Current Mechanistic Concepts in Ischemia and Reperfusion Injury

Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is...

Full description

Saved in:
Bibliographic Details
Published inCellular physiology and biochemistry Vol. 46; no. 4; pp. 1650 - 1667
Main Authors Wu, Meng-Yu, Yiang, Giou-Teng, Liao, Wan-Ting, Tsai, Andy Po-Yi, Cheng, Yeung-Leung, Cheng, Pei-Wen, Li, Chia-Ying, Li, Chia-Jung
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2018
Cell Physiol Biochem Press GmbH & Co KG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.
AbstractList Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.
Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction, gastrointestinal dysfunction, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Ischemia-reperfusion injury is a critical medical condition that poses an important therapeutic challenge for physicians. In this review article, we present recent advances focusing on the basic pathophysiology of ischemia-reperfusion injury, especially the involvement of reactive oxygen species and cell death pathways. The involvement of the NADPH oxidase system, nitric oxide synthase system, and xanthine oxidase system are also described. When the blood supply is re-established after prolonged ischemia, local inflammation and ROS production increase, leading to secondary injury. Cell damage induced by prolonged ischemia-reperfusion injury may lead to apoptosis, autophagy, necrosis, and necroptosis. We highlight the latest mechanistic insights into reperfusion-injury-induced cell death via these different processes. The interlinked signaling pathways of cell death could offer new targets for therapeutic approaches. Treatment approaches for ischemia-reperfusion injury are also reviewed. We believe that understanding the pathophysiology ischemia-reperfusion injury will enable the development of novel treatment interventions.
Author Tsai, Andy Po-Yi
Liao, Wan-Ting
Li, Chia-Ying
Yiang, Giou-Teng
Cheng, Yeung-Leung
Li, Chia-Jung
Cheng, Pei-Wen
Wu, Meng-Yu
Author_xml – sequence: 1
  givenname: Meng-Yu
  surname: Wu
  fullname: Wu, Meng-Yu
– sequence: 2
  givenname: Giou-Teng
  surname: Yiang
  fullname: Yiang, Giou-Teng
– sequence: 3
  givenname: Wan-Ting
  surname: Liao
  fullname: Liao, Wan-Ting
– sequence: 4
  givenname: Andy Po-Yi
  surname: Tsai
  fullname: Tsai, Andy Po-Yi
– sequence: 5
  givenname: Yeung-Leung
  surname: Cheng
  fullname: Cheng, Yeung-Leung
– sequence: 6
  givenname: Pei-Wen
  surname: Cheng
  fullname: Cheng, Pei-Wen
– sequence: 7
  givenname: Chia-Ying
  surname: Li
  fullname: Li, Chia-Ying
  email: b86401115@ntu.edu.tw/nigel6761@gmail.com
– sequence: 8
  givenname: Chia-Jung
  surname: Li
  fullname: Li, Chia-Jung
  email: b86401115@ntu.edu.tw/nigel6761@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29694958$$D View this record in MEDLINE/PubMed
BookMark eNptkTtPHDEURq0IFF4p0kfRSDRQLPg9dhWFEY-VQCBEasvrvQPezNqDPVPw7zHssgWisn19fPT53j20FWIAhH4SfEKI0KcYY6405eQb2iWckomua7VV9piIidKq3kF7OS9wOdaafkc7VEvNtVC76E8zpgRhqG7APdng8-Bd1cTgoB9y5UM1ze4Jlt5WNsyre-ghtWP2sVyExZheDtB2a7sMP9brPvp3cf7QXE2uby-nzd_riRNaDiWEA2ZnVDCumACiuHa4ZYyWdFzUikompZKkUDWHlgnMFGm5JlhpAKzYPpquvPNoF6ZPfmnTi4nWm_dCTI_GppK9AyMZtkxZQpVlvBVsJoWrocickBg7WlxHK1ef4vMIeTBLnx10nQ0Qx2woZm9d1EIU9PATuohjCuWnhhJSEynYO_V7TY2zJcw38T7aXIDjFeBSzDlBu0EINm8jNJsRFvb0E-v8YIfS8iFZ3335Yh3yv02PkDbu5u5sRZh-3hbq15fUWvIK8xSsiQ
CitedBy_id crossref_primary_10_3390_biom12101415
crossref_primary_10_2174_1567202618666210607150140
crossref_primary_10_3389_fphys_2023_1217828
crossref_primary_10_3390_nu15153411
crossref_primary_10_1016_j_neuint_2022_105458
crossref_primary_10_1016_j_phymed_2025_156626
crossref_primary_10_4252_wjsc_v17_i1_102280
crossref_primary_10_1007_s12640_021_00441_y
crossref_primary_10_3390_biomedicines10112960
crossref_primary_10_2147_DDDT_S508851
crossref_primary_10_3389_fphar_2023_1297124
crossref_primary_10_31857_S0026898423060071
crossref_primary_10_1186_s12964_024_02013_x
crossref_primary_10_3389_fphys_2020_00956
crossref_primary_10_1016_j_bcp_2024_116425
crossref_primary_10_3390_biology12020308
crossref_primary_10_3390_cells13141186
crossref_primary_10_3390_molecules28073174
crossref_primary_10_1097_SHK_0000000000001406
crossref_primary_10_5005_jp_journals_11006_0007
crossref_primary_10_1155_2022_9438281
crossref_primary_10_4103_2221_1691_340558
crossref_primary_10_1186_s12575_023_00227_w
crossref_primary_10_1007_s00398_022_00491_0
crossref_primary_10_34067_KID_0000000000000466
crossref_primary_10_4103_ed_ed_12_22
crossref_primary_10_1155_2022_7680182
crossref_primary_10_3390_ijms22062798
crossref_primary_10_1080_02688697_2021_1999391
crossref_primary_10_3390_ijms22189689
crossref_primary_10_3390_ijms21072505
crossref_primary_10_1016_j_scr_2019_101421
crossref_primary_10_1016_j_phymed_2024_155472
crossref_primary_10_1016_j_ijbiomac_2024_136277
crossref_primary_10_1016_j_injury_2021_08_004
crossref_primary_10_1007_s12035_020_02182_z
crossref_primary_10_1111_and_14128
crossref_primary_10_3390_ijms222111967
crossref_primary_10_3390_ijms21249382
crossref_primary_10_3390_ijms24010181
crossref_primary_10_1016_j_freeradbiomed_2024_03_020
crossref_primary_10_3892_etm_2020_8706
crossref_primary_10_1016_j_bios_2023_115664
crossref_primary_10_1016_j_avsg_2022_09_050
crossref_primary_10_1111_iep_12461
crossref_primary_10_3390_ijms252010891
crossref_primary_10_1007_s10753_023_01958_4
crossref_primary_10_3389_fphys_2020_00947
crossref_primary_10_1016_j_jep_2022_115953
crossref_primary_10_1002_hep_32546
crossref_primary_10_1080_13880209_2021_2007269
crossref_primary_10_1007_s00068_024_02707_4
crossref_primary_10_1134_S0006297920100132
crossref_primary_10_3390_ijms23010106
crossref_primary_10_3390_antiox12030773
crossref_primary_10_1016_j_bioactmat_2021_06_006
crossref_primary_10_3389_fcvm_2021_739095
crossref_primary_10_1007_s10557_021_07250_7
crossref_primary_10_3390_ijms20225747
crossref_primary_10_3389_ti_2024_13212
crossref_primary_10_3390_ijms20194749
crossref_primary_10_3389_fphar_2024_1437445
crossref_primary_10_3390_jpm12101557
crossref_primary_10_1016_j_phrs_2019_104385
crossref_primary_10_3390_cells7070064
crossref_primary_10_1038_s41467_024_55217_7
crossref_primary_10_1016_j_bbabio_2025_149539
crossref_primary_10_1177_1074248420952243
crossref_primary_10_3390_antiox11050907
crossref_primary_10_1016_j_ijbiomac_2024_137566
crossref_primary_10_3390_pharmaceutics13122056
crossref_primary_10_1016_j_bbrc_2022_12_021
crossref_primary_10_1038_s41420_025_02381_4
crossref_primary_10_3390_antiox11010057
crossref_primary_10_1016_j_cyto_2021_155744
crossref_primary_10_1097_TP_0000000000003319
crossref_primary_10_3390_ph15070875
crossref_primary_10_1590_0004_282x20190126
crossref_primary_10_3892_mmr_2023_13111
crossref_primary_10_1080_08941939_2022_2152509
crossref_primary_10_3389_fnut_2023_1139558
crossref_primary_10_3390_bioengineering9100545
crossref_primary_10_1002_jcp_28125
crossref_primary_10_3389_fmed_2021_750731
crossref_primary_10_1039_D1TB00330E
crossref_primary_10_1007_s11010_020_03695_w
crossref_primary_10_1021_acsomega_4c05053
crossref_primary_10_1155_2021_6671282
crossref_primary_10_3389_fcell_2021_773381
crossref_primary_10_3389_fimmu_2023_1240597
crossref_primary_10_1007_s10157_024_02525_3
crossref_primary_10_1016_j_jff_2024_106388
crossref_primary_10_1111_bcpt_13500
crossref_primary_10_1007_s11010_023_04876_z
crossref_primary_10_1089_ars_2023_0428
crossref_primary_10_1042_BSR20200713
crossref_primary_10_1097_MOT_0000000000001019
crossref_primary_10_3390_ijms21165611
crossref_primary_10_3390_ijms222111939
crossref_primary_10_1055_a_1903_2387
crossref_primary_10_3389_fimmu_2022_848352
crossref_primary_10_1152_japplphysiol_00314_2023
crossref_primary_10_1016_j_intimp_2021_107527
crossref_primary_10_1016_j_it_2020_01_006
crossref_primary_10_1097_MD_0000000000035961
crossref_primary_10_1590_acb380823
crossref_primary_10_1016_j_heliyon_2023_e23426
crossref_primary_10_1080_08923973_2024_2399266
crossref_primary_10_1097_MOT_0000000000001005
crossref_primary_10_14814_phy2_15074
crossref_primary_10_1007_s12012_021_09666_x
crossref_primary_10_1152_ajpheart_00682_2020
crossref_primary_10_3389_fphar_2024_1378358
crossref_primary_10_3389_fimmu_2019_02418
crossref_primary_10_1016_j_jhepr_2023_100846
crossref_primary_10_1186_s12950_019_0215_1
crossref_primary_10_3390_ijms23116090
crossref_primary_10_1016_j_tice_2021_101514
crossref_primary_10_1111_1440_1681_13398
crossref_primary_10_1111_jog_15232
crossref_primary_10_1016_j_cardfail_2022_03_348
crossref_primary_10_3390_ijms21228858
crossref_primary_10_1242_jeb_217026
crossref_primary_10_1515_hsz_2024_0068
crossref_primary_10_34133_bmr_0108
crossref_primary_10_3389_fphar_2022_981206
crossref_primary_10_3389_fphar_2020_559607
crossref_primary_10_1007_s11739_019_02102_7
crossref_primary_10_3389_frtra_2022_1035480
crossref_primary_10_1016_j_aucc_2022_03_010
crossref_primary_10_1016_j_heliyon_2023_e13630
crossref_primary_10_3389_fmed_2022_963104
crossref_primary_10_3390_biomedicines8090352
crossref_primary_10_1111_cei_13658
crossref_primary_10_1136_postgradmedj_2022_141573
crossref_primary_10_31083_j_fbl2704114