The role of TRPA1 channels in thermosensation

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a...

Full description

Saved in:
Bibliographic Details
Published inCell insight Vol. 1; no. 6; p. 100059
Main Authors Zhang, Hao, Wang, Chengsan, Zhang, Keyi, Kamau, Peter Muiruri, Luo, Anna, Tian, Lifeng, Lai, Ren
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
AbstractList Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.
ArticleNumber 100059
Author Zhang, Keyi
Wang, Chengsan
Zhang, Hao
Kamau, Peter Muiruri
Tian, Lifeng
Lai, Ren
Luo, Anna
Author_xml – sequence: 1
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
– sequence: 2
  givenname: Chengsan
  surname: Wang
  fullname: Wang, Chengsan
  organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
– sequence: 3
  givenname: Keyi
  surname: Zhang
  fullname: Zhang, Keyi
  organization: University of Chinese Academy of Sciences, Beijing, 100049, China
– sequence: 4
  givenname: Peter Muiruri
  surname: Kamau
  fullname: Kamau, Peter Muiruri
  organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
– sequence: 5
  givenname: Anna
  surname: Luo
  fullname: Luo, Anna
  organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
– sequence: 6
  givenname: Lifeng
  surname: Tian
  fullname: Tian, Lifeng
  organization: University of Chinese Academy of Sciences, Beijing, 100049, China
– sequence: 7
  givenname: Ren
  surname: Lai
  fullname: Lai, Ren
  email: rlai@mail.kiz.ac.cn
  organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37193355$$D View this record in MEDLINE/PubMed
BookMark eNqFUctqHDEQFMbGdjb-gxDmmMts9BxJOSQYk4fBkBA2Z6GRerxaZiVHmjX476P1OMbOwTl1011V3VS9QocxRUDoDcFLgkn3frN0MI4hLimmtI4wFvoAnVIpaas0lYdP-hN0VsqmQqgSncbyGJ0wSTRjQpyidrWGJqcRmjQ0q58_zknj1jZGGEsTYjOtIW9TgVjsFFJ8jY4GOxY4e6gL9OvL59XFt_bq-9fLi_Or1gndTa3uQXvKifZCWNLVhjtFOWDLpOWcAXOSSKu1l72yxDOhfT94wbSuC83ZAl3Ouj7ZjbnJYWvznUk2mPtBytfG5im4EYytmnjo1IA5452UmiirekWktMopZqvWp1nrZtdvwTuIU7bjM9HnmxjW5jrdmmp0dbf6tEDvHhRy-r2DMpltKHv_bYS0K4YqwhVhXOwff_v02OOVv4ZXAJ8BLqdSMgyPEIL3FzuzMXO0Zh-tmaOttA__0FyY7iOpL4fxf-SPM7mGCrcBsikuQHTgQwY3VU_DywJ_AAYUvkE
CitedBy_id crossref_primary_10_1007_s00204_025_04012_4
crossref_primary_10_1016_j_bbrep_2023_101468
crossref_primary_10_1146_annurev_cellbio_120123_112853
crossref_primary_10_1093_molbev_msad225
crossref_primary_10_1016_j_ceca_2023_102800
crossref_primary_10_1016_j_coph_2024_102447
crossref_primary_10_1186_s12934_024_02382_5
crossref_primary_10_1016_j_jphs_2024_04_007
crossref_primary_10_3390_cells12222613
crossref_primary_10_1002_lary_31570
crossref_primary_10_1016_j_jtherbio_2024_103868
crossref_primary_10_1186_s40360_024_00779_x
crossref_primary_10_1002_bies_202400233
crossref_primary_10_7759_cureus_76537
crossref_primary_10_1097_j_pain_0000000000003503
crossref_primary_10_1111_1744_7917_13364
crossref_primary_10_1186_s40478_024_01856_2
crossref_primary_10_1292_jvms_23_0327
Cites_doi 10.3389/fphys.2016.00447
10.1172/JCI25437
10.1523/JNEUROSCI.1696-08.2008
10.4049/jimmunol.1300300
10.1073/pnas.0808487106
10.2307/2405846
10.1186/s13075-015-0904-y
10.1111/j.1460-9568.2004.03695.x
10.1074/jbc.M112.362194
10.1136/gutjnl-2015-310710
10.1038/nature14367
10.1038/s41598-017-00636-4
10.1038/srep28763
10.1016/j.cub.2021.04.054
10.1016/j.neuron.2007.02.024
10.3390/ijms222111460
10.1016/S0896-6273(04)00150-3
10.1038/nn.3010
10.1007/s00424-013-1420-z
10.1038/nchembio.640
10.1073/pnas.1114124108
10.2217/pgs-2017-0198
10.1523/JNEUROSCI.2580-10.2010
10.1073/pnas.1000357107
10.1038/nature26137
10.1038/nn.4416
10.1016/j.neuron.2014.04.016
10.1038/nature08943
10.3390/ph11040117
10.1098/rsob.160042
10.1016/j.cell.2006.02.023
10.1007/s00424-018-2120-5
10.1038/nature10715
10.1111/mec.14572
10.1523/JNEUROSCI.5387-13.2014
10.1016/j.bbrc.2017.10.057
10.1038/nature02282
10.1111/mec.15170
10.3390/ijms21113826
10.1523/JNEUROSCI.3189-10.2010
10.1016/j.pain.2010.05.021
10.1038/nn.2170
10.1523/JNEUROSCI.3752-06.2006
10.1080/23328940.2017.1315478
10.1136/gut.2008.175901
10.1101/gad.1278205
10.1080/13543776.2020.1797679
10.1016/j.atherosclerosis.2020.04.004
10.1038/ncomms3501
10.1152/physrev.00005.2019
10.1016/S0092-8674(03)00158-2
10.33549/physiolres.934697
10.1038/nn.2581
10.1016/j.jbc.2022.102271
10.1073/pnas.0812675106
10.1073/pnas.2201349119
10.1111/pai.12673
10.1016/j.ebiom.2018.08.022
10.1152/ajprenal.00069.2019
10.1007/112_2014_18
10.1007/s00210-015-1088-3
10.1073/pnas.1322134111
10.1016/j.cbi.2013.08.012
10.1016/j.cell.2014.07.026
10.1038/s41598-017-02171-8
10.1007/978-3-642-54215-2_23
10.3390/cells9010057
10.1016/j.ejphar.2021.174553
10.1038/ncomms12840
10.1523/JNEUROSCI.0013-05.2005
10.1016/j.neulet.2008.05.093
10.1093/molbev/msu001
10.1016/j.bbamem.2015.12.011
10.1073/pnas.0805041105
10.3390/ijms18102028
10.2183/pjab.93.028
10.1016/j.brainres.2007.05.047
10.1073/pnas.1117485108
10.1074/jbc.274.11.7325
10.3390/ph9040070
10.1073/pnas.1604269113
10.1093/ajh/hpaa162
10.1080/14728222.2020.1815191
10.1152/ajpgi.00401.2016
10.1038/s41598-019-56639-w
10.1002/ijc.31911
10.1523/JNEUROSCI.5614-06.2007
10.1038/nature719
10.3390/ph12020048
10.1177/0748730415627037
10.1523/JNEUROSCI.2001-10.2010
10.1111/j.1460-9568.2009.06901.x
10.1124/jpet.111.189902
10.1186/1744-8069-6-4
10.1016/j.celrep.2017.11.083
10.3389/fphar.2019.00964
10.1038/ncomms3399
10.1038/nature07001
10.1016/j.pain.2009.12.002
10.1016/j.neuron.2006.03.042
10.1073/pnas.1412689111
10.1038/423822a
10.1113/jphysiol.2012.242842
10.3389/fnmol.2017.00209
10.1002/j.1532-2149.2013.00331.x
10.1371/journal.pone.0046917
10.1186/s12990-015-0072-8
10.1038/nature05910
10.1097/WNR.0000000000000939
10.1038/s41593-017-0005-0
10.7150/ijbs.15229
10.1093/chemse/bjv091
10.1016/S0092-8674(03)00272-1
10.4049/jimmunol.2000149
10.1086/675065
10.1002/ana.24951
10.1016/j.pain.2011.02.051
10.1111/cge.13040
10.1073/pnas.1922714117
10.1038/srep28700
10.1016/j.neuron.2010.04.030
10.1016/j.celrep.2011.11.002
10.1073/pnas.252537899
10.1080/23328940.2014.1000702
10.3389/fphys.2020.00836
10.1016/j.cub.2019.09.070
10.1016/S0092-8674(02)00652-9
10.1523/JNEUROSCI.5318-12.2013
10.1890/ES12-00383.1
10.1038/nature08848
10.1016/j.cell.2013.01.020
10.1186/1744-8069-5-3
10.1523/JNEUROSCI.2221-07.2007
10.1111/bph.12512
10.1016/j.neuroscience.2008.04.039
10.1074/jbc.M115.702498
10.1080/19336950.2017.1365206
10.3389/fphys.2017.00878
10.1038/srep02005
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.cellin.2022.100059
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2772-8927
ExternalDocumentID oai_doaj_org_article_aa370f68f0434677918a8b8177a8c83a
PMC10120293
37193355
10_1016_j_cellin_2022_100059
S2772892722000566
Genre Journal Article
Review
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
RPM
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c596t-9be9d2419d55a164194c824e0a37a443e3c717a99d7b8a1d359dbfd5399c71943
IEDL.DBID DOA
ISSN 2772-8927
IngestDate Wed Aug 27 01:31:40 EDT 2025
Thu Aug 21 18:37:22 EDT 2025
Fri Jul 11 01:27:07 EDT 2025
Thu Jan 02 22:51:11 EST 2025
Tue Jul 01 03:04:55 EDT 2025
Thu Apr 24 23:09:40 EDT 2025
Tue Jul 25 20:57:13 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords TRPA1
Ion channel
Thermosensation
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-9be9d2419d55a164194c824e0a37a443e3c717a99d7b8a1d359dbfd5399c71943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/aa370f68f0434677918a8b8177a8c83a
PMID 37193355
PQID 2814813454
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_aa370f68f0434677918a8b8177a8c83a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10120293
proquest_miscellaneous_2814813454
pubmed_primary_37193355
crossref_primary_10_1016_j_cellin_2022_100059
crossref_citationtrail_10_1016_j_cellin_2022_100059
