Current Mechanistic Concepts in Ischemia and Reperfusion Injury
Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is...
Saved in:
Published in | Cellular physiology and biochemistry Vol. 46; no. 4; pp. 1650 - 1667 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2018
Cell Physiol Biochem Press GmbH & Co KG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions. |
---|---|
AbstractList | Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions. Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions. |
Author | Tsai, Andy Po-Yi Liao, Wan-Ting Li, Chia-Ying Yiang, Giou-Teng Cheng, Yeung-Leung Li, Chia-Jung Cheng, Pei-Wen Wu, Meng-Yu |
Author_xml | – sequence: 1 givenname: Meng-Yu surname: Wu fullname: Wu, Meng-Yu – sequence: 2 givenname: Giou-Teng surname: Yiang fullname: Yiang, Giou-Teng – sequence: 3 givenname: Wan-Ting surname: Liao fullname: Liao, Wan-Ting – sequence: 4 givenname: Andy Po-Yi surname: Tsai fullname: Tsai, Andy Po-Yi – sequence: 5 givenname: Yeung-Leung surname: Cheng fullname: Cheng, Yeung-Leung – sequence: 6 givenname: Pei-Wen surname: Cheng fullname: Cheng, Pei-Wen – sequence: 7 givenname: Chia-Ying surname: Li fullname: Li, Chia-Ying email: b86401115@ntu.edu.tw/nigel6761@gmail.com – sequence: 8 givenname: Chia-Jung surname: Li fullname: Li, Chia-Jung email: b86401115@ntu.edu.tw/nigel6761@gmail.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29694958$$D View this record in MEDLINE/PubMed |
BookMark | eNptkTtPHDEURq0IFF4p0kfRSDRQLPg9dhWFEY-VQCBEasvrvQPezNqDPVPw7zHssgWisn19fPT53j20FWIAhH4SfEKI0KcYY6405eQb2iWckomua7VV9piIidKq3kF7OS9wOdaafkc7VEvNtVC76E8zpgRhqG7APdng8-Bd1cTgoB9y5UM1ze4Jlt5WNsyre-ghtWP2sVyExZheDtB2a7sMP9brPvp3cf7QXE2uby-nzd_riRNaDiWEA2ZnVDCumACiuHa4ZYyWdFzUikompZKkUDWHlgnMFGm5JlhpAKzYPpquvPNoF6ZPfmnTi4nWm_dCTI_GppK9AyMZtkxZQpVlvBVsJoWrocickBg7WlxHK1ef4vMIeTBLnx10nQ0Qx2woZm9d1EIU9PATuohjCuWnhhJSEynYO_V7TY2zJcw38T7aXIDjFeBSzDlBu0EINm8jNJsRFvb0E-v8YIfS8iFZ3335Yh3yv02PkDbu5u5sRZh-3hbq15fUWvIK8xSsiQ |
CitedBy_id | crossref_primary_10_3390_biom12101415 crossref_primary_10_2174_1567202618666210607150140 crossref_primary_10_3389_fphys_2023_1217828 crossref_primary_10_3390_nu15153411 crossref_primary_10_1016_j_neuint_2022_105458 crossref_primary_10_1016_j_phymed_2025_156626 crossref_primary_10_4252_wjsc_v17_i1_102280 crossref_primary_10_1007_s12640_021_00441_y crossref_primary_10_3390_biomedicines10112960 crossref_primary_10_2147_DDDT_S508851 crossref_primary_10_3389_fphar_2023_1297124 crossref_primary_10_31857_S0026898423060071 crossref_primary_10_1186_s12964_024_02013_x crossref_primary_10_3389_fphys_2020_00956 crossref_primary_10_1016_j_bcp_2024_116425 crossref_primary_10_3390_biology12020308 crossref_primary_10_3390_cells13141186 crossref_primary_10_3390_molecules28073174 crossref_primary_10_1097_SHK_0000000000001406 crossref_primary_10_5005_jp_journals_11006_0007 crossref_primary_10_1155_2022_9438281 crossref_primary_10_4103_2221_1691_340558 crossref_primary_10_1186_s12575_023_00227_w crossref_primary_10_1007_s00398_022_00491_0 crossref_primary_10_34067_KID_0000000000000466 crossref_primary_10_4103_ed_ed_12_22 crossref_primary_10_1155_2022_7680182 crossref_primary_10_3390_ijms22062798 crossref_primary_10_1080_02688697_2021_1999391 crossref_primary_10_3390_ijms22189689 crossref_primary_10_3390_ijms21072505 crossref_primary_10_1016_j_scr_2019_101421 crossref_primary_10_1016_j_phymed_2024_155472 crossref_primary_10_1016_j_ijbiomac_2024_136277 crossref_primary_10_1016_j_injury_2021_08_004 crossref_primary_10_1007_s12035_020_02182_z crossref_primary_10_1111_and_14128 crossref_primary_10_3390_ijms222111967 crossref_primary_10_3390_ijms21249382 crossref_primary_10_3390_ijms24010181 crossref_primary_10_1016_j_freeradbiomed_2024_03_020 crossref_primary_10_3892_etm_2020_8706 crossref_primary_10_1016_j_bios_2023_115664 crossref_primary_10_1016_j_avsg_2022_09_050 crossref_primary_10_1111_iep_12461 crossref_primary_10_3390_ijms252010891 crossref_primary_10_1007_s10753_023_01958_4 crossref_primary_10_3389_fphys_2020_00947 crossref_primary_10_1016_j_jep_2022_115953 crossref_primary_10_1002_hep_32546 crossref_primary_10_1080_13880209_2021_2007269 crossref_primary_10_1007_s00068_024_02707_4 crossref_primary_10_1134_S0006297920100132 crossref_primary_10_3390_ijms23010106 crossref_primary_10_3390_antiox12030773 crossref_primary_10_1016_j_bioactmat_2021_06_006 crossref_primary_10_3389_fcvm_2021_739095 crossref_primary_10_1007_s10557_021_07250_7 crossref_primary_10_3390_ijms20225747 crossref_primary_10_3389_ti_2024_13212 crossref_primary_10_3390_ijms20194749 crossref_primary_10_3389_fphar_2024_1437445 crossref_primary_10_3390_jpm12101557 crossref_primary_10_1016_j_phrs_2019_104385 crossref_primary_10_3390_cells7070064 crossref_primary_10_1038_s41467_024_55217_7 crossref_primary_10_1016_j_bbabio_2025_149539 crossref_primary_10_1177_1074248420952243 crossref_primary_10_3390_antiox11050907 crossref_primary_10_1016_j_ijbiomac_2024_137566 crossref_primary_10_3390_pharmaceutics13122056 crossref_primary_10_1016_j_bbrc_2022_12_021 crossref_primary_10_1038_s41420_025_02381_4 crossref_primary_10_3390_antiox11010057 crossref_primary_10_1016_j_cyto_2021_155744 crossref_primary_10_1097_TP_0000000000003319 crossref_primary_10_3390_ph15070875 crossref_primary_10_1590_0004_282x20190126 crossref_primary_10_3892_mmr_2023_13111 crossref_primary_10_1080_08941939_2022_2152509 crossref_primary_10_3389_fnut_2023_1139558 crossref_primary_10_3390_bioengineering9100545 crossref_primary_10_1002_jcp_28125 crossref_primary_10_3389_fmed_2021_750731 crossref_primary_10_1039_D1TB00330E crossref_primary_10_1007_s11010_020_03695_w crossref_primary_10_1021_acsomega_4c05053 crossref_primary_10_1155_2021_6671282 crossref_primary_10_3389_fcell_2021_773381 crossref_primary_10_3389_fimmu_2023_1240597 crossref_primary_10_1007_s10157_024_02525_3 crossref_primary_10_1016_j_jff_2024_106388 crossref_primary_10_1111_bcpt_13500 crossref_primary_10_1007_s11010_023_04876_z crossref_primary_10_1089_ars_2023_0428 crossref_primary_10_1042_BSR20200713 crossref_primary_10_1097_MOT_0000000000001019 crossref_primary_10_3390_ijms21165611 crossref_primary_10_3390_ijms222111939 crossref_primary_10_1055_a_1903_2387 crossref_primary_10_3389_fimmu_2022_848352 crossref_primary_10_1152_japplphysiol_00314_2023 crossref_primary_10_1016_j_intimp_2021_107527 crossref_primary_10_1016_j_it_2020_01_006 crossref_primary_10_1097_MD_0000000000035961 crossref_primary_10_1590_acb380823 crossref_primary_10_1016_j_heliyon_2023_e23426 crossref_primary_10_1080_08923973_2024_2399266 crossref_primary_10_1097_MOT_0000000000001005 crossref_primary_10_14814_phy2_15074 crossref_primary_10_1007_s12012_021_09666_x crossref_primary_10_1152_ajpheart_00682_2020 crossref_primary_10_3389_fphar_2024_1378358 crossref_primary_10_3389_fimmu_2019_02418 crossref_primary_10_1016_j_jhepr_2023_100846 crossref_primary_10_1186_s12950_019_0215_1 crossref_primary_10_3390_ijms23116090 crossref_primary_10_1016_j_tice_2021_101514 crossref_primary_10_1111_1440_1681_13398 crossref_primary_10_1111_jog_15232 crossref_primary_10_1016_j_cardfail_2022_03_348 crossref_primary_10_3390_ijms21228858 crossref_primary_10_1242_jeb_217026 crossref_primary_10_1515_hsz_2024_0068 crossref_primary_10_34133_bmr_0108 crossref_primary_10_3389_fphar_2022_981206 crossref_primary_10_3389_fphar_2020_559607 crossref_primary_10_1007_s11739_019_02102_7 crossref_primary_10_3389_frtra_2022_1035480 crossref_primary_10_1016_j_aucc_2022_03_010 crossref_primary_10_1016_j_heliyon_2023_e13630 crossref_primary_10_3389_fmed_2022_963104 crossref_primary_10_3390_biomedicines8090352 crossref_primary_10_1111_cei_13658 crossref_primary_10_1136_postgradmedj_2022_141573 crossref_primary_10_31083_j_fbl2704114 crossref_primary_10_1007_s10787_022_00946_8 crossref_primary_10_1186_s13020_020_00413_y crossref_primary_10_23736_S1824_4777_22_01553_4 crossref_primary_10_29296_24999490_2024_03_02 crossref_primary_10_1139_cjpp_2020_0276 crossref_primary_10_1016_j_jss_2022_08_033 crossref_primary_10_1631_jzus_B2100420 crossref_primary_10_1016_j_expneurol_2024_115124 crossref_primary_10_3389_fendo_2022_900325 crossref_primary_10_1093_milmed_usae043 crossref_primary_10_1007_s00347_024_02063_z crossref_primary_10_1016_j_expneurol_2024_115127 crossref_primary_10_1080_21691401_2019_1699831 crossref_primary_10_1186_s40001_023_00990_2 crossref_primary_10_1538_expanim_20_0080 crossref_primary_10_3390_ph16091314 crossref_primary_10_1016_j_ejphar_2019_01_057 crossref_primary_10_3390_life14040477 crossref_primary_10_2147_DDDT_S294779 crossref_primary_10_1002_jcb_28609 crossref_primary_10_1038_s41435_024_00283_6 crossref_primary_10_3390_transplantology4030013 crossref_primary_10_1016_j_intimp_2021_108494 crossref_primary_10_1080_02699052_2022_2034959 crossref_primary_10_1016_j_expneurol_2020_113247 crossref_primary_10_1016_j_expneurol_2021_113785 crossref_primary_10_1055_s_0040_1709487 crossref_primary_10_1177_1074248419841626 crossref_primary_10_1016_j_jep_2025_119587 crossref_primary_10_1080_07853890_2025_2458205 crossref_primary_10_3892_mmr_2019_10893 crossref_primary_10_1007_s11064_020_03179_9 crossref_primary_10_3389_fphys_2023_1179083 crossref_primary_10_1016_j_biopha_2021_112374 crossref_primary_10_1177_03000605231189651 crossref_primary_10_1007_s12035_022_03037_5 crossref_primary_10_1016_j_vph_2024_107378 crossref_primary_10_1155_2021_5370214 crossref_primary_10_4240_wjgs_v17_i2_100034 crossref_primary_10_31083_j_jin2101001 crossref_primary_10_1186_s13020_024_00944_8 crossref_primary_10_1002_jbt_23854 crossref_primary_10_3892_mmr_2021_12418 crossref_primary_10_1155_2020_1234840 crossref_primary_10_1042_CS20201091 crossref_primary_10_3390_medicina60050752 crossref_primary_10_3390_ijms241411727 crossref_primary_10_26724_2079_8334_2023_1_83_148_152 crossref_primary_10_3390_antiox12051082 crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108101 crossref_primary_10_1097_CP9_0000000000000098 crossref_primary_10_1016_j_ejphar_2020_173295 crossref_primary_10_3390_cimb46070437 crossref_primary_10_34014_2227_1848_2023_1_145_154 crossref_primary_10_3389_fimmu_2020_01249 crossref_primary_10_4103_bc_bc_31_20 crossref_primary_10_3389_fphar_2020_00042 crossref_primary_10_1177_1753944718803309 crossref_primary_10_1007_s10495_024_02057_x crossref_primary_10_1007_s11011_023_01290_8 crossref_primary_10_1016_j_cytogfr_2023_08_009 crossref_primary_10_1016_j_fct_2022_113546 crossref_primary_10_35401_2541_9897_2023_26_3_54_61 crossref_primary_10_3389_fimmu_2021_658840 crossref_primary_10_1021_acschemneuro_3c00374 crossref_primary_10_3390_medicina60040649 crossref_primary_10_3390_jcm8091421 crossref_primary_10_1016_j_niox_2024_11_008 crossref_primary_10_3390_e25030469 crossref_primary_10_3892_mmr_2021_12431 crossref_primary_10_1097_MCC_0000000000000802 crossref_primary_10_1159_000519010 crossref_primary_10_5606_tgkdc_dergisi_2021_21870 crossref_primary_10_1111_iwj_14184 crossref_primary_10_3389_fphys_2021_705256 crossref_primary_10_1016_j_jdermsci_2025_02_003 crossref_primary_10_1021_acsnano_2c02832 crossref_primary_10_1080_08941939_2022_2056273 crossref_primary_10_1111_aas_13713 crossref_primary_10_1016_j_jss_2022_07_039 crossref_primary_10_1111_ejn_15749 crossref_primary_10_3390_cells11243964 crossref_primary_10_1186_s12906_023_04316_x crossref_primary_10_3389_fphys_2020_00510 crossref_primary_10_1016_j_pan_2020_11_014 crossref_primary_10_1016_j_wneu_2022_05_012 crossref_primary_10_1155_2022_2700000 crossref_primary_10_1016_j_biopha_2022_113711 crossref_primary_10_1007_s11033_024_09606_2 crossref_primary_10_3389_fcimb_2024_1491639 crossref_primary_10_2147_DDDT_S480774 crossref_primary_10_3892_mmr_2022_12890 crossref_primary_10_7554_eLife_101114 crossref_primary_10_1155_2022_3055039 crossref_primary_10_3390_ijms23052820 crossref_primary_10_1111_cbdd_70083 crossref_primary_10_12677_HJBM_2022_122012 crossref_primary_10_1039_D3SC02338A crossref_primary_10_3390_ijms221910349 crossref_primary_10_1016_j_ejps_2023_106439 crossref_primary_10_1039_D2RA06036A crossref_primary_10_1016_j_phyplu_2021_100196 crossref_primary_10_1016_j_lfs_2021_120227 crossref_primary_10_3389_fphys_2022_908689 crossref_primary_10_1089_ars_2019_8009 crossref_primary_10_11603_1811_2471_2024_v_i2_14716 crossref_primary_10_3390_jcm11237217 crossref_primary_10_1016_j_jneumeth_2024_110278 crossref_primary_10_1080_13510002_2021_1891808 crossref_primary_10_1155_2021_4954070 crossref_primary_10_1038_s41419_020_02863_6 crossref_primary_10_1002_jssc_202000032 crossref_primary_10_54680_fr23610110212 crossref_primary_10_1016_j_jep_2024_117808 crossref_primary_10_4103_ija_ija_1267_23 crossref_primary_10_1016_j_jep_2023_117543 crossref_primary_10_1590_1806_9282_20210477 crossref_primary_10_1016_j_mtbio_2025_101529 crossref_primary_10_1016_j_ijcard_2021_07_042 crossref_primary_10_5501_wjv_v12_i1_12 crossref_primary_10_1007_s12640_023_00680_1 crossref_primary_10_1002_ddr_22210 crossref_primary_10_3390_biom12071010 crossref_primary_10_1016_j_avsg_2020_01_106 crossref_primary_10_3390_antiox12081539 crossref_primary_10_3389_fvets_2022_947482 crossref_primary_10_1016_j_ebiom_2022_104431 crossref_primary_10_1016_j_yexcr_2023_113860 crossref_primary_10_1038_s41598_023_32222_2 crossref_primary_10_3390_ijms231911730 crossref_primary_10_1080_01443615_2022_2035332 crossref_primary_10_1007_s10126_024_10371_3 crossref_primary_10_1007_s11626_023_00801_2 crossref_primary_10_3390_foods13131999 crossref_primary_10_3892_etm_2022_11484 crossref_primary_10_3390_jcm8040520 crossref_primary_10_1111_acel_13930 crossref_primary_10_3390_ijms25169082 crossref_primary_10_1002_adhm_202200030 crossref_primary_10_1038_s44222_025_00293_7 crossref_primary_10_1155_2022_2152746 crossref_primary_10_3390_cells7120270 crossref_primary_10_1038_s41392_023_01688_x crossref_primary_10_3389_fphar_2023_1128147 crossref_primary_10_3389_fphys_2020_595516 crossref_primary_10_3389_fmed_2022_999481 crossref_primary_10_1016_j_phrs_2020_105297 crossref_primary_10_1038_s41598_023_33635_9 crossref_primary_10_2174_1570161120666220720101352 crossref_primary_10_1016_j_fitote_2024_106098 crossref_primary_10_4240_wjgs_v16_i12_3843 crossref_primary_10_1016_j_expneurol_2020_113359 crossref_primary_10_1590_acb380123 crossref_primary_10_1111_cbdd_14326 crossref_primary_10_1155_2022_7767598 crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107142 crossref_primary_10_3389_fcell_2022_948256 crossref_primary_10_1096_fj_202100066R crossref_primary_10_1186_s12882_021_02473_0 crossref_primary_10_1007_s11095_021_03046_4 crossref_primary_10_3389_fphar_2023_1091616 crossref_primary_10_3390_ijms22010028 crossref_primary_10_31083_j_rcm2301023 crossref_primary_10_1016_j_jep_2023_116898 crossref_primary_10_3390_antiox12091760 crossref_primary_10_3390_cells11071165 crossref_primary_10_1016_j_eng_2023_11_016 crossref_primary_10_1155_2022_8624318 crossref_primary_10_1038_s41420_023_01308_1 crossref_primary_10_3389_fphar_2023_1134408 crossref_primary_10_3389_fphar_2022_927611 crossref_primary_10_1016_j_bioorg_2023_106961 crossref_primary_10_1093_eurjpc_zwad261 crossref_primary_10_1002_iid3_1220 crossref_primary_10_3389_frtra_2023_1060992 crossref_primary_10_3892_etm_2021_10557 crossref_primary_10_1152_physrev_00026_2023 crossref_primary_10_7759_cureus_66490 crossref_primary_10_11603_mie_1996_1960_2019_4_11017 crossref_primary_10_3390_molecules27031031 crossref_primary_10_1016_j_tcam_2020_100432 crossref_primary_10_1016_j_gendis_2022_02_012 crossref_primary_10_1016_j_lfs_2021_120002 crossref_primary_10_1002_jso_26980 crossref_primary_10_1016_j_lfs_2021_120005 crossref_primary_10_3892_mmr_2024_13321 crossref_primary_10_1002_bab_2554 crossref_primary_10_38109_2225_1685_2023_3_68_74 crossref_primary_10_2174_1381612826666200509232610 crossref_primary_10_1016_j_mito_2024_101883 crossref_primary_10_1371_journal_pone_0209624 crossref_primary_10_3892_mmr_2024_13329 crossref_primary_10_3390_ijms23179648 crossref_primary_10_1007_s00360_025_01604_5 crossref_primary_10_1111_1440_1681_13736 crossref_primary_10_1016_j_neuroscience_2023_12_016 crossref_primary_10_1016_j_ajps_2024_100965 crossref_primary_10_1017_S1047951119001847 crossref_primary_10_1134_S0026893323060067 crossref_primary_10_1590_acb370102 crossref_primary_10_3389_fcell_2020_00147 crossref_primary_10_1007_s11064_021_03257_6 crossref_primary_10_1002_adfm_202212326 crossref_primary_10_1159_000509710 crossref_primary_10_1016_j_mito_2022_01_006 crossref_primary_10_1016_j_freeradbiomed_2021_10_033 crossref_primary_10_1016_j_tice_2023_102056 crossref_primary_10_1016_j_taap_2025_117275 crossref_primary_10_1161_STROKEAHA_124_047384 crossref_primary_10_3390_metabo14010019 crossref_primary_10_1007_s11626_024_00986_0 crossref_primary_10_1016_S2707_3688_23_00009_2 crossref_primary_10_3390_ijms25158393 crossref_primary_10_1016_j_pharmthera_2025_108827 crossref_primary_10_1080_08037051_2021_1947777 crossref_primary_10_5937_zdravzast51_40055 crossref_primary_10_1016_j_bjps_2024_02_053 crossref_primary_10_1155_2021_9925561 crossref_primary_10_1007_s12010_024_04965_9 crossref_primary_10_1016_j_yjmcc_2022_12_002 crossref_primary_10_34172_jcvtr_2023_31724 crossref_primary_10_1038_s41401_020_0490_7 crossref_primary_10_1111_1440_1681_13714 crossref_primary_10_3390_ijms25084476 crossref_primary_10_1111_ctr_15006 crossref_primary_10_1093_jleuko_qiad063 crossref_primary_10_1007_s00018_020_03615_7 crossref_primary_10_1016_j_biomaterials_2022_121914 crossref_primary_10_1016_j_phrs_2023_106832 crossref_primary_10_3390_ijms232012529 crossref_primary_10_1016_j_cellsig_2021_110118 crossref_primary_10_1016_j_omtn_2024_102445 crossref_primary_10_1080_10717544_2021_1943058 crossref_primary_10_1093_cvr_cvz145 crossref_primary_10_1097_ACO_0000000000001226 crossref_primary_10_15407_ubj93_01_051 crossref_primary_10_3390_jcm10163664 crossref_primary_10_1007_s00232_023_00277_x crossref_primary_10_3390_ijms23063133 crossref_primary_10_3390_ijms21218015 crossref_primary_10_1016_j_cej_2025_160833 crossref_primary_10_1016_j_cbi_2019_03_010 crossref_primary_10_1155_2021_3925136 crossref_primary_10_1245_s10434_024_16705_8 crossref_primary_10_1097_TP_0000000000003138 crossref_primary_10_1186_s13019_024_02924_3 crossref_primary_10_1002_brb3_3195 crossref_primary_10_1080_21655979_2022_2061304 crossref_primary_10_3389_fimmu_2022_998952 crossref_primary_10_1155_2021_5515396 crossref_primary_10_52420_umj_23_5_63 crossref_primary_10_1016_j_pharmthera_2021_107819 crossref_primary_10_1155_2021_6687386 crossref_primary_10_1016_j_lfs_2019_117014 crossref_primary_10_1038_s41598_022_11343_0 crossref_primary_10_1007_s12033_024_01173_y crossref_primary_10_1080_08941939_2022_2073489 crossref_primary_10_1016_j_redox_2025_103490 crossref_primary_10_3390_biom14070740 crossref_primary_10_1093_jpp_rgae086 crossref_primary_10_3389_fphar_2021_804030 crossref_primary_10_3389_fphar_2023_1057144 crossref_primary_10_1007_s00268_022_06544_7 crossref_primary_10_1016_j_cplett_2025_141902 crossref_primary_10_1155_2021_6620677 crossref_primary_10_2147_DDDT_S328837 crossref_primary_10_1016_j_abb_2023_109672 crossref_primary_10_1152_japplphysiol_00259_2021 crossref_primary_10_3390_cells11050826 crossref_primary_10_1016_j_exger_2024_112448 crossref_primary_10_1155_2021_8968464 crossref_primary_10_1080_13510002_2023_2289740 crossref_primary_10_1080_27694127_2024_2320605 crossref_primary_10_1016_j_biopha_2023_114222 crossref_primary_10_1111_and_14272 crossref_primary_10_1016_j_ccc_2020_11_009 crossref_primary_10_3389_fcell_2021_656370 crossref_primary_10_1007_s11011_022_01011_7 crossref_primary_10_1016_j_yexcr_2021_112861 crossref_primary_10_1016_j_ijcard_2022_12_018 crossref_primary_10_1111_1750_3841_15505 crossref_primary_10_4097_kja_24457 crossref_primary_10_1007_s12010_024_05063_6 crossref_primary_10_2139_ssrn_4156323 crossref_primary_10_3390_ijms22168373 crossref_primary_10_1016_j_brainres_2022_148132 crossref_primary_10_1016_j_ahj_2020_07_014 crossref_primary_10_1080_01635581_2021_1973045 crossref_primary_10_1089_ars_2020_8175 crossref_primary_10_1177_09603271211041998 crossref_primary_10_1016_j_hest_2020_11_004 crossref_primary_10_1016_j_jor_2024_08_005 crossref_primary_10_1111_fcp_12782 crossref_primary_10_1038_s41598_023_41275_2 crossref_primary_10_1155_2018_6209679 crossref_primary_10_1007_s12975_020_00806_z crossref_primary_10_15441_ceem_23_106 crossref_primary_10_3389_fncel_2021_633610 crossref_primary_10_1016_j_healun_2025_02_1695 crossref_primary_10_1016_j_peptides_2019_170226 crossref_primary_10_1016_j_nefroe_2019_08_002 crossref_primary_10_3390_ddc2010001 crossref_primary_10_1111_jcmm_17275 crossref_primary_10_3390_antiox11040627 crossref_primary_10_3390_ijms24021789 crossref_primary_10_21272_eumj_2024_12_3__522_532 crossref_primary_10_1021_acsbiomaterials_9b00119 crossref_primary_10_1016_j_intimp_2022_109057 crossref_primary_10_3390_ijms22031121 