4ieh-UBdV2kP1Y9vbvNbE69e02uTr5dHp-yscQCC6rRPQupMbLyQXupfTQJXBSEq0OtRKyMCC2geS2jM6VJvIxCproVcMrzsXRYeL16Q7Y6mN07QptoVFKliAYUhbTvVWgj3JakaQLngReETxK3YeQfxzIYP-1wDzHaZi1Z0JIdtGRVQb6sn7nP7BtPjv6KilyPRObsoQHsyY72ZP9lTwX5jGZg0b9hesGNaQqwSGTKske6qWRTVVIUZG82EvwyzLsnQ7LjvrC04Auw65mmhPd8Wnfjkxjr1qXFCsfgVzkhyvqJMYANDf7SlQV5m21zvexKlRoOcSCOema1M7nMe7rbm4FZ3NQGIEC__x-C3CXbYnA4zgTfI1v9wyp9gANc7z8OvvobxeNELg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggKK9AQUZC4kCtxo7tOCdUEFWFVE4U7c2KH2krtcmyyQr13zOTVxsh7dV2ItvztD3zDSEfTXBV4LxkIaqSISI4M84pVlUygrWSRnBMcD77qU_P5Y-VWo0Xbu0YVjnpxF5Rh8bjHfkR_AX4xRSp_rL-w7BqFL6ujiU0HpJHCF2Gh698NR-4pARbOyXKGH3Ugm0DnYzx61jbgDO1MEY9Zv__mvmeaVqGTd6zQydPyZPRgaTHA8WfkQex3if7vzGqpU-tpWfja_lz8neAJm5pU9GpEEpHkVcG2AhojNhbU9iCGyy9BG2XTR1vqYuRIp51fUvXd6kFh3RIm6SYtI9xPZv2kJZ1oBfbjt5cDZhOXfmCnJ98__XtlI2FFphXhe6Yj4WRmfPaSe2CiSCoFQ_a50qEzAhfgU3PZShNaiJPg5AxrwT4ei6kJZZfz16SvRpm95rQIhgVVSqCcUEi-HvmqwBnJmkKz7nnCeHTjls_opBjMYxr259GjLYDlSxQyfZUsiohn-dv1gMGx87RX5GQ80jEz-4bms2FHcXRBnBsowip5zDNUnmjyxKWDL6Tj0FLnZBPyAYWpRym58sxWQEWiXhZ9lgXmSyyTIqEHCxGgnT6ZffESHbUDq294-WEfJi78UuMeKtjs8UxeDcnRJrvGAMWosCHXZmQVwNvzsvOVKrBlYPtyBdcu9iXZU99ddnji5vcgCHQb3ZP_S15LHpR4kzwA7LXbbbxHThonXvfS-E_9mY6lg
  priority: 102
  providerName: ProQuest
Title Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota
URI https://www.ncbi.nlm.nih.gov/pubmed/35062935
https://www.proquest.com/docview/2630538906
https://www.proquest.com/docview/2622282207
https://www.proquest.com/docview/2887985854
https://pubmed.ncbi.nlm.nih.gov/PMC8780706
https://doaj.org/article/d192e2d0c1bd4a5c86aaf1d910ced646
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf28cILYuOrMCojIfHAArFjO84DQivaNCF1QhNFFS9WYjvbpC0dbarR_547JymLmPrSB9tJ_XHnO8d3vx8h77QrSsdYHjkv8wgRwSNdFDIqS-HBWgnNGSY4j8_U6UR8m8rpFunojtoJXDx4tEM-qcn8-uOf36svoPCfg8Jr9WkBNgv2WoxLR84CFsltsguWKUUqh7FY3yoIkQWyOXDCVYQAmF0SzYPv6BmqgOf__659z2z1Qyrv2aiTJ-Rx61zSo0Ya9siWr_bJ_k-MeAlpt3Tc3qQ_JXcNbPGCzkrakaTUFOWogZSAQo-1FQWRvEFaJii7nFV-RQvvKWJdVyt6-y_t4JA2KZUUE_ox5me-OKR55ejFsqY3Vw3eU50_I5OT4x9fT6OWhCGyMlN1ZH2mRVJYVQhVOO1BiUvmlE0ld4nmtgR7nwqX61h7FjsufFpy8AMLF-dIzZ48JzsV9O4loZnT0suYO104gcDwiS0dnKeEzixjlg0I62bc2BahHIkyrk04qWhlmlUysEomrJKRA_Jh_cxtg8-xsfUIF3LdErG1Q8FsfmFaVTUOnF7PXWwZdDOXVqs8hyGDX2W9U0INyHsUA4MyCd2zeZvIAINELC1zpLJEZEki-IAc9FqC5tp-dSdIphN8A9oC-6LOYvift-tqfBKj4So_W2Ib_G7HeZxuaAPWI8NLXzEgLxrZXA87kbECNw-mI-1JbW9e-jXV1WXAHtepBiOhXm0e2WvyiAdVYhFnB2Snni_9G3De6mJIttNpOiS7o-Oz7-fD8AlkGLQUfs9Hv_4CCgFD2Q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBOUVKGAkEAcaNXYcxzkg1EKrLe2uEGpRb25iO20lmiy7WVX7p_iNzOSxbYS0t15tJ3I84_nG8cw3hLxXNsstY6lvXZT6yAjuqyyL_DwXDtBKKM4wwXk0lsMT8f00Ol0jf7tcGAyr7GxibahtafAf-Ta8BfRFJYH8MvnjY9UovF3tSmg0anHoFtdwZJt9PvgG8v3A-f7e8deh31YV8E2UyMo3LlEizIzMhMyscqCVObPSxBG3oeImBwCLhU1VoBwLLBcuzjk4NpkNUqw1HsJ775F1EYKrMCDru3vjHz872y8EoHuXmqPk9gzQFFAAI-axmgLzox781VUC_seCW2DYD9S8hXz7j8jD1mWlO42OPSZrrtggG78wjqZO5qWj9n7-CbluyJBntMxpV3qloqidDVEFNDrsLSgs-hUWe4K2i7JwC5o5R5FBu1jQyU0ywxZtEjUp0gRgJNF0tkXTwtLzeUWvLhsWqSp9Sk7uRAjPyKCA2b0gNLEqclHArcqsQLr50OQWTmlCJYYxwzzCuhXXpuU9x_Ibv3V9_lFSN1LSICVdS0lHHvm0fGbSsH6sHL2LglyORMbuuqGcnuvWAGgLrrTjNjAMpplGRsk0hU8Gb804K4X0yEdUA412BaZn0jY9Aj4SGbr0jkxCkYSh4B7Z7I0Ee2D63Z0i6dYezfTN7vHIu2U3PokxdoUr5zgG_wZyHsQrxgAmJXiVLDzyvNHN5WeHUSDBeYTliHta21uXfk9xeVEzmqtYAfTIl6un_pbcHx6PjvTRwfjwFXnA623FfM42yaCazt1rcA-r7E27Jyk5u2sz8A8qv3gv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+artificial+diets+on+commercial+honey+bee+colony+performance%2C+health+biomarkers%2C+and+gut+microbiota&rft.jtitle=BMC+veterinary+research&rft.au=Ricigliano%2C+Vincent+A&rft.au=Williams%2C+Steven+T&rft.au=Oliver%2C+Randy&rft.date=2022-01-21&rft.pub=BioMed+Central+Ltd&rft.issn=1746-6148&rft.eissn=1746-6148&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12917-022-03151-5&rft.externalDocID=A693493342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-6148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-6148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-6148&client=summon