elsevier_sciencedirect_doi_10_1016_j_cellin_2022_100059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Cell insight
PublicationTitleAlternate Cell Insight
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Antoniazzi, Nassini, Rigo, Milioli, Bellinaso, Camponogara, Silva, de Almeida, Rossato, De Logu, Oliveira, Cunha, Geppetti, Ferreira, Trevisan (bib5) 2019; 144
da Costa, Meotti, Andrade, Leal, Motta, Calixto (bib28) 2010; 148
Ma, Zhang, He, Wang, Wang (bib73) 2019; 317
Luo, Shen, Montell (bib71) 2017; 20
Cádiz, Nagata, Katabuchi, Díaz, Echenique-Díaz, Akashi, Makino, Kawata (bib17) 2013; 4
Jhun, Hu, Sadhu, Yao, He, Wilkie, Molokie, Wang (bib50) 2018; 19
Zhao, Shyue, Kou, Lu, Lee (bib139) 2016; 12
Saito, Hamanaka, Kawai, Furukawa, Gojobori, Tominaga, Kaneko, Satta (bib106) 2017; 7
Heber, Fischer (bib42) 2019; 7
Mahajan, Khare, Kondepudi, Bishnoi (bib75) 2021; 912
Sato, Sokabe, Kashio, Yasukochi, Tominaga, Shiomi (bib111) 2014; 111
Dong, Kashio, Peng, Wang, Tominaga, Kadowaki (bib33) 2016; 6
Yang, Lu, Wang, Xu, Chen, Yang, Lai (bib136) 2020; 117
Horvath, Tekus, Boros, Pozsgai, Botz, Borbely, Szolcsanyi, Pinter, Helyes (bib46) 2016; 18
Kang, Panzano, Chang, Ni, Dainis, Jenkins, Regna, Muskavitch, Garrity (bib54) 2011; 481
Chen, Terrett (bib19) 2020; 30
Chen, Hackos (bib20) 2015; 388
Laursen, Schneider, Merriman, Bagriantsev, Gracheva (bib67) 2016; 113
Koivisto, Jalava, Bratty, Pertovaara (bib60) 2018; 11
Xiao, Zhang, Dong, Gong, Xu, Liu, Xu (bib132) 2013; 152
Roessingh, Stanewsky (bib101) 2017; 18
Hjerling-Leffler, Alqatari, Ernfors, Koltzenburg (bib43) 2007; 27
Peng, Kashio, Li, Dong, Tominaga, Kadowaki (bib100) 2016; 7
Oda, Kubo, Saitoh (bib94) 2018; 29
Matsuda, Arkwright, Mori, Oikawa, Muko, Tanaka, Matsuda (bib77) 2020; 205
Batai, Sar, Horvath, Borbely, Bolcskei, Kemeny, Sandor, Nemes, Helyes, Perkecz, Mocsai, Pozsgai, Pinter (bib10) 2019; 10
Gu, Gong, Shang, Wang, Ruppell, Ma, Sheehan, Freeman, Xiang (bib40) 2019; 29
Andersson, Gentry, Moss, Bevan (bib3) 2009; 106
Kohno, Sokabe, Tominaga, Kadowaki (bib59) 2010; 30
Staff, Grisold, Grisold, Windebank (bib117) 2017; 81
Laursen, Anderson, Hoffstaetter, Bagriantsev, Gracheva (bib66) 2015; 2
Saito, Ohkita, Saito, Takahashi, Tominaga, Ohta (bib108) 2016; 291
Li, Saito, Hikitsuchi, Inoguchi, Mitsuishi, Saito, Tominaga (bib68) 2019; 9
Gallo, Dijk, Holloway, Ring, Koppelman, Postma, Strachan, Granell, de Jongste, Jaddoe, den Dekker, Duijts, Henderson, Shaheen (bib36) 2017; 28
Zhong, Bellemer, Yan, Ken, Jessica, Hwang, Pitt, Tracey (bib140) 2012; 1
Nagata, Duggan, Kumar, Garcia-Anoveros (bib87) 2005; 25
Matos-Cruz, Schneider, Mastrotto, Merriman, Bagriantsev, Gracheva (bib76) 2017; 21
Kremeyer, Lopera, Cox, Momin, Rugiero, Marsh, Woods, Jones, Paterson, Fricker, Villegas, Acosta, Pineda-Trujillo, Ramirez, Zea, Burley, Bedoya, Bennett, Wood, Ruiz-Linares (bib62) 2010; 66
Benemei, Fusi, Trevisan, Geppetti (bib13) 2014; 171
Sinica, Zimova, Barvikova, Macikova, Barvik, Vlachova (bib114) 2019; 9
Babes, Zorzon, Reid (bib7) 2004; 20
Nguyen, Chapman, Kashio, Saito, Strom, Yasui, Tominaga (bib91) 2022
Chowdhury, Jarecki, Chanda (bib23) 2014; 158
Moparthi, Kichko, Eberhardt, Hogestatt, Kjellbom, Johanson, Reeh, Leffler, Filipovic, Zygmunt (bib81) 2016; 6
Talavera, Startek, Alvarez-Collazo, Boonen, Alpizar, Sanchez, Naert, Nilius (bib121) 2020; 100
Saito, Tominaga (bib110) 2017; 4
Peier, Moqrich, Hergarden, Reeve, Andersson, Story, Earley, Dragoni, McIntyre, Bevan, Patapoutian (bib99) 2002; 108
Kang, Pulver, Panzano, Chang, Griffith, Theobald, Garrity (bib55) 2010; 464
Fajardo, Meseguer, Belmonte, Viana (bib35) 2008; 28
Hynkova, Marsakova, Vaskova, Vlachova (bib47) 2016; 6
Sawada, Hosokawa, Hori, Matsumura, Kobayashi (bib112) 2007; 1160
Chen, Kang, Xu, Lake, Hogan, Sun, Walter, Yao, Kim (bib21) 2013; 4
Kang (bib53) 2016; 1858
Saito, Nakatsuka, Takahashi, Fukuta, Imagawa, Ohta, Tominaga (bib107) 2012; 287
Ye, Zhang, Li, Lai, Yang, Du (bib137) 2021; 31
Kondo, Obata, Miyoshi, Sakurai, Tanaka, Miwa, Noguchi (bib61) 2009; 58
Wilson, Nelson, Batia, Morita, Estandian, Owens, Lumpkin, Bautista (bib129) 2013; 33
Andrei, Ghosh, Sinharoy, Dey, Bratz, Damron (bib4) 2017; 11
Kwon, Shim, Wang, Montell (bib65) 2008; 11
Viswanath, Story, Peier, Petrus, Lee, Hwang, Patapoutian, Jegla (bib124) 2003; 423
Gao, Kaudimba, Guo, Zhang, Liu, Chen, Wang (bib37) 2020; 11
Kwan, Allchorne, Vollrath, Christensen, Zhang, Woolf, Corey (bib64) 2006; 50
Das, Holmes, Sheeba (bib29) 2016; 31
Saito, Banzawa, Fukuta, Saito, Takahashi, Imagawa, Ohta, Tominaga (bib105) 2014; 31
Mukhopadhyay, Kulkarni, Khairatkar-Joshi (bib85) 2016; 9
Knowlton, Bifolck-Fisher, Bautista, McKemy (bib58) 2010; 150
Miyake, Nakamura, Zhao, So, Inoue, Numata, Takahashi, Shirakawa, Mori, Nakagawa, Kaneko (bib80) 2016; 7
Cordero-Morales, Gracheva, Julius (bib26) 2011; 108
Jaquemar, Schenker, Trueb (bib49) 1999; 274
Gentry, Stoakley, Andersson, Bevan (bib38) 2010; 6
Hoffstaetter, Bagriantsev, Gracheva (bib45) 2018; 470
Wu, Wu, Lee, Kou, Tarng (bib131) 2021; 22
Nirenberg, Chaouni, Biller, Gilbert, Paisan-Ruiz (bib92) 2018; 93
Vandewauw, De Clercq, Mulier, Held, Pinto, Van Ranst, Segal, Voet, Vennekens, Zimmermann, Vriens, Voets (bib123) 2018; 555
Cseko, Beckers, Keszthelyi, Helyes (bib27) 2019; 12
Hamada, Rosenzweig, Kang, Pulver, Ghezzi, Jegla, Garrity (bib41) 2008; 454
Kurganov, Zhou, Saito, Tominaga (bib63) 2014; 466
Naert, Lopez-Requena, Talavera (bib86) 2021; 22
Andersson, Gentry, Bevan (bib2) 2012; 7
Clarke, Attwell (bib25) 2011; 15
Souza Monteiro de Araujo, Nassini, Geppetti, De Logu (bib116) 2020; 24
Sinica, Vlachova (bib113) 2021; 70
del Camino, Murphy, Heiry, Barrett, Earley, Cook, Petrus, Zhao, D'Amours, Deering, Brenner, Costigan, Hayward, Chong, Fanger, Woolf, Patapoutian, Moran (bib31) 2010; 30
Oda, Saito, Hatta, Kubo, Saitoh (bib96) 2017; 494
de Oliveira, Garami, Lehto, Pakai, Tekus, Pohoczky, Youngblood, Wang, Kort, Kym, Pinter, Gavva, Romanovsky (bib30) 2014; 34
Story, Peier, Reeve, Eid, Mosbacher, Hricik, Earley, Hergarden, Andersson, Hwang, McIntyre, Jegla, Bevan, Patapoutian (bib119) 2003; 112
Hoffmann, Kistner, Miermeister, Winkelmann, Wittmann, Fischer, Weidner, Reeh (bib44) 2013; 17
Sosa-Pagan, Iversen, Grandl (bib115) 2017; 7
Chatzigeorgiou, Yoo, Watson, Lee, Spencer, Kindt, Hwang, Miller, Treinin, Driscoll, Schafer (bib18) 2010; 13
Yamamoto, Chiba, Chiba, Kambe, Abe, Kawakami, Utsunomiya, Taguchi (bib133) 2015; 11
Yang, Li, Zuo, Zhen, Yu, Gao (bib135) 2008; 440
Akashi, Saito, Cadiz Diaz, Makino, Tominaga, Kawata (bib1) 2018; 27
Saito, Saito, Nozawa, Tominaga (bib109) 2019; 28
Balemans, Boeckxstaens, Talavera, Wouters (bib8) 2017; 312
Oh, Oh, Lu, Lou, Myers, Zhu, Zheng (bib97) 2013; 191
Wang, Chen, Zhang, Peng, Wang, Yang, Yang (bib127) 2020; 301
Jordt, Bautista, Chuang, McKemy, Zygmunt, Hogestatt, Meng, Julius (bib52) 2004; 427
Bianchi, Zhang, Reilly, Kym, Yao, Chen (bib15) 2012; 341
Li, Zhao, Zhou, Hu, Du (bib69) 2014; 183
Ruibal (bib104) 1961; 15
Bautista, Jordt, Nikai, Tsuruda, Read, Poblete, Yamoah, Basbaum, Julius (bib11) 2006; 124
Lu, Yao, Wang, Yin, Li, Chai, Dong, Yuan, Lai, Yang (bib70) 2022; 119
Mori, Takahashi, Kurokawa, Kiyonaka (bib83) 2017; 93
Karashima, Damann, Prenen, Talavera, Segal, Voets, Nilius (bib56) 2007; 27
McKemy, Neuhausser, Julius (bib78) 2002; 416
Tracey, Wilson, Laurent, Benzer (bib122) 2003; 113
Chen, Kim, Bianchi, Cavanaugh, Faltynek, Kym, Reilly (bib22) 2009; 5
Oda, Kurogi, Kubo, Saitoh (bib95) 2016; 41
Ma, Wang (bib72) 2021; 34
Gracheva, Ingolia, Kelly, Cordero-Morales, Hollopeter, Chesler, Sanchez, Perez, Weissman, Julius (bib39) 2010; 464
Obata, Katsura, Mizushima, Yamanaka, Kobayashi, Dai, Fukuoka, Tokunaga, Tominaga, Noguchi (bib93) 2005; 115
Zhou, Suzuki, Uchida, Tominaga (bib141) 2013; 4
Arenas, Zaharieva, Para, Vasquez-Doorman, Petersen, Gallio (bib6) 2017; 20
Jabba, Goyal, Sosa-Pagan, Moldenhauer, Wu, Kalmeta, Bandell, Latorre, Patapoutian, Grandl (bib48) 2014; 82
Bautista, Siemens, Glazer, Tsuruda, Basbaum, Stucky, Jordt, Julius (bib12) 2007; 448
Bertin, Aoki-Nonaka, Lee, de Jong, Kim, Han, Yu, To, Takahashi, Boland, Chang, Ho, Herdman, Corr, Franco, Sharma, Dong, Akopian, Raz (bib14) 2017; 66
Dhaka, Murray, Mathur, Earley, Petrus, Patapoutian (bib32) 2007; 54
Nativi, Gualdani, Dragoni, Di Cesare Mannelli, Sostegni, Norcini, Gabrielli, la Marca, Richichi, Francesconi, Moncelli, Ghelardini, Roelens (bib90) 2013; 3
Clapham, Miller (bib24) 2011; 108
Paulsen, Armache, Gao, Cheng, Julius (bib98) 2015; 520
Du, Kang (bib34) 2020; 43
Zygmunt, Hogestatt (bib142) 2014; 222
Rosenzweig, Brennan, Tayler, Phelps, Patapoutian, Garrity (bib102) 2005; 19
Startek, Talavera (bib118) 2020; 21
Moparthi, Survery, Kreir, Simonsen, Kjellbom, Hogestatt, Johanson, Zygmunt (bib82) 2014; 111
Rosenzweig, Kang, Garrity (bib103) 2008; 105
Wang, Xu, Wang, Ye, Liu, Jiang, Ye, Wan (bib128) 2018; 36
Madrid, Donovan-Rodriguez, Meseguer, Acosta, Belmonte, Viana (bib74) 2006; 26
Takahashi, Kuwaki, Kiyonaka, Numata, Kozai, Mizuno, Yamamoto, Naito, Knevels, Carmeliet, Oga, Kaneko, Suga, Nokami, Yoshida, Mori (bib120) 2011; 7
Zakharian, Cao, Rohacs (bib138) 2010; 30
Bandell, Story, Hwang, Viswanath, Eid, Petrus, Earley, Patapoutian (bib9) 2004; 41
Wang, Schupp, Zurborg, Heppenstall (bib126) 2013; 591
Wang, Qiu, Lu, Kwon, Pitts, Van Loon, Takken, Zwiebel (bib125) 2009; 30
Buch, Schafer, Demmel, Boekhoff, Thiermann, Gudermann, Steinritz, Schmidt (bib16) 2013; 206
Karashima, Talavera, Everaerts, Janssens, Kwan, Vennekens, Nilius, Voets (bib57) 2009; 106
Miyake, Nakamura, Meng, Hamano, Inoue, Numata, Takahashi, Nagayasu, Shirakawa, Mori, Nakagawa, Kaneko (bib79) 2017; 8
Mosavi, Minor, Peng (bib84) 2002; 99
Nassini, Materazzi, Benemei, Geppetti (bib89) 2014; 167
Winter, Gruschwitz, Eger, Touska, Zimmermann (bib130) 2017; 10
Ji, Zhou, Carlton (bib51) 2008; 154
Nassini, Gees, Harrison, De Siena, Materazzi, Moretto, Failli, Preti, Marchetti, Cavazzini, Mancini, Pedretti, Nilius, Patacchini, Geppetti (bib88) 2011; 152
Yang, Cui, Wang, Zheng (bib134) 2010; 107
Du (10.1016/j.cellin.2022.100059_bib34) 2020; 43
Winter (10.1016/j.cellin.2022.100059_bib130) 2017; 10
Zakharian (10.1016/j.cellin.2022.100059_bib138) 2010; 30
Gallo (10.1016/j.cellin.2022.100059_bib36) 2017; 28
Antoniazzi (10.1016/j.cellin.2022.100059_bib5) 2019; 144
Balemans (10.1016/j.cellin.2022.100059_bib8) 2017; 312
Gao (10.1016/j.cellin.2022.100059_bib37) 2020; 11
Zygmunt (10.1016/j.cellin.2022.100059_bib142) 2014; 222
Cádiz (10.1016/j.cellin.2022.100059_bib17) 2013; 4
McKemy (10.1016/j.cellin.2022.100059_bib78) 2002; 416
Horvath (10.1016/j.cellin.2022.100059_bib46) 2016; 18
Jabba (10.1016/j.cellin.2022.100059_bib48) 2014; 82
Gracheva (10.1016/j.cellin.2022.100059_bib39) 2010; 464
Hamada (10.1016/j.cellin.2022.100059_bib41) 2008; 454
Zhong (10.1016/j.cellin.2022.100059_bib140) 2012; 1
Cseko (10.1016/j.cellin.2022.100059_bib27) 2019; 12
Wilson (10.1016/j.cellin.2022.100059_bib129) 2013; 33
Karashima (10.1016/j.cellin.2022.100059_bib56) 2007; 27
Laursen (10.1016/j.cellin.2022.100059_bib67) 2016; 113
Staff (10.1016/j.cellin.2022.100059_bib117) 2017; 81
Yamamoto (10.1016/j.cellin.2022.100059_bib133) 2015; 11
Jhun (10.1016/j.cellin.2022.100059_bib50) 2018; 19
Bertin (10.1016/j.cellin.2022.100059_bib14) 2017; 66
Nassini (10.1016/j.cellin.2022.100059_bib88) 2011; 152
Madrid (10.1016/j.cellin.2022.100059_bib74) 2006; 26
Yang (10.1016/j.cellin.2022.100059_bib136) 2020; 117
Bautista (10.1016/j.cellin.2022.100059_bib12) 2007; 448
del Camino (10.1016/j.cellin.2022.100059_bib31) 2010; 30
Nativi (10.1016/j.cellin.2022.100059_bib90) 2013; 3
Moparthi (10.1016/j.cellin.2022.100059_bib81) 2016; 6
Naert (10.1016/j.cellin.2022.100059_bib86) 2021; 22
Wang (10.1016/j.cellin.2022.100059_bib127) 2020; 301
Hjerling-Leffler (10.1016/j.cellin.2022.100059_bib43) 2007; 27
Chen (10.1016/j.cellin.2022.100059_bib19) 2020; 30
Souza Monteiro de Araujo (10.1016/j.cellin.2022.100059_bib116) 2020; 24
Chowdhury (10.1016/j.cellin.2022.100059_bib23) 2014; 158
Mori (10.1016/j.cellin.2022.100059_bib83) 2017; 93
Xiao (10.1016/j.cellin.2022.100059_bib132) 2013; 152
Das (10.1016/j.cellin.2022.100059_bib29) 2016; 31
Luo (10.1016/j.cellin.2022.100059_bib71) 2017; 20
Akashi (10.1016/j.cellin.2022.100059_bib1) 2018; 27
Saito (10.1016/j.cellin.2022.100059_bib109) 2019; 28
Ji (10.1016/j.cellin.2022.100059_bib51) 2008; 154
Nguyen (10.1016/j.cellin.2022.100059_bib91) 2022
Sawada (10.1016/j.cellin.2022.100059_bib112) 2007; 1160
Kang (10.1016/j.cellin.2022.100059_bib53) 2016; 1858
Buch (10.1016/j.cellin.2022.100059_bib16) 2013; 206
Lu (10.1016/j.cellin.2022.100059_bib70) 2022; 119
Hoffstaetter (10.1016/j.cellin.2022.100059_bib45) 2018; 470
Rosenzweig (10.1016/j.cellin.2022.100059_bib103) 2008; 105
Bautista (10.1016/j.cellin.2022.100059_bib11) 2006; 124
Arenas (10.1016/j.cellin.2022.100059_bib6) 2017; 20
Laursen (10.1016/j.cellin.2022.100059_bib66) 2015; 2
Oda (10.1016/j.cellin.2022.100059_bib94) 2018; 29
Ma (10.1016/j.cellin.2022.100059_bib73) 2019; 317
Fajardo (10.1016/j.cellin.2022.100059_bib35) 2008; 28
Kwon (10.1016/j.cellin.2022.100059_bib65) 2008; 11
Startek (10.1016/j.cellin.2022.100059_bib118) 2020; 21
Gentry (10.1016/j.cellin.2022.100059_bib38) 2010; 6
Saito (10.1016/j.cellin.2022.100059_bib107) 2012; 287
Kurganov (10.1016/j.cellin.2022.100059_bib63) 2014; 466
Talavera (10.1016/j.cellin.2022.100059_bib121) 2020; 100
Nirenberg (10.1016/j.cellin.2022.100059_bib92) 2018; 93
Tracey (10.1016/j.cellin.2022.100059_bib122) 2003; 113
Hynkova (10.1016/j.cellin.2022.100059_bib47) 2016; 6
Karashima (10.1016/j.cellin.2022.100059_bib57) 2009; 106
Ye (10.1016/j.cellin.2022.100059_bib137) 2021; 31
Ma (10.1016/j.cellin.2022.100059_bib72) 2021; 34
Peng (10.1016/j.cellin.2022.100059_bib100) 2016; 7
Dhaka (10.1016/j.cellin.2022.100059_bib32) 2007; 54
Sosa-Pagan (10.1016/j.cellin.2022.100059_bib115) 2017; 7
Chatzigeorgiou (10.1016/j.cellin.2022.100059_bib18) 2010; 13
Kremeyer (10.1016/j.cellin.2022.100059_bib62) 2010; 66
Saito (10.1016/j.cellin.2022.100059_bib110) 2017; 4
Oda (10.1016/j.cellin.2022.100059_bib96) 2017; 494
Wu (10.1016/j.cellin.2022.100059_bib131) 2021; 22
Babes (10.1016/j.cellin.2022.100059_bib7) 2004; 20
Kohno (10.1016/j.cellin.2022.100059_bib59) 2010; 30
Saito (10.1016/j.cellin.2022.100059_bib108) 2016; 291
Miyake (10.1016/j.cellin.2022.100059_bib79) 2017; 8
Mosavi (10.1016/j.cellin.2022.100059_bib84) 2002; 99
Wang (10.1016/j.cellin.2022.100059_bib126) 2013; 591
Zhao (10.1016/j.cellin.2022.100059_bib139) 2016; 12
Heber (10.1016/j.cellin.2022.100059_bib42) 2019; 7
Oda (10.1016/j.cellin.2022.100059_bib95) 2016; 41
Li (10.1016/j.cellin.2022.100059_bib69) 2014; 183
Rosenzweig (10.1016/j.cellin.2022.100059_bib102) 2005; 19
Batai (10.1016/j.cellin.2022.100059_bib10) 2019; 10
Kondo (10.1016/j.cellin.2022.100059_bib61) 2009; 58
Gu (10.1016/j.cellin.2022.100059_bib40) 2019; 29
Wang (10.1016/j.cellin.2022.100059_bib128) 2018; 36
Viswanath (10.1016/j.cellin.2022.100059_bib124) 2003; 423
de Oliveira (10.1016/j.cellin.2022.100059_bib30) 2014; 34
Chen (10.1016/j.cellin.2022.100059_bib22) 2009; 5
Matos-Cruz (10.1016/j.cellin.2022.100059_bib76) 2017; 21
Sato (10.1016/j.cellin.2022.100059_bib111) 2014; 111
Sinica (10.1016/j.cellin.2022.100059_bib114) 2019; 9
Clarke (10.1016/j.cellin.2022.100059_bib25) 2011; 15
Jaquemar (10.1016/j.cellin.2022.100059_bib49) 1999; 274
Miyake (10.1016/j.cellin.2022.100059_bib80) 2016; 7
Kang (10.1016/j.cellin.2022.100059_bib54) 2011; 481
Zhou (10.1016/j.cellin.2022.100059_bib141) 2013; 4
Hoffmann (10.1016/j.cellin.2022.100059_bib44) 2013; 17
Benemei (10.1016/j.cellin.2022.100059_bib13) 2014; 171
Chen (10.1016/j.cellin.2022.100059_bib21) 2013; 4
Kwan (10.1016/j.cellin.2022.100059_bib64) 2006; 50
Bandell (10.1016/j.cellin.2022.100059_bib9) 2004; 41
Matsuda (10.1016/j.cellin.2022.100059_bib77) 2020; 205
Oh (10.1016/j.cellin.2022.100059_bib97) 2013; 191
Kang (10.1016/j.cellin.2022.100059_bib55) 2010; 464
Nagata (10.1016/j.cellin.2022.100059_bib87) 2005; 25
Sinica (10.1016/j.cellin.2022.100059_bib113) 2021; 70
Saito (10.1016/j.cellin.2022.100059_bib105) 2014; 31
Mahajan (10.1016/j.cellin.2022.100059_bib75) 2021; 912
Saito (10.1016/j.cellin.2022.100059_bib106) 2017; 7
Yang (10.1016/j.cellin.2022.100059_bib135) 2008; 440
Paulsen (10.1016/j.cellin.2022.100059_bib98) 2015; 520
Yang (10.1016/j.cellin.2022.100059_bib134) 2010; 107
Chen (10.1016/j.cellin.2022.100059_bib20) 2015; 388
Mukhopadhyay (10.1016/j.cellin.2022.100059_bib85) 2016; 9
Peier (10.1016/j.cellin.2022.100059_bib99) 2002; 108
Jordt (10.1016/j.cellin.2022.100059_bib52) 2004; 427
Story (10.1016/j.cellin.2022.100059_bib119) 2003; 112
Moparthi (10.1016/j.cellin.2022.100059_bib82) 2014; 111
Obata (10.1016/j.cellin.2022.100059_bib93) 2005; 115
Vandewauw (10.1016/j.cellin.2022.100059_bib123) 2018; 555
Andersson (10.1016/j.cellin.2022.100059_bib2) 2012; 7
Wang (10.1016/j.cellin.2022.100059_bib125) 2009; 30
Andrei (10.1016/j.cellin.2022.100059_bib4) 2017; 11
Roessingh (10.1016/j.cellin.2022.100059_bib101) 2017; 18
Dong (10.1016/j.cellin.2022.100059_bib33) 2016; 6
Clapham (10.1016/j.cellin.2022.100059_bib24) 2011; 108
Li (10.1016/j.cellin.2022.100059_bib68) 2019; 9
Takahashi (10.1016/j.cellin.2022.100059_bib120) 2011; 7
da Costa (10.1016/j.cellin.2022.100059_bib28) 2010; 148
Cordero-Morales (10.1016/j.cellin.2022.100059_bib26) 2011; 108
Koivisto (10.1016/j.cellin.2022.100059_bib60) 2018; 11
Nassini (10.1016/j.cellin.2022.100059_bib89) 2014; 167
Knowlton (10.1016/j.cellin.2022.100059_bib58) 2010; 150
Ruibal (10.1016/j.cellin.2022.100059_bib104) 1961; 15
Bianchi (10.1016/j.cellin.2022.100059_bib15) 2012; 341
Andersson (10.1016/j.cellin.2022.100059_bib3) 2009; 106
References_xml – volume: 423
  start-page: 822
  year: 2003
  end-page: 823
  ident: bib124
  article-title: Opposite thermosensor in fruitfly and mouse
  publication-title: Nature
– volume: 93
  start-page: 164
  year: 2018
  end-page: 168
  ident: bib92
  article-title: A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome
  publication-title: Clin. Genet.
– volume: 2
  start-page: 214
  year: 2015
  end-page: 226
  ident: bib66
  article-title: Species-specific temperature sensitivity of TRPA1
  publication-title: Temperature (Austin)
– volume: 7
  start-page: 549
  year: 2017
  ident: bib115
  article-title: TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity
  publication-title: Sci. Rep.
– volume: 7
  year: 2019
  ident: bib42
  article-title: Non-analgesic symptomatic or disease-modifying potential of TRPA1
  publication-title: Med. Sci.
– volume: 28
  start-page: 7863
  year: 2008
  end-page: 7875
  ident: bib35
  article-title: TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence
  publication-title: J. Neurosci.
– volume: 520
  start-page: 511
  year: 2015
  end-page: 517
  ident: bib98
  article-title: Structure of the TRPA1 ion channel suggests regulatory mechanisms
  publication-title: Nature
– volume: 4
  start-page: 2501
  year: 2013
  ident: bib21
  article-title: Species differences and molecular determinant of TRPA1 cold sensitivity
  publication-title: Nat. Commun.
– volume: 11
  start-page: 69
  year: 2015
  ident: bib133
  article-title: Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration
  publication-title: Mol. Pain
– volume: 454
  start-page: 217
  year: 2008
  end-page: 220
  ident: bib41
  article-title: An internal thermal sensor controlling temperature preference in Drosophila
  publication-title: Nature
– volume: 31
  start-page: 708
  year: 2014
  end-page: 722
  ident: bib105
  article-title: Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison
  publication-title: Mol. Biol. Evol.
– volume: 18
  year: 2017
  ident: bib101
  article-title: The Drosophila TRPA1 channel and neuronal circuits controlling rhythmic behaviours and sleep in response to environmental temperature
  publication-title: Int. J. Mol. Sci.
– volume: 111
  start-page: 16901
  year: 2014
  end-page: 16906
  ident: bib82
  article-title: Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 22
  year: 2021
  ident: bib131
  article-title: Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate ischemia-reperfusion-induced kidney injury through MAPKs/NF-kappaB signaling
  publication-title: Int. J. Mol. Sci.
– volume: 158
  start-page: 1148
  year: 2014
  end-page: 1158
  ident: bib23
  article-title: A molecular framework for temperature-dependent gating of ion channels
  publication-title: Cell
– volume: 591
  start-page: 185
  year: 2013
  end-page: 201
  ident: bib126
  article-title: Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli
  publication-title: J Physiol
– volume: 17
  start-page: 1472
  year: 2013
  end-page: 1482
  ident: bib44
  article-title: TRPA1 and TRPV1 are differentially involved in heat nociception of mice
  publication-title: Eur. J. Pain
– volume: 34
  start-page: 4445
  year: 2014
  end-page: 4452
  ident: bib30
  article-title: Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents
  publication-title: J. Neurosci.
– volume: 117
  start-page: 8633
  year: 2020
  end-page: 8638
  ident: bib136
  article-title: A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 21
  year: 2020
  ident: bib118
  article-title: Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides
  publication-title: Int. J. Mol. Sci.
– volume: 171
  start-page: 2552
  year: 2014
  end-page: 2567
  ident: bib13
  article-title: The TRPA1 channel in migraine mechanism and treatment
  publication-title: Br. J. Pharmacol.
– volume: 50
  start-page: 277
  year: 2006
  end-page: 289
  ident: bib64
  article-title: TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction
  publication-title: Neuron
– volume: 555
  start-page: 662
  year: 2018
  end-page: 666
  ident: bib123
  article-title: A TRP channel trio mediates acute noxious heat sensing
  publication-title: Nature
– volume: 448
  start-page: 204
  year: 2007
  end-page: 208
  ident: bib12
  article-title: The menthol receptor TRPM8 is the principal detector of environmental cold
  publication-title: Nature
– volume: 119
  year: 2022
  ident: bib70
  article-title: The acquisition of cold sensitivity during TRPM8 ion channel evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 291
  start-page: 11446
  year: 2016
  end-page: 11459
  ident: bib108
  article-title: Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 2234
  year: 2018
  end-page: 2242
  ident: bib1
  article-title: Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban Anolis lizards
  publication-title: Mol. Ecol.
– volume: 464
  start-page: 1006
  year: 2010
  end-page: 1011
  ident: bib39
  article-title: Molecular basis of infrared detection by snakes
  publication-title: Nature
– volume: 29
  start-page: 280
  year: 2018
  end-page: 285
  ident: bib94
  article-title: Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system
  publication-title: Neuroreport
– volume: 31
  start-page: 2995
  year: 2021
  end-page: 3003 e4
  ident: bib137
  article-title: Molecular sensors for temperature detection during behavioral thermoregulation in turtle embryos
  publication-title: Curr. Biol.
– volume: 11
  start-page: 836
  year: 2020
  ident: bib37
  article-title: Transient receptor potential ankyrin type-1 channels as a potential target for the treatment of cardiovascular diseases
  publication-title: Front. Physiol.
– volume: 6
  start-page: 4
  year: 2010
  ident: bib38
  article-title: The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity
  publication-title: Mol. Pain
– volume: 8
  start-page: 878
  year: 2017
  ident: bib79
  article-title: Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin
  publication-title: Front. Physiol.
– volume: 6
  year: 2016
  ident: bib81
  article-title: Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity
  publication-title: Sci. Rep.
– volume: 29
  start-page: 3961
  year: 2019
  end-page: 3973 e6
  ident: bib40
  article-title: Polymodal nociception in Drosophila requires alternative splicing of TrpA1
  publication-title: Curr. Biol.
– volume: 27
  start-page: 2435
  year: 2007
  end-page: 2443
  ident: bib43
  article-title: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression
  publication-title: J. Neurosci.
– volume: 30
  start-page: 12219
  year: 2010
  end-page: 12229
  ident: bib59
  article-title: Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes
  publication-title: J. Neurosci.
– volume: 20
  start-page: 1686
  year: 2017
  end-page: 1693
  ident: bib6
  article-title: Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception
  publication-title: Nat. Neurosci.
– volume: 28
  start-page: 191
  year: 2017
  end-page: 198
  ident: bib36
  article-title: TRPA1 gene polymorphisms and childhood asthma
  publication-title: Pediatr. Allergy Immunol.
– volume: 205
  start-page: 2959
  year: 2020
  end-page: 2967
  ident: bib77
  article-title: A rapid shift from chronic hyperoxia to normoxia induces systemic anaphylaxis via transient receptor potential ankyrin 1 channels on mast cells
  publication-title: J. Immunol.
– volume: 54
  start-page: 371
  year: 2007
  end-page: 378
  ident: bib32
  article-title: TRPM8 is required for cold sensation in mice
  publication-title: Neuron
– volume: 427
  start-page: 260
  year: 2004
  end-page: 265
  ident: bib52
  article-title: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1
  publication-title: Nature
– volume: 11
  year: 2018
  ident: bib60
  article-title: TRPA1 antagonists for pain relief
  publication-title: Pharmaceuticals
– volume: 7
  start-page: 447
  year: 2016
  ident: bib100
  article-title: TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions
  publication-title: Front. Physiol.
– volume: 15
  start-page: 98
  year: 1961
  end-page: 111
  ident: bib104
  article-title: Thermal relations of five species of tropical lizard
  publication-title: Evolution
– volume: 113
  start-page: 11342
  year: 2016
  end-page: 11347
  ident: bib67
  article-title: Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 3561
  year: 2019
  end-page: 3571
  ident: bib109
  article-title: Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction
  publication-title: Mol. Ecol.
– volume: 10
  start-page: 209
  year: 2017
  ident: bib130
  article-title: Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse
  publication-title: Front. Mol. Neurosci.
– volume: 41
  start-page: 261
  year: 2016
  end-page: 272
  ident: bib95
  article-title: Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems
  publication-title: Chem. Senses
– volume: 111
  start-page: E1249
  year: 2014
  end-page: E1255
  ident: bib111
  article-title: Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 6
  year: 2016
  ident: bib46
  article-title: Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice
  publication-title: Arthritis Res. Ther.
– volume: 27
  start-page: 9874
  year: 2007
  end-page: 9884
  ident: bib56
  article-title: Bimodal action of menthol on the transient receptor potential channel TRPA1
  publication-title: J. Neurosci.
– volume: 9
  year: 2019
  ident: bib114
  article-title: Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage
  publication-title: Cells
– volume: 7
  start-page: 2173
  year: 2017
  ident: bib106
  article-title: Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae
  publication-title: Sci. Rep.
– volume: 440
  start-page: 237
  year: 2008
  end-page: 241
  ident: bib135
  article-title: Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis
  publication-title: Neurosci. Lett.
– volume: 388
  start-page: 451
  year: 2015
  end-page: 463
  ident: bib20
  article-title: TRPA1 as a drug target--promise and challenges
  publication-title: Naunyn-Schmiedeberg’s Arch. Pharmacol.
– volume: 287
  start-page: 30743
  year: 2012
  end-page: 30754
  ident: bib107
  article-title: Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 15165
  year: 2010
  end-page: 15174
  ident: bib31
  article-title: TRPA1 contributes to cold hypersensitivity
  publication-title: J. Neurosci.
– volume: 21
  start-page: 3329
  year: 2017
  end-page: 3337
  ident: bib76
  article-title: Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters
  publication-title: Cell Rep.
– volume: 148
  start-page: 431
  year: 2010
  end-page: 437
  ident: bib28
  article-title: The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation
  publication-title: Pain
– volume: 11
  start-page: 871
  year: 2008
  end-page: 873
  ident: bib65
  article-title: Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade
  publication-title: Nat. Neurosci.
– volume: 15
  start-page: 3
  year: 2011
  end-page: 4
  ident: bib25
  article-title: An astrocyte TRP switch for inhibition
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 964
  year: 2019
  ident: bib10
  article-title: TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis
  publication-title: Front. Pharmacol.
– volume: 341
  start-page: 360
  year: 2012
  end-page: 368
  ident: bib15
  article-title: Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels
  publication-title: J. Pharmacol. Exp. Therapeut.
– volume: 6
  year: 2016
  ident: bib47
  article-title: N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel
  publication-title: Sci. Rep.
– volume: 43
  start-page: 572
  year: 2020
  end-page: 580
  ident: bib34
  article-title: A single natural variation determines cytosolic Ca(2+)-mediated hyperthermosensitivity of TRPA1s from rattlesnakes and boas
  publication-title: Mol. Cell
– volume: 70
  start-page: 363
  year: 2021
  end-page: 381
  ident: bib113
  article-title: Transient receptor potential ankyrin 1 channel: an evolutionarily tuned thermosensor
  publication-title: Physiol. Res.
– volume: 13
  start-page: 861
  year: 2010
  end-page: 868
  ident: bib18
  article-title: Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors
  publication-title: Nat. Neurosci.
– volume: 9
  year: 2019
  ident: bib68
  article-title: Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli
  publication-title: Sci. Rep.
– volume: 19
  start-page: 419
  year: 2005
  end-page: 424
  ident: bib102
  article-title: The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis
  publication-title: Genes Dev.
– volume: 107
  start-page: 7083
  year: 2010
  end-page: 7088
  ident: bib134
  article-title: Thermosensitive TRP channel pore turret is part of the temperature activation pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 108
  start-page: 705
  year: 2002
  end-page: 715
  ident: bib99
  article-title: A TRP channel that senses cold stimuli and menthol
  publication-title: Cell
– volume: 301
  start-page: 44
  year: 2020
  end-page: 53
  ident: bib127
  article-title: TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression
  publication-title: Atherosclerosis
– volume: 7
  year: 2016
  ident: bib80
  article-title: Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS
  publication-title: Nat. Commun.
– volume: 1
  start-page: 43
  year: 2012
  end-page: 55
  ident: bib140
  article-title: Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel
  publication-title: Cell Rep.
– volume: 30
  start-page: 967
  year: 2009
  end-page: 974
  ident: bib125
  article-title: Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae
  publication-title: Eur. J. Neurosci.
– volume: 4
  start-page: 2399
  year: 2013
  ident: bib141
  article-title: Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity
  publication-title: Nat. Commun.
– volume: 1858
  start-page: 318
  year: 2016
  end-page: 325
  ident: bib53
  article-title: Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude
  publication-title: Biochim. Biophys. Acta
– volume: 1160
  start-page: 39
  year: 2007
  end-page: 46
  ident: bib112
  article-title: Cold sensitivity of recombinant TRPA1 channels
  publication-title: Brain Res.
– volume: 4
  year: 2013
  ident: bib17
  article-title: Relative importance of habitat use, range expansion, and speciation in local species diversity ofAnolislizards in Cuba
  publication-title: Ecosphere
– volume: 93
  start-page: 464
  year: 2017
  end-page: 482
  ident: bib83
  article-title: TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
– volume: 466
  start-page: 1873
  year: 2014
  end-page: 1884
  ident: bib63
  article-title: Heat and AITC activate green anole TRPA1 in a membrane-delimited manner
  publication-title: Pflügers Archiv
– volume: 20
  start-page: 2276
  year: 2004
  end-page: 2282
  ident: bib7
  article-title: Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor
  publication-title: Eur. J. Neurosci.
– volume: 25
  start-page: 4052
  year: 2005
  end-page: 4061
  ident: bib87
  article-title: Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing
  publication-title: J. Neurosci.
– volume: 30
  start-page: 12526
  year: 2010
  end-page: 12534
  ident: bib138
  article-title: Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers
  publication-title: J. Neurosci.
– volume: 20
  start-page: 34
  year: 2017
  end-page: 41
  ident: bib71
  article-title: TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae
  publication-title: Nat. Neurosci.
– volume: 470
  start-page: 745
  year: 2018
  end-page: 759
  ident: bib45
  article-title: TRPs et al.: a molecular toolkit for thermosensory adaptations
  publication-title: Pflügers Archiv
– volume: 317
  start-page: F623
  year: 2019
  end-page: F631
  ident: bib73
  article-title: Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury
  publication-title: Am. J. Physiol. Ren. Physiol.
– volume: 152
  start-page: 1621
  year: 2011
  end-page: 1631
  ident: bib88
  article-title: Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation
  publication-title: Pain
– year: 2022
  ident: bib91
  article-title: Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 7325
  year: 1999
  end-page: 7333
  ident: bib49
  article-title: An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts
  publication-title: J. Biol. Chem.
– volume: 464
  start-page: 597
  year: 2010
  end-page: 600
  ident: bib55
  article-title: Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception
  publication-title: Nature
– volume: 82
  start-page: 1017
  year: 2014
  end-page: 1031
  ident: bib48
  article-title: Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six
  publication-title: Neuron
– volume: 66
  start-page: 1584
  year: 2017
  end-page: 1596
  ident: bib14
  article-title: The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1
  publication-title: Gut
– volume: 30
  start-page: 643
  year: 2020
  end-page: 657
  ident: bib19
  article-title: Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019)
  publication-title: Expert Opin. Ther. Pat.
– volume: 150
  start-page: 340
  year: 2010
  end-page: 350
  ident: bib58
  article-title: TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo
  publication-title: Pain
– volume: 183
  start-page: 445
  year: 2014
  end-page: 451
  ident: bib69
  article-title: Thermoregulatory behavior is widespread in the embryos of reptiles and birds
  publication-title: Am. Nat.
– volume: 58
  start-page: 1342
  year: 2009
  end-page: 1352
  ident: bib61
  article-title: Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats
  publication-title: Gut
– volume: 12
  start-page: 812
  year: 2016
  end-page: 823
  ident: bib139
  article-title: Transient receptor potential ankyrin 1 channel involved in atherosclerosis and macrophage-foam cell formation
  publication-title: Int. J. Biol. Sci.
– volume: 494
  start-page: 194
  year: 2017
  end-page: 201
  ident: bib96
  article-title: Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  year: 2012
  ident: bib2
  article-title: TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide
  publication-title: PLoS One
– volume: 12
  year: 2019
  ident: bib27
  article-title: Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets?
  publication-title: Pharmaceuticals
– volume: 9
  year: 2016
  ident: bib85
  article-title: Blocking TRPA1 in respiratory disorders: does it hold a promise?
  publication-title: Pharmaceuticals
– volume: 22
  year: 2021
  ident: bib86
  article-title: TRPA1 expression and pathophysiology in immune cells
  publication-title: Int. J. Mol. Sci.
– volume: 416
  start-page: 52
  year: 2002
  end-page: 58
  ident: bib78
  article-title: Identification of a cold receptor reveals a general role for TRP channels in thermosensation
  publication-title: Nature
– volume: 106
  start-page: 8374
  year: 2009
  end-page: 8379
  ident: bib3
  article-title: Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 124
  start-page: 1269
  year: 2006
  end-page: 1282
  ident: bib11
  article-title: TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents
  publication-title: Cell
– volume: 26
  start-page: 12512
  year: 2006
  end-page: 12525
  ident: bib74
  article-title: Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals
  publication-title: J. Neurosci.
– volume: 99
  start-page: 16029
  year: 2002
  end-page: 16034
  ident: bib84
  article-title: Consensus-derived structural determinants of the ankyrin repeat motif
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  start-page: 997
  year: 2020
  end-page: 1008
  ident: bib116
  article-title: TRPA1 as a therapeutic target for nociceptive pain
  publication-title: Expert Opin. Ther. Targets
– volume: 31
  start-page: 272
  year: 2016
  end-page: 288
  ident: bib29
  article-title: dTRPA1 in non-circadian neurons modulates temperature-dependent rhythmic activity in Drosophila melanogaster
  publication-title: J. Biol. Rhythm.
– volume: 6
  year: 2016
  ident: bib33
  article-title: Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae
  publication-title: Open Biol
– volume: 105
  start-page: 14668
  year: 2008
  end-page: 14673
  ident: bib103
  article-title: Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 144
  start-page: 355
  year: 2019
  end-page: 365
  ident: bib5
  article-title: Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain
  publication-title: Int. J. Cancer
– volume: 154
  start-page: 1054
  year: 2008
  end-page: 1066
  ident: bib51
  article-title: Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats
  publication-title: Neuroscience
– volume: 191
  start-page: 5371
  year: 2013
  end-page: 5382
  ident: bib97
  article-title: TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis
  publication-title: J. Immunol.
– volume: 912
  year: 2021
  ident: bib75
  article-title: TRPA1: pharmacology, natural activators and role in obesity prevention
  publication-title: Eur. J. Pharmacol.
– volume: 152
  start-page: 806
  year: 2013
  end-page: 817
  ident: bib132
  article-title: A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel
  publication-title: Cell
– volume: 34
  start-page: 110
  year: 2021
  end-page: 116
  ident: bib72
  article-title: Knockout of Trpa1 exacerbates renal ischemia-reperfusion injury with classical activation of macrophages
  publication-title: Am. J. Hypertens.
– volume: 5
  start-page: 3
  year: 2009
  ident: bib22
  article-title: Pore dilation occurs in TRPA1 but not in TRPM8 channels
  publication-title: Mol. Pain
– volume: 108
  start-page: 19492
  year: 2011
  end-page: 19497
  ident: bib24
  article-title: A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 112
  start-page: 819
  year: 2003
  end-page: 829
  ident: bib119
  article-title: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures
  publication-title: Cell
– volume: 481
  start-page: 76
  year: 2011
  end-page: 80
  ident: bib54
  article-title: Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila
  publication-title: Nature
– volume: 167
  start-page: 1
  year: 2014
  end-page: 43
  ident: bib89
  article-title: The TRPA1 channel in inflammatory and neuropathic pain and migraine
  publication-title: Rev. Physiol. Biochem. Pharmacol.
– volume: 115
  start-page: 2393
  year: 2005
  end-page: 2401
  ident: bib93
  article-title: TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury
  publication-title: J. Clin. Invest.
– volume: 41
  start-page: 849
  year: 2004
  end-page: 857
  ident: bib9
  article-title: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin
  publication-title: Neuron
– volume: 7
  start-page: 701
  year: 2011
  end-page: 711
  ident: bib120
  article-title: TRPA1 underlies a sensing mechanism for O2
  publication-title: Nat. Chem. Biol.
– volume: 36
  start-page: 54
  year: 2018
  end-page: 62
  ident: bib128
  article-title: TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice
  publication-title: EBioMedicine
– volume: 106
  start-page: 1273
  year: 2009
  end-page: 1278
  ident: bib57
  article-title: TRPA1 acts as a cold sensor in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 587
  year: 2017
  end-page: 603
  ident: bib4
  article-title: TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway
  publication-title: Channels
– volume: 66
  start-page: 671
  year: 2010
  end-page: 680
  ident: bib62
  article-title: A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome
  publication-title: Neuron
– volume: 3
  start-page: 2005
  year: 2013
  ident: bib90
  article-title: A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain
  publication-title: Sci. Rep.
– volume: 81
  start-page: 772
  year: 2017
  end-page: 781
  ident: bib117
  article-title: Chemotherapy-induced peripheral neuropathy: a current review
  publication-title: Ann. Neurol.
– volume: 4
  start-page: 141
  year: 2017
  end-page: 152
  ident: bib110
  article-title: Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates
  publication-title: Temperature (Austin)
– volume: 100
  start-page: 725
  year: 2020
  end-page: 803
  ident: bib121
  article-title: Mammalian transient receptor potential TRPA1 channels: from structure to disease
  publication-title: Physiol. Rev.
– volume: 206
  start-page: 462
  year: 2013
  end-page: 471
  ident: bib16
  article-title: Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells
  publication-title: Chem. Biol. Interact.
– volume: 222
  start-page: 583
  year: 2014
  end-page: 630
  ident: bib142
  article-title: Trpa1
  publication-title: Handb. Exp. Pharmacol.
– volume: 113
  start-page: 261
  year: 2003
  end-page: 273
  ident: bib122
  article-title: painless, a Drosophila gene essential for nociception
  publication-title: Cell
– volume: 312
  start-page: G635
  year: 2017
  end-page: G648
  ident: bib8
  article-title: Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 19
  start-page: 401
  year: 2018
  end-page: 411
  ident: bib50
  article-title: Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease
  publication-title: Pharmacogenomics
– volume: 108
  start-page: E1184
  year: 2011
  end-page: E1191
  ident: bib26
  article-title: Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 9283
  year: 2013
  end-page: 9294
  ident: bib129
  article-title: The ion channel TRPA1 is required for chronic itch
  publication-title: J. Neurosci.
– volume: 7
  start-page: 447
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib100
  article-title: TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00447
– volume: 115
  start-page: 2393
  year: 2005
  ident: 10.1016/j.cellin.2022.100059_bib93
  article-title: TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI25437
– volume: 28
  start-page: 7863
  year: 2008
  ident: 10.1016/j.cellin.2022.100059_bib35
  article-title: TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1696-08.2008
– volume: 191
  start-page: 5371
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib97
  article-title: TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300300
– volume: 106
  start-page: 1273
  year: 2009
  ident: 10.1016/j.cellin.2022.100059_bib57
  article-title: TRPA1 acts as a cold sensor in vitro and in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0808487106
– volume: 15
  start-page: 98
  year: 1961
  ident: 10.1016/j.cellin.2022.100059_bib104
  article-title: Thermal relations of five species of tropical lizard
  publication-title: Evolution
  doi: 10.2307/2405846
– volume: 18
  start-page: 6
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib46
  article-title: Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-015-0904-y
– volume: 20
  start-page: 2276
  year: 2004
  ident: 10.1016/j.cellin.2022.100059_bib7
  article-title: Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2004.03695.x
– volume: 287
  start-page: 30743
  year: 2012
  ident: 10.1016/j.cellin.2022.100059_bib107
  article-title: Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.362194
– volume: 66
  start-page: 1584
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib14
  article-title: The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1
  publication-title: Gut
  doi: 10.1136/gutjnl-2015-310710
– volume: 520
  start-page: 511
  year: 2015
  ident: 10.1016/j.cellin.2022.100059_bib98
  article-title: Structure of the TRPA1 ion channel suggests regulatory mechanisms
  publication-title: Nature
  doi: 10.1038/nature14367
– volume: 7
  start-page: 549
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib115
  article-title: TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00636-4
– volume: 6
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib81
  article-title: Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity
  publication-title: Sci. Rep.
  doi: 10.1038/srep28763
– volume: 31
  start-page: 2995
  year: 2021
  ident: 10.1016/j.cellin.2022.100059_bib137
  article-title: Molecular sensors for temperature detection during behavioral thermoregulation in turtle embryos
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2021.04.054
– volume: 54
  start-page: 371
  year: 2007
  ident: 10.1016/j.cellin.2022.100059_bib32
  article-title: TRPM8 is required for cold sensation in mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.02.024
– volume: 22
  year: 2021
  ident: 10.1016/j.cellin.2022.100059_bib86
  article-title: TRPA1 expression and pathophysiology in immune cells
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222111460
– volume: 41
  start-page: 849
  year: 2004
  ident: 10.1016/j.cellin.2022.100059_bib9
  article-title: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin
  publication-title: Neuron
  doi: 10.1016/S0896-6273(04)00150-3
– volume: 15
  start-page: 3
  year: 2011
  ident: 10.1016/j.cellin.2022.100059_bib25
  article-title: An astrocyte TRP switch for inhibition
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3010
– volume: 466
  start-page: 1873
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib63
  article-title: Heat and AITC activate green anole TRPA1 in a membrane-delimited manner
  publication-title: Pflügers Archiv
  doi: 10.1007/s00424-013-1420-z
– volume: 7
  start-page: 701
  year: 2011
  ident: 10.1016/j.cellin.2022.100059_bib120
  article-title: TRPA1 underlies a sensing mechanism for O2
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.640
– volume: 108
  start-page: E1184
  year: 2011
  ident: 10.1016/j.cellin.2022.100059_bib26
  article-title: Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1114124108
– volume: 19
  start-page: 401
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib50
  article-title: Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs-2017-0198
– volume: 30
  start-page: 15165
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib31
  article-title: TRPA1 contributes to cold hypersensitivity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2580-10.2010
– volume: 107
  start-page: 7083
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib134
  article-title: Thermosensitive TRP channel pore turret is part of the temperature activation pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1000357107
– volume: 555
  start-page: 662
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib123
  article-title: A TRP channel trio mediates acute noxious heat sensing
  publication-title: Nature
  doi: 10.1038/nature26137
– volume: 20
  start-page: 34
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib71
  article-title: TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4416
– volume: 82
  start-page: 1017
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib48
  article-title: Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.016
– volume: 464
  start-page: 1006
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib39
  article-title: Molecular basis of infrared detection by snakes
  publication-title: Nature
  doi: 10.1038/nature08943
– volume: 11
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib60
  article-title: TRPA1 antagonists for pain relief
  publication-title: Pharmaceuticals
  doi: 10.3390/ph11040117
– volume: 6
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib33
  article-title: Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae
  publication-title: Open Biol
  doi: 10.1098/rsob.160042
– volume: 124
  start-page: 1269
  year: 2006
  ident: 10.1016/j.cellin.2022.100059_bib11
  article-title: TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.023
– volume: 7
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib42
  article-title: Non-analgesic symptomatic or disease-modifying potential of TRPA1
  publication-title: Med. Sci.
– volume: 470
  start-page: 745
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib45
  article-title: TRPs et al.: a molecular toolkit for thermosensory adaptations
  publication-title: Pflügers Archiv
  doi: 10.1007/s00424-018-2120-5
– volume: 481
  start-page: 76
  year: 2011
  ident: 10.1016/j.cellin.2022.100059_bib54
  article-title: Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila
  publication-title: Nature
  doi: 10.1038/nature10715
– volume: 27
  start-page: 2234
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib1
  article-title: Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban Anolis lizards
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14572
– volume: 34
  start-page: 4445
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib30
  article-title: Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5387-13.2014
– volume: 494
  start-page: 194
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib96
  article-title: Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.10.057
– volume: 427
  start-page: 260
  year: 2004
  ident: 10.1016/j.cellin.2022.100059_bib52
  article-title: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1
  publication-title: Nature
  doi: 10.1038/nature02282
– volume: 28
  start-page: 3561
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib109
  article-title: Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.15170
– volume: 21
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib118
  article-title: Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21113826
– volume: 30
  start-page: 12526
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib138
  article-title: Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3189-10.2010
– volume: 150
  start-page: 340
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib58
  article-title: TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo
  publication-title: Pain
  doi: 10.1016/j.pain.2010.05.021
– volume: 11
  start-page: 871
  year: 2008
  ident: 10.1016/j.cellin.2022.100059_bib65
  article-title: Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2170
– volume: 26
  start-page: 12512
  year: 2006
  ident: 10.1016/j.cellin.2022.100059_bib74
  article-title: Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3752-06.2006
– volume: 4
  start-page: 141
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib110
  article-title: Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates
  publication-title: Temperature (Austin)
  doi: 10.1080/23328940.2017.1315478
– volume: 58
  start-page: 1342
  year: 2009
  ident: 10.1016/j.cellin.2022.100059_bib61
  article-title: Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats
  publication-title: Gut
  doi: 10.1136/gut.2008.175901
– volume: 19
  start-page: 419
  year: 2005
  ident: 10.1016/j.cellin.2022.100059_bib102
  article-title: The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1278205
– volume: 30
  start-page: 643
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib19
  article-title: Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019)
  publication-title: Expert Opin. Ther. Pat.
  doi: 10.1080/13543776.2020.1797679
– volume: 301
  start-page: 44
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib127
  article-title: TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2020.04.004
– volume: 4
  start-page: 2501
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib21
  article-title: Species differences and molecular determinant of TRPA1 cold sensitivity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3501
– volume: 100
  start-page: 725
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib121
  article-title: Mammalian transient receptor potential TRPA1 channels: from structure to disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00005.2019
– volume: 112
  start-page: 819
  year: 2003
  ident: 10.1016/j.cellin.2022.100059_bib119
  article-title: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00158-2
– volume: 70
  start-page: 363
  year: 2021
  ident: 10.1016/j.cellin.2022.100059_bib113
  article-title: Transient receptor potential ankyrin 1 channel: an evolutionarily tuned thermosensor
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.934697
– volume: 13
  start-page: 861
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib18
  article-title: Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2581
– year: 2022
  ident: 10.1016/j.cellin.2022.100059_bib91
  article-title: Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.102271
– volume: 106
  start-page: 8374
  year: 2009
  ident: 10.1016/j.cellin.2022.100059_bib3
  article-title: Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0812675106
– volume: 119
  year: 2022
  ident: 10.1016/j.cellin.2022.100059_bib70
  article-title: The acquisition of cold sensitivity during TRPM8 ion channel evolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2201349119
– volume: 28
  start-page: 191
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib36
  article-title: TRPA1 gene polymorphisms and childhood asthma
  publication-title: Pediatr. Allergy Immunol.
  doi: 10.1111/pai.12673
– volume: 36
  start-page: 54
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib128
  article-title: TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.08.022
– volume: 317
  start-page: F623
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib73
  article-title: Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00069.2019
– volume: 167
  start-page: 1
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib89
  article-title: The TRPA1 channel in inflammatory and neuropathic pain and migraine
  publication-title: Rev. Physiol. Biochem. Pharmacol.
  doi: 10.1007/112_2014_18
– volume: 388
  start-page: 451
  year: 2015
  ident: 10.1016/j.cellin.2022.100059_bib20
  article-title: TRPA1 as a drug target--promise and challenges
  publication-title: Naunyn-Schmiedeberg’s Arch. Pharmacol.
  doi: 10.1007/s00210-015-1088-3
– volume: 111
  start-page: E1249
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib111
  article-title: Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1322134111
– volume: 206
  start-page: 462
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib16
  article-title: Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2013.08.012
– volume: 158
  start-page: 1148
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib23
  article-title: A molecular framework for temperature-dependent gating of ion channels
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.026
– volume: 7
  start-page: 2173
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib106
  article-title: Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02171-8
– volume: 222
  start-page: 583
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib142
  article-title: Trpa1
  publication-title: Handb. Exp. Pharmacol.
  doi: 10.1007/978-3-642-54215-2_23
– volume: 9
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib114
  article-title: Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage
  publication-title: Cells
  doi: 10.3390/cells9010057
– volume: 912
  year: 2021
  ident: 10.1016/j.cellin.2022.100059_bib75
  article-title: TRPA1: pharmacology, natural activators and role in obesity prevention
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2021.174553
– volume: 7
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib80
  article-title: Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12840
– volume: 25
  start-page: 4052
  year: 2005
  ident: 10.1016/j.cellin.2022.100059_bib87
  article-title: Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0013-05.2005
– volume: 440
  start-page: 237
  year: 2008
  ident: 10.1016/j.cellin.2022.100059_bib135
  article-title: Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2008.05.093
– volume: 31
  start-page: 708
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib105
  article-title: Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu001
– volume: 1858
  start-page: 318
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib53
  article-title: Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2015.12.011
– volume: 105
  start-page: 14668
  year: 2008
  ident: 10.1016/j.cellin.2022.100059_bib103
  article-title: Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0805041105
– volume: 18
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib101
  article-title: The Drosophila TRPA1 channel and neuronal circuits controlling rhythmic behaviours and sleep in response to environmental temperature
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18102028
– volume: 22
  year: 2021
  ident: 10.1016/j.cellin.2022.100059_bib131
  article-title: Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate ischemia-reperfusion-induced kidney injury through MAPKs/NF-kappaB signaling
  publication-title: Int. J. Mol. Sci.
– volume: 93
  start-page: 464
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib83
  article-title: TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.93.028
– volume: 1160
  start-page: 39
  year: 2007
  ident: 10.1016/j.cellin.2022.100059_bib112
  article-title: Cold sensitivity of recombinant TRPA1 channels
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2007.05.047
– volume: 108
  start-page: 19492
  year: 2011
  ident: 10.1016/j.cellin.2022.100059_bib24
  article-title: A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117485108
– volume: 274
  start-page: 7325
  year: 1999
  ident: 10.1016/j.cellin.2022.100059_bib49
  article-title: An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.11.7325
– volume: 9
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib85
  article-title: Blocking TRPA1 in respiratory disorders: does it hold a promise?
  publication-title: Pharmaceuticals
  doi: 10.3390/ph9040070
– volume: 113
  start-page: 11342
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib67
  article-title: Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1604269113
– volume: 34
  start-page: 110
  year: 2021
  ident: 10.1016/j.cellin.2022.100059_bib72
  article-title: Knockout of Trpa1 exacerbates renal ischemia-reperfusion injury with classical activation of macrophages
  publication-title: Am. J. Hypertens.
  doi: 10.1093/ajh/hpaa162
– volume: 24
  start-page: 997
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib116
  article-title: TRPA1 as a therapeutic target for nociceptive pain
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1080/14728222.2020.1815191
– volume: 312
  start-page: G635
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib8
  article-title: Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00401.2016
– volume: 9
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib68
  article-title: Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56639-w
– volume: 144
  start-page: 355
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib5
  article-title: Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31911
– volume: 27
  start-page: 2435
  year: 2007
  ident: 10.1016/j.cellin.2022.100059_bib43
  article-title: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5614-06.2007
– volume: 416
  start-page: 52
  year: 2002
  ident: 10.1016/j.cellin.2022.100059_bib78
  article-title: Identification of a cold receptor reveals a general role for TRP channels in thermosensation
  publication-title: Nature
  doi: 10.1038/nature719
– volume: 12
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib27
  article-title: Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets?
  publication-title: Pharmaceuticals
  doi: 10.3390/ph12020048
– volume: 31
  start-page: 272
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib29
  article-title: dTRPA1 in non-circadian neurons modulates temperature-dependent rhythmic activity in Drosophila melanogaster
  publication-title: J. Biol. Rhythm.
  doi: 10.1177/0748730415627037
– volume: 30
  start-page: 12219
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib59
  article-title: Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2001-10.2010
– volume: 30
  start-page: 967
  year: 2009
  ident: 10.1016/j.cellin.2022.100059_bib125
  article-title: Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2009.06901.x
– volume: 341
  start-page: 360
  year: 2012
  ident: 10.1016/j.cellin.2022.100059_bib15
  article-title: Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels
  publication-title: J. Pharmacol. Exp. Therapeut.
  doi: 10.1124/jpet.111.189902
– volume: 6
  start-page: 4
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib38
  article-title: The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity
  publication-title: Mol. Pain
  doi: 10.1186/1744-8069-6-4
– volume: 21
  start-page: 3329
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib76
  article-title: Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.11.083
– volume: 10
  start-page: 964
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib10
  article-title: TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.00964
– volume: 4
  start-page: 2399
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib141
  article-title: Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3399
– volume: 454
  start-page: 217
  year: 2008
  ident: 10.1016/j.cellin.2022.100059_bib41
  article-title: An internal thermal sensor controlling temperature preference in Drosophila
  publication-title: Nature
  doi: 10.1038/nature07001
– volume: 148
  start-page: 431
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib28
  article-title: The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation
  publication-title: Pain
  doi: 10.1016/j.pain.2009.12.002
– volume: 50
  start-page: 277
  year: 2006
  ident: 10.1016/j.cellin.2022.100059_bib64
  article-title: TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.03.042
– volume: 111
  start-page: 16901
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib82
  article-title: Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1412689111
– volume: 423
  start-page: 822
  year: 2003
  ident: 10.1016/j.cellin.2022.100059_bib124
  article-title: Opposite thermosensor in fruitfly and mouse
  publication-title: Nature
  doi: 10.1038/423822a
– volume: 591
  start-page: 185
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib126
  article-title: Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2012.242842
– volume: 10
  start-page: 209
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib130
  article-title: Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00209
– volume: 17
  start-page: 1472
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib44
  article-title: TRPA1 and TRPV1 are differentially involved in heat nociception of mice
  publication-title: Eur. J. Pain
  doi: 10.1002/j.1532-2149.2013.00331.x
– volume: 7
  year: 2012
  ident: 10.1016/j.cellin.2022.100059_bib2
  article-title: TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046917
– volume: 11
  start-page: 69
  year: 2015
  ident: 10.1016/j.cellin.2022.100059_bib133
  article-title: Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration
  publication-title: Mol. Pain
  doi: 10.1186/s12990-015-0072-8
– volume: 448
  start-page: 204
  year: 2007
  ident: 10.1016/j.cellin.2022.100059_bib12
  article-title: The menthol receptor TRPM8 is the principal detector of environmental cold
  publication-title: Nature
  doi: 10.1038/nature05910
– volume: 29
  start-page: 280
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib94
  article-title: Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000939
– volume: 20
  start-page: 1686
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib6
  article-title: Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0005-0
– volume: 12
  start-page: 812
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib139
  article-title: Transient receptor potential ankyrin 1 channel involved in atherosclerosis and macrophage-foam cell formation
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.15229
– volume: 41
  start-page: 261
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib95
  article-title: Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems
  publication-title: Chem. Senses
  doi: 10.1093/chemse/bjv091
– volume: 113
  start-page: 261
  year: 2003
  ident: 10.1016/j.cellin.2022.100059_bib122
  article-title: painless, a Drosophila gene essential for nociception
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00272-1
– volume: 205
  start-page: 2959
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib77
  article-title: A rapid shift from chronic hyperoxia to normoxia induces systemic anaphylaxis via transient receptor potential ankyrin 1 channels on mast cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.2000149
– volume: 183
  start-page: 445
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib69
  article-title: Thermoregulatory behavior is widespread in the embryos of reptiles and birds
  publication-title: Am. Nat.
  doi: 10.1086/675065
– volume: 81
  start-page: 772
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib117
  article-title: Chemotherapy-induced peripheral neuropathy: a current review
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24951
– volume: 152
  start-page: 1621
  year: 2011
  ident: 10.1016/j.cellin.2022.100059_bib88
  article-title: Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation
  publication-title: Pain
  doi: 10.1016/j.pain.2011.02.051
– volume: 93
  start-page: 164
  year: 2018
  ident: 10.1016/j.cellin.2022.100059_bib92
  article-title: A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome
  publication-title: Clin. Genet.
  doi: 10.1111/cge.13040
– volume: 117
  start-page: 8633
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib136
  article-title: A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1922714117
– volume: 6
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib47
  article-title: N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel
  publication-title: Sci. Rep.
  doi: 10.1038/srep28700
– volume: 66
  start-page: 671
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib62
  article-title: A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.030
– volume: 1
  start-page: 43
  year: 2012
  ident: 10.1016/j.cellin.2022.100059_bib140
  article-title: Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2011.11.002
– volume: 99
  start-page: 16029
  year: 2002
  ident: 10.1016/j.cellin.2022.100059_bib84
  article-title: Consensus-derived structural determinants of the ankyrin repeat motif
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.252537899
– volume: 2
  start-page: 214
  year: 2015
  ident: 10.1016/j.cellin.2022.100059_bib66
  article-title: Species-specific temperature sensitivity of TRPA1
  publication-title: Temperature (Austin)
  doi: 10.1080/23328940.2014.1000702
– volume: 11
  start-page: 836
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib37
  article-title: Transient receptor potential ankyrin type-1 channels as a potential target for the treatment of cardiovascular diseases
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00836
– volume: 29
  start-page: 3961
  year: 2019
  ident: 10.1016/j.cellin.2022.100059_bib40
  article-title: Polymodal nociception in Drosophila requires alternative splicing of TrpA1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2019.09.070
– volume: 108
  start-page: 705
  year: 2002
  ident: 10.1016/j.cellin.2022.100059_bib99
  article-title: A TRP channel that senses cold stimuli and menthol
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00652-9
– volume: 33
  start-page: 9283
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib129
  article-title: The ion channel TRPA1 is required for chronic itch
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5318-12.2013
– volume: 4
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib17
  article-title: Relative importance of habitat use, range expansion, and speciation in local species diversity ofAnolislizards in Cuba
  publication-title: Ecosphere
  doi: 10.1890/ES12-00383.1
– volume: 464
  start-page: 597
  year: 2010
  ident: 10.1016/j.cellin.2022.100059_bib55
  article-title: Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception
  publication-title: Nature
  doi: 10.1038/nature08848
– volume: 152
  start-page: 806
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib132
  article-title: A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.020
– volume: 43
  start-page: 572
  year: 2020
  ident: 10.1016/j.cellin.2022.100059_bib34
  article-title: A single natural variation determines cytosolic Ca(2+)-mediated hyperthermosensitivity of TRPA1s from rattlesnakes and boas
  publication-title: Mol. Cell
– volume: 5
  start-page: 3
  year: 2009
  ident: 10.1016/j.cellin.2022.100059_bib22
  article-title: Pore dilation occurs in TRPA1 but not in TRPM8 channels
  publication-title: Mol. Pain
  doi: 10.1186/1744-8069-5-3
– volume: 27
  start-page: 9874
  year: 2007
  ident: 10.1016/j.cellin.2022.100059_bib56
  article-title: Bimodal action of menthol on the transient receptor potential channel TRPA1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2221-07.2007
– volume: 171
  start-page: 2552
  year: 2014
  ident: 10.1016/j.cellin.2022.100059_bib13
  article-title: The TRPA1 channel in migraine mechanism and treatment
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12512
– volume: 154
  start-page: 1054
  year: 2008
  ident: 10.1016/j.cellin.2022.100059_bib51
  article-title: Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.04.039
– volume: 291
  start-page: 11446
  year: 2016
  ident: 10.1016/j.cellin.2022.100059_bib108
  article-title: Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.702498
– volume: 11
  start-page: 587
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib4
  article-title: TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway
  publication-title: Channels
  doi: 10.1080/19336950.2017.1365206
– volume: 8
  start-page: 878
  year: 2017
  ident: 10.1016/j.cellin.2022.100059_bib79
  article-title: Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00878
– volume: 3
  start-page: 2005
  year: 2013
  ident: 10.1016/j.cellin.2022.100059_bib90
  article-title: A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain
  publication-title: Sci. Rep.
  doi: 10.1038/srep02005
SSID ssj0002856907
Score 2.321841
SecondaryResourceType review_article
Snippet Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100059
SubjectTerms Ion channel
Review
Thermosensation
TRPA1
Title The role of TRPA1 channels in thermosensation
URI https://dx.doi.org/10.1016/j.cellin.2022.100059
https://www.ncbi.nlm.nih.gov/pubmed/37193355
https://www.proquest.com/docview/2814813454
https://pubmed.ncbi.nlm.nih.gov/PMC10120293
https://doaj.org/article/aa370f68f0434677918a8b8177a8c83a
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovupjqeA12DZpkxxVlEVQRHbBW0jaFCvaFXf9_84k7bLVw168NmnTeYT5Zph8IeRCGGUBhToKuYeh6CTUlFxQK3PBeK5k5bA08PBYjKf8_iV_WbnqC3vCAj1wUNylMUwkdSHrhDPY1EKl0kgrUyGMLCXz0Ahi3koy9eZLRjmmfXizHMBHKlUm-nNzvrkLq-IN0p9mGfYJeKrSlbjk6fsH4ekv_PzdRbkSlu52yHaHJ-OrIMcu2XDtHqFg_Bj7BuNZHU-en67SGA_4trBQ3LQxYr6P2RwSWG-WfTK9u53cjGl3LwItc1UsqLJOVRB5VZXnBtKdVPFSZtwloCrDOXOshCTNKFUJK01asVxVtq6QgxYGFGcHZLOdte6IxJnlha2S2jJpuaglstsVgAhswhxAsTQirNeKLjvScLy74l333WFvOuhSoy510GVE6PKtz0CasWb-NSp8ORcpr_0DcATdOYJe5wgREb25dIceAiqATzVrlj_vrathc-EE07rZ91xnErLFFHyWR-QwWHv5kwxUyQCtRUQO_GAgxXCkbV49gTdyqiWAs47_Q-4TsoWyhBabU7K5-Pp2ZwCUFnbk98TIV7B-AKPbC54
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+TRPA1+channels+in+thermosensation&rft.jtitle=Cell+insight&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Chengsan&rft.au=Zhang%2C+Keyi&rft.au=Kamau%2C+Peter+Muiruri&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-8927&rft.eissn=2772-8927&rft.volume=1&rft.issue=6&rft_id=info:doi/10.1016%2Fj.cellin.2022.100059&rft.externalDocID=S2772892722000566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-8927&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-8927&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-8927&client=summon