Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization
Background Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms...
Saved in:
Published in | Biomedical engineering online Vol. 13; no. 1; p. 73 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
11.06.2014
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1475-925X 1475-925X |
DOI | 10.1186/1475-925X-13-73 |
Cover
Abstract | Background
Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles.
Methods
In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram.
Results
The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01).
Conclusions
Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. |
---|---|
AbstractList | Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles.
In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram.
The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01).
Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Background: Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. Methods: In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. Results: The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Conclusions: Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Background Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. Methods In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. Results The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Conclusions Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles.BACKGROUNDInvestigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles.In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram.METHODSIn this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram.The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01).RESULTSThe power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01).Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude.CONCLUSIONSOur results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Doc number: 73 Abstract Background: Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. Methods: In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. Results: The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Conclusions: Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Background Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. Methods In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. Results The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). Conclusions Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude. Keywords: Hypoxia, Autonomic nervous system, Heart rate variability, Sample entropy, Cardiorespiratory phase synchronization |
ArticleNumber | 73 |
Audience | Academic |
Author | Yu, Mengsun She, Jin Zhang, Zhengbo Zhang, Da |
AuthorAffiliation | 3 Research Center of Aviation Medicine Engineering, Institute of Aviation Medicine, Beijing, China 2 Department of Biomedical Engineering, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China 1 School of Biological Science and Medical Engineering, Beihang University, Beijing, China |
AuthorAffiliation_xml | – name: 1 School of Biological Science and Medical Engineering, Beihang University, Beijing, China – name: 2 Department of Biomedical Engineering, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China – name: 3 Research Center of Aviation Medicine Engineering, Institute of Aviation Medicine, Beijing, China |
Author_xml | – sequence: 1 givenname: Da surname: Zhang fullname: Zhang, Da organization: School of Biological Science and Medical Engineering, Beihang University – sequence: 2 givenname: Jin surname: She fullname: She, Jin organization: School of Biological Science and Medical Engineering, Beihang University – sequence: 3 givenname: Zhengbo surname: Zhang fullname: Zhang, Zhengbo organization: Department of Biomedical Engineering, Chinese PLA (People’s Liberation Army) General Hospital – sequence: 4 givenname: Mengsun surname: Yu fullname: Yu, Mengsun email: yms1601@gmail.com organization: Research Center of Aviation Medicine Engineering, Institute of Aviation Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24920347$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1rFDEUxQep2A999k0Cvii4bTKZSTYvQilVCwXBD_At3M3c2U2ZTcYkUzr-9Wbctu4WC5KHJDe_c7jcnMNiz3mHRfGS0WPG5uKEVbKeqbL-MWN8JvmT4uC-srd13i8OY7yitKRUqGfFflmpkvJKHhTuvG3RpEh8S8AMCclq7P2NBeIdWSGERALk6jUECwvb2TS-IxHWfYcEXQq-Hwm4hhgIjfUBY28z78NI-hVEJHF0ZhW8s78gWe-eF09b6CK-uN2Piu8fzr-dfZpdfv54cXZ6OTO1Ein3XKJgaJDNm5JTyaUBNBKAMZFv1ChT0rZWXGHZCKxqMGYhqJlLyjkrF_yoeL_x7YfFGhsztQqd7oNdQxi1B6t3X5xd6aW_1hWtFVUyG7y5NQj-54Ax6bWNBrsOHPohalZXFWVCqvI_UC6ZFHUtMvr6AXrlh-DyJCZqzgRXnP6lltChtq71uUUzmerTmivBBZeT1_E_qLwaXFuTY9LaXN8RvN0RZCbhTVrCEKO--Ppll321Pb_7wd0FJwP1BjDBxxiw1camP1-cu7CdZlRPAdVTBPUUQc24ljzrTh7o7qwfV9CNImbSLTFszewRyW-BOPW- |
CitedBy_id | crossref_primary_10_25259_IJASM_19_2021 crossref_primary_10_3390_life11070625 crossref_primary_10_1007_s13246_015_0354_5 crossref_primary_10_3389_fphys_2021_607356 crossref_primary_10_1016_j_micpro_2021_103859 crossref_primary_10_1016_j_bbe_2017_11_004 crossref_primary_10_1016_j_imbio_2020_152008 crossref_primary_10_1089_ham_2016_0145 crossref_primary_10_1016_j_crvasa_2015_05_010 crossref_primary_10_1109_TBME_2023_3236680 crossref_primary_10_14814_phy2_15963 crossref_primary_10_3389_fphys_2022_1005016 crossref_primary_10_3390_e23060642 crossref_primary_10_1152_physiolgenomics_00056_2024 crossref_primary_10_3390_bioengineering11111093 crossref_primary_10_1016_j_soard_2021_03_022 crossref_primary_10_1088_1361_6579_ad2eb5 crossref_primary_10_1007_s00421_019_04166_x crossref_primary_10_1186_s43044_021_00201_5 crossref_primary_10_3389_fphys_2021_688921 crossref_primary_10_1002_joa3_12573 crossref_primary_10_1111_1440_1681_13170 crossref_primary_10_1097_HJH_0000000000001795 crossref_primary_10_1080_10641963_2023_2238923 crossref_primary_10_1186_s12938_019_0683_9 crossref_primary_10_1016_j_biopsycho_2015_07_016 crossref_primary_10_1371_journal_pone_0238117 crossref_primary_10_1055_s_0044_1791517 crossref_primary_10_55453_rjmm_2024_127_4_6 crossref_primary_10_3390_e21121224 crossref_primary_10_1155_2021_6633851 crossref_primary_10_2139_ssrn_4181470 crossref_primary_10_3389_fnins_2024_1373136 crossref_primary_10_3389_fphys_2018_00390 crossref_primary_10_3390_s22145255 crossref_primary_10_3389_fphys_2024_1517361 crossref_primary_10_1016_j_physbeh_2024_114747 crossref_primary_10_1007_s00421_015_3137_5 crossref_primary_10_21508_1027_4065_2020_65_4_78_84 |
Cites_doi | 10.1580/1080-6032(2001)012[0008:AIANCO]2.0.CO;2 10.1046/j.1475-097X.2002.00434.x 10.1152/japplphysiol.00293.2007 10.1093/oxfordjournals.eurheartj.a014868 10.1152/japplphysiol.00239.2004 10.1109/TBME.2006.883789 10.1016/j.ajem.2004.09.023 10.1016/j.wem.2009.12.022 10.1016/j.resp.2009.11.003 10.1109/TBME.1986.325695 10.1046/j.1474-8673.2003.00293.x 10.1007/BF00357674 10.1016/S0378-4371(00)00204-1 10.1088/0967-3334/22/3/311 10.1186/1475-925X-3-44 10.1152/ajpregu.00069.2002 10.1109/51.731320 10.1007/978-0-387-75434-5_1 10.1088/0967-3334/28/6/011 10.1046/j.1365-201X.2001.00925.x 10.1093/oxfordjournals.eurheartj.a060415 10.1103/PhysRevE.65.041909 10.5414/CPP43101 10.1007/s00421-005-1379-3 10.1152/jappl.1994.77.6.2537 10.1152/ajpheart.01131.2003 10.1073/pnas.1204568109 10.1152/ajpheart.2000.278.6.H2039 10.1103/PhysRevE.60.857 10.1103/PhysRevLett.98.054102 10.1159/000127445 10.1097/MAJ.0b013e3181629a32 10.1109/51.993193 10.33549/physiolres.930000.49.285 10.1142/S0218127400001754 10.1038/32567 10.1152/ajpheart.00648.2007 10.33549/physiolres.930000.49.729 10.1042/cs0950565 10.1140/epjb/e2008-00199-4 10.1590/S0100-879X2002000800018 |
ContentType | Journal Article |
Copyright | Zhang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. COPYRIGHT 2014 BioMed Central Ltd. 2014 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2014 Zhang et al.; licensee BioMed Central Ltd. 2014 Zhang et al.; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Zhang et al.; licensee BioMed Central Ltd. 2014 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated. – notice: COPYRIGHT 2014 BioMed Central Ltd. – notice: 2014 Zhang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2014 Zhang et al.; licensee BioMed Central Ltd. 2014 Zhang et al.; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1186/1475-925X-13-73 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1475-925X |
EndPage | 73 |
ExternalDocumentID | PMC4059097 3340930951 A539636376 24920347 10_1186_1475_925X_13_73 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Beijing China |
GeographicLocations_xml | – name: Beijing China |
GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IGS IHR INH INR ISR ITC KQ8 L6V LK8 M1P M48 M7P M7S MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c596t-922e61ece18d230737caec7aa1160730c9c20f5939e2d6e45accb60c8703312b3 |
IEDL.DBID | M48 |
ISSN | 1475-925X |
IngestDate | Thu Aug 21 14:12:18 EDT 2025 Fri Sep 05 09:10:45 EDT 2025 Thu Sep 04 19:05:37 EDT 2025 Fri Jul 25 19:19:35 EDT 2025 Tue Jun 17 22:05:23 EDT 2025 Tue Jun 10 21:02:59 EDT 2025 Fri Jun 27 05:35:27 EDT 2025 Mon Jul 21 05:56:55 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Wed Sep 10 05:50:07 EDT 2025 Sat Sep 06 07:30:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Sample entropy Hypoxia Cardiorespiratory phase synchronization Autonomic nervous system Heart rate variability |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c596t-922e61ece18d230737caec7aa1160730c9c20f5939e2d6e45accb60c8703312b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://doi.org/10.1186/1475-925X-13-73 |
PMID | 24920347 |
PQID | 1538163930 |
PQPubID | 42562 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4059097 proquest_miscellaneous_1544016792 proquest_miscellaneous_1537176556 proquest_journals_1538163930 gale_infotracmisc_A539636376 gale_infotracacademiconefile_A539636376 gale_incontextgauss_ISR_A539636376 pubmed_primary_24920347 crossref_citationtrail_10_1186_1475_925X_13_73 crossref_primary_10_1186_1475_925X_13_73 springer_journals_10_1186_1475_925X_13_73 |
PublicationCentury | 2000 |
PublicationDate | 2014-06-11 |
PublicationDateYYYYMMDD | 2014-06-11 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Biomedical engineering online |
PublicationTitleAbbrev | BioMed Eng OnLine |
PublicationTitleAlternate | Biomed Eng Online |
PublicationYear | 2014 |
Publisher | BioMed Central BioMed Central Ltd |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
References | A Porta (812_CR36) 2007; 54 JS Richman (812_CR30) 2000; 278 D Cysarz (812_CR33) 2004; 3 R Mrowka (812_CR42) 2000; 10 DA Kenwright (812_CR41) 2008; 65 L Bernardi (812_CR11) 1998; 95 MB Lotric (812_CR21) 2000; 283 KS Heffernan (812_CR38) 2007; 293 A Ponchia (812_CR14) 1994; 15 J Zhang (812_CR25) 2011; 170 DE Vigo (812_CR7) 2010; 20 PS Hamilton (812_CR29) 1986; 33 MJ Lewis (812_CR18) 2007; 28 C Schafer (812_CR19) 1998; 392 J Penttila (812_CR35) 2003; 23 YC Chen (812_CR12) 2008; 336 R Bartsch (812_CR26) 2007; 98 RP Bartsch (812_CR27) 2012; 109 S Kujanik (812_CR5) 2000; 49 A Lepoluoto (812_CR37) 2005; 43 MG Rosenblum (812_CR20) 2002; 65 K Iwasaki (812_CR3) 2006; 77 S Saito (812_CR15) 2005; 23 A Porta (812_CR34) 2007; 103 M Burtscher (812_CR2) 2007; 618 D Cysarz (812_CR22) 2005; 95 DE Lake (812_CR31) 2002; 283 R Perini (812_CR6) 1996; 73 M Kanai (812_CR1) 2001; 12 A Stefanovska (812_CR24) 2001; 22 S Kujanik (812_CR4) 2000; 49 K Sevre (812_CR16) 2001; 173 MG Rosenblum (812_CR32) 1998; 17 F Roche (812_CR9) 2002; 22 M Javorka (812_CR39) 2002; 35 RL Hughson (812_CR17) 1994; 77 D Cysarz (812_CR23) 2004; 287 BU Kohler (812_CR28) 2002; 21 C Schafer (812_CR40) 1999; 60 DR Woods (812_CR8) 2008; 111 Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology (812_CR10) 1996; 17 J Cornolo (812_CR13) 2004; 97 20591347 - Wilderness Environ Med. 2010 Mar;21(1):4-10 11556673 - Physiol Meas. 2001 Aug;22(3):535-50 22691492 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10181-6 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 15726879 - Int J Clin Pharmacol Ther. 2005 Feb;43(2):101-8 9521318 - Nature. 1998 Mar 19;392(6673):239-40 12487001 - Clin Physiol Funct Imaging. 2002 Sep;22(5):301-6 12005875 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041909 17890428 - Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H3180-6 3817849 - IEEE Trans Biomed Eng. 1986 Dec;33(12):1157-65 8737210 - Eur Heart J. 1996 Mar;17(3):354-81 15672330 - Am J Emerg Med. 2005 Jan;23(1):8-12 15940533 - Eur J Appl Physiol. 2005 Sep;95(1):88-95 17260860 - IEEE Trans Biomed Eng. 2007 Jan;54(1):94-106 7835360 - Eur Heart J. 1994 Nov;15(11):1463-9 11252541 - Physiol Res. 2000;49(6):729-31 11969830 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):857-70 17664626 - Physiol Meas. 2007 Jun;28(6):731-44 17358862 - Phys Rev Lett. 2007 Feb 2;98(5):054102 9824761 - IEEE Eng Med Biol Mag. 1998 Nov-Dec;17(6):46-53 12185393 - Braz J Med Biol Res. 2002 Aug;35(8):991-1000 14690492 - Auton Autacoid Pharmacol. 2003 Jun;23(3):173-9 18434732 - Cardiology. 2008;111(4):239-46 9791042 - Clin Sci (Lond). 1998 Nov;95(5):565-73 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97 19922817 - Respir Physiol Neurobiol. 2010 Jan 31;170(1):91-5 18794620 - Am J Med Sci. 2008 Sep;336(3):248-53 7896588 - J Appl Physiol (1985). 1994 Dec;77(6):2537-42 21369347 - Eur Phys J B. 2008 Oct;65(3):425-433 11935987 - IEEE Eng Med Biol Mag. 2002 Jan-Feb;21(1):42-57 15072959 - Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H579-87 15563735 - Biomed Eng Online. 2004 Nov 25;3(1):44 10984096 - Physiol Res. 2000;49(2):285-7 11903133 - Acta Physiol Scand. 2001 Dec;173(4):409-17 17569773 - J Appl Physiol (1985). 2007 Oct;103(4):1143-9 15145924 - J Appl Physiol (1985). 2004 Sep;97(3):935-40 8817122 - Eur J Appl Physiol Occup Physiol. 1996;73(6):521-8 18269184 - Adv Exp Med Biol. 2007;618:1-11 11294561 - Wilderness Environ Med. 2001 Spring;12(1):8-12 17042245 - Aviat Space Environ Med. 2006 Oct;77(10):1015-9 |
References_xml | – volume: 12 start-page: 8 year: 2001 ident: 812_CR1 publication-title: Wilderness Environ Med doi: 10.1580/1080-6032(2001)012[0008:AIANCO]2.0.CO;2 – volume: 22 start-page: 301 year: 2002 ident: 812_CR9 publication-title: Clin Physiol Funct Imaging doi: 10.1046/j.1475-097X.2002.00434.x – volume: 103 start-page: 1143 year: 2007 ident: 812_CR34 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00293.2007 – volume: 17 start-page: 354 year: 1996 ident: 812_CR10 publication-title: Eur Heart J doi: 10.1093/oxfordjournals.eurheartj.a014868 – volume: 97 start-page: 935 year: 2004 ident: 812_CR13 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00239.2004 – volume: 54 start-page: 94 year: 2007 ident: 812_CR36 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.883789 – volume: 23 start-page: 8 year: 2005 ident: 812_CR15 publication-title: Am J Emerg Med doi: 10.1016/j.ajem.2004.09.023 – volume: 20 start-page: 4 year: 2010 ident: 812_CR7 publication-title: Wilderness Environ Med doi: 10.1016/j.wem.2009.12.022 – volume: 170 start-page: 91 year: 2011 ident: 812_CR25 publication-title: Respir Physiol Neurobiol doi: 10.1016/j.resp.2009.11.003 – volume: 33 start-page: 1157 year: 1986 ident: 812_CR29 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.1986.325695 – volume: 23 start-page: 173 year: 2003 ident: 812_CR35 publication-title: Auton Autacoid Pharmacol doi: 10.1046/j.1474-8673.2003.00293.x – volume: 73 start-page: 521 year: 1996 ident: 812_CR6 publication-title: Eur J Appl Physiol doi: 10.1007/BF00357674 – volume: 283 start-page: 451 year: 2000 ident: 812_CR21 publication-title: Physica A doi: 10.1016/S0378-4371(00)00204-1 – volume: 22 start-page: 535 year: 2001 ident: 812_CR24 publication-title: Physiol Meas doi: 10.1088/0967-3334/22/3/311 – volume: 3 start-page: 44 year: 2004 ident: 812_CR33 publication-title: Biomed Eng Online doi: 10.1186/1475-925X-3-44 – volume: 283 start-page: R789 year: 2002 ident: 812_CR31 publication-title: Am J Physiol Regul Integr Comp Physiol doi: 10.1152/ajpregu.00069.2002 – volume: 17 start-page: 46 year: 1998 ident: 812_CR32 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.731320 – volume: 618 start-page: 1 year: 2007 ident: 812_CR2 publication-title: Adv Exp Med Biol doi: 10.1007/978-0-387-75434-5_1 – volume: 28 start-page: 731 year: 2007 ident: 812_CR18 publication-title: Physiol Meas doi: 10.1088/0967-3334/28/6/011 – volume: 173 start-page: 409 year: 2001 ident: 812_CR16 publication-title: Acta Physiol Scand doi: 10.1046/j.1365-201X.2001.00925.x – volume: 15 start-page: 1463 year: 1994 ident: 812_CR14 publication-title: Eur Heart J doi: 10.1093/oxfordjournals.eurheartj.a060415 – volume: 65 start-page: 041909 year: 2002 ident: 812_CR20 publication-title: Phys Rev E doi: 10.1103/PhysRevE.65.041909 – volume: 43 start-page: 101 year: 2005 ident: 812_CR37 publication-title: Int J Clin Pharmacol Ther doi: 10.5414/CPP43101 – volume: 95 start-page: 88 year: 2005 ident: 812_CR22 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-005-1379-3 – volume: 77 start-page: 2537 year: 1994 ident: 812_CR17 publication-title: J Appl Physiol doi: 10.1152/jappl.1994.77.6.2537 – volume: 287 start-page: 579 year: 2004 ident: 812_CR23 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.01131.2003 – volume: 109 start-page: 10181 year: 2012 ident: 812_CR27 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1204568109 – volume: 278 start-page: 2039 year: 2000 ident: 812_CR30 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 60 start-page: 857 year: 1999 ident: 812_CR40 publication-title: Phys Rev E doi: 10.1103/PhysRevE.60.857 – volume: 98 start-page: 054102 year: 2007 ident: 812_CR26 publication-title: Phy Rev Lett doi: 10.1103/PhysRevLett.98.054102 – volume: 111 start-page: 239 year: 2008 ident: 812_CR8 publication-title: Cardiology doi: 10.1159/000127445 – volume: 336 start-page: 248 year: 2008 ident: 812_CR12 publication-title: Am J Med Sci doi: 10.1097/MAJ.0b013e3181629a32 – volume: 21 start-page: 42 year: 2002 ident: 812_CR28 publication-title: IEEE Eng Med Bio doi: 10.1109/51.993193 – volume: 49 start-page: 285 year: 2000 ident: 812_CR4 publication-title: Physiol Res doi: 10.33549/physiolres.930000.49.285 – volume: 10 start-page: 2479 year: 2000 ident: 812_CR42 publication-title: Int J of Bifurcation and Chaos doi: 10.1142/S0218127400001754 – volume: 392 start-page: 239 year: 1998 ident: 812_CR19 publication-title: Nature doi: 10.1038/32567 – volume: 293 start-page: H3180 year: 2007 ident: 812_CR38 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00648.2007 – volume: 49 start-page: 729 year: 2000 ident: 812_CR5 publication-title: Physiol Res doi: 10.33549/physiolres.930000.49.729 – volume: 77 start-page: 1015 issue: 10 year: 2006 ident: 812_CR3 publication-title: Aviat Space Environ Med – volume: 95 start-page: 565 year: 1998 ident: 812_CR11 publication-title: Clin Sci doi: 10.1042/cs0950565 – volume: 65 start-page: 425 year: 2008 ident: 812_CR41 publication-title: Eur Phys J B doi: 10.1140/epjb/e2008-00199-4 – volume: 35 start-page: 991 year: 2002 ident: 812_CR39 publication-title: Braz J Med Biol Res doi: 10.1590/S0100-879X2002000800018 – reference: 11969830 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):857-70 – reference: 8737210 - Eur Heart J. 1996 Mar;17(3):354-81 – reference: 12185393 - Braz J Med Biol Res. 2002 Aug;35(8):991-1000 – reference: 12185014 - Am J Physiol Regul Integr Comp Physiol. 2002 Sep;283(3):R789-97 – reference: 21369347 - Eur Phys J B. 2008 Oct;65(3):425-433 – reference: 19922817 - Respir Physiol Neurobiol. 2010 Jan 31;170(1):91-5 – reference: 14690492 - Auton Autacoid Pharmacol. 2003 Jun;23(3):173-9 – reference: 11903133 - Acta Physiol Scand. 2001 Dec;173(4):409-17 – reference: 18269184 - Adv Exp Med Biol. 2007;618:1-11 – reference: 7896588 - J Appl Physiol (1985). 1994 Dec;77(6):2537-42 – reference: 18794620 - Am J Med Sci. 2008 Sep;336(3):248-53 – reference: 12487001 - Clin Physiol Funct Imaging. 2002 Sep;22(5):301-6 – reference: 17260860 - IEEE Trans Biomed Eng. 2007 Jan;54(1):94-106 – reference: 8817122 - Eur J Appl Physiol Occup Physiol. 1996;73(6):521-8 – reference: 11935987 - IEEE Eng Med Biol Mag. 2002 Jan-Feb;21(1):42-57 – reference: 15726879 - Int J Clin Pharmacol Ther. 2005 Feb;43(2):101-8 – reference: 17358862 - Phys Rev Lett. 2007 Feb 2;98(5):054102 – reference: 17569773 - J Appl Physiol (1985). 2007 Oct;103(4):1143-9 – reference: 20591347 - Wilderness Environ Med. 2010 Mar;21(1):4-10 – reference: 9791042 - Clin Sci (Lond). 1998 Nov;95(5):565-73 – reference: 17890428 - Am J Physiol Heart Circ Physiol. 2007 Nov;293(5):H3180-6 – reference: 7835360 - Eur Heart J. 1994 Nov;15(11):1463-9 – reference: 17042245 - Aviat Space Environ Med. 2006 Oct;77(10):1015-9 – reference: 15145924 - J Appl Physiol (1985). 2004 Sep;97(3):935-40 – reference: 18434732 - Cardiology. 2008;111(4):239-46 – reference: 9521318 - Nature. 1998 Mar 19;392(6673):239-40 – reference: 15672330 - Am J Emerg Med. 2005 Jan;23(1):8-12 – reference: 11294561 - Wilderness Environ Med. 2001 Spring;12(1):8-12 – reference: 17664626 - Physiol Meas. 2007 Jun;28(6):731-44 – reference: 15563735 - Biomed Eng Online. 2004 Nov 25;3(1):44 – reference: 3817849 - IEEE Trans Biomed Eng. 1986 Dec;33(12):1157-65 – reference: 11252541 - Physiol Res. 2000;49(6):729-31 – reference: 9824761 - IEEE Eng Med Biol Mag. 1998 Nov-Dec;17(6):46-53 – reference: 10984096 - Physiol Res. 2000;49(2):285-7 – reference: 15940533 - Eur J Appl Physiol. 2005 Sep;95(1):88-95 – reference: 11556673 - Physiol Meas. 2001 Aug;22(3):535-50 – reference: 12005875 - Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):041909 – reference: 22691492 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10181-6 – reference: 10843903 - Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49 – reference: 15072959 - Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H579-87 |
SSID | ssj0020069 |
Score | 2.239816 |
Snippet | Background
Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and... Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic... Background Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and... Doc number: 73 Abstract Background: Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of... Background: Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 73 |
SubjectTerms | Adult Aerospace medicine Altitude Autonomic Nervous System - physiopathology Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biotechnology Engineering Entropy Heart Rate - physiology Humans Hypoxia - physiopathology Male Medical research Respiratory System - physiopathology Stress, Physiological Studies |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96guiD6PlVPSWKoIL1mu_2SQ5xPYXzQT3Yt5CkqXsgbb12xf3vzbTZve2i95wJTTOfyUx-g9ALS4V3VNmU-cykvFQuNUKy1CqpfEm9rEq40D_5Io9P-ee5mMcLty6WVa5t4mCoy8bBHfkhaGaIHQqWvWt_pdA1CrKrsYXGVXSNBE8Dcp7PPm4OXADDG-F8SC4PCVciLaiYp4Slik080a493nJIu8WSOxnTwRHNbqNbMYLERyPL76Arvt5HN7dwBffR9ZOYMb-L6hGeuMNNhY1b9h4vVm3z58zgpsbQzbrHABaBf4cz8wjZvXqDOwOYwRiW0rQrbOoSu6Fu9fwiMY_bRXCAuFvVbsDXHZ9z3kOnsw_f3x-nscdC6kQh-7AdgR_EO0_yEmrCmXLGO2UMAeQ5lrnC0awSBSs8LaXnwjhnZeaCmjNGqGX30V7d1P4hwiH48LmthONVxakVeSYra4K3o6UlhRUJerveb-0iADn0wfiph4NILjUwSAODNGFasQS92kxoR-yN_5M-BwZqQLSooWTmh1l2nf707as-EiwYGRkMaYJeRqKqCR92Jr5ACMsHEKwJ5cGEMqicmw6v5URHle_0hYAm6NlmGGZCGVvtm-VAE47PUgh5GQ3n8DakoAl6MIre5u8B3jFjXCVITYRyQwBg4dOR-mwxgIZzeGVchJmv1-K7tfR_b-qjy3_zMboRokcOdXOEHKC9_nzpn4QIrbdPBzX8C_eHOuk priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3daxQxEMCDVhB9EK1fa1uJIqjg6uZ797EUSxXqg1q4t5Bks72CZI_unnj_fTO7e-vt0Qo-Z8LmMklmcjPzC0JvLBXeUWVT5jOT8lK51AjJUquk8iX1sirhD_3Tb_LkjH-didkASYJamM34PcnlJ8KVSAsqZilhqWK30R1BmOyisvJovFkBb3fg9lzTaWJytg_eDcuznRW5FRrtLM7xQ_RgcBXxYa_bR-iWD7vo_gZAcBfdPR1C449R6DnEDa4rbNyy9Xi-WtR_LgyuA4Znq1sMVAj8O16Oezb36gNuDMCBMQylXqywCSV2XYLq5d8IPF7Mo6XDzSq4DqTb120-QWfHn38enaTDYwqpE4Vs43TEiSfeeZKXkPzNlDPeKWMIIOZY5gpHs0oUrPC0lJ4L45yVmYv7mTFCLXuKdkId_HOEo5fhc1sJx6uKUyvyTFbWRLNGS0sKKxL0cT3f2g2kcXjw4pfubhy51KAgDQrShGnFEvRu7LDoIRs3i74GBWpAVwTIjTk3y6bRX35814eCxdNExhMzQW8HoaqOH3ZmKDWIwwfa1URyfyIZ95abNq_XiR72dqPBRkQvtmBZgl6NzdAT8tWCr5edTLwnSyHkv2Q4hyKQgiboWb_0xl8PHMeMcZUgNVmUowBQwact4WLe0cE5lBMXsef79fLdGPr1k_riP2T30L3oM3LIliNkH-20l0t_EP2y1r7s9uQVoPgydQ priority: 102 providerName: Springer Nature |
Title | Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization |
URI | https://link.springer.com/article/10.1186/1475-925X-13-73 https://www.ncbi.nlm.nih.gov/pubmed/24920347 https://www.proquest.com/docview/1538163930 https://www.proquest.com/docview/1537176556 https://www.proquest.com/docview/1544016792 https://pubmed.ncbi.nlm.nih.gov/PMC4059097 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiH2gGDAFhiVQUiAREYSfyUPCI1qZSB1QoNKfbNsx6GTpqQ0LVr-e3xJ2jVVQbxUqnxunfOd7y6--x1Cr3TErImE9okNlE9TYXzFOPG14MKmkeVZCi_0hxf8fES_jtn4th1Qy8Bya2gH_aRGs-uTm1_VR6fwH2qFj_n7kArmJxEb-yHxBdlBe84scYjEhnR1pQChc1KXGrXELc7Plh_omKjNg3rNUm1mUW5cpdYWavAA3W9dS3zayMJDdMfmB2h_DXDwAN0dtlfpj1De4BaXuMiwMou5xZNqWtxcKVzkGNpczzGgSODfLphusLyrd7hUACaMYSnFtMIqT7GpE1pntzf2eDpxlhGXVW5q4N2mzvMxGg3OfvTP_bb5gm9YwueOHW6jQmtsGKeQLE6EUdYIpUKApCOBSUwUZCwhiY1SbilTxmgeGKf_hISRJk_Qbl7k9ghh55XYWGfM0CyjkWZxwDOtnBmMUh0mmnnoZMlvaVpkcmiQcS3rCCXmEjZIwgbJkEhBPPRmNWHagHL8nfQlbKAEqIsccml-qkVZyi_fL-UpI-704e6E9dDrligr3B8b1ZYmuOUDOlaH8rhD6XTRdIeXciKXoizBpjivNyGBh16shmEm5LfltljUNC6u5ozxf9FQCkUjSeShw0b0Vk8PuI8BocJDoiOUKwJAEe-O5FeTGk2cQvlx4ma-XYrv2tK3M_Xp_zD1GbrnnEsKaXVheIx257OFfe4cuLnuoR0xFu4zHnzuob1PZxffLt23Pu_36lcivVpx_wCH60bG |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IBi3wACDQAyJsPjePCA0AVPL1j3AJvXNOI5DJ6GkLC3QP8VvxCeXtqlgb3v2cezY52b7nO8g9DyhwlmqkpC5yIQ8VTY0QrIwUVK5lDqZpXChPzyS_RP-aSRGG-hPmwsDYZWtTqwUdVpYuCPfBcn0vkPMoneTHyFUjYLX1baERs0WB27-yx_ZyreDD35_X1C6__H4fT9sqgqEVsRyGsbUz4A460gvhShopqxxVhlDAGuNRTa2NMpEzGJHU-m4MNYmMrKesRkjNGH-u5fQZQ43415-1Gh5wAPY3wY-iPTkLuFK-OHEKCQsVKxj-db1_4oBXA_OXHuhrQzf_k10o_FY8V7NYrfQhsu30PUVHMMtdGXYvNDfRnkNh1ziIsPGzqYOj-eT4vepwUWOoXr2FAM4Bf7pz-g1RPj8NS4NYBRjmEoxmWOTp9hWcbJny0AAPBl7g4vLeW4rPN86ffQOOrmQ1b-LNvMid_cR9s6O6yWZsDzLOE1EL5JZYrx1pWlC4kQE6E273to2gOdQd-O7rg4-PalhgzRskCZMKxagnUWHSY318X_SZ7CBGhA0cgjR-WZmZakHXz7rPcG8UpNecQfoZUOUFX5ga5qMBz99AN3qUG53KL2I225zyye6UTGlXgpEgJ4umqEnhM3lrphVNP64LoWQ59FwDrkoMQ3QvZr1Fn8PcJIR4ypAqsOUCwIAJ--25KfjCqScQ1Zz7Hu-atl3Zer_XtQH5__mE3S1fzw81IeDo4OH6Jr3XDnE7BGyjTanZzP3yHuH0-RxJZIYfb1oHfAX6hl3CA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gSBN7QDA-VhgQEBIgUdY2X-3jNDhtwCYETLq3KElTbhJKq7WHuP-euF9cTwOJ59hqLrZj-2z_gtALnTBrEqFDYiMV0lyYUDFOQi24sHlieZHDH_qnZ_z4nH6Ys3nfm1MP3e5DSbKbaQCUJtccVHnRmXjKD2IqWJglbB7GJBTkOrpBwe9BrZYfjfkWoPD2aD5XME0c0eZ1vOaPNnslNwqmrR-a3Ua3-gASH3YSv4OuWbeLdtZgBXfR9mlfML-LXIdOXOOywMosG4sXq6r8daFw6TA8Zt1gwIrAP33K3CF2r97gWgFkMIatlNUKK5dj07atXv6py-Nq4f0frlfOtPC63TTnPXQ-e__t6Djsn1gIDct444_DiyO2xsZpDi3hRBhljVAqBuA5EpnMJFHBMpLZJOeWMmWM5pHxVk5InGhyH2250tk9hH3sYVNdMEOLgiaapREvtPLOLsl1nGkWoLfDeUvT44_DMxg_ZJuHpFyCgCQISMZEChKgVyND1UFv_J30OQhQAqCFg46Z72pZ1_Lk6xd5yIi_Y7i_RwP0sicqSv9ho_oBBL99wMCaUO5PKL3FmenyoCeyt_hagufwsW1GogA9G5eBE7rYnC2XLY3Pnjlj_F80lMJoSJYE6EGneuOvB3THiFARIDFRypEAsMKnK-5i0WKGUxgyzjzn60F917Z-9aE-_A_ap2j787uZ_HRy9vERuumDSgrtdHG8j7aay6V97AO3Rj9pzfM3hEU9qQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+acute+hypoxia+on+heart+rate+variability%2C+sample+entropy+and+cardiorespiratory+phase+synchronization&rft.jtitle=Biomedical+engineering+online&rft.au=Zhang%2C+Da&rft.au=She%2C+Jin&rft.au=Zhang%2C+Zhengbo&rft.au=Yu%2C+Mengsun&rft.date=2014-06-11&rft.pub=BioMed+Central+Ltd&rft.issn=1475-925X&rft.eissn=1475-925X&rft.volume=13&rft_id=info:doi/10.1186%2F1475-925X-13-73&rft.externalDBID=ISR&rft.externalDocID=A539636376 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |