The role of TRPA1 channels in thermosensation
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a...
Saved in:
Published in | Cell insight Vol. 1; no. 6; p. 100059 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels. |
---|---|
AbstractList | Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels. Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels. |
ArticleNumber | 100059 |
Author | Zhang, Keyi Wang, Chengsan Zhang, Hao Kamau, Peter Muiruri Tian, Lifeng Lai, Ren Luo, Anna |
Author_xml | – sequence: 1 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China – sequence: 2 givenname: Chengsan surname: Wang fullname: Wang, Chengsan organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China – sequence: 3 givenname: Keyi surname: Zhang fullname: Zhang, Keyi organization: University of Chinese Academy of Sciences, Beijing, 100049, China – sequence: 4 givenname: Peter Muiruri surname: Kamau fullname: Kamau, Peter Muiruri organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China – sequence: 5 givenname: Anna surname: Luo fullname: Luo, Anna organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China – sequence: 6 givenname: Lifeng surname: Tian fullname: Tian, Lifeng organization: University of Chinese Academy of Sciences, Beijing, 100049, China – sequence: 7 givenname: Ren surname: Lai fullname: Lai, Ren email: rlai@mail.kiz.ac.cn organization: Key Laboratory of Animal Models and Human Disease Mechanisms, Key Laboratory of Bioactive Peptides of Yunnan Province, Engineering Laboratory of Bioactive Peptides, National & Local Joint Engineering Center of Natural Bioactive Peptides, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, Yunnan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37193355$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctqHDEQFMbGdjb-gxDmmMts9BxJOSQYk4fBkBA2Z6GRerxaZiVHmjX476P1OMbOwTl1011V3VS9QocxRUDoDcFLgkn3frN0MI4hLimmtI4wFvoAnVIpaas0lYdP-hN0VsqmQqgSncbyGJ0wSTRjQpyidrWGJqcRmjQ0q58_zknj1jZGGEsTYjOtIW9TgVjsFFJ8jY4GOxY4e6gL9OvL59XFt_bq-9fLi_Or1gndTa3uQXvKifZCWNLVhjtFOWDLpOWcAXOSSKu1l72yxDOhfT94wbSuC83ZAl3Ouj7ZjbnJYWvznUk2mPtBytfG5im4EYytmnjo1IA5452UmiirekWktMopZqvWp1nrZtdvwTuIU7bjM9HnmxjW5jrdmmp0dbf6tEDvHhRy-r2DMpltKHv_bYS0K4YqwhVhXOwff_v02OOVv4ZXAJ8BLqdSMgyPEIL3FzuzMXO0Zh-tmaOttA__0FyY7iOpL4fxf-SPM7mGCrcBsikuQHTgQwY3VU_DywJ_AAYUvkE |
CitedBy_id | crossref_primary_10_1007_s00204_025_04012_4 crossref_primary_10_1016_j_bbrep_2023_101468 crossref_primary_10_1146_annurev_cellbio_120123_112853 crossref_primary_10_1093_molbev_msad225 crossref_primary_10_1016_j_ceca_2023_102800 crossref_primary_10_1016_j_coph_2024_102447 crossref_primary_10_1186_s12934_024_02382_5 crossref_primary_10_1016_j_jphs_2024_04_007 crossref_primary_10_3390_cells12222613 crossref_primary_10_1002_lary_31570 crossref_primary_10_1016_j_jtherbio_2024_103868 crossref_primary_10_1186_s40360_024_00779_x crossref_primary_10_1002_bies_202400233 crossref_primary_10_7759_cureus_76537 crossref_primary_10_1097_j_pain_0000000000003503 crossref_primary_10_1111_1744_7917_13364 crossref_primary_10_1186_s40478_024_01856_2 crossref_primary_10_1292_jvms_23_0327 |
Cites_doi | 10.3389/fphys.2016.00447 10.1172/JCI25437 10.1523/JNEUROSCI.1696-08.2008 10.4049/jimmunol.1300300 10.1073/pnas.0808487106 10.2307/2405846 10.1186/s13075-015-0904-y 10.1111/j.1460-9568.2004.03695.x 10.1074/jbc.M112.362194 10.1136/gutjnl-2015-310710 10.1038/nature14367 10.1038/s41598-017-00636-4 10.1038/srep28763 10.1016/j.cub.2021.04.054 10.1016/j.neuron.2007.02.024 10.3390/ijms222111460 10.1016/S0896-6273(04)00150-3 10.1038/nn.3010 10.1007/s00424-013-1420-z 10.1038/nchembio.640 10.1073/pnas.1114124108 10.2217/pgs-2017-0198 10.1523/JNEUROSCI.2580-10.2010 10.1073/pnas.1000357107 10.1038/nature26137 10.1038/nn.4416 10.1016/j.neuron.2014.04.016 10.1038/nature08943 10.3390/ph11040117 10.1098/rsob.160042 10.1016/j.cell.2006.02.023 10.1007/s00424-018-2120-5 10.1038/nature10715 10.1111/mec.14572 10.1523/JNEUROSCI.5387-13.2014 10.1016/j.bbrc.2017.10.057 10.1038/nature02282 10.1111/mec.15170 10.3390/ijms21113826 10.1523/JNEUROSCI.3189-10.2010 10.1016/j.pain.2010.05.021 10.1038/nn.2170 10.1523/JNEUROSCI.3752-06.2006 10.1080/23328940.2017.1315478 10.1136/gut.2008.175901 10.1101/gad.1278205 10.1080/13543776.2020.1797679 10.1016/j.atherosclerosis.2020.04.004 10.1038/ncomms3501 10.1152/physrev.00005.2019 10.1016/S0092-8674(03)00158-2 10.33549/physiolres.934697 10.1038/nn.2581 10.1016/j.jbc.2022.102271 10.1073/pnas.0812675106 10.1073/pnas.2201349119 10.1111/pai.12673 10.1016/j.ebiom.2018.08.022 10.1152/ajprenal.00069.2019 10.1007/112_2014_18 10.1007/s00210-015-1088-3 10.1073/pnas.1322134111 10.1016/j.cbi.2013.08.012 10.1016/j.cell.2014.07.026 10.1038/s41598-017-02171-8 10.1007/978-3-642-54215-2_23 10.3390/cells9010057 10.1016/j.ejphar.2021.174553 10.1038/ncomms12840 10.1523/JNEUROSCI.0013-05.2005 10.1016/j.neulet.2008.05.093 10.1093/molbev/msu001 10.1016/j.bbamem.2015.12.011 10.1073/pnas.0805041105 10.3390/ijms18102028 10.2183/pjab.93.028 10.1016/j.brainres.2007.05.047 10.1073/pnas.1117485108 10.1074/jbc.274.11.7325 10.3390/ph9040070 10.1073/pnas.1604269113 10.1093/ajh/hpaa162 10.1080/14728222.2020.1815191 10.1152/ajpgi.00401.2016 10.1038/s41598-019-56639-w 10.1002/ijc.31911 10.1523/JNEUROSCI.5614-06.2007 10.1038/nature719 10.3390/ph12020048 10.1177/0748730415627037 10.1523/JNEUROSCI.2001-10.2010 10.1111/j.1460-9568.2009.06901.x 10.1124/jpet.111.189902 10.1186/1744-8069-6-4 10.1016/j.celrep.2017.11.083 10.3389/fphar.2019.00964 10.1038/ncomms3399 10.1038/nature07001 10.1016/j.pain.2009.12.002 10.1016/j.neuron.2006.03.042 10.1073/pnas.1412689111 10.1038/423822a 10.1113/jphysiol.2012.242842 10.3389/fnmol.2017.00209 10.1002/j.1532-2149.2013.00331.x 10.1371/journal.pone.0046917 10.1186/s12990-015-0072-8 10.1038/nature05910 10.1097/WNR.0000000000000939 10.1038/s41593-017-0005-0 10.7150/ijbs.15229 10.1093/chemse/bjv091 10.1016/S0092-8674(03)00272-1 10.4049/jimmunol.2000149 10.1086/675065 10.1002/ana.24951 10.1016/j.pain.2011.02.051 10.1111/cge.13040 10.1073/pnas.1922714117 10.1038/srep28700 10.1016/j.neuron.2010.04.030 10.1016/j.celrep.2011.11.002 10.1073/pnas.252537899 10.1080/23328940.2014.1000702 10.3389/fphys.2020.00836 10.1016/j.cub.2019.09.070 10.1016/S0092-8674(02)00652-9 10.1523/JNEUROSCI.5318-12.2013 10.1890/ES12-00383.1 10.1038/nature08848 10.1016/j.cell.2013.01.020 10.1186/1744-8069-5-3 10.1523/JNEUROSCI.2221-07.2007 10.1111/bph.12512 10.1016/j.neuroscience.2008.04.039 10.1074/jbc.M115.702498 10.1080/19336950.2017.1365206 10.3389/fphys.2017.00878 10.1038/srep02005 |
ContentType | Journal Article |
Copyright | 2022 The Authors 2022 The Authors. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.cellin.2022.100059 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2772-8927 |
ExternalDocumentID | oai_doaj_org_article_aa370f68f0434677918a8b8177a8c83a PMC10120293 37193355 10_1016_j_cellin_2022_100059 S2772892722000566 |
Genre | Journal Article Review |
GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E ROL RPM 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c596t-9be9d2419d55a164194c824e0a37a443e3c717a99d7b8a1d359dbfd5399c71943 |
IEDL.DBID | DOA |
ISSN | 2772-8927 |
IngestDate | Wed Aug 27 01:31:40 EDT 2025 Thu Aug 21 18:37:22 EDT 2025 Fri Jul 11 01:27:07 EDT 2025 Thu Jan 02 22:51:11 EST 2025 Tue Jul 01 03:04:55 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 Tue Jul 25 20:57:13 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | TRPA1 Ion channel Thermosensation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c596t-9be9d2419d55a164194c824e0a37a443e3c717a99d7b8a1d359dbfd5399c71943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/aa370f68f0434677918a8b8177a8c83a |
PMID | 37193355 |
PQID | 2814813454 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aa370f68f0434677918a8b8177a8c83a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10120293 proquest_miscellaneous_2814813454 pubmed_primary_37193355 crossref_primary_10_1016_j_cellin_2022_100059 crossref_citationtrail_10_1016_j_cellin_2022_100059 elsevier_sciencedirect_doi_10_1016_j_cellin_2022_100059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Cell insight |
PublicationTitleAlternate | Cell Insight |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Antoniazzi, Nassini, Rigo, Milioli, Bellinaso, Camponogara, Silva, de Almeida, Rossato, De Logu, Oliveira, Cunha, Geppetti, Ferreira, Trevisan (bib5) 2019; 144 da Costa, Meotti, Andrade, Leal, Motta, Calixto (bib28) 2010; 148 Ma, Zhang, He, Wang, Wang (bib73) 2019; 317 Luo, Shen, Montell (bib71) 2017; 20 Cádiz, Nagata, Katabuchi, Díaz, Echenique-Díaz, Akashi, Makino, Kawata (bib17) 2013; 4 Jhun, Hu, Sadhu, Yao, He, Wilkie, Molokie, Wang (bib50) 2018; 19 Zhao, Shyue, Kou, Lu, Lee (bib139) 2016; 12 Saito, Hamanaka, Kawai, Furukawa, Gojobori, Tominaga, Kaneko, Satta (bib106) 2017; 7 Heber, Fischer (bib42) 2019; 7 Mahajan, Khare, Kondepudi, Bishnoi (bib75) 2021; 912 Sato, Sokabe, Kashio, Yasukochi, Tominaga, Shiomi (bib111) 2014; 111 Dong, Kashio, Peng, Wang, Tominaga, Kadowaki (bib33) 2016; 6 Yang, Lu, Wang, Xu, Chen, Yang, Lai (bib136) 2020; 117 Horvath, Tekus, Boros, Pozsgai, Botz, Borbely, Szolcsanyi, Pinter, Helyes (bib46) 2016; 18 Kang, Panzano, Chang, Ni, Dainis, Jenkins, Regna, Muskavitch, Garrity (bib54) 2011; 481 Chen, Terrett (bib19) 2020; 30 Chen, Hackos (bib20) 2015; 388 Laursen, Schneider, Merriman, Bagriantsev, Gracheva (bib67) 2016; 113 Koivisto, Jalava, Bratty, Pertovaara (bib60) 2018; 11 Xiao, Zhang, Dong, Gong, Xu, Liu, Xu (bib132) 2013; 152 Roessingh, Stanewsky (bib101) 2017; 18 Hjerling-Leffler, Alqatari, Ernfors, Koltzenburg (bib43) 2007; 27 Peng, Kashio, Li, Dong, Tominaga, Kadowaki (bib100) 2016; 7 Oda, Kubo, Saitoh (bib94) 2018; 29 Matsuda, Arkwright, Mori, Oikawa, Muko, Tanaka, Matsuda (bib77) 2020; 205 Batai, Sar, Horvath, Borbely, Bolcskei, Kemeny, Sandor, Nemes, Helyes, Perkecz, Mocsai, Pozsgai, Pinter (bib10) 2019; 10 Gu, Gong, Shang, Wang, Ruppell, Ma, Sheehan, Freeman, Xiang (bib40) 2019; 29 Andersson, Gentry, Moss, Bevan (bib3) 2009; 106 Kohno, Sokabe, Tominaga, Kadowaki (bib59) 2010; 30 Staff, Grisold, Grisold, Windebank (bib117) 2017; 81 Laursen, Anderson, Hoffstaetter, Bagriantsev, Gracheva (bib66) 2015; 2 Saito, Ohkita, Saito, Takahashi, Tominaga, Ohta (bib108) 2016; 291 Li, Saito, Hikitsuchi, Inoguchi, Mitsuishi, Saito, Tominaga (bib68) 2019; 9 Gallo, Dijk, Holloway, Ring, Koppelman, Postma, Strachan, Granell, de Jongste, Jaddoe, den Dekker, Duijts, Henderson, Shaheen (bib36) 2017; 28 Zhong, Bellemer, Yan, Ken, Jessica, Hwang, Pitt, Tracey (bib140) 2012; 1 Nagata, Duggan, Kumar, Garcia-Anoveros (bib87) 2005; 25 Matos-Cruz, Schneider, Mastrotto, Merriman, Bagriantsev, Gracheva (bib76) 2017; 21 Kremeyer, Lopera, Cox, Momin, Rugiero, Marsh, Woods, Jones, Paterson, Fricker, Villegas, Acosta, Pineda-Trujillo, Ramirez, Zea, Burley, Bedoya, Bennett, Wood, Ruiz-Linares (bib62) 2010; 66 Benemei, Fusi, Trevisan, Geppetti (bib13) 2014; 171 Sinica, Zimova, Barvikova, Macikova, Barvik, Vlachova (bib114) 2019; 9 Babes, Zorzon, Reid (bib7) 2004; 20 Nguyen, Chapman, Kashio, Saito, Strom, Yasui, Tominaga (bib91) 2022 Chowdhury, Jarecki, Chanda (bib23) 2014; 158 Moparthi, Kichko, Eberhardt, Hogestatt, Kjellbom, Johanson, Reeh, Leffler, Filipovic, Zygmunt (bib81) 2016; 6 Talavera, Startek, Alvarez-Collazo, Boonen, Alpizar, Sanchez, Naert, Nilius (bib121) 2020; 100 Saito, Tominaga (bib110) 2017; 4 Peier, Moqrich, Hergarden, Reeve, Andersson, Story, Earley, Dragoni, McIntyre, Bevan, Patapoutian (bib99) 2002; 108 Kang, Pulver, Panzano, Chang, Griffith, Theobald, Garrity (bib55) 2010; 464 Fajardo, Meseguer, Belmonte, Viana (bib35) 2008; 28 Hynkova, Marsakova, Vaskova, Vlachova (bib47) 2016; 6 Sawada, Hosokawa, Hori, Matsumura, Kobayashi (bib112) 2007; 1160 Chen, Kang, Xu, Lake, Hogan, Sun, Walter, Yao, Kim (bib21) 2013; 4 Kang (bib53) 2016; 1858 Saito, Nakatsuka, Takahashi, Fukuta, Imagawa, Ohta, Tominaga (bib107) 2012; 287 Ye, Zhang, Li, Lai, Yang, Du (bib137) 2021; 31 Kondo, Obata, Miyoshi, Sakurai, Tanaka, Miwa, Noguchi (bib61) 2009; 58 Wilson, Nelson, Batia, Morita, Estandian, Owens, Lumpkin, Bautista (bib129) 2013; 33 Andrei, Ghosh, Sinharoy, Dey, Bratz, Damron (bib4) 2017; 11 Kwon, Shim, Wang, Montell (bib65) 2008; 11 Viswanath, Story, Peier, Petrus, Lee, Hwang, Patapoutian, Jegla (bib124) 2003; 423 Gao, Kaudimba, Guo, Zhang, Liu, Chen, Wang (bib37) 2020; 11 Kwan, Allchorne, Vollrath, Christensen, Zhang, Woolf, Corey (bib64) 2006; 50 Das, Holmes, Sheeba (bib29) 2016; 31 Saito, Banzawa, Fukuta, Saito, Takahashi, Imagawa, Ohta, Tominaga (bib105) 2014; 31 Mukhopadhyay, Kulkarni, Khairatkar-Joshi (bib85) 2016; 9 Knowlton, Bifolck-Fisher, Bautista, McKemy (bib58) 2010; 150 Miyake, Nakamura, Zhao, So, Inoue, Numata, Takahashi, Shirakawa, Mori, Nakagawa, Kaneko (bib80) 2016; 7 Cordero-Morales, Gracheva, Julius (bib26) 2011; 108 Jaquemar, Schenker, Trueb (bib49) 1999; 274 Gentry, Stoakley, Andersson, Bevan (bib38) 2010; 6 Hoffstaetter, Bagriantsev, Gracheva (bib45) 2018; 470 Wu, Wu, Lee, Kou, Tarng (bib131) 2021; 22 Nirenberg, Chaouni, Biller, Gilbert, Paisan-Ruiz (bib92) 2018; 93 Vandewauw, De Clercq, Mulier, Held, Pinto, Van Ranst, Segal, Voet, Vennekens, Zimmermann, Vriens, Voets (bib123) 2018; 555 Cseko, Beckers, Keszthelyi, Helyes (bib27) 2019; 12 Hamada, Rosenzweig, Kang, Pulver, Ghezzi, Jegla, Garrity (bib41) 2008; 454 Kurganov, Zhou, Saito, Tominaga (bib63) 2014; 466 Naert, Lopez-Requena, Talavera (bib86) 2021; 22 Andersson, Gentry, Bevan (bib2) 2012; 7 Clarke, Attwell (bib25) 2011; 15 Souza Monteiro de Araujo, Nassini, Geppetti, De Logu (bib116) 2020; 24 Sinica, Vlachova (bib113) 2021; 70 del Camino, Murphy, Heiry, Barrett, Earley, Cook, Petrus, Zhao, D'Amours, Deering, Brenner, Costigan, Hayward, Chong, Fanger, Woolf, Patapoutian, Moran (bib31) 2010; 30 Oda, Saito, Hatta, Kubo, Saitoh (bib96) 2017; 494 de Oliveira, Garami, Lehto, Pakai, Tekus, Pohoczky, Youngblood, Wang, Kort, Kym, Pinter, Gavva, Romanovsky (bib30) 2014; 34 Story, Peier, Reeve, Eid, Mosbacher, Hricik, Earley, Hergarden, Andersson, Hwang, McIntyre, Jegla, Bevan, Patapoutian (bib119) 2003; 112 Hoffmann, Kistner, Miermeister, Winkelmann, Wittmann, Fischer, Weidner, Reeh (bib44) 2013; 17 Sosa-Pagan, Iversen, Grandl (bib115) 2017; 7 Chatzigeorgiou, Yoo, Watson, Lee, Spencer, Kindt, Hwang, Miller, Treinin, Driscoll, Schafer (bib18) 2010; 13 Yamamoto, Chiba, Chiba, Kambe, Abe, Kawakami, Utsunomiya, Taguchi (bib133) 2015; 11 Yang, Li, Zuo, Zhen, Yu, Gao (bib135) 2008; 440 Akashi, Saito, Cadiz Diaz, Makino, Tominaga, Kawata (bib1) 2018; 27 Saito, Saito, Nozawa, Tominaga (bib109) 2019; 28 Balemans, Boeckxstaens, Talavera, Wouters (bib8) 2017; 312 Oh, Oh, Lu, Lou, Myers, Zhu, Zheng (bib97) 2013; 191 Wang, Chen, Zhang, Peng, Wang, Yang, Yang (bib127) 2020; 301 Jordt, Bautista, Chuang, McKemy, Zygmunt, Hogestatt, Meng, Julius (bib52) 2004; 427 Bianchi, Zhang, Reilly, Kym, Yao, Chen (bib15) 2012; 341 Li, Zhao, Zhou, Hu, Du (bib69) 2014; 183 Ruibal (bib104) 1961; 15 Bautista, Jordt, Nikai, Tsuruda, Read, Poblete, Yamoah, Basbaum, Julius (bib11) 2006; 124 Lu, Yao, Wang, Yin, Li, Chai, Dong, Yuan, Lai, Yang (bib70) 2022; 119 Mori, Takahashi, Kurokawa, Kiyonaka (bib83) 2017; 93 Karashima, Damann, Prenen, Talavera, Segal, Voets, Nilius (bib56) 2007; 27 McKemy, Neuhausser, Julius (bib78) 2002; 416 Tracey, Wilson, Laurent, Benzer (bib122) 2003; 113 Chen, Kim, Bianchi, Cavanaugh, Faltynek, Kym, Reilly (bib22) 2009; 5 Oda, Kurogi, Kubo, Saitoh (bib95) 2016; 41 Ma, Wang (bib72) 2021; 34 Gracheva, Ingolia, Kelly, Cordero-Morales, Hollopeter, Chesler, Sanchez, Perez, Weissman, Julius (bib39) 2010; 464 Obata, Katsura, Mizushima, Yamanaka, Kobayashi, Dai, Fukuoka, Tokunaga, Tominaga, Noguchi (bib93) 2005; 115 Zhou, Suzuki, Uchida, Tominaga (bib141) 2013; 4 Arenas, Zaharieva, Para, Vasquez-Doorman, Petersen, Gallio (bib6) 2017; 20 Jabba, Goyal, Sosa-Pagan, Moldenhauer, Wu, Kalmeta, Bandell, Latorre, Patapoutian, Grandl (bib48) 2014; 82 Bautista, Siemens, Glazer, Tsuruda, Basbaum, Stucky, Jordt, Julius (bib12) 2007; 448 Bertin, Aoki-Nonaka, Lee, de Jong, Kim, Han, Yu, To, Takahashi, Boland, Chang, Ho, Herdman, Corr, Franco, Sharma, Dong, Akopian, Raz (bib14) 2017; 66 Dhaka, Murray, Mathur, Earley, Petrus, Patapoutian (bib32) 2007; 54 Nativi, Gualdani, Dragoni, Di Cesare Mannelli, Sostegni, Norcini, Gabrielli, la Marca, Richichi, Francesconi, Moncelli, Ghelardini, Roelens (bib90) 2013; 3 Clapham, Miller (bib24) 2011; 108 Paulsen, Armache, Gao, Cheng, Julius (bib98) 2015; 520 Du, Kang (bib34) 2020; 43 Zygmunt, Hogestatt (bib142) 2014; 222 Rosenzweig, Brennan, Tayler, Phelps, Patapoutian, Garrity (bib102) 2005; 19 Startek, Talavera (bib118) 2020; 21 Moparthi, Survery, Kreir, Simonsen, Kjellbom, Hogestatt, Johanson, Zygmunt (bib82) 2014; 111 Rosenzweig, Kang, Garrity (bib103) 2008; 105 Wang, Xu, Wang, Ye, Liu, Jiang, Ye, Wan (bib128) 2018; 36 Madrid, Donovan-Rodriguez, Meseguer, Acosta, Belmonte, Viana (bib74) 2006; 26 Takahashi, Kuwaki, Kiyonaka, Numata, Kozai, Mizuno, Yamamoto, Naito, Knevels, Carmeliet, Oga, Kaneko, Suga, Nokami, Yoshida, Mori (bib120) 2011; 7 Zakharian, Cao, Rohacs (bib138) 2010; 30 Bandell, Story, Hwang, Viswanath, Eid, Petrus, Earley, Patapoutian (bib9) 2004; 41 Wang, Schupp, Zurborg, Heppenstall (bib126) 2013; 591 Wang, Qiu, Lu, Kwon, Pitts, Van Loon, Takken, Zwiebel (bib125) 2009; 30 Buch, Schafer, Demmel, Boekhoff, Thiermann, Gudermann, Steinritz, Schmidt (bib16) 2013; 206 Karashima, Talavera, Everaerts, Janssens, Kwan, Vennekens, Nilius, Voets (bib57) 2009; 106 Miyake, Nakamura, Meng, Hamano, Inoue, Numata, Takahashi, Nagayasu, Shirakawa, Mori, Nakagawa, Kaneko (bib79) 2017; 8 Mosavi, Minor, Peng (bib84) 2002; 99 Nassini, Materazzi, Benemei, Geppetti (bib89) 2014; 167 Winter, Gruschwitz, Eger, Touska, Zimmermann (bib130) 2017; 10 Ji, Zhou, Carlton (bib51) 2008; 154 Nassini, Gees, Harrison, De Siena, Materazzi, Moretto, Failli, Preti, Marchetti, Cavazzini, Mancini, Pedretti, Nilius, Patacchini, Geppetti (bib88) 2011; 152 Yang, Cui, Wang, Zheng (bib134) 2010; 107 Du (10.1016/j.cellin.2022.100059_bib34) 2020; 43 Winter (10.1016/j.cellin.2022.100059_bib130) 2017; 10 Zakharian (10.1016/j.cellin.2022.100059_bib138) 2010; 30 Gallo (10.1016/j.cellin.2022.100059_bib36) 2017; 28 Antoniazzi (10.1016/j.cellin.2022.100059_bib5) 2019; 144 Balemans (10.1016/j.cellin.2022.100059_bib8) 2017; 312 Gao (10.1016/j.cellin.2022.100059_bib37) 2020; 11 Zygmunt (10.1016/j.cellin.2022.100059_bib142) 2014; 222 Cádiz (10.1016/j.cellin.2022.100059_bib17) 2013; 4 McKemy (10.1016/j.cellin.2022.100059_bib78) 2002; 416 Horvath (10.1016/j.cellin.2022.100059_bib46) 2016; 18 Jabba (10.1016/j.cellin.2022.100059_bib48) 2014; 82 Gracheva (10.1016/j.cellin.2022.100059_bib39) 2010; 464 Hamada (10.1016/j.cellin.2022.100059_bib41) 2008; 454 Zhong (10.1016/j.cellin.2022.100059_bib140) 2012; 1 Cseko (10.1016/j.cellin.2022.100059_bib27) 2019; 12 Wilson (10.1016/j.cellin.2022.100059_bib129) 2013; 33 Karashima (10.1016/j.cellin.2022.100059_bib56) 2007; 27 Laursen (10.1016/j.cellin.2022.100059_bib67) 2016; 113 Staff (10.1016/j.cellin.2022.100059_bib117) 2017; 81 Yamamoto (10.1016/j.cellin.2022.100059_bib133) 2015; 11 Jhun (10.1016/j.cellin.2022.100059_bib50) 2018; 19 Bertin (10.1016/j.cellin.2022.100059_bib14) 2017; 66 Nassini (10.1016/j.cellin.2022.100059_bib88) 2011; 152 Madrid (10.1016/j.cellin.2022.100059_bib74) 2006; 26 Yang (10.1016/j.cellin.2022.100059_bib136) 2020; 117 Bautista (10.1016/j.cellin.2022.100059_bib12) 2007; 448 del Camino (10.1016/j.cellin.2022.100059_bib31) 2010; 30 Nativi (10.1016/j.cellin.2022.100059_bib90) 2013; 3 Moparthi (10.1016/j.cellin.2022.100059_bib81) 2016; 6 Naert (10.1016/j.cellin.2022.100059_bib86) 2021; 22 Wang (10.1016/j.cellin.2022.100059_bib127) 2020; 301 Hjerling-Leffler (10.1016/j.cellin.2022.100059_bib43) 2007; 27 Chen (10.1016/j.cellin.2022.100059_bib19) 2020; 30 Souza Monteiro de Araujo (10.1016/j.cellin.2022.100059_bib116) 2020; 24 Chowdhury (10.1016/j.cellin.2022.100059_bib23) 2014; 158 Mori (10.1016/j.cellin.2022.100059_bib83) 2017; 93 Xiao (10.1016/j.cellin.2022.100059_bib132) 2013; 152 Das (10.1016/j.cellin.2022.100059_bib29) 2016; 31 Luo (10.1016/j.cellin.2022.100059_bib71) 2017; 20 Akashi (10.1016/j.cellin.2022.100059_bib1) 2018; 27 Saito (10.1016/j.cellin.2022.100059_bib109) 2019; 28 Ji (10.1016/j.cellin.2022.100059_bib51) 2008; 154 Nguyen (10.1016/j.cellin.2022.100059_bib91) 2022 Sawada (10.1016/j.cellin.2022.100059_bib112) 2007; 1160 Kang (10.1016/j.cellin.2022.100059_bib53) 2016; 1858 Buch (10.1016/j.cellin.2022.100059_bib16) 2013; 206 Lu (10.1016/j.cellin.2022.100059_bib70) 2022; 119 Hoffstaetter (10.1016/j.cellin.2022.100059_bib45) 2018; 470 Rosenzweig (10.1016/j.cellin.2022.100059_bib103) 2008; 105 Bautista (10.1016/j.cellin.2022.100059_bib11) 2006; 124 Arenas (10.1016/j.cellin.2022.100059_bib6) 2017; 20 Laursen (10.1016/j.cellin.2022.100059_bib66) 2015; 2 Oda (10.1016/j.cellin.2022.100059_bib94) 2018; 29 Ma (10.1016/j.cellin.2022.100059_bib73) 2019; 317 Fajardo (10.1016/j.cellin.2022.100059_bib35) 2008; 28 Kwon (10.1016/j.cellin.2022.100059_bib65) 2008; 11 Startek (10.1016/j.cellin.2022.100059_bib118) 2020; 21 Gentry (10.1016/j.cellin.2022.100059_bib38) 2010; 6 Saito (10.1016/j.cellin.2022.100059_bib107) 2012; 287 Kurganov (10.1016/j.cellin.2022.100059_bib63) 2014; 466 Talavera (10.1016/j.cellin.2022.100059_bib121) 2020; 100 Nirenberg (10.1016/j.cellin.2022.100059_bib92) 2018; 93 Tracey (10.1016/j.cellin.2022.100059_bib122) 2003; 113 Hynkova (10.1016/j.cellin.2022.100059_bib47) 2016; 6 Karashima (10.1016/j.cellin.2022.100059_bib57) 2009; 106 Ye (10.1016/j.cellin.2022.100059_bib137) 2021; 31 Ma (10.1016/j.cellin.2022.100059_bib72) 2021; 34 Peng (10.1016/j.cellin.2022.100059_bib100) 2016; 7 Dhaka (10.1016/j.cellin.2022.100059_bib32) 2007; 54 Sosa-Pagan (10.1016/j.cellin.2022.100059_bib115) 2017; 7 Chatzigeorgiou (10.1016/j.cellin.2022.100059_bib18) 2010; 13 Kremeyer (10.1016/j.cellin.2022.100059_bib62) 2010; 66 Saito (10.1016/j.cellin.2022.100059_bib110) 2017; 4 Oda (10.1016/j.cellin.2022.100059_bib96) 2017; 494 Wu (10.1016/j.cellin.2022.100059_bib131) 2021; 22 Babes (10.1016/j.cellin.2022.100059_bib7) 2004; 20 Kohno (10.1016/j.cellin.2022.100059_bib59) 2010; 30 Saito (10.1016/j.cellin.2022.100059_bib108) 2016; 291 Miyake (10.1016/j.cellin.2022.100059_bib79) 2017; 8 Mosavi (10.1016/j.cellin.2022.100059_bib84) 2002; 99 Wang (10.1016/j.cellin.2022.100059_bib126) 2013; 591 Zhao (10.1016/j.cellin.2022.100059_bib139) 2016; 12 Heber (10.1016/j.cellin.2022.100059_bib42) 2019; 7 Oda (10.1016/j.cellin.2022.100059_bib95) 2016; 41 Li (10.1016/j.cellin.2022.100059_bib69) 2014; 183 Rosenzweig (10.1016/j.cellin.2022.100059_bib102) 2005; 19 Batai (10.1016/j.cellin.2022.100059_bib10) 2019; 10 Kondo (10.1016/j.cellin.2022.100059_bib61) 2009; 58 Gu (10.1016/j.cellin.2022.100059_bib40) 2019; 29 Wang (10.1016/j.cellin.2022.100059_bib128) 2018; 36 Viswanath (10.1016/j.cellin.2022.100059_bib124) 2003; 423 de Oliveira (10.1016/j.cellin.2022.100059_bib30) 2014; 34 Chen (10.1016/j.cellin.2022.100059_bib22) 2009; 5 Matos-Cruz (10.1016/j.cellin.2022.100059_bib76) 2017; 21 Sato (10.1016/j.cellin.2022.100059_bib111) 2014; 111 Sinica (10.1016/j.cellin.2022.100059_bib114) 2019; 9 Clarke (10.1016/j.cellin.2022.100059_bib25) 2011; 15 Jaquemar (10.1016/j.cellin.2022.100059_bib49) 1999; 274 Miyake (10.1016/j.cellin.2022.100059_bib80) 2016; 7 Kang (10.1016/j.cellin.2022.100059_bib54) 2011; 481 Zhou (10.1016/j.cellin.2022.100059_bib141) 2013; 4 Hoffmann (10.1016/j.cellin.2022.100059_bib44) 2013; 17 Benemei (10.1016/j.cellin.2022.100059_bib13) 2014; 171 Chen (10.1016/j.cellin.2022.100059_bib21) 2013; 4 Kwan (10.1016/j.cellin.2022.100059_bib64) 2006; 50 Bandell (10.1016/j.cellin.2022.100059_bib9) 2004; 41 Matsuda (10.1016/j.cellin.2022.100059_bib77) 2020; 205 Oh (10.1016/j.cellin.2022.100059_bib97) 2013; 191 Kang (10.1016/j.cellin.2022.100059_bib55) 2010; 464 Nagata (10.1016/j.cellin.2022.100059_bib87) 2005; 25 Sinica (10.1016/j.cellin.2022.100059_bib113) 2021; 70 Saito (10.1016/j.cellin.2022.100059_bib105) 2014; 31 Mahajan (10.1016/j.cellin.2022.100059_bib75) 2021; 912 Saito (10.1016/j.cellin.2022.100059_bib106) 2017; 7 Yang (10.1016/j.cellin.2022.100059_bib135) 2008; 440 Paulsen (10.1016/j.cellin.2022.100059_bib98) 2015; 520 Yang (10.1016/j.cellin.2022.100059_bib134) 2010; 107 Chen (10.1016/j.cellin.2022.100059_bib20) 2015; 388 Mukhopadhyay (10.1016/j.cellin.2022.100059_bib85) 2016; 9 Peier (10.1016/j.cellin.2022.100059_bib99) 2002; 108 Jordt (10.1016/j.cellin.2022.100059_bib52) 2004; 427 Story (10.1016/j.cellin.2022.100059_bib119) 2003; 112 Moparthi (10.1016/j.cellin.2022.100059_bib82) 2014; 111 Obata (10.1016/j.cellin.2022.100059_bib93) 2005; 115 Vandewauw (10.1016/j.cellin.2022.100059_bib123) 2018; 555 Andersson (10.1016/j.cellin.2022.100059_bib2) 2012; 7 Wang (10.1016/j.cellin.2022.100059_bib125) 2009; 30 Andrei (10.1016/j.cellin.2022.100059_bib4) 2017; 11 Roessingh (10.1016/j.cellin.2022.100059_bib101) 2017; 18 Dong (10.1016/j.cellin.2022.100059_bib33) 2016; 6 Clapham (10.1016/j.cellin.2022.100059_bib24) 2011; 108 Li (10.1016/j.cellin.2022.100059_bib68) 2019; 9 Takahashi (10.1016/j.cellin.2022.100059_bib120) 2011; 7 da Costa (10.1016/j.cellin.2022.100059_bib28) 2010; 148 Cordero-Morales (10.1016/j.cellin.2022.100059_bib26) 2011; 108 Koivisto (10.1016/j.cellin.2022.100059_bib60) 2018; 11 Nassini (10.1016/j.cellin.2022.100059_bib89) 2014; 167 Knowlton (10.1016/j.cellin.2022.100059_bib58) 2010; 150 Ruibal (10.1016/j.cellin.2022.100059_bib104) 1961; 15 Bianchi (10.1016/j.cellin.2022.100059_bib15) 2012; 341 Andersson (10.1016/j.cellin.2022.100059_bib3) 2009; 106 |
References_xml | – volume: 423 start-page: 822 year: 2003 end-page: 823 ident: bib124 article-title: Opposite thermosensor in fruitfly and mouse publication-title: Nature – volume: 93 start-page: 164 year: 2018 end-page: 168 ident: bib92 article-title: A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome publication-title: Clin. Genet. – volume: 2 start-page: 214 year: 2015 end-page: 226 ident: bib66 article-title: Species-specific temperature sensitivity of TRPA1 publication-title: Temperature (Austin) – volume: 7 start-page: 549 year: 2017 ident: bib115 article-title: TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity publication-title: Sci. Rep. – volume: 7 year: 2019 ident: bib42 article-title: Non-analgesic symptomatic or disease-modifying potential of TRPA1 publication-title: Med. Sci. – volume: 28 start-page: 7863 year: 2008 end-page: 7875 ident: bib35 article-title: TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence publication-title: J. Neurosci. – volume: 520 start-page: 511 year: 2015 end-page: 517 ident: bib98 article-title: Structure of the TRPA1 ion channel suggests regulatory mechanisms publication-title: Nature – volume: 4 start-page: 2501 year: 2013 ident: bib21 article-title: Species differences and molecular determinant of TRPA1 cold sensitivity publication-title: Nat. Commun. – volume: 11 start-page: 69 year: 2015 ident: bib133 article-title: Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration publication-title: Mol. Pain – volume: 454 start-page: 217 year: 2008 end-page: 220 ident: bib41 article-title: An internal thermal sensor controlling temperature preference in Drosophila publication-title: Nature – volume: 31 start-page: 708 year: 2014 end-page: 722 ident: bib105 article-title: Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison publication-title: Mol. Biol. Evol. – volume: 18 year: 2017 ident: bib101 article-title: The Drosophila TRPA1 channel and neuronal circuits controlling rhythmic behaviours and sleep in response to environmental temperature publication-title: Int. J. Mol. Sci. – volume: 111 start-page: 16901 year: 2014 end-page: 16906 ident: bib82 article-title: Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 22 year: 2021 ident: bib131 article-title: Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate ischemia-reperfusion-induced kidney injury through MAPKs/NF-kappaB signaling publication-title: Int. J. Mol. Sci. – volume: 158 start-page: 1148 year: 2014 end-page: 1158 ident: bib23 article-title: A molecular framework for temperature-dependent gating of ion channels publication-title: Cell – volume: 591 start-page: 185 year: 2013 end-page: 201 ident: bib126 article-title: Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli publication-title: J Physiol – volume: 17 start-page: 1472 year: 2013 end-page: 1482 ident: bib44 article-title: TRPA1 and TRPV1 are differentially involved in heat nociception of mice publication-title: Eur. J. Pain – volume: 34 start-page: 4445 year: 2014 end-page: 4452 ident: bib30 article-title: Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents publication-title: J. Neurosci. – volume: 117 start-page: 8633 year: 2020 end-page: 8638 ident: bib136 article-title: A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 year: 2020 ident: bib118 article-title: Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides publication-title: Int. J. Mol. Sci. – volume: 171 start-page: 2552 year: 2014 end-page: 2567 ident: bib13 article-title: The TRPA1 channel in migraine mechanism and treatment publication-title: Br. J. Pharmacol. – volume: 50 start-page: 277 year: 2006 end-page: 289 ident: bib64 article-title: TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction publication-title: Neuron – volume: 555 start-page: 662 year: 2018 end-page: 666 ident: bib123 article-title: A TRP channel trio mediates acute noxious heat sensing publication-title: Nature – volume: 448 start-page: 204 year: 2007 end-page: 208 ident: bib12 article-title: The menthol receptor TRPM8 is the principal detector of environmental cold publication-title: Nature – volume: 119 year: 2022 ident: bib70 article-title: The acquisition of cold sensitivity during TRPM8 ion channel evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 291 start-page: 11446 year: 2016 end-page: 11459 ident: bib108 article-title: Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches publication-title: J. Biol. Chem. – volume: 27 start-page: 2234 year: 2018 end-page: 2242 ident: bib1 article-title: Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban Anolis lizards publication-title: Mol. Ecol. – volume: 464 start-page: 1006 year: 2010 end-page: 1011 ident: bib39 article-title: Molecular basis of infrared detection by snakes publication-title: Nature – volume: 29 start-page: 280 year: 2018 end-page: 285 ident: bib94 article-title: Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system publication-title: Neuroreport – volume: 31 start-page: 2995 year: 2021 end-page: 3003 e4 ident: bib137 article-title: Molecular sensors for temperature detection during behavioral thermoregulation in turtle embryos publication-title: Curr. Biol. – volume: 11 start-page: 836 year: 2020 ident: bib37 article-title: Transient receptor potential ankyrin type-1 channels as a potential target for the treatment of cardiovascular diseases publication-title: Front. Physiol. – volume: 6 start-page: 4 year: 2010 ident: bib38 article-title: The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity publication-title: Mol. Pain – volume: 8 start-page: 878 year: 2017 ident: bib79 article-title: Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin publication-title: Front. Physiol. – volume: 6 year: 2016 ident: bib81 article-title: Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity publication-title: Sci. Rep. – volume: 29 start-page: 3961 year: 2019 end-page: 3973 e6 ident: bib40 article-title: Polymodal nociception in Drosophila requires alternative splicing of TrpA1 publication-title: Curr. Biol. – volume: 27 start-page: 2435 year: 2007 end-page: 2443 ident: bib43 article-title: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression publication-title: J. Neurosci. – volume: 30 start-page: 12219 year: 2010 end-page: 12229 ident: bib59 article-title: Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes publication-title: J. Neurosci. – volume: 20 start-page: 1686 year: 2017 end-page: 1693 ident: bib6 article-title: Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception publication-title: Nat. Neurosci. – volume: 28 start-page: 191 year: 2017 end-page: 198 ident: bib36 article-title: TRPA1 gene polymorphisms and childhood asthma publication-title: Pediatr. Allergy Immunol. – volume: 205 start-page: 2959 year: 2020 end-page: 2967 ident: bib77 article-title: A rapid shift from chronic hyperoxia to normoxia induces systemic anaphylaxis via transient receptor potential ankyrin 1 channels on mast cells publication-title: J. Immunol. – volume: 54 start-page: 371 year: 2007 end-page: 378 ident: bib32 article-title: TRPM8 is required for cold sensation in mice publication-title: Neuron – volume: 427 start-page: 260 year: 2004 end-page: 265 ident: bib52 article-title: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1 publication-title: Nature – volume: 11 year: 2018 ident: bib60 article-title: TRPA1 antagonists for pain relief publication-title: Pharmaceuticals – volume: 7 start-page: 447 year: 2016 ident: bib100 article-title: TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions publication-title: Front. Physiol. – volume: 15 start-page: 98 year: 1961 end-page: 111 ident: bib104 article-title: Thermal relations of five species of tropical lizard publication-title: Evolution – volume: 113 start-page: 11342 year: 2016 end-page: 11347 ident: bib67 article-title: Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 3561 year: 2019 end-page: 3571 ident: bib109 article-title: Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction publication-title: Mol. Ecol. – volume: 10 start-page: 209 year: 2017 ident: bib130 article-title: Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse publication-title: Front. Mol. Neurosci. – volume: 41 start-page: 261 year: 2016 end-page: 272 ident: bib95 article-title: Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems publication-title: Chem. Senses – volume: 111 start-page: E1249 year: 2014 end-page: E1255 ident: bib111 article-title: Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 6 year: 2016 ident: bib46 article-title: Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice publication-title: Arthritis Res. Ther. – volume: 27 start-page: 9874 year: 2007 end-page: 9884 ident: bib56 article-title: Bimodal action of menthol on the transient receptor potential channel TRPA1 publication-title: J. Neurosci. – volume: 9 year: 2019 ident: bib114 article-title: Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage publication-title: Cells – volume: 7 start-page: 2173 year: 2017 ident: bib106 article-title: Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae publication-title: Sci. Rep. – volume: 440 start-page: 237 year: 2008 end-page: 241 ident: bib135 article-title: Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis publication-title: Neurosci. Lett. – volume: 388 start-page: 451 year: 2015 end-page: 463 ident: bib20 article-title: TRPA1 as a drug target--promise and challenges publication-title: Naunyn-Schmiedeberg’s Arch. Pharmacol. – volume: 287 start-page: 30743 year: 2012 end-page: 30754 ident: bib107 article-title: Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates publication-title: J. Biol. Chem. – volume: 30 start-page: 15165 year: 2010 end-page: 15174 ident: bib31 article-title: TRPA1 contributes to cold hypersensitivity publication-title: J. Neurosci. – volume: 21 start-page: 3329 year: 2017 end-page: 3337 ident: bib76 article-title: Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters publication-title: Cell Rep. – volume: 148 start-page: 431 year: 2010 end-page: 437 ident: bib28 article-title: The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation publication-title: Pain – volume: 11 start-page: 871 year: 2008 end-page: 873 ident: bib65 article-title: Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade publication-title: Nat. Neurosci. – volume: 15 start-page: 3 year: 2011 end-page: 4 ident: bib25 article-title: An astrocyte TRP switch for inhibition publication-title: Nat. Neurosci. – volume: 10 start-page: 964 year: 2019 ident: bib10 article-title: TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis publication-title: Front. Pharmacol. – volume: 341 start-page: 360 year: 2012 end-page: 368 ident: bib15 article-title: Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels publication-title: J. Pharmacol. Exp. Therapeut. – volume: 6 year: 2016 ident: bib47 article-title: N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel publication-title: Sci. Rep. – volume: 43 start-page: 572 year: 2020 end-page: 580 ident: bib34 article-title: A single natural variation determines cytosolic Ca(2+)-mediated hyperthermosensitivity of TRPA1s from rattlesnakes and boas publication-title: Mol. Cell – volume: 70 start-page: 363 year: 2021 end-page: 381 ident: bib113 article-title: Transient receptor potential ankyrin 1 channel: an evolutionarily tuned thermosensor publication-title: Physiol. Res. – volume: 13 start-page: 861 year: 2010 end-page: 868 ident: bib18 article-title: Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors publication-title: Nat. Neurosci. – volume: 9 year: 2019 ident: bib68 article-title: Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli publication-title: Sci. Rep. – volume: 19 start-page: 419 year: 2005 end-page: 424 ident: bib102 article-title: The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis publication-title: Genes Dev. – volume: 107 start-page: 7083 year: 2010 end-page: 7088 ident: bib134 article-title: Thermosensitive TRP channel pore turret is part of the temperature activation pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 108 start-page: 705 year: 2002 end-page: 715 ident: bib99 article-title: A TRP channel that senses cold stimuli and menthol publication-title: Cell – volume: 301 start-page: 44 year: 2020 end-page: 53 ident: bib127 article-title: TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression publication-title: Atherosclerosis – volume: 7 year: 2016 ident: bib80 article-title: Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS publication-title: Nat. Commun. – volume: 1 start-page: 43 year: 2012 end-page: 55 ident: bib140 article-title: Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel publication-title: Cell Rep. – volume: 30 start-page: 967 year: 2009 end-page: 974 ident: bib125 article-title: Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae publication-title: Eur. J. Neurosci. – volume: 4 start-page: 2399 year: 2013 ident: bib141 article-title: Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity publication-title: Nat. Commun. – volume: 1858 start-page: 318 year: 2016 end-page: 325 ident: bib53 article-title: Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude publication-title: Biochim. Biophys. Acta – volume: 1160 start-page: 39 year: 2007 end-page: 46 ident: bib112 article-title: Cold sensitivity of recombinant TRPA1 channels publication-title: Brain Res. – volume: 4 year: 2013 ident: bib17 article-title: Relative importance of habitat use, range expansion, and speciation in local species diversity ofAnolislizards in Cuba publication-title: Ecosphere – volume: 93 start-page: 464 year: 2017 end-page: 482 ident: bib83 article-title: TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. – volume: 466 start-page: 1873 year: 2014 end-page: 1884 ident: bib63 article-title: Heat and AITC activate green anole TRPA1 in a membrane-delimited manner publication-title: Pflügers Archiv – volume: 20 start-page: 2276 year: 2004 end-page: 2282 ident: bib7 article-title: Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor publication-title: Eur. J. Neurosci. – volume: 25 start-page: 4052 year: 2005 end-page: 4061 ident: bib87 article-title: Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing publication-title: J. Neurosci. – volume: 30 start-page: 12526 year: 2010 end-page: 12534 ident: bib138 article-title: Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers publication-title: J. Neurosci. – volume: 20 start-page: 34 year: 2017 end-page: 41 ident: bib71 article-title: TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae publication-title: Nat. Neurosci. – volume: 470 start-page: 745 year: 2018 end-page: 759 ident: bib45 article-title: TRPs et al.: a molecular toolkit for thermosensory adaptations publication-title: Pflügers Archiv – volume: 317 start-page: F623 year: 2019 end-page: F631 ident: bib73 article-title: Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury publication-title: Am. J. Physiol. Ren. Physiol. – volume: 152 start-page: 1621 year: 2011 end-page: 1631 ident: bib88 article-title: Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation publication-title: Pain – year: 2022 ident: bib91 article-title: Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1 publication-title: J. Biol. Chem. – volume: 274 start-page: 7325 year: 1999 end-page: 7333 ident: bib49 article-title: An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts publication-title: J. Biol. Chem. – volume: 464 start-page: 597 year: 2010 end-page: 600 ident: bib55 article-title: Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception publication-title: Nature – volume: 82 start-page: 1017 year: 2014 end-page: 1031 ident: bib48 article-title: Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six publication-title: Neuron – volume: 66 start-page: 1584 year: 2017 end-page: 1596 ident: bib14 article-title: The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1 publication-title: Gut – volume: 30 start-page: 643 year: 2020 end-page: 657 ident: bib19 article-title: Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019) publication-title: Expert Opin. Ther. Pat. – volume: 150 start-page: 340 year: 2010 end-page: 350 ident: bib58 article-title: TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo publication-title: Pain – volume: 183 start-page: 445 year: 2014 end-page: 451 ident: bib69 article-title: Thermoregulatory behavior is widespread in the embryos of reptiles and birds publication-title: Am. Nat. – volume: 58 start-page: 1342 year: 2009 end-page: 1352 ident: bib61 article-title: Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats publication-title: Gut – volume: 12 start-page: 812 year: 2016 end-page: 823 ident: bib139 article-title: Transient receptor potential ankyrin 1 channel involved in atherosclerosis and macrophage-foam cell formation publication-title: Int. J. Biol. Sci. – volume: 494 start-page: 194 year: 2017 end-page: 201 ident: bib96 article-title: Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system publication-title: Biochem. Biophys. Res. Commun. – volume: 7 year: 2012 ident: bib2 article-title: TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide publication-title: PLoS One – volume: 12 year: 2019 ident: bib27 article-title: Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? publication-title: Pharmaceuticals – volume: 9 year: 2016 ident: bib85 article-title: Blocking TRPA1 in respiratory disorders: does it hold a promise? publication-title: Pharmaceuticals – volume: 22 year: 2021 ident: bib86 article-title: TRPA1 expression and pathophysiology in immune cells publication-title: Int. J. Mol. Sci. – volume: 416 start-page: 52 year: 2002 end-page: 58 ident: bib78 article-title: Identification of a cold receptor reveals a general role for TRP channels in thermosensation publication-title: Nature – volume: 106 start-page: 8374 year: 2009 end-page: 8379 ident: bib3 article-title: Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+ publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 124 start-page: 1269 year: 2006 end-page: 1282 ident: bib11 article-title: TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents publication-title: Cell – volume: 26 start-page: 12512 year: 2006 end-page: 12525 ident: bib74 article-title: Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals publication-title: J. Neurosci. – volume: 99 start-page: 16029 year: 2002 end-page: 16034 ident: bib84 article-title: Consensus-derived structural determinants of the ankyrin repeat motif publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 start-page: 997 year: 2020 end-page: 1008 ident: bib116 article-title: TRPA1 as a therapeutic target for nociceptive pain publication-title: Expert Opin. Ther. Targets – volume: 31 start-page: 272 year: 2016 end-page: 288 ident: bib29 article-title: dTRPA1 in non-circadian neurons modulates temperature-dependent rhythmic activity in Drosophila melanogaster publication-title: J. Biol. Rhythm. – volume: 6 year: 2016 ident: bib33 article-title: Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae publication-title: Open Biol – volume: 105 start-page: 14668 year: 2008 end-page: 14673 ident: bib103 article-title: Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 144 start-page: 355 year: 2019 end-page: 365 ident: bib5 article-title: Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain publication-title: Int. J. Cancer – volume: 154 start-page: 1054 year: 2008 end-page: 1066 ident: bib51 article-title: Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats publication-title: Neuroscience – volume: 191 start-page: 5371 year: 2013 end-page: 5382 ident: bib97 article-title: TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis publication-title: J. Immunol. – volume: 912 year: 2021 ident: bib75 article-title: TRPA1: pharmacology, natural activators and role in obesity prevention publication-title: Eur. J. Pharmacol. – volume: 152 start-page: 806 year: 2013 end-page: 817 ident: bib132 article-title: A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel publication-title: Cell – volume: 34 start-page: 110 year: 2021 end-page: 116 ident: bib72 article-title: Knockout of Trpa1 exacerbates renal ischemia-reperfusion injury with classical activation of macrophages publication-title: Am. J. Hypertens. – volume: 5 start-page: 3 year: 2009 ident: bib22 article-title: Pore dilation occurs in TRPA1 but not in TRPM8 channels publication-title: Mol. Pain – volume: 108 start-page: 19492 year: 2011 end-page: 19497 ident: bib24 article-title: A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 112 start-page: 819 year: 2003 end-page: 829 ident: bib119 article-title: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures publication-title: Cell – volume: 481 start-page: 76 year: 2011 end-page: 80 ident: bib54 article-title: Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila publication-title: Nature – volume: 167 start-page: 1 year: 2014 end-page: 43 ident: bib89 article-title: The TRPA1 channel in inflammatory and neuropathic pain and migraine publication-title: Rev. Physiol. Biochem. Pharmacol. – volume: 115 start-page: 2393 year: 2005 end-page: 2401 ident: bib93 article-title: TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury publication-title: J. Clin. Invest. – volume: 41 start-page: 849 year: 2004 end-page: 857 ident: bib9 article-title: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin publication-title: Neuron – volume: 7 start-page: 701 year: 2011 end-page: 711 ident: bib120 article-title: TRPA1 underlies a sensing mechanism for O2 publication-title: Nat. Chem. Biol. – volume: 36 start-page: 54 year: 2018 end-page: 62 ident: bib128 article-title: TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice publication-title: EBioMedicine – volume: 106 start-page: 1273 year: 2009 end-page: 1278 ident: bib57 article-title: TRPA1 acts as a cold sensor in vitro and in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 587 year: 2017 end-page: 603 ident: bib4 article-title: TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway publication-title: Channels – volume: 66 start-page: 671 year: 2010 end-page: 680 ident: bib62 article-title: A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome publication-title: Neuron – volume: 3 start-page: 2005 year: 2013 ident: bib90 article-title: A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain publication-title: Sci. Rep. – volume: 81 start-page: 772 year: 2017 end-page: 781 ident: bib117 article-title: Chemotherapy-induced peripheral neuropathy: a current review publication-title: Ann. Neurol. – volume: 4 start-page: 141 year: 2017 end-page: 152 ident: bib110 article-title: Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates publication-title: Temperature (Austin) – volume: 100 start-page: 725 year: 2020 end-page: 803 ident: bib121 article-title: Mammalian transient receptor potential TRPA1 channels: from structure to disease publication-title: Physiol. Rev. – volume: 206 start-page: 462 year: 2013 end-page: 471 ident: bib16 article-title: Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells publication-title: Chem. Biol. Interact. – volume: 222 start-page: 583 year: 2014 end-page: 630 ident: bib142 article-title: Trpa1 publication-title: Handb. Exp. Pharmacol. – volume: 113 start-page: 261 year: 2003 end-page: 273 ident: bib122 article-title: painless, a Drosophila gene essential for nociception publication-title: Cell – volume: 312 start-page: G635 year: 2017 end-page: G648 ident: bib8 article-title: Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 19 start-page: 401 year: 2018 end-page: 411 ident: bib50 article-title: Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease publication-title: Pharmacogenomics – volume: 108 start-page: E1184 year: 2011 end-page: E1191 ident: bib26 article-title: Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 33 start-page: 9283 year: 2013 end-page: 9294 ident: bib129 article-title: The ion channel TRPA1 is required for chronic itch publication-title: J. Neurosci. – volume: 7 start-page: 447 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib100 article-title: TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00447 – volume: 115 start-page: 2393 year: 2005 ident: 10.1016/j.cellin.2022.100059_bib93 article-title: TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury publication-title: J. Clin. Invest. doi: 10.1172/JCI25437 – volume: 28 start-page: 7863 year: 2008 ident: 10.1016/j.cellin.2022.100059_bib35 article-title: TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1696-08.2008 – volume: 191 start-page: 5371 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib97 article-title: TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis publication-title: J. Immunol. doi: 10.4049/jimmunol.1300300 – volume: 106 start-page: 1273 year: 2009 ident: 10.1016/j.cellin.2022.100059_bib57 article-title: TRPA1 acts as a cold sensor in vitro and in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0808487106 – volume: 15 start-page: 98 year: 1961 ident: 10.1016/j.cellin.2022.100059_bib104 article-title: Thermal relations of five species of tropical lizard publication-title: Evolution doi: 10.2307/2405846 – volume: 18 start-page: 6 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib46 article-title: Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-015-0904-y – volume: 20 start-page: 2276 year: 2004 ident: 10.1016/j.cellin.2022.100059_bib7 article-title: Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2004.03695.x – volume: 287 start-page: 30743 year: 2012 ident: 10.1016/j.cellin.2022.100059_bib107 article-title: Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.362194 – volume: 66 start-page: 1584 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib14 article-title: The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1 publication-title: Gut doi: 10.1136/gutjnl-2015-310710 – volume: 520 start-page: 511 year: 2015 ident: 10.1016/j.cellin.2022.100059_bib98 article-title: Structure of the TRPA1 ion channel suggests regulatory mechanisms publication-title: Nature doi: 10.1038/nature14367 – volume: 7 start-page: 549 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib115 article-title: TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity publication-title: Sci. Rep. doi: 10.1038/s41598-017-00636-4 – volume: 6 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib81 article-title: Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity publication-title: Sci. Rep. doi: 10.1038/srep28763 – volume: 31 start-page: 2995 year: 2021 ident: 10.1016/j.cellin.2022.100059_bib137 article-title: Molecular sensors for temperature detection during behavioral thermoregulation in turtle embryos publication-title: Curr. Biol. doi: 10.1016/j.cub.2021.04.054 – volume: 54 start-page: 371 year: 2007 ident: 10.1016/j.cellin.2022.100059_bib32 article-title: TRPM8 is required for cold sensation in mice publication-title: Neuron doi: 10.1016/j.neuron.2007.02.024 – volume: 22 year: 2021 ident: 10.1016/j.cellin.2022.100059_bib86 article-title: TRPA1 expression and pathophysiology in immune cells publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222111460 – volume: 41 start-page: 849 year: 2004 ident: 10.1016/j.cellin.2022.100059_bib9 article-title: Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin publication-title: Neuron doi: 10.1016/S0896-6273(04)00150-3 – volume: 15 start-page: 3 year: 2011 ident: 10.1016/j.cellin.2022.100059_bib25 article-title: An astrocyte TRP switch for inhibition publication-title: Nat. Neurosci. doi: 10.1038/nn.3010 – volume: 466 start-page: 1873 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib63 article-title: Heat and AITC activate green anole TRPA1 in a membrane-delimited manner publication-title: Pflügers Archiv doi: 10.1007/s00424-013-1420-z – volume: 7 start-page: 701 year: 2011 ident: 10.1016/j.cellin.2022.100059_bib120 article-title: TRPA1 underlies a sensing mechanism for O2 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.640 – volume: 108 start-page: E1184 year: 2011 ident: 10.1016/j.cellin.2022.100059_bib26 article-title: Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1114124108 – volume: 19 start-page: 401 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib50 article-title: Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease publication-title: Pharmacogenomics doi: 10.2217/pgs-2017-0198 – volume: 30 start-page: 15165 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib31 article-title: TRPA1 contributes to cold hypersensitivity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2580-10.2010 – volume: 107 start-page: 7083 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib134 article-title: Thermosensitive TRP channel pore turret is part of the temperature activation pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1000357107 – volume: 555 start-page: 662 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib123 article-title: A TRP channel trio mediates acute noxious heat sensing publication-title: Nature doi: 10.1038/nature26137 – volume: 20 start-page: 34 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib71 article-title: TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae publication-title: Nat. Neurosci. doi: 10.1038/nn.4416 – volume: 82 start-page: 1017 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib48 article-title: Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six publication-title: Neuron doi: 10.1016/j.neuron.2014.04.016 – volume: 464 start-page: 1006 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib39 article-title: Molecular basis of infrared detection by snakes publication-title: Nature doi: 10.1038/nature08943 – volume: 11 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib60 article-title: TRPA1 antagonists for pain relief publication-title: Pharmaceuticals doi: 10.3390/ph11040117 – volume: 6 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib33 article-title: Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae publication-title: Open Biol doi: 10.1098/rsob.160042 – volume: 124 start-page: 1269 year: 2006 ident: 10.1016/j.cellin.2022.100059_bib11 article-title: TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents publication-title: Cell doi: 10.1016/j.cell.2006.02.023 – volume: 7 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib42 article-title: Non-analgesic symptomatic or disease-modifying potential of TRPA1 publication-title: Med. Sci. – volume: 470 start-page: 745 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib45 article-title: TRPs et al.: a molecular toolkit for thermosensory adaptations publication-title: Pflügers Archiv doi: 10.1007/s00424-018-2120-5 – volume: 481 start-page: 76 year: 2011 ident: 10.1016/j.cellin.2022.100059_bib54 article-title: Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila publication-title: Nature doi: 10.1038/nature10715 – volume: 27 start-page: 2234 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib1 article-title: Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban Anolis lizards publication-title: Mol. Ecol. doi: 10.1111/mec.14572 – volume: 34 start-page: 4445 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib30 article-title: Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5387-13.2014 – volume: 494 start-page: 194 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib96 article-title: Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.10.057 – volume: 427 start-page: 260 year: 2004 ident: 10.1016/j.cellin.2022.100059_bib52 article-title: Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1 publication-title: Nature doi: 10.1038/nature02282 – volume: 28 start-page: 3561 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib109 article-title: Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction publication-title: Mol. Ecol. doi: 10.1111/mec.15170 – volume: 21 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib118 article-title: Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21113826 – volume: 30 start-page: 12526 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib138 article-title: Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3189-10.2010 – volume: 150 start-page: 340 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib58 article-title: TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo publication-title: Pain doi: 10.1016/j.pain.2010.05.021 – volume: 11 start-page: 871 year: 2008 ident: 10.1016/j.cellin.2022.100059_bib65 article-title: Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade publication-title: Nat. Neurosci. doi: 10.1038/nn.2170 – volume: 26 start-page: 12512 year: 2006 ident: 10.1016/j.cellin.2022.100059_bib74 article-title: Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3752-06.2006 – volume: 4 start-page: 141 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib110 article-title: Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates publication-title: Temperature (Austin) doi: 10.1080/23328940.2017.1315478 – volume: 58 start-page: 1342 year: 2009 ident: 10.1016/j.cellin.2022.100059_bib61 article-title: Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats publication-title: Gut doi: 10.1136/gut.2008.175901 – volume: 19 start-page: 419 year: 2005 ident: 10.1016/j.cellin.2022.100059_bib102 article-title: The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis publication-title: Genes Dev. doi: 10.1101/gad.1278205 – volume: 30 start-page: 643 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib19 article-title: Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019) publication-title: Expert Opin. Ther. Pat. doi: 10.1080/13543776.2020.1797679 – volume: 301 start-page: 44 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib127 article-title: TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2020.04.004 – volume: 4 start-page: 2501 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib21 article-title: Species differences and molecular determinant of TRPA1 cold sensitivity publication-title: Nat. Commun. doi: 10.1038/ncomms3501 – volume: 100 start-page: 725 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib121 article-title: Mammalian transient receptor potential TRPA1 channels: from structure to disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00005.2019 – volume: 112 start-page: 819 year: 2003 ident: 10.1016/j.cellin.2022.100059_bib119 article-title: ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures publication-title: Cell doi: 10.1016/S0092-8674(03)00158-2 – volume: 70 start-page: 363 year: 2021 ident: 10.1016/j.cellin.2022.100059_bib113 article-title: Transient receptor potential ankyrin 1 channel: an evolutionarily tuned thermosensor publication-title: Physiol. Res. doi: 10.33549/physiolres.934697 – volume: 13 start-page: 861 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib18 article-title: Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors publication-title: Nat. Neurosci. doi: 10.1038/nn.2581 – year: 2022 ident: 10.1016/j.cellin.2022.100059_bib91 article-title: Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.102271 – volume: 106 start-page: 8374 year: 2009 ident: 10.1016/j.cellin.2022.100059_bib3 article-title: Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+ publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0812675106 – volume: 119 year: 2022 ident: 10.1016/j.cellin.2022.100059_bib70 article-title: The acquisition of cold sensitivity during TRPM8 ion channel evolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2201349119 – volume: 28 start-page: 191 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib36 article-title: TRPA1 gene polymorphisms and childhood asthma publication-title: Pediatr. Allergy Immunol. doi: 10.1111/pai.12673 – volume: 36 start-page: 54 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib128 article-title: TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.08.022 – volume: 317 start-page: F623 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib73 article-title: Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00069.2019 – volume: 167 start-page: 1 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib89 article-title: The TRPA1 channel in inflammatory and neuropathic pain and migraine publication-title: Rev. Physiol. Biochem. Pharmacol. doi: 10.1007/112_2014_18 – volume: 388 start-page: 451 year: 2015 ident: 10.1016/j.cellin.2022.100059_bib20 article-title: TRPA1 as a drug target--promise and challenges publication-title: Naunyn-Schmiedeberg’s Arch. Pharmacol. doi: 10.1007/s00210-015-1088-3 – volume: 111 start-page: E1249 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib111 article-title: Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1322134111 – volume: 206 start-page: 462 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib16 article-title: Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2013.08.012 – volume: 158 start-page: 1148 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib23 article-title: A molecular framework for temperature-dependent gating of ion channels publication-title: Cell doi: 10.1016/j.cell.2014.07.026 – volume: 7 start-page: 2173 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib106 article-title: Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae publication-title: Sci. Rep. doi: 10.1038/s41598-017-02171-8 – volume: 222 start-page: 583 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib142 article-title: Trpa1 publication-title: Handb. Exp. Pharmacol. doi: 10.1007/978-3-642-54215-2_23 – volume: 9 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib114 article-title: Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage publication-title: Cells doi: 10.3390/cells9010057 – volume: 912 year: 2021 ident: 10.1016/j.cellin.2022.100059_bib75 article-title: TRPA1: pharmacology, natural activators and role in obesity prevention publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2021.174553 – volume: 7 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib80 article-title: Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS publication-title: Nat. Commun. doi: 10.1038/ncomms12840 – volume: 25 start-page: 4052 year: 2005 ident: 10.1016/j.cellin.2022.100059_bib87 article-title: Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0013-05.2005 – volume: 440 start-page: 237 year: 2008 ident: 10.1016/j.cellin.2022.100059_bib135 article-title: Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2008.05.093 – volume: 31 start-page: 708 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib105 article-title: Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu001 – volume: 1858 start-page: 318 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib53 article-title: Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2015.12.011 – volume: 105 start-page: 14668 year: 2008 ident: 10.1016/j.cellin.2022.100059_bib103 article-title: Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805041105 – volume: 18 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib101 article-title: The Drosophila TRPA1 channel and neuronal circuits controlling rhythmic behaviours and sleep in response to environmental temperature publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18102028 – volume: 22 year: 2021 ident: 10.1016/j.cellin.2022.100059_bib131 article-title: Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate ischemia-reperfusion-induced kidney injury through MAPKs/NF-kappaB signaling publication-title: Int. J. Mol. Sci. – volume: 93 start-page: 464 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib83 article-title: TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.93.028 – volume: 1160 start-page: 39 year: 2007 ident: 10.1016/j.cellin.2022.100059_bib112 article-title: Cold sensitivity of recombinant TRPA1 channels publication-title: Brain Res. doi: 10.1016/j.brainres.2007.05.047 – volume: 108 start-page: 19492 year: 2011 ident: 10.1016/j.cellin.2022.100059_bib24 article-title: A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117485108 – volume: 274 start-page: 7325 year: 1999 ident: 10.1016/j.cellin.2022.100059_bib49 article-title: An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.11.7325 – volume: 9 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib85 article-title: Blocking TRPA1 in respiratory disorders: does it hold a promise? publication-title: Pharmaceuticals doi: 10.3390/ph9040070 – volume: 113 start-page: 11342 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib67 article-title: Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1604269113 – volume: 34 start-page: 110 year: 2021 ident: 10.1016/j.cellin.2022.100059_bib72 article-title: Knockout of Trpa1 exacerbates renal ischemia-reperfusion injury with classical activation of macrophages publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpaa162 – volume: 24 start-page: 997 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib116 article-title: TRPA1 as a therapeutic target for nociceptive pain publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2020.1815191 – volume: 312 start-page: G635 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib8 article-title: Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00401.2016 – volume: 9 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib68 article-title: Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli publication-title: Sci. Rep. doi: 10.1038/s41598-019-56639-w – volume: 144 start-page: 355 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib5 article-title: Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain publication-title: Int. J. Cancer doi: 10.1002/ijc.31911 – volume: 27 start-page: 2435 year: 2007 ident: 10.1016/j.cellin.2022.100059_bib43 article-title: Emergence of functional sensory subtypes as defined by transient receptor potential channel expression publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5614-06.2007 – volume: 416 start-page: 52 year: 2002 ident: 10.1016/j.cellin.2022.100059_bib78 article-title: Identification of a cold receptor reveals a general role for TRP channels in thermosensation publication-title: Nature doi: 10.1038/nature719 – volume: 12 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib27 article-title: Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? publication-title: Pharmaceuticals doi: 10.3390/ph12020048 – volume: 31 start-page: 272 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib29 article-title: dTRPA1 in non-circadian neurons modulates temperature-dependent rhythmic activity in Drosophila melanogaster publication-title: J. Biol. Rhythm. doi: 10.1177/0748730415627037 – volume: 30 start-page: 12219 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib59 article-title: Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2001-10.2010 – volume: 30 start-page: 967 year: 2009 ident: 10.1016/j.cellin.2022.100059_bib125 article-title: Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2009.06901.x – volume: 341 start-page: 360 year: 2012 ident: 10.1016/j.cellin.2022.100059_bib15 article-title: Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels publication-title: J. Pharmacol. Exp. Therapeut. doi: 10.1124/jpet.111.189902 – volume: 6 start-page: 4 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib38 article-title: The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity publication-title: Mol. Pain doi: 10.1186/1744-8069-6-4 – volume: 21 start-page: 3329 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib76 article-title: Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.11.083 – volume: 10 start-page: 964 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib10 article-title: TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.00964 – volume: 4 start-page: 2399 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib141 article-title: Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity publication-title: Nat. Commun. doi: 10.1038/ncomms3399 – volume: 454 start-page: 217 year: 2008 ident: 10.1016/j.cellin.2022.100059_bib41 article-title: An internal thermal sensor controlling temperature preference in Drosophila publication-title: Nature doi: 10.1038/nature07001 – volume: 148 start-page: 431 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib28 article-title: The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation publication-title: Pain doi: 10.1016/j.pain.2009.12.002 – volume: 50 start-page: 277 year: 2006 ident: 10.1016/j.cellin.2022.100059_bib64 article-title: TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction publication-title: Neuron doi: 10.1016/j.neuron.2006.03.042 – volume: 111 start-page: 16901 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib82 article-title: Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1412689111 – volume: 423 start-page: 822 year: 2003 ident: 10.1016/j.cellin.2022.100059_bib124 article-title: Opposite thermosensor in fruitfly and mouse publication-title: Nature doi: 10.1038/423822a – volume: 591 start-page: 185 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib126 article-title: Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli publication-title: J Physiol doi: 10.1113/jphysiol.2012.242842 – volume: 10 start-page: 209 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib130 article-title: Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00209 – volume: 17 start-page: 1472 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib44 article-title: TRPA1 and TRPV1 are differentially involved in heat nociception of mice publication-title: Eur. J. Pain doi: 10.1002/j.1532-2149.2013.00331.x – volume: 7 year: 2012 ident: 10.1016/j.cellin.2022.100059_bib2 article-title: TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide publication-title: PLoS One doi: 10.1371/journal.pone.0046917 – volume: 11 start-page: 69 year: 2015 ident: 10.1016/j.cellin.2022.100059_bib133 article-title: Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration publication-title: Mol. Pain doi: 10.1186/s12990-015-0072-8 – volume: 448 start-page: 204 year: 2007 ident: 10.1016/j.cellin.2022.100059_bib12 article-title: The menthol receptor TRPM8 is the principal detector of environmental cold publication-title: Nature doi: 10.1038/nature05910 – volume: 29 start-page: 280 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib94 article-title: Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system publication-title: Neuroreport doi: 10.1097/WNR.0000000000000939 – volume: 20 start-page: 1686 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib6 article-title: Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0005-0 – volume: 12 start-page: 812 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib139 article-title: Transient receptor potential ankyrin 1 channel involved in atherosclerosis and macrophage-foam cell formation publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.15229 – volume: 41 start-page: 261 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib95 article-title: Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems publication-title: Chem. Senses doi: 10.1093/chemse/bjv091 – volume: 113 start-page: 261 year: 2003 ident: 10.1016/j.cellin.2022.100059_bib122 article-title: painless, a Drosophila gene essential for nociception publication-title: Cell doi: 10.1016/S0092-8674(03)00272-1 – volume: 205 start-page: 2959 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib77 article-title: A rapid shift from chronic hyperoxia to normoxia induces systemic anaphylaxis via transient receptor potential ankyrin 1 channels on mast cells publication-title: J. Immunol. doi: 10.4049/jimmunol.2000149 – volume: 183 start-page: 445 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib69 article-title: Thermoregulatory behavior is widespread in the embryos of reptiles and birds publication-title: Am. Nat. doi: 10.1086/675065 – volume: 81 start-page: 772 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib117 article-title: Chemotherapy-induced peripheral neuropathy: a current review publication-title: Ann. Neurol. doi: 10.1002/ana.24951 – volume: 152 start-page: 1621 year: 2011 ident: 10.1016/j.cellin.2022.100059_bib88 article-title: Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation publication-title: Pain doi: 10.1016/j.pain.2011.02.051 – volume: 93 start-page: 164 year: 2018 ident: 10.1016/j.cellin.2022.100059_bib92 article-title: A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome publication-title: Clin. Genet. doi: 10.1111/cge.13040 – volume: 117 start-page: 8633 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib136 article-title: A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1922714117 – volume: 6 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib47 article-title: N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel publication-title: Sci. Rep. doi: 10.1038/srep28700 – volume: 66 start-page: 671 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib62 article-title: A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome publication-title: Neuron doi: 10.1016/j.neuron.2010.04.030 – volume: 1 start-page: 43 year: 2012 ident: 10.1016/j.cellin.2022.100059_bib140 article-title: Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel publication-title: Cell Rep. doi: 10.1016/j.celrep.2011.11.002 – volume: 99 start-page: 16029 year: 2002 ident: 10.1016/j.cellin.2022.100059_bib84 article-title: Consensus-derived structural determinants of the ankyrin repeat motif publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.252537899 – volume: 2 start-page: 214 year: 2015 ident: 10.1016/j.cellin.2022.100059_bib66 article-title: Species-specific temperature sensitivity of TRPA1 publication-title: Temperature (Austin) doi: 10.1080/23328940.2014.1000702 – volume: 11 start-page: 836 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib37 article-title: Transient receptor potential ankyrin type-1 channels as a potential target for the treatment of cardiovascular diseases publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00836 – volume: 29 start-page: 3961 year: 2019 ident: 10.1016/j.cellin.2022.100059_bib40 article-title: Polymodal nociception in Drosophila requires alternative splicing of TrpA1 publication-title: Curr. Biol. doi: 10.1016/j.cub.2019.09.070 – volume: 108 start-page: 705 year: 2002 ident: 10.1016/j.cellin.2022.100059_bib99 article-title: A TRP channel that senses cold stimuli and menthol publication-title: Cell doi: 10.1016/S0092-8674(02)00652-9 – volume: 33 start-page: 9283 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib129 article-title: The ion channel TRPA1 is required for chronic itch publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5318-12.2013 – volume: 4 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib17 article-title: Relative importance of habitat use, range expansion, and speciation in local species diversity ofAnolislizards in Cuba publication-title: Ecosphere doi: 10.1890/ES12-00383.1 – volume: 464 start-page: 597 year: 2010 ident: 10.1016/j.cellin.2022.100059_bib55 article-title: Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception publication-title: Nature doi: 10.1038/nature08848 – volume: 152 start-page: 806 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib132 article-title: A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel publication-title: Cell doi: 10.1016/j.cell.2013.01.020 – volume: 43 start-page: 572 year: 2020 ident: 10.1016/j.cellin.2022.100059_bib34 article-title: A single natural variation determines cytosolic Ca(2+)-mediated hyperthermosensitivity of TRPA1s from rattlesnakes and boas publication-title: Mol. Cell – volume: 5 start-page: 3 year: 2009 ident: 10.1016/j.cellin.2022.100059_bib22 article-title: Pore dilation occurs in TRPA1 but not in TRPM8 channels publication-title: Mol. Pain doi: 10.1186/1744-8069-5-3 – volume: 27 start-page: 9874 year: 2007 ident: 10.1016/j.cellin.2022.100059_bib56 article-title: Bimodal action of menthol on the transient receptor potential channel TRPA1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2221-07.2007 – volume: 171 start-page: 2552 year: 2014 ident: 10.1016/j.cellin.2022.100059_bib13 article-title: The TRPA1 channel in migraine mechanism and treatment publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12512 – volume: 154 start-page: 1054 year: 2008 ident: 10.1016/j.cellin.2022.100059_bib51 article-title: Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.04.039 – volume: 291 start-page: 11446 year: 2016 ident: 10.1016/j.cellin.2022.100059_bib108 article-title: Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.702498 – volume: 11 start-page: 587 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib4 article-title: TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway publication-title: Channels doi: 10.1080/19336950.2017.1365206 – volume: 8 start-page: 878 year: 2017 ident: 10.1016/j.cellin.2022.100059_bib79 article-title: Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00878 – volume: 3 start-page: 2005 year: 2013 ident: 10.1016/j.cellin.2022.100059_bib90 article-title: A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain publication-title: Sci. Rep. doi: 10.1038/srep02005 |
SSID | ssj0002856907 |
Score | 2.321841 |
SecondaryResourceType | review_article |
Snippet | Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100059 |
SubjectTerms | Ion channel Review Thermosensation TRPA1 |
Title | The role of TRPA1 channels in thermosensation |
URI | https://dx.doi.org/10.1016/j.cellin.2022.100059 https://www.ncbi.nlm.nih.gov/pubmed/37193355 https://www.proquest.com/docview/2814813454 https://pubmed.ncbi.nlm.nih.gov/PMC10120293 https://doaj.org/article/aa370f68f0434677918a8b8177a8c83a |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsovupjqeA12DZpkxxVlEVQRHbBW0jaFCvaFXf9_84k7bLVw168NmnTeYT5Zph8IeRCGGUBhToKuYeh6CTUlFxQK3PBeK5k5bA08PBYjKf8_iV_WbnqC3vCAj1wUNylMUwkdSHrhDPY1EKl0kgrUyGMLCXz0Ahi3koy9eZLRjmmfXizHMBHKlUm-nNzvrkLq-IN0p9mGfYJeKrSlbjk6fsH4ekv_PzdRbkSlu52yHaHJ-OrIMcu2XDtHqFg_Bj7BuNZHU-en67SGA_4trBQ3LQxYr6P2RwSWG-WfTK9u53cjGl3LwItc1UsqLJOVRB5VZXnBtKdVPFSZtwloCrDOXOshCTNKFUJK01asVxVtq6QgxYGFGcHZLOdte6IxJnlha2S2jJpuaglstsVgAhswhxAsTQirNeKLjvScLy74l333WFvOuhSoy510GVE6PKtz0CasWb-NSp8ORcpr_0DcATdOYJe5wgREb25dIceAiqATzVrlj_vrathc-EE07rZ91xnErLFFHyWR-QwWHv5kwxUyQCtRUQO_GAgxXCkbV49gTdyqiWAs47_Q-4TsoWyhBabU7K5-Pp2ZwCUFnbk98TIV7B-AKPbC54 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+TRPA1+channels+in+thermosensation&rft.jtitle=Cell+insight&rft.au=Zhang%2C+Hao&rft.au=Wang%2C+Chengsan&rft.au=Zhang%2C+Keyi&rft.au=Kamau%2C+Peter+Muiruri&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=2772-8927&rft.eissn=2772-8927&rft.volume=1&rft.issue=6&rft_id=info:doi/10.1016%2Fj.cellin.2022.100059&rft.externalDocID=S2772892722000566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-8927&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-8927&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-8927&client=summon |