crossref_primary_10_3389_fimmu_2021_692061 crossref_primary_10_1016_j_jphotobiol_2024_112991 crossref_primary_10_1111_aogs_14979 crossref_primary_10_5812_jjcmb_136185 crossref_primary_10_1039_D4TB01621A crossref_primary_10_3390_biom13020275 crossref_primary_10_3390_ijms21114106 crossref_primary_10_1210_clinem_dgaa310 crossref_primary_10_1016_j_expneurol_2023_114468 crossref_primary_10_3390_antiox9030248 crossref_primary_10_1007_s10142_023_01063_7 crossref_primary_10_1038_d41586_022_01995_3 crossref_primary_10_1111_febs_16380 crossref_primary_10_1016_j_dscb_2023_100087 crossref_primary_10_1007_s12033_024_01116_7 crossref_primary_10_1055_s_0044_1787691 crossref_primary_10_3390_ijms21124370 crossref_primary_10_1080_10520295_2021_1961863 crossref_primary_10_1016_j_exer_2022_109082 crossref_primary_10_1038_s41598_022_16512_9 crossref_primary_10_4103_2045_9912_344980 crossref_primary_10_3389_fcell_2023_1093113 crossref_primary_10_1016_j_heliyon_2023_e17702 crossref_primary_10_1016_j_yexcr_2020_112146 crossref_primary_10_1242_jeb_246549 crossref_primary_10_1097_MD_0000000000035890 crossref_primary_10_1007_s00384_023_04346_4 crossref_primary_10_2337_db19_0762 crossref_primary_10_1159_000511457 crossref_primary_10_3390_diagnostics12102378 crossref_primary_10_1016_j_biopha_2024_117383 crossref_primary_10_1155_2019_3945672 crossref_primary_10_1155_2022_2785113 crossref_primary_10_1016_j_numecd_2022_03_023 crossref_primary_10_1080_01913123_2022_2035874 crossref_primary_10_1093_abbs_gmaa162 crossref_primary_10_1177_09603271211014596 crossref_primary_10_1080_0886022X_2023_2285865 crossref_primary_10_1155_2019_7910930 crossref_primary_10_1016_j_resuscitation_2023_110003 crossref_primary_10_1007_s00238_020_01719_8 crossref_primary_10_1007_s11064_021_03412_z crossref_primary_10_1016_j_jss_2021_04_013 crossref_primary_10_1039_D0NR08478F crossref_primary_10_3389_fimmu_2021_727861 crossref_primary_10_1002_tox_23385 crossref_primary_10_1097_TP_0000000000004503 crossref_primary_10_3390_ijms25147884 crossref_primary_10_1007_s11560_023_00707_w crossref_primary_10_35440_hutfd_1341349 crossref_primary_10_1007_s43450_024_00594_9 crossref_primary_10_1016_j_phrs_2020_104990 crossref_primary_10_1155_2021_5584809 crossref_primary_10_3390_cells11172763 crossref_primary_10_3390_ijms242115729 crossref_primary_10_1021_acsanm_3c02097 crossref_primary_10_1155_2021_6621921 crossref_primary_10_18632_aging_202429 crossref_primary_10_3390_ph15030271 crossref_primary_10_1016_j_fct_2025_115298 crossref_primary_10_1080_21655979_2021_1995115 crossref_primary_10_1055_a_1239_9236 crossref_primary_10_3390_ijms21165931 crossref_primary_10_5527_wjn_v11_i1_13 crossref_primary_10_1038_s41581_022_00658_w crossref_primary_10_1161_STROKEAHA_119_025494 crossref_primary_10_3390_antiox8030063 crossref_primary_10_1007_s11033_021_07108_z crossref_primary_10_14336_AD_2019_0518 crossref_primary_10_1016_j_injury_2021_11_046 crossref_primary_10_1152_physiol_00025_2021 crossref_primary_10_1080_10717544_2023_2298514 crossref_primary_10_1186_s12014_022_09343_3 crossref_primary_10_1016_j_jep_2022_115836 crossref_primary_10_1016_j_mtbio_2023_100693 crossref_primary_10_1080_21655979_2023_2253414 crossref_primary_10_3923_ijp_2024_1440_1447 crossref_primary_10_1007_s12015_020_10096_5 crossref_primary_10_1016_j_yjmcc_2023_11_001 crossref_primary_10_3389_fphys_2021_690696 crossref_primary_10_1002_iub_2657 crossref_primary_10_1016_j_nefro_2018_10_006 crossref_primary_10_7554_eLife_101114_3 crossref_primary_10_1016_j_aanat_2021_151785 crossref_primary_10_1371_journal_pone_0273921 crossref_primary_10_36290_aim_2023_006 crossref_primary_10_1016_j_biomaterials_2023_122368 crossref_primary_10_1016_j_biochi_2023_05_010 crossref_primary_10_1177_10742484211046674 crossref_primary_10_1016_j_wneu_2024_02_014 crossref_primary_10_1038_s41419_020_03135_z crossref_primary_10_1080_02699052_2024_2346147 crossref_primary_10_1002_kjm2_12219 crossref_primary_10_1016_j_intimp_2024_112439 crossref_primary_10_4103_1673_5374_322466 crossref_primary_10_3390_molecules27113383 crossref_primary_10_1177_20503121251329163 crossref_primary_10_18632_aging_202889 crossref_primary_10_2139_ssrn_4066505 crossref_primary_10_3389_fmolb_2021_698975 crossref_primary_10_1111_ijcp_14838 crossref_primary_10_1016_j_exer_2022_109278 crossref_primary_10_3390_medicina60050804 crossref_primary_10_3390_cells10061391 crossref_primary_10_1097_TXD_0000000000001728 crossref_primary_10_2174_1570161121666230502141044 crossref_primary_10_1097_TXD_0000000000001727 crossref_primary_10_3389_fmed_2024_1477099 crossref_primary_10_1016_j_lfs_2022_121070 crossref_primary_10_1002_hep_32202 crossref_primary_10_1152_ajpcell_00394_2022 crossref_primary_10_1097_TP_0000000000004546 crossref_primary_10_1177_1849543520970819 crossref_primary_10_3389_fphar_2020_593225 crossref_primary_10_3892_etm_2023_12269 crossref_primary_10_1111_1440_1681_13299 crossref_primary_10_3389_ti_2024_13796 crossref_primary_10_3390_antiox8100454 crossref_primary_10_1016_j_heliyon_2024_e33258 crossref_primary_10_1080_01478885_2023_2261093 crossref_primary_10_1089_can_2022_0242 crossref_primary_10_1016_j_ejphar_2021_174719 crossref_primary_10_3389_fnmol_2020_00028 crossref_primary_10_1038_s12276_019_0235_1 crossref_primary_10_1155_2023_8141129 crossref_primary_10_1166_sam_2024_4598 crossref_primary_10_1007_s43032_022_01132_5 crossref_primary_10_1016_j_jtcvs_2023_08_005 crossref_primary_10_1007_s11011_021_00895_1 crossref_primary_10_3389_fncel_2022_864426 crossref_primary_10_1016_j_bbrc_2020_07_009 crossref_primary_10_3390_biology13070542 crossref_primary_10_31083_j_rcm2305167 crossref_primary_10_1111_iwj_14235 crossref_primary_10_1016_j_toxrep_2021_01_015 crossref_primary_10_29333_jcei_12410 crossref_primary_10_1007_s43440_021_00258_8 crossref_primary_10_1007_s12640_024_00712_4 crossref_primary_10_1186_s13244_022_01339_9 crossref_primary_10_1016_j_lfs_2021_119986 crossref_primary_10_1016_j_jtv_2024_11_004 crossref_primary_10_1038_s41598_024_63412_1 crossref_primary_10_3389_fphys_2021_670653 crossref_primary_10_12677_ACM_2021_116392 crossref_primary_10_1016_j_ijbiomac_2023_124296 crossref_primary_10_3389_fped_2022_945175 crossref_primary_10_1016_j_repbio_2023_100816 crossref_primary_10_3389_fphar_2025_1485340 crossref_primary_10_4103_1673_5374_357907 crossref_primary_10_3390_ijms20215446 crossref_primary_10_12671_jkfs_2023_36_2_62 crossref_primary_10_1097_SHK_0000000000002211 crossref_primary_10_1007_s10735_024_10303_4 crossref_primary_10_1016_j_jep_2020_113284 crossref_primary_10_1039_D2FO00834C crossref_primary_10_18632_aging_204461 crossref_primary_10_1089_ars_2023_0531 crossref_primary_10_3892_mmr_2021_12515 crossref_primary_10_24884_2078_5658_2024_21_4_104_114 crossref_primary_10_3390_antiox10060823 crossref_primary_10_3389_fimmu_2019_01461 crossref_primary_10_1016_j_intimp_2024_113310 crossref_primary_10_1016_j_biopha_2021_112258 crossref_primary_10_2147_DDDT_S501289 crossref_primary_10_3389_fimmu_2019_02797 crossref_primary_10_1038_s41420_022_01205_z crossref_primary_10_3390_medicina59111995 crossref_primary_10_1016_j_amjcard_2025_02_015 crossref_primary_10_1080_15384101_2022_2161959 crossref_primary_10_1016_j_surg_2023_04_033 crossref_primary_10_1177_20587392211000577 crossref_primary_10_22159_ijap_2025v17i2_52879 crossref_primary_10_3923_ijp_2023_455_465 crossref_primary_10_3390_ijms232315063 crossref_primary_10_1016_j_heliyon_2024_e39162 crossref_primary_10_1080_1061186X_2021_1882470 crossref_primary_10_1007_s12012_025_09974_6 crossref_primary_10_1002_ptr_8234 crossref_primary_10_1177_1934578X211029528 crossref_primary_10_1039_D3FO01583A crossref_primary_10_32322_jhsm_963439 crossref_primary_10_1016_j_kint_2021_04_039 crossref_primary_10_1017_S1047951123003451 crossref_primary_10_1111_odi_14537 crossref_primary_10_1007_s12035_021_02494_8 crossref_primary_10_1080_10942912_2023_2236327 crossref_primary_10_1111_ejn_15833 crossref_primary_10_1016_j_ejphar_2021_174549 crossref_primary_10_1186_s12864_019_5743_9 crossref_primary_10_1080_14779072_2021_1941874 crossref_primary_10_3390_biom11101522 crossref_primary_10_3390_ijms23116176 crossref_primary_10_2174_0929866530666230721143705 crossref_primary_10_1007_s11239_021_02540_1 crossref_primary_10_3389_fimmu_2023_1162671 crossref_primary_10_1002_cbin_12114 crossref_primary_10_1177_0963689720946663 crossref_primary_10_3389_fcvm_2023_1223496 crossref_primary_10_1021_acsbiomaterials_0c01197 crossref_primary_10_11603_bmbr_2706_6290_2020_2_11267 crossref_primary_10_3389_fphar_2024_1508060 crossref_primary_10_3390_ijms25126297 crossref_primary_10_1161_CIRCRESAHA_122_321604 crossref_primary_10_3389_fnmol_2024_1439994 crossref_primary_10_1016_j_jbc_2024_107372 crossref_primary_10_1016_j_ejphar_2022_174839 crossref_primary_10_3389_fnmol_2024_1394932 crossref_primary_10_1097_MD_0000000000039820 crossref_primary_10_3389_fncel_2023_1191629 crossref_primary_10_1007_s11011_025_01570_5 crossref_primary_10_1016_j_biopha_2020_111086 crossref_primary_10_1016_j_phymed_2021_153569 crossref_primary_10_1172_JCI126428 crossref_primary_10_3390_ijms231810715 crossref_primary_10_3233_JAD_230264 crossref_primary_10_1080_01913123_2022_2044945 crossref_primary_10_1186_s12872_023_03475_6 crossref_primary_10_1161_JAHA_122_027600 crossref_primary_10_23736_S0375_9393_23_17268_3 crossref_primary_10_3390_ijms222010914 crossref_primary_10_3390_cells13040353 crossref_primary_10_1166_jbt_2021_2761 crossref_primary_10_3390_jcdd10070303 crossref_primary_10_1016_j_freeradbiomed_2023_05_028 crossref_primary_10_2217_fca_2021_0006 crossref_primary_10_4103_wjtcm_wjtcm_21_21 crossref_primary_10_1007_s11010_022_04451_y crossref_primary_10_3390_ijms242316880 crossref_primary_10_1016_j_freeradbiomed_2021_02_047 crossref_primary_10_1096_fj_202200596RRRRRR crossref_primary_10_3390_ijms222312800 crossref_primary_10_1248_bpb_b23_00154 crossref_primary_10_1007_s00441_020_03345_z crossref_primary_10_1016_j_envres_2023_115674 crossref_primary_10_1155_2023_9380398 crossref_primary_10_3389_fimmu_2021_681504 crossref_primary_10_1021_jacs_3c01984 crossref_primary_10_1016_j_cmet_2021_08_014 crossref_primary_10_1155_2021_9937264 crossref_primary_10_3389_fimmu_2020_01346 crossref_primary_10_1126_scitranslmed_abj4906 crossref_primary_10_1111_jfbc_14320 crossref_primary_10_1016_j_heliyon_2023_e21151 crossref_primary_10_3390_cells12101345 crossref_primary_10_2174_1874467217666230803114856 crossref_primary_10_3389_fcell_2021_747842 crossref_primary_10_1538_expanim_22_0034 crossref_primary_10_1016_j_nmd_2023_09_007 crossref_primary_10_17116_profmed202124101119 crossref_primary_10_1016_j_jtcvs_2019_11_019 crossref_primary_10_3390_ijms23073677 crossref_primary_10_1016_j_ultras_2024_107263 crossref_primary_10_3892_etm_2021_10623 crossref_primary_10_1016_j_transproceed_2021_09_044 crossref_primary_10_2174_1567202620666230522155944 crossref_primary_10_1016_j_bbcan_2023_189024 crossref_primary_10_1515_biol_2022_0700 crossref_primary_10_1111_jocs_14426 crossref_primary_10_1007_s11033_024_10041_6 crossref_primary_10_2174_1574888X18666230509113912 crossref_primary_10_1016_j_healun_2020_10_004 crossref_primary_10_1016_j_injury_2023_02_047 crossref_primary_10_47717_turkjsurg_2022_5620 crossref_primary_10_3389_fcell_2022_1065702 crossref_primary_10_3390_pharmaceutics15010155 crossref_primary_10_1016_j_biopha_2024_116849 crossref_primary_10_3389_fphys_2020_596507 crossref_primary_10_1186_s43094_020_00127_w crossref_primary_10_3390_ijms20205034 crossref_primary_10_3390_ijms25052948 crossref_primary_10_3389_fphar_2024_1525456 crossref_primary_10_3389_fcell_2021_643996 crossref_primary_10_1111_nyas_14507 crossref_primary_10_1042_BCJ20220154 crossref_primary_10_1007_s12013_023_01137_0 crossref_primary_10_1021_acschemneuro_1c00506 crossref_primary_10_3390_antiox11061046 crossref_primary_10_3390_nu13103312 crossref_primary_10_1080_21655979_2022_2026861 crossref_primary_10_1096_fj_202000960R crossref_primary_10_1007_s11011_024_01470_0 crossref_primary_10_1016_j_jss_2022_01_010 crossref_primary_10_1038_s41598_024_83783_9 crossref_primary_10_1016_j_biopha_2023_115201 crossref_primary_10_1097_TP_0000000000005042 crossref_primary_10_2478_sjecr_2022_0025 crossref_primary_10_1038_s41598_021_92159_2 crossref_primary_10_1360_TB_2022_0148 crossref_primary_10_1016_j_jep_2020_113212 crossref_primary_10_1016_j_healun_2024_10_020 crossref_primary_10_1021_acs_jmedchem_3c01048 crossref_primary_10_1096_fj_202201962R crossref_primary_10_3389_fcvm_2021_749113 crossref_primary_10_3390_biomedicines11082163 crossref_primary_10_3389_fphar_2021_701564 crossref_primary_10_17116_Cardiobulletin20241901123 crossref_primary_10_1097_TA_0000000000002489 crossref_primary_10_1007_s11910_022_01236_0 crossref_primary_10_1097_TXD_0000000000001271 crossref_primary_10_1016_j_jconrel_2025_01_018 crossref_primary_10_1177_0963689721997151 crossref_primary_10_3390_biom9120825 crossref_primary_10_1016_j_mehy_2020_109558 crossref_primary_10_3389_fnagi_2023_1227513 crossref_primary_10_3389_fphar_2023_1112743 crossref_primary_10_1039_D4RA00046C crossref_primary_10_2147_NDT_S308360 crossref_primary_10_1007_s40620_019_00582_6 crossref_primary_10_1177_0960327120954243 crossref_primary_10_32604_biocell_2022_021661 crossref_primary_10_1080_13880209_2020_1762667 crossref_primary_10_1007_s12011_019_01824_1 crossref_primary_10_1097_SHK_0000000000002018 crossref_primary_10_1021_acsbiomaterials_3c00414 crossref_primary_10_3389_fnins_2022_901360 crossref_primary_10_3390_antiox10121910 crossref_primary_10_1002_advs_202402557 crossref_primary_10_1089_ars_2021_0277 crossref_primary_10_17826_cumj_993250 crossref_primary_10_3390_ijms23105796 crossref_primary_10_1016_j_ejmech_2022_114848 crossref_primary_10_1186_s13287_019_1225_x crossref_primary_10_1186_s10020_022_00494_5 crossref_primary_10_22270_jddt_v11i3_S_4852 crossref_primary_10_1016_j_ajt_2024_04_001 crossref_primary_10_1016_j_ejvs_2024_01_081 crossref_primary_10_1016_j_mito_2023_03_002 crossref_primary_10_1213_ANE_0000000000005175 crossref_primary_10_1007_s12035_024_04494_w crossref_primary_10_3389_fcell_2022_849905 crossref_primary_10_1016_j_molimm_2024_12_003 crossref_primary_10_1155_2022_1571705 crossref_primary_10_1038_s41598_025_90457_7 crossref_primary_10_3389_fphar_2022_974216 crossref_primary_10_3390_life12050657 crossref_primary_10_1111_cbdd_14475 crossref_primary_10_1016_j_avsg_2020_03_003 crossref_primary_10_1016_j_neulet_2022_136978 crossref_primary_10_1007_s12192_022_01290_0 crossref_primary_10_1016_j_heliyon_2023_e22644 crossref_primary_10_3389_fphar_2021_689007 crossref_primary_10_7759_cureus_45475 crossref_primary_10_1007_s12035_024_04005_x crossref_primary_10_1093_chromsci_bmac103 crossref_primary_10_1111_and_13922 crossref_primary_10_1155_2019_4842592 crossref_primary_10_1016_j_jep_2020_113014 crossref_primary_10_1002_ptr_7620 crossref_primary_10_3390_diagnostics10050271 crossref_primary_10_3390_ijms20071762 crossref_primary_10_31083_j_fbl2711300 crossref_primary_10_1016_j_actbio_2024_06_008 crossref_primary_10_1016_j_intimp_2024_111835 crossref_primary_10_1016_j_jep_2024_118621 crossref_primary_10_1007_s00441_021_03468_x crossref_primary_10_1016_j_cpcardiol_2023_101910 crossref_primary_10_34014_2227_1848_2024_2_155_165 crossref_primary_10_1186_s40659_020_00304_4 crossref_primary_10_36740_WLek202211213 crossref_primary_10_1155_2021_5391706 crossref_primary_10_1016_j_yexcr_2021_112942 crossref_primary_10_3892_etm_2022_11302 crossref_primary_10_1016_j_ijbiomac_2020_07_212 crossref_primary_10_3389_fphar_2022_827770 crossref_primary_10_1096_fj_202200109RR crossref_primary_10_33549_physiolres_935307 crossref_primary_10_1002_mba2_16 crossref_primary_10_1016_j_aca_2024_343425 crossref_primary_10_1016_j_lfs_2022_120697 crossref_primary_10_1155_2022_7013299 crossref_primary_10_1016_j_biopha_2020_110108 crossref_primary_10_1016_j_freeradbiomed_2023_07_015 crossref_primary_10_2174_157016112003220825112123 crossref_primary_10_1152_ajprenal_00192_2024 crossref_primary_10_1111_febs_15675 crossref_primary_10_1038_s41598_024_67532_6 crossref_primary_10_1038_s41598_020_71411_1 crossref_primary_10_3389_fcvm_2021_648947 crossref_primary_10_1155_2022_6121407 crossref_primary_10_1007_s11626_022_00725_3 crossref_primary_10_3389_fneur_2022_844697 crossref_primary_10_1111_cpr_12753 crossref_primary_10_3389_fphar_2022_946668 crossref_primary_10_1002_jcp_30649 crossref_primary_10_1186_s13613_023_01236_4 crossref_primary_10_18632_aging_203907 crossref_primary_10_1111_jcmm_17355 crossref_primary_10_1111_wrr_13145 crossref_primary_10_1016_j_tice_2025_102746 crossref_primary_10_1016_j_ejphar_2024_176919 crossref_primary_10_1007_s12031_022_02014_w crossref_primary_10_1111_febs_16993 crossref_primary_10_12998_wjcc_v12_i1_142 crossref_primary_10_2174_0125899775280160240122065607 crossref_primary_10_1159_000512367 crossref_primary_10_3390_ijms23052591 crossref_primary_10_1002_jcp_30875 crossref_primary_10_1155_2022_8433464 crossref_primary_10_1186_s12882_024_03488_z crossref_primary_10_1007_s00210_020_01984_1 crossref_primary_10_1097_TXD_0000000000001620 crossref_primary_10_2174_1389450123666220913121422 crossref_primary_10_1097_FJC_0000000000000867 crossref_primary_10_1016_j_biopha_2023_114506 crossref_primary_10_1155_2021_1815098 crossref_primary_10_3390_antiox11061213 crossref_primary_10_1016_j_xcrm_2022_100654 crossref_primary_10_1089_dna_2023_0106 crossref_primary_10_12677_PI_2022_112016 crossref_primary_10_1021_acsomega_1c03265 crossref_primary_10_1515_med_2024_1063 crossref_primary_10_1136_bmjopen_2024_087303 crossref_primary_10_1002_adtp_202200066 crossref_primary_10_1016_j_neulet_2021_135954 crossref_primary_10_1111_fcp_12886 crossref_primary_10_2147_JIR_S406562 crossref_primary_10_17116_hirurgia202109171 crossref_primary_10_3892_etm_2024_12602 crossref_primary_10_1016_j_jointm_2022_01_001 crossref_primary_10_1016_j_brainresbull_2023_110807 crossref_primary_10_1139_cjpp_2023_0382 crossref_primary_10_3390_antiox11040769 crossref_primary_10_1016_j_ijbiomac_2022_09_264 crossref_primary_10_1080_10715762_2019_1584399 crossref_primary_10_1007_s12035_022_02795_6 crossref_primary_10_1128_spectrum_02526_22 crossref_primary_10_1166_jbn_2022_3244 crossref_primary_10_1016_j_clinbiochem_2024_110806 crossref_primary_10_1016_j_trim_2022_101718 crossref_primary_10_1055_a_1806_1453 crossref_primary_10_1080_01443615_2019_1701639 crossref_primary_10_1155_2021_5093216 crossref_primary_10_1177_00368504241239444 crossref_primary_10_1002_smll_202007727 crossref_primary_10_1002_adbi_202300416 crossref_primary_10_3390_biomedicines10040791 crossref_primary_10_3892_etm_2022_11111 crossref_primary_10_3892_etm_2022_11357 crossref_primary_10_1007_s00414_020_02311_2 crossref_primary_10_1093_tas_txac012 crossref_primary_10_1371_journal_pone_0212076 crossref_primary_10_1002_nbm_4993 crossref_primary_10_3390_ijms23042357 crossref_primary_10_3390_ijms22158229 crossref_primary_10_1055_s_0042_1743246 crossref_primary_10_3892_ijmm_2019_4123 crossref_primary_10_1038_s41419_021_03876_5 crossref_primary_10_1007_s10557_021_07231_w crossref_primary_10_5798_dicletip_620570 crossref_primary_10_3390_oxygen2010004 crossref_primary_10_1016_j_mcp_2019_101500 crossref_primary_10_3390_vetsci9020033 crossref_primary_10_1016_j_ijsu_2020_08_061 crossref_primary_10_25122_jml_2021_0154 crossref_primary_10_3390_pharmaceutics14081737 crossref_primary_10_3390_antiox9090858 crossref_primary_10_1186_s43556_023_00142_2 crossref_primary_10_1002_mco2_70047 crossref_primary_10_1016_j_brainresbull_2023_110822 crossref_primary_10_1016_j_heliyon_2024_e30952 crossref_primary_10_1016_j_tcm_2022_09_003 crossref_primary_10_1016_j_expneurol_2023_114583 crossref_primary_10_3390_antiox12040965 crossref_primary_10_1016_j_ijbiomac_2020_12_124 crossref_primary_10_1038_s41420_024_02221_x crossref_primary_10_1177_15353702211021601 crossref_primary_10_1155_2021_8886666 crossref_primary_10_1155_2020_8815349 crossref_primary_10_3390_cells10071680 crossref_primary_10_1111_ajt_17012 crossref_primary_10_3389_fphar_2021_601846 crossref_primary_10_1002_jcb_30293 crossref_primary_10_3389_fcvm_2022_934279 |
ContentType | Journal Article |
Copyright | 2018 The Author(s). Published by S. Karger AG, Basel 2018 The Author(s). Published by S. Karger AG, Basel. |
Copyright_xml | – notice: 2018 The Author(s). Published by S. Karger AG, Basel – notice: 2018 The Author(s). Published by S. Karger AG, Basel. |
DBID | M-- AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 DOA |
DOI | 10.1159/000489241 |
DatabaseName | Karger Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 5 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1421-9778 |
EndPage | 1667 |
ExternalDocumentID | oai_doaj_org_article_630a38a128a34f53b65c7ef49c5600c2 29694958 10_1159_000489241 489241 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 0~B 29B 326 36B 3O. 3V. 4.4 53G 5GY 5VS 6J9 7X7 88E 8FI 8FJ 8UI AAFWJ AAYIC ABUWG ACGFO ACGFS ADBBV AENEX AEYAO AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 CYUIP DIK DU5 E0A E3Z EBS EJD EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HZ~ IAO IHR IPNFZ KQ8 KUZGX M-- M1P ML- N9A O1H O9- OK1 P2P PQQKQ PROAC PSQYO RIG RKO RNS SV3 UJ6 UKHRP 30W AAYXX ABBTS ABWCG ACQXL ADAGL AFSIO AHFRZ AIOBO CAG CITATION COF ITC PHGZM PHGZT RXVBD CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c596t-89ce3ab2534835e1849c0f332898457826366861ce374ef350381f491089ee083 |
IEDL.DBID | 7X7 |
ISSN | 1015-8987 1421-9778 |
IngestDate | Wed Aug 27 01:26:48 EDT 2025 Fri Jul 11 08:52:43 EDT 2025 Fri Jul 25 23:10:46 EDT 2025 Wed Feb 19 02:34:37 EST 2025 Thu Apr 24 22:56:21 EDT 2025 Tue Jul 01 05:08:59 EDT 2025 Thu Sep 05 19:48:42 EDT 2024 Thu Aug 29 12:04:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Ischemia-reperfusion injury Mitoptosis Necroptosis Autophagy Apoptosis |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. https://creativecommons.org/licenses/by-nc-nd/4.0 2018 The Author(s). Published by S. Karger AG, Basel. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c596t-89ce3ab2534835e1849c0f332898457826366861ce374ef350381f491089ee083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000489241 |
PMID | 29694958 |
PQID | 2117165355 |
PQPubID | 2047990 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_630a38a128a34f53b65c7ef49c5600c2 karger_primary_489241 crossref_primary_10_1159_000489241 proquest_miscellaneous_2031421955 proquest_journals_2117165355 crossref_citationtrail_10_1159_000489241 pubmed_primary_29694958 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Germany – name: Basel |
PublicationTitle | Cellular physiology and biochemistry |
PublicationTitleAlternate | Cell Physiol Biochem |
PublicationYear | 2018 |
Publisher | S. Karger AG Cell Physiol Biochem Press GmbH & Co KG |
Publisher_xml | – name: S. Karger AG – name: Cell Physiol Biochem Press GmbH & Co KG |
References | McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2004; 286:H1923-1935.1471550910.1152/ajpheart.00935.2003 Carden DL, Granger DN: Pathophysiology of ischaemia–reperfusion injury. J Pathol 2000; 190: 255-266.1068506010.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6 Chen C, Chen W, Nong Z, Ma Y, Qiu S, Wu G: Cardioprotective Effects of Combined Therapy with Hyperbaric Oxygen and Diltiazem Pretreatment on Myocardial Ischemia-Reperfusion Injury in Rats. Cell Physiol Biochem 2016; 38: 2015-2029.2716009110.1159/000445561 Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 2008; 51: 211-217.1808695610.1161/HYPERTENSIONAHA.107.100214 Nagasaka Y, Buys ES, Spagnolli E, Steinbicker AU, Hayton SR, Rauwerdink KM, Brouckaert P, Zapol WM, Bloch KD: Soluble guanylate cyclase-alpha1 is required for the cardioprotective effects of inhaled nitric oxide. Am J Physiol Heart Circ Physiol 2011; 300:H1477-1483.2125791510.1152/ajpheart.00948.2010 Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, Pedrozo Z, Chiong M, Sanchez G, Lavandero S: Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol 2014; 63: 477-487.2447704410.1097/FJC.0000000000000071 Kim CR, Kim JH, Park HL, Park CK: Ischemia Reperfusion Injury Triggers TNFalpha Induced-Necroptosis in Rat Retina. Curr Eye Res 2017; 42: 771-779.2773210910.1080/02713683.2016.1227449 Wang HB, Yang J, Ding JW, Chen LH, Li S, Liu XW, Yang CJ, Fan ZX: RNAi-Mediated Down-Regulation of CD47 Protects against Ischemia/Reperfusion-Induced Myocardial Damage via Activation of eNOS in a Rat Model. Cell Physiol Biochem 2016; 40: 1163-1174.2796018710.1159/000453170 Linas SL, Whittenburg D, Parsons PE, Repine JE: Ischemia increases neutrophil retention and worsens acute renal failure: Role of oxygen metabolites and ICAM 1. Kidney Int 1995; 48: 1584-1591.854441810.1038/ki.1995.451 Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC: NADPH Oxidase Mediates Hypersomnolence and Brain Oxidative Injury in a Murine Model of Sleep Apnea. Am J Respir Crit Care Med 2005; 172: 921-929.1599446510.1164/rccm.200504-581OC Forstermann U, Sessa WC: Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33: 829-837, 837a-837d.2189048910.1093/eurheartj/ehr304 Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N: Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 20172894117110.1111/jcmm.13330 Wu MY, Li CJ, Hou MF, Chu PY: New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 182893765210.3390/ijms18102034 Yu H, Zhang H, Zhao W, Guo L, Li X, Li Y, Zhang X, Sun Y: Gypenoside Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocytes Apoptosis via Inhibition of CHOP Pathway and Activation of PI3K/Akt Pathway In vivo and In vitro. Cell Physiol Biochem 2016; 39: 123-136.2732283110.1159/000445611 Granger DN, Korthuis RJ: Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995; 57: 311-332.777887110.1146/annurev.ph.57.030195.001523 Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H: A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 2010; 5: 981-993.2071584510.1021/cb100219n Crabtree MJ, Channon KM: Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011; 25: 81-88.2155041210.1016/j.niox.2011.04.004 Lv Y, Ren Y, Sun L, Wang S, Wei M, Jia D: Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats. Cell Biochem Biophys 2013; 66: 357-363.2321217810.1007/s12013-012-9474-7 Peralta C, Prats N, Xaus C, Gelpi E, Rosello-Catafau J: Protective effect of liver ischemic preconditioning on liver and lung injury induced by hepatic ischemia-reperfusion in the rat. Hepatology 1999; 30: 1481-1489.1057352810.1002/hep.510300622 Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67: 1016-1023.683166510.1161/01.CIR.67.5.1016 Jones AE, Puskarich MA: The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. Ann Emerg Med 2014; 63: 35-47.2406775510.1016/j.annemergmed.2013.08.004 Mullane KM, Read N, Salmon JA, Moncada S: Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 1984; 228: 510-522.6420544 Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, Carano RA, Cao TC, van Bruggen N, Bernstein L, Lee WP, Wu X, DeVoss J, Zhang J, Jeet S, Peng I, McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 2016; 23: 1565-1576.2717701910.1038/cdd.2016.46 Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: 304-377.2810160510.1007/s00134-017-4683-6 McCann SK, Roulston CL: NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3: 561-598.2496141510.3390/brainsci3020561 Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005 Mousa SA, Brown R, Thoolen MJ, Smith RD: Evaluation of the effect of azapropazone on neutrophil migration in regional myocardial ischaemia/reperfusion injury in rabbits. Br J Pharmacol 1990; 100: 379-382.216584010.1111/j.1476-5381.1990.tb15813.x Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS: Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314-319.282380710.1016/0006-291X(87)91112-0 Gottlieb RA: Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 2011; 16: 233-238.2182152110.1177/1074248411409581 Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B: Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126: 163-175.1683988410.1016/j.cell.2006.06.021 Yamazaki S, Fujibayashi Y, Rajagopalan RE, Meerbaum S, Corday E: Effects of staged versus sudden reperfusion after acute coronary occlusion in the dog. J Am Coll Cardiol 1986; 7: 564-572.395023610.1016/S0735-1097(86)80466-1 Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P: Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922-930.2001078310.1038/cdd.2009.184 Brandes RP, Weissmann N, Schröder K: Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76: 208-226.2515778610.1016/j.freeradbiomed.2014.07.046 Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113: 1708-1714.1658540310.1161/CIRCULATIONAHA.105.602532 Kalogeris T, Bao Y, Korthuis RJ: Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology 2014; 2: 702-714.2494491310.1016/j.redox.2014.05.006 Li Y, Trush MA: Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 1998; 253: 295-299.987853110.1006/bbrc.1998.9729 Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228.2336162510.1007/s00134-012-2769-8 Nakagiri A, Sunamoto M, Takeuchi K, Murakami M: Evidence for the involvement of NADPH oxidase in ischemia/reperfusion-induced gastric damage via angiotensin II. J Physiol Pharmacol 2010; 61: 171-179.20436217 Zuo Y, Wang Y, Hu H, Cui W: Atorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p. Cell Physiol Biochem 2016; 39: 1021-1030.2753706610.1159/000447809 Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J: Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain in |
References_xml | – reference: Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH: NADPH Oxidases: A Perspective on Reactive Oxygen Species Production in Tumor Biology. Antioxid Redox Signal 2014; 20: 2873-2889.2415635510.1089/ars.2013.5603 – reference: Brandes RP, Weissmann N, Schröder K: Nox Family NADPH Oxidases in Mechano-Transduction: Mechanisms and Consequences. Antioxid Redox Signal 2014; 20: 887-898.2368299310.1089/ars.2013.5414 – reference: Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005 – reference: Yu H, Zhang H, Zhao W, Guo L, Li X, Li Y, Zhang X, Sun Y: Gypenoside Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocytes Apoptosis via Inhibition of CHOP Pathway and Activation of PI3K/Akt Pathway In vivo and In vitro. Cell Physiol Biochem 2016; 39: 123-136.2732283110.1159/000445611 – reference: Nakagiri A, Sunamoto M, Murakami M: NADPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production – Role of NADPH oxidase in rat stomachs. Inflammopharmacology 2007; 15: 278-281.1823602010.1007/s10787-007-1587-z – reference: Shrestha GS, Kwizera A, Lundeg G, Baelani JI, Azevedo LCP, Pattnaik R, Haniffa R, Gavrilovic S, Mai NTH, Kissoon N, Lodha R, Misango D, Neto AS, Schultz MJ, Dondorp AM, Thevanayagam J, Dunser MW, Alam A, Mukhtar AM, Hashmi M, Ranjit S, Otu A, Gomersall C, Amito J, Vaeza NN, Nakibuuka J, Mujyarugamba P, Estenssoro E, Ospina-Tascon GA, Mohanty S, Mer M: International Surviving Sepsis Campaign guidelines 2016: the perspective from low-income and middle-income countries. Lancet Infect Dis 2017; 17: 893-895.2884578910.1016/S1473-3099(17)30453-X – reference: Kuzuya T, Hoshida S, Nishida M, Kim Y, Fuji H, Kitabatake A, Kamada T, Tada M: Role of free radicals and neutrophils in canine myocardial reperfusion injury: myocardial salvage by a novel free radical scavenger, 2-octadecylascorbic acid. Cardiovasc Res 1989; 23: 323-330.255621610.1093/cvr/23.4.323 – reference: Kubes P, Suzuki M, Granger DN: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991; 88: 4651-4655.1675786 – reference: Fraser PA: The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 2011; 51: 967-977.2171208710.1016/j.freeradbiomed.2011.06.003 – reference: Lassègue B, Griendling KK: NADPH Oxidases: Functions and Pathologies in the Vasculature. Arterioscler Thromb Vasc Biol 2010; 30: 653-661.1991064010.1161/ATVBAHA.108.181610 – reference: Mullane KM, Read N, Salmon JA, Moncada S: Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 1984; 228: 510-522.6420544 – reference: Linas SL, Whittenburg D, Parsons PE, Repine JE: Ischemia increases neutrophil retention and worsens acute renal failure: Role of oxygen metabolites and ICAM 1. Kidney Int 1995; 48: 1584-1591.854441810.1038/ki.1995.451 – reference: Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS: Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314-319.282380710.1016/0006-291X(87)91112-0 – reference: Kalogeris T, Bao Y, Korthuis RJ: Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology 2014; 2: 702-714.2494491310.1016/j.redox.2014.05.006 – reference: Yamazaki S, Fujibayashi Y, Rajagopalan RE, Meerbaum S, Corday E: Effects of staged versus sudden reperfusion after acute coronary occlusion in the dog. J Am Coll Cardiol 1986; 7: 564-572.395023610.1016/S0735-1097(86)80466-1 – reference: Ornellas FM, Ornellas DS, Martini SV, Castiglione RC, Ventura GM, Rocco PR, Gutfilen B, de Souza SA, Takiya CM, Morales MM: Bone Marrow-Derived Mononuclear Cell Therapy Accelerates Renal Ischemia-Reperfusion Injury Recovery by Modulating Inflammatory, Antioxidant and Apoptotic Related Molecules. Cell Physiol Biochem 2017; 41: 1736-1752.2836568110.1159/000471866 – reference: Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ: Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 2002; 159: 931-938.1249935210.1083/jcb.200209124 – reference: Al-Herz W, Babiker F: Acute Intravenous Infusion of Immunoglobulins Protects Against Myocardial Ischemia-Reperfusion Injury Through Inhibition of Caspase-3. Cell Physiol Biochem 2017; 42: 2295-2306.2884814810.1159/000480002 – reference: Roseborough G, Gao D, Chen L, Trush MA, Zhou S, Williams GM, Wei C: The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord. Am J Pathol 2006; 168: 1443-1451.1665161210.2353/ajpath.2006.050569 – reference: De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL: Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 2014; 53: 3679-3688.2475813610.1021/bi500076r – reference: Nakagiri A, Sunamoto M, Takeuchi K, Murakami M: Evidence for the involvement of NADPH oxidase in ischemia/reperfusion-induced gastric damage via angiotensin II. J Physiol Pharmacol 2010; 61: 171-179.20436217 – reference: McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2004; 286:H1923-1935.1471550910.1152/ajpheart.00935.2003 – reference: Matsui N, Kasajima K, Hada M, Nagata T, Senga N, Yasui Y, Fukuishi N, Akagi M: Inhibiton of NF-kappaB activation during ischemia reduces hepatic ischemia/reperfusion injury in rats. J Toxicol Sci 2005; 30: 103-110.1592845810.2131/jts.30.103 – reference: Linas SL, Whittenburg D, Parsons PE, Repine JE: Mild renal ischemia activates primed neutrophils to cause acute renal failure. Kidney Int 1992; 42: 610-616.140533910.1038/ki.1992.325 – reference: Kietadisorn R, Juni RP, Moens AL: Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 2012; 302:E481-495.2216752210.1152/ajpendo.00540.2011 – reference: Zhu J, Yao K, Wang Q, Guo J, Shi H, Ma L, Liu H, Gao W, Zou Y, Ge J: Ischemic Postconditioning-Regulated miR-499 Protects the Rat Heart Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis through PDCD4. Cell Physiol Biochem 2016; 39: 2364-2380.2783262610.1159/000452506 – reference: Crabtree MJ, Channon KM: Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011; 25: 81-88.2155041210.1016/j.niox.2011.04.004 – reference: Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P: Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922-930.2001078310.1038/cdd.2009.184 – reference: Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM: Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant 2013; 13: 2797-2804.2410302910.1111/ajt.12448 – reference: Ma S, Wang Y, Chen Y, Cao F: The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 2015; 1852: 271-276.2485922610.1016/j.bbadis.2014.05.010 – reference: Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J: Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 2004; 286:H2442-2451.1514806210.1152/ajpheart.01169.2003 – reference: Wu H, Wang Y, Wu C, Yang P, Li H, Li Z: Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission. J Agric Food Chem 2016; 64: 9356-9367.2796027910.1021/acs.jafc.6b04549 – reference: Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N: Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 20172894117110.1111/jcmm.13330 – reference: Wu MY, Li CJ, Hou MF, Chu PY: New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 182893765210.3390/ijms18102034 – reference: Granger D, R Kvietys P: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 523-551.2648480210.1016/j.redox.2015.08.020 – reference: Nauta RJ, Tsimoyiannis E, Uribe M, Walsh DB, Miller D, Butterfield A: The role of calcium ions and calcium channel entry blockers in experimental ischemia-reperfusion-induced liver injury. Ann Surg 1991; 213: 137-142.199294010.1097/00000658-199102000-00008 – reference: Ling Q, Yu X, Wang T, Wang SG, Ye ZQ, Liu JH: Roles of the Exogenous H2S-Mediated SR-A Signaling Pathway in Renal Ischemia/ Reperfusion Injury in Regulating Endoplasmic Reticulum Stress-Induced Autophagy in a Rat Model. Cell Physiol Biochem 2017; 41: 2461-2474.2847278610.1159/000475915 – reference: Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, Polster BM, Boyman L, Lederer WJ, Wang C, Karbowski M: Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell 2016; 27: 349-359.2656479610.1091/mbc.E15-09-0678 – reference: Hotchkiss RS, Strasser A, McDunn JE, Swanson PE: Cell death. N Engl J Med 2009; 361: 1570-1583.1982853410.1056/NEJMra0901217 – reference: Bedard K, Krause K-H: The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005 – reference: Kurose I, Wolf R, Grisham MB, Granger DN: Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 1994; 74: 376-382.811894610.1161/01.RES.74.3.376 – reference: Jing N, Fang B, Wang ZL, Ma H: Remote Ischemia Preconditioning Attenuates Blood-Spinal Cord Barrier Breakdown in Rats Undergoing Spinal Cord Ischemia Reperfusion Injury: Associated with Activation and Upregulation of CB1 and CB2 Receptors. Cell Physiol Biochem 2017; 43: 2516-2524.2913094110.1159/000484460 – reference: Grek A, Booth S, Festic E, Maniaci M, Shirazi E, Thompson K, Starbuck A, McRee C, Naessens JM, Moreno Franco P: Sepsis and Shock Response Team: Impact of a Multidisciplinary Approach to Implementing Surviving Sepsis Campaign Guidelines and Surviving the Process. Am J Med Qual 2017; 32: 500-507.2783716310.1177/1062860616676887 – reference: Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 2008; 51: 211-217.1808695610.1161/HYPERTENSIONAHA.107.100214 – reference: Zhu S, Xu T, Luo Y, Zhang Y, Xuan H, Ma Y, Pan D, Li D, Zhu H: Luteolin Enhances Sarcoplasmic Reticulum Ca2+-ATPase Activity through p38 MAPK Signaling thus Improving Rat Cardiac Function after Ischemia/ Reperfusion. Cell Physiol Biochem 2017; 41: 999-1010.2822242110.1159/000460837 – reference: Mousa SA, Brown R, Thoolen MJ, Smith RD: Evaluation of the effect of azapropazone on neutrophil migration in regional myocardial ischaemia/reperfusion injury in rabbits. Br J Pharmacol 1990; 100: 379-382.216584010.1111/j.1476-5381.1990.tb15813.x – reference: Lv Y, Ren Y, Sun L, Wang S, Wei M, Jia D: Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats. Cell Biochem Biophys 2013; 66: 357-363.2321217810.1007/s12013-012-9474-7 – reference: Harrison R: Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 2002; 33: 774-797.1220836610.1016/S0891-5849(02)00956-5 – reference: Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS: Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010; 467: 863-867.2094474910.1038/nature09413 – reference: Sedeek M, Nasrallah R, Touyz RM, Hébert RL: NADPH Oxidases, Reactive Oxygen Species, and the Kidney: Friend and Foe. J Am Soc Nephrol 2013; 24: 1512-1518.2397012410.1681/ASN.2012111112 – reference: Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quindere AL, Montessuit C, Krause KH, Mach F, Jaquet V: Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2013; 64: 99-107.2405136910.1016/j.yjmcc.2013.09.007 – reference: Tong G, Zhang B, Zhou X, Zhao J, Sun Z, Tao Y, Pei J, Zhang W: Kappa-Opioid Agonist U50, 488H-Mediated Protection Against Heart Failure Following Myocardial Ischemia/Reperfusion: Dual Roles of Heme Oxygenase-1. Cell Physiol Biochem 2016; 39: 2158-2172.2780242910.1159/000447911 – reference: Kim CR, Kim JH, Park HL, Park CK: Ischemia Reperfusion Injury Triggers TNFalpha Induced-Necroptosis in Rat Retina. Curr Eye Res 2017; 42: 771-779.2773210910.1080/02713683.2016.1227449 – reference: Liu A, Huang L, Guo E, Li R, Yang J, Li A, Yang Y, Liu S, Hu J, Jiang X, Dirsch O, Dahmen U, Sun J: Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats. Sci Rep 2016; 6: 25042.2715084310.1038/srep25042 – reference: Briegel J, Mohnle P: [International guidelines of the Surviving Sepsis Campaign : update 2012]. Anaesthesist 2013; 62: 304-309.2355871810.1007/s00101-013-2158-x – reference: Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B: Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126: 163-175.1683988410.1016/j.cell.2006.06.021 – reference: Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 2005; 132: 233-238.1580217710.1016/j.neuroscience.2004.12.038 – reference: Berry CE, Hare JM: Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589-606.1469414710.1113/jphysiol.2003.055913 – reference: Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228.2336162510.1007/s00134-012-2769-8 – reference: Chen X, Zhang X, Xue L, Hao C, Liao W, Wan Q: Treatment with Enriched Environment Reduces Neuronal Apoptosis in the Periinfarct Cortex after Cerebral Ischemia/Reperfusion Injury. Cell Physiol Biochem 2017; 41: 1445-1456.2846797710.1159/000468368 – reference: Paravicini TM, Touyz RM: NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31:S170-180.1822748110.2337/dc08-s247 – reference: Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J: RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell death and differentiation 2010; 17: 482-487.1992715810.1038/cdd.2009.178 – reference: Lang J, Li W, Meng Z, Liu Y, Patel R: The protective effect of nitrite on liver ischemia reperfusion injury during transplantation. 2009. – reference: Shinbo T, Kokubo K, Sato Y, Hagiri S, Hataishi R, Hirose M, Kobayashi H: Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am J Physiol Heart Circ Physiol 2013; 305:H542-550.2377169010.1152/ajpheart.00844.2012 – reference: Wood KC, Gladwin MT: The hydrogen highway to reperfusion therapy. Nat Med 2007; 13: 673-674.1755433210.1038/nm0607-673 – reference: Miller AA, Dusting GJ, Roulston CL, Sobey CG: NADPH-oxidase activity is elevated in penumbral and ischemic cerebral arteries following stroke. Brain Res 2006; 1111: 111-116.1687980610.1016/j.brainres.2006.06.082 – reference: Liu F, Ni W, Zhang J, Wang G, Li F, Ren W: Administration of Curcumin Protects Kidney Tubules Against Renal Ischemia-Reperfusion Injury (RIRI) by Modulating Nitric Oxide (NO) Signaling Pathway. Cell Physiol Biochem 2017; 44: 401-411.2913212910.1159/000484920 – reference: Yokota H, Narayanan SP, Zhang W, Liu H, Rojas M, Xu Z, Lemtalsi T, Nagaoka T, Yoshida A, Brooks SE, Caldwell RW, Caldwell RB: Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Invest Ophthalmol Vis Sci 2011; 52: 8123-8131.2191793910.1167/iovs.11-8318 – reference: Carden DL, Granger DN: Pathophysiology of ischaemia–reperfusion injury. J Pathol 2000; 190: 255-266.1068506010.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6 – reference: Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, Carano RA, Cao TC, van Bruggen N, Bernstein L, Lee WP, Wu X, DeVoss J, Zhang J, Jeet S, Peng I, McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 2016; 23: 1565-1576.2717701910.1038/cdd.2016.46 – reference: Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH: Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 2005; 18: 335-350.1631905510.1080/08941930500328862 – reference: Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC: NADPH Oxidase Mediates Hypersomnolence and Brain Oxidative Injury in a Murine Model of Sleep Apnea. Am J Respir Crit Care Med 2005; 172: 921-929.1599446510.1164/rccm.200504-581OC – reference: Hataishi R, Rodrigues AC, Neilan TG, Morgan JG, Buys E, Shiva S, Tambouret R, Jassal DS, Raher MJ, Furutani E, Ichinose F, Gladwin MT, Rosenzweig A, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M: Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006; 291:H379-384.1644367310.1152/ajpheart.01172.2005 – reference: Sugioka R, Shimizu S, Tsujimoto Y: Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 2004; 279: 52726-52734.1545919510.1074/jbc.M408910200 – reference: Liu H, Jing X, Dong A, Bai B, Wang H: Overexpression of TIMP3 Protects Against Cardiac Ischemia/ Reperfusion Injury by Inhibiting Myocardial Apoptosis Through ROS/Mapks Pathway. Cell Physiol Biochem 2017; 44: 1011-1023.2917920510.1159/000485401 – reference: Forstermann U, Sessa WC: Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33: 829-837, 837a-837d.2189048910.1093/eurheartj/ehr304 – reference: Gottlieb RA: Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 2011; 16: 233-238.2182152110.1177/1074248411409581 – reference: Shu L, Zhang W, Huang C, Huang G, Su G: Troxerutin Protects Against Myocardial Ischemia/Reperfusion Injury Via Pi3k/Akt Pathway in Rats. Cell Physiol Biochem 2017; 44: 1939-1948.2924116110.1159/000485884 – reference: Wu B, Lin R, Dai R, Chen C, Wu H, Hong M: Valsartan attenuates oxidative stress and NF-κB activation and reduces myocardial apoptosis after ischemia and reperfusion. Eur J Pharmacol 2013; 705: 140-147.2349969110.1016/j.ejphar.2013.02.036 – reference: Bice JS, Jones BR, Chamberlain GR, Baxter GF: Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Res Cardiol 2016; 1112691206410.1007/s00395-016-0540-y – reference: Nagasaka Y, Buys ES, Spagnolli E, Steinbicker AU, Hayton SR, Rauwerdink KM, Brouckaert P, Zapol WM, Bloch KD: Soluble guanylate cyclase-alpha1 is required for the cardioprotective effects of inhaled nitric oxide. Am J Physiol Heart Circ Physiol 2011; 300:H1477-1483.2125791510.1152/ajpheart.00948.2010 – reference: Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH: Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Invest Surg 2009; 22: 46-55.1919115710.1080/08941930802709470 – reference: Calo L, Dong Y, Kumar R, Przyklenk K, Sanderson TH: Mitochondrial dynamics: an emerging paradigm in ischemia-reperfusion injury. Curr Pharm Des 2013; 19: 6848-6857.2359015710.2174/138161281939131127110701 – reference: Paysant JR, Rupin A, Verbeuren TJ: Effect of NADPH Oxidase Inhibition on E-Selectin Expression Induced by Concomitant Anoxia/Reoxygenation and TNF-α. Endothelium 2002; 9: 263-271.1257285710.1080/10623320214737 – reference: Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans J-P, Vrints CJ, Kass DA: High-Dose Folic Acid Pretreatment Blunts Cardiac Dysfunction During Ischemia Coupled to Maintenance of High-Energy Phosphates and Reduces Postreperfusion Injury. Circulation 2008; 117: 1810-1819.1836223310.1161/CIRCULATIONAHA.107.725481 – reference: Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113: 1708-1714.1658540310.1161/CIRCULATIONAHA.105.602532 – reference: Zeng Q, Fu Q, Wang X, Zhao Y, Liu H, Li Z, Li F: Protective Effects of Sonic Hedgehog Against Ischemia/ Reperfusion Injury in Mouse Skeletal Muscle via AKT/mTOR/p70S6K Signaling. Cell Physiol Biochem 2017; 43: 1813-1828.2906541410.1159/000484068 – reference: Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H: A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 2010; 5: 981-993.2071584510.1021/cb100219n – reference: Neye N, Enigk F, Shiva S, Habazettl H, Plesnila N, Kuppe H, Gladwin MT, Kuebler WM: Inhalation of NO during myocardial ischemia reduces infarct size and improves cardiac function. Intensive Care Med 2012; 38: 1381-1391.2265337010.1007/s00134-012-2605-1 – reference: Perkins K-AA, Pershad S, Chen Q, McGraw S, Adams JS, Zambrano C, Krass S, Emrich J, Bell B, Iyamu M, Prince C, Kay H, Teng JC-w, Young LH: The effects of modulating eNOS activity and coupling in ischemia/ reperfusion (I/R). Naunyn Schmiedebergs Arch Pharmacol 2012; 385: 27-38.2194725410.1007/s00210-011-0693-z – reference: Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ, Lips DJ, Doevendans PA: Role of apoptosis in reperfusion injury. Cardiovasc Res 2004; 61: 414-426.1496247310.1016/j.cardiores.2003.12.023 – reference: Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW: NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12.2809592310.1186/s13024-017-0150-7 – reference: Chen CB, Liu LS, Zhou J, Wang XP, Han M, Jiao XY, He XS, Yuan XP: Up-Regulation of HMGB1 Exacerbates Renal Ischemia-Reperfusion Injury by Stimulating Inflammatory and Immune Responses through the TLR4 Signaling Pathway in Mice. Cell Physiol Biochem 2017; 41: 2447-2460.2847279710.1159/000475914 – reference: Li CJ, Liao WT, Wu MY, Chu PY: New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci 2017; 182875395910.3390/ijms18071566 – reference: Chen C, Chen W, Nong Z, Ma Y, Qiu S, Wu G: Cardioprotective Effects of Combined Therapy with Hyperbaric Oxygen and Diltiazem Pretreatment on Myocardial Ischemia-Reperfusion Injury in Rats. Cell Physiol Biochem 2016; 38: 2015-2029.2716009110.1159/000445561 – reference: Tatham AL, Crabtree MJ, Warrick N, Cai S, Alp NJ, Channon KM: GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression. J Biol Chem 2009; 284: 13660-13668.1928665910.1074/jbc.M807959200 – reference: Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, Kim KW, Lee KH: Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) 1997; 20: 127-140.2360430510.1007/s11357-997-0012-2 – reference: Abramov AY, Scorziello A, Duchen MR: Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 2007; 27: 1129-1138.1726756810.1523/JNEUROSCI.4468-06.2007 – reference: Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P, Nediani C: Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia-reperfusion. J Cell Mol Med 2009; 13: 2724-2735.1875481510.1111/j.1582-4934.2008.00485.x – reference: Peralta C, Prats N, Xaus C, Gelpi E, Rosello-Catafau J: Protective effect of liver ischemic preconditioning on liver and lung injury induced by hepatic ischemia-reperfusion in the rat. Hepatology 1999; 30: 1481-1489.1057352810.1002/hep.510300622 – reference: Oudot A, Vergely C, Ecarnot-Laubriet A, Rochette L: Angiotensin II activates NADPH oxidase in isolated rat hearts subjected to ischaemia–reperfusion. Eur J Pharmacol 2003; 462: 145-154.1259110710.1016/S0014-2999(03)01315-3 – reference: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HHHW: Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLOS Biol 2010; 8:e1000479.2087771510.1371/journal.pbio.1000479 – reference: Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ: Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 2009; 284: 1136-1144.1901123910.1074/jbc.M805403200 – reference: Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P: Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 2008; 8: 207-220.1847382010.2174/156652408784221306 – reference: Xu Z, Yu J, Wu J, Qi F, Wang H, Wang Z: The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury. Cell Physiol Biochem 2016; 38: 1631-1642.2711951310.1159/000443103 – reference: Hoehn RS, Seitz AP, Jernigan PL, Gulbins E, Edwards MJ: Ischemia/Reperfusion Injury Alters Sphingolipid Metabolism in the Gut. Cell Physiol Biochem 2016; 39: 1262-1270.2760791510.1159/000447831 – reference: Wang HB, Yang J, Ding JW, Chen LH, Li S, Liu XW, Yang CJ, Fan ZX: RNAi-Mediated Down-Regulation of CD47 Protects against Ischemia/Reperfusion-Induced Myocardial Damage via Activation of eNOS in a Rat Model. Cell Physiol Biochem 2016; 40: 1163-1174.2796018710.1159/000453170 – reference: Granger DN, Kvietys PR: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 524-551.2648480210.1016/j.redox.2015.08.020 – reference: Qin J, Zhou J, Dai X, Zhou H, Pan X, Wang X, Zhang F, Rao J, Lu L: Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice. Am J Transl Res 2016; 8: 3364-337527648127 – reference: Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S: Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 2007; 50: 808-817.1770718810.1016/j.jacc.2007.04.069 – reference: Park HS, Chun JN, Jung HY, Choi C, Bae YS: Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 2006; 72: 447-455.1706467510.1016/j.cardiores.2006.09.012 – reference: Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: 304-377.2810160510.1007/s00134-017-4683-6 – reference: Gao Y, Yang H, Chi J, Xu Q, Zhao L, Yang W, Liu W: Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy. Cell Physiol Biochem 2017; 43: 1503-1514.2903587610.1159/000481974 – reference: Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, Pedrozo Z, Chiong M, Sanchez G, Lavandero S: Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol 2014; 63: 477-487.2447704410.1097/FJC.0000000000000071 – reference: Barth BM, Stewart-Smeets S, Kuhn TB: Proinflammatory Cytokines Provoke Oxidative Damage to Actin in Neuronal Cells Mediated by Rac1 and NADPH oxidase. Mol Cell Neurosci 2009; 41: 274-285.1934476610.1016/j.mcn.2009.03.007 – reference: Simone S, Rascio F, Castellano G, Divella C, Chieti A, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, Stallone G, Gesualdo L, Pertosa G, Grandaliano G: Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury. Free Radic Biol Med 2014; 74: 263-273.2501796710.1016/j.freeradbiomed.2014.07.003 – reference: Jones AE, Puskarich MA: The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. Ann Emerg Med 2014; 63: 35-47.2406775510.1016/j.annemergmed.2013.08.004 – reference: Zuo Y, Wang Y, Hu H, Cui W: Atorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p. Cell Physiol Biochem 2016; 39: 1021-1030.2753706610.1159/000447809 – reference: Granger DN, Korthuis RJ: Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995; 57: 311-332.777887110.1146/annurev.ph.57.030195.001523 – reference: Li Y, Trush MA: Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 1998; 253: 295-299.987853110.1006/bbrc.1998.9729 – reference: Di Lisa F, Bernardi P: Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006; 70: 191-199.1649728610.1016/j.cardiores.2006.01.016 – reference: Yoshida N, Yoshikawa T, Nakamura Y, Arai M, Matsuyama K, Iinuma S, Yagi N, Naito Y, Miyasaka M, Kondo M: Role of neutrophil-mediated inflammation in aspirin-induced gastric mucosal injury. Dig Dis Sci 1995; 40: 2300-2304.758780510.1007/BF02063228 – reference: Lee M-C-i, Velayutham M, Komatsu T, Hille R, Zweier JL: Measurement and Characterization of Superoxide Generation from Xanthine Dehydrogenase: A Redox-Regulated Pathway of Radical Generation in Ischemic Tissues. Biochemistry 2014; 53: 6615-6623.2524382910.1021/bi500582r – reference: Alkaitis MS, Crabtree MJ: Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr Heart Fail Rep 2012; 9: 200-210.2271131310.1007/s11897-012-0097-5 – reference: Dewald B, Baggiolini M: Activation of NADPH oxidase in human neutrophils. Synergism between fMLP and the neutrophil products PAF and LTB4. Biochem Biophys Res Commun 1985; 128: 297-304.298507510.1016/0006-291X(85)91678-X – reference: Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH: 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Soc Cardiovasc Angiography Interv 2011; 58:e44-e122.2207083410.1016/j.jacc.2011.08.007 – reference: Cantu-Medellin N, Kelley EE: Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biol 2013; 1: 353-358.2402417110.1016/j.redox.2013.05.002 – reference: Brandes RP, Weissmann N, Schröder K: Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76: 208-226.2515778610.1016/j.freeradbiomed.2014.07.046 – reference: Silvestri L, van Saene HK, Rommes JH, Petros AJ, de la Cal MA, Bion JF: Surviving Sepsis Campaign guidelines 2016: omission of selective decontamination of the digestive tract deprives patients of a level 2B therapy. Minerva Anestesiol 20172860734410.23736/S0375-9393.17.12105-X – reference: Gustafsson AB, Gottlieb RA: Eat your heart out: Role of autophagy in myocardial ischemia/reperfusion. Autophagy 2008; 4: 416-421.18253087 – reference: Donoso P, Finkelstein JP, Montecinos L, Said M, Sánchez G, Vittone L, Bull R: Stimulation of NOX2 in isolated hearts reversibly sensitizes RyR2 channels to activation by cytoplasmic calcium. J Mol Cell Cardiol 2014; 68: 38-46.2441796110.1016/j.yjmcc.2013.12.028 – reference: Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67: 1016-1023.683166510.1161/01.CIR.67.5.1016 – reference: McCann SK, Dusting GJ, Roulston CL: Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 2008; 86: 2524-2534.1843894210.1002/jnr.21700 – reference: McCann SK, Roulston CL: NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3: 561-598.2496141510.3390/brainsci3020561 – reference: Decuypere JP, Ceulemans LJ, Agostinis P, Monbaliu D, Naesens M, Pirenne J, Jochmans I: Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. Am J Kidney Dis 2015; 66: 699-709.2616972110.1053/j.ajkd.2015.05.021 – reference: Saeed WK, Jun DW, Jang K, Chae YJ, Lee JS, Kang HT: Does necroptosis have a crucial role in hepatic ischemia-reperfusion injury? PLoS One 2017; 12:e0184752.2895735010.1371/journal.pone.0184752 |
SSID | ssj0015792 |
Score | 2.66532 |
SecondaryResourceType | review_article |
Snippet | Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction,... |
SourceID | doaj proquest pubmed crossref karger |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1650 |
SubjectTerms | Anti-Inflammatory Agents - therapeutic use Apoptosis Autophagy Humans Ischemia Ischemia-reperfusion injury Mitochondrial Degradation Mitoptosis NADPH Oxidases - metabolism Necroptosis NF-kappa B - metabolism Nitric oxide Oxidation Reactive oxygen species Reactive Oxygen Species - metabolism Reperfusion Injury - metabolism Reperfusion Injury - pathology Reperfusion Injury - therapy Review Rodents Xanthine Oxidase - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yEL2IzqnVKVE8eClrzEfTk7jh2ISJBwe7lSxNwA-6sY-D_70vTVtUFC9em0favJfmvV-S93sIXRLFZcQjHRpGbMgybUMVaRJyriOuhQCn4XKHRw9iMGb3Ez75VOrL3Qnz9MBecR1BI0WlgmVUUWY5nQquY2NZop2v1sXqCz6vAlPl-QGPE3_OSXgoAVaXnELguztFGjWgDvLFExWE_eCFXt3968Xv4Wbhdvq7aKeMF_Gt_849tGHyJtr0FSTfm2irVxVs20c3JdcSHhmXzlswMOOeT0tc4uccDwHJgrTCKs8wRN5mYdduswwP8xdQbQuN-3dPvUFY1kcINU_ECgamDVXTa04ZxFEGsFqiI0spYCjJHE29oEJIQUAqZsZSx_xCQHMkkokxEHsdoEY-y80RwmCoLKJKSgDaTGVaikxlwsYZYYRZQgJ0Vekq1SV5uKth8ZYWIIInaa3WAF3UonPPmPGTUNcpvBZwJNfFAzB9Wpo-_cv0AWp5c9XdVJ23vz3vPXZ9UzrPLDRXxk3LH3aZAg4G5Mgh-grQed0MBnTnJyo3szXIOKp_WOGdzKGfFPUbrhORANaUx_8xsBO0DXGZ9Ds9bdRYLdbmFGKf1fSsmOYfZQH43w priority: 102 providerName: Directory of Open Access Journals – databaseName: Karger Open Access Journals dbid: M-- link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3NS8MwFA-iiF5E59TplCgevASb5WPpSdxwbMLEg4PdSpYm4gfd2MfB_96Xpi1M3LV5bZq8pO_3S_p-QeiWaqEiERliOXWEp8YRHRlKhDCRMFJC0PC5w8MX2R_x57EYF-sdPhfmy___nEujVtoCEHDv89xnoArAc3aARzH_896QkGq_QLTjsK9JBVFAowsNobVbve5vLGNgBGotCOVa_RCAQtWbkWYecXqH6KCAivgx-PYIbdmshnbD4ZE_NbTXLc9qO0YPhcwSHlqfyZuLL-NuyEhc4I8MD4DEgrXGOksxgG47dyu_ToYH2Sf0ah2Nek9v3T4pjkYgRsRyCW00lulJSzAOEMoCTYtN5BgD-qS4V6iXTEolKVi1uXXMi75QxwEbqNhagF0naDubZvYMYfBRGjGtFHBsrlOjZKpT6dop5ZQ7ShvoruyrxBS64f74iu8k5w8iTqoebqCbynQWxDL-M-r4Dq8MvL51fmE6f0-K6ZJIFmmmNARPzbgTbCKFaVtogPEIzbQaqB7cVT2mfHjzz_XuaycUJbPUQXHp3KSYq4sEKDCQRgHAq4Guq2JwoN860ZmdrsDGq_zDx93bnIZBUdVQDqrzDe90gfYBZamwbtNE28v5yl4CkllOrvJB_Avmx-W3 priority: 102 providerName: Karger AG |
Title | Current Mechanistic Concepts in Ischemia and Reperfusion Injury |
URI | https://karger.com/doi/10.1159/000489241 https://www.ncbi.nlm.nih.gov/pubmed/29694958 https://www.proquest.com/docview/2117165355 https://www.proquest.com/docview/2031421955 https://doaj.org/article/630a38a128a34f53b65c7ef49c5600c2 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYJLVUqhW8rKIA5crMbrR5xTxa5atUhbVYhKe4u8flRAlV32ceDfMxM7QaDCJYd45Cgex_N94_gbQt5zq0yhCseC5JFJ7yKzheNMKVcopzUEDTw7PL3Wl7fy00zNcsJtnX-r7NbEdqH2C4c58lMgKgDtFYTHs-UPhlWjcHc1l9B4THZRugxndTnrCRdXZZV2O7liBsh1VhaCCH7aHqYG7sH_iEetbD_Eou_4F_bq36CzDT4X-2Qvo0b6Mbn5OXkUmgPyJNWR_HlAnk66sm0vyFlWXKLTgId6Wx1mOkmHE9f0a0OvgM-CtaW28RTwd1jFLabM6FXzDQb4kNxenH-ZXLJcJYE5VekNvJgLws5HSkhAUwEYW-WKKAQwKSNRrF4LrY3mYFXKEAXqv_AoASaYKgRAYC_JTrNowhGh4C5fCGsM0G1pvTPaW69j6bnkMnI-IB-6sapdlhDHShb3dUslVFX3wzog73rTZdLNeMhojAPeG6DUdXtjsbqr85dTa1FYYSzEUStkVGKulSsDvIBDsOZGA3KY3NV303V-8tf9yc04NdVLH6G5c26dP9t1_XuSDcjbvhkciLsotgmLLdig4D-s82jzKk2K_gmjSlfAOM3x_zt_TZ4B7jIpk3NCdjarbXgD2GYzH7YTeEh2x-fXN5-HbYYArlPGfgFCQPRo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReKiil3baAQSBxiRrHjzgHVNGFapd2Kw6ttDfjdWzEQ9llH6r6p_iNjOMkCATceo1HtuIZe77P9swAvKBGqFSkNnGc-oSX1icmtTQRwqbCSolOI8QOjy7k4Iq_H4vxGvxoY2HCs8p2T6w36nJqwxn5ERIVhPYC3ePx7HsSqkaF29W2hEY0izN3c42UbfF6-Bb1-zLLTt9d9gdJU1UgsaKQy0QV1jEzyQTjiD4cMpzCpp4xZB6Kh-TukkmpJEWpnDvPQr4U6jm6VVU4h4gF-70Dd9HxpoHs5eOO4FGRF_F2lQocRuVNJiNEDEd18DZyHfqb_6vLBKDv-xpefc__DXJrZ3d6H7YalEreRLN6AGuu2oZ7sW7lzTZs9NsycQ_huMnwREYuBBHXeZ9JPwZDLsjnigyRP6O0IaYqCeJ9N_ercERHhtUXVOgOXN3K_D2C9WpauT0gaB5lyoxSSO-5Ka2SpSmlz0vKKfeU9uBVO1faNinLQ-WMb7qmLqLQ3bT24HknOot5Ov4mdBImvBMIqbXrD9P5J92sVC1Zapgy6LcN416wiRQ2d_gDNoBDm_VgJ6qr66bt_PCP7_0PJ7FJz0qPza1ydbNNLPQvo-7Bs64ZFRhubUzlpiuUCQUG0K8Emd1oFN0IWSELZLhq__-dP4WNweXoXJ8PL84OYBMxn4qnSIewvpyv3GPEVcvJk9qYCXy87dXzE2KOKl0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRCtxQwCCQu0cbxI84BVey2qy6lqxWiUm_B69hVocou-1DVv8avYxwnQSDg1ms8shXP2PN9tmcG4DXVQsUiNpHl1EW8MC7SsaGRECYWRkp0Gj52-GQsj075hzNxtgE_mlgY_6yy2ROrjbqYGX9G3kOigtBeoHvsufpZxORguD__HvkKUv6mtSmnEUzk2F5fIX1bvhsdoK7fJMnw8PPgKKorDERGZHIVqcxYpqeJYByRiEW2k5nYMYYsRHGf6F0yKZWkKJVy65jPnUIdRxerMmsRvWC_t2Az9ayoA5v9w_HkU3uHIdIs3LVSgQOptM5rhPihV4VyI_Ohv3nDqmgAesJv_g344t-Qt3J9wwdwv8as5H0wsoewYcstuB2qWF5vwd1BUzTuEezX-Z7IifUhxVUWaDIIoZFLclGSEbJplNZElwVB9G8Xbu0P7Mio_Irq3YbTG5nBx9ApZ6XdAYLGUsRMK4Vkn-vCKFnoQrq0oJxyR2kX3jZzlZs6gbmvo3GZV0RGZHk7rV141YrOQ9aOvwn1_YS3Aj7RdvVhtjjP63WbSxZrpjR6cc24E2wqhUkt_oDxUNEkXdgO6mq7aTrf--P7YNIPTfm8cNjcKDevN41l_svEu_CybUYF-jscXdrZGmV8uQH0Ml7mSTCKdoQkkxnyXbX7_85fwB1cOfnH0fj4KdxDAKjCkdIedFaLtX2GIGs1fV5bM4EvN72AfgLxIC_4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Mechanistic+Concepts+in+Ischemia+and+Reperfusion+Injury&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Meng-Yu%2C+Wu&rft.au=Giou-Teng+Yiang&rft.au=Wan-Ting%2C+Liao&rft.au=Tsai%2C+Andy+Po-Yi&rft.date=2018-01-01&rft.pub=S.+Karger+AG&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=46&rft.issue=4&rft.spage=1650&rft.epage=1667&rft_id=info:doi/10.1159%2F000489241&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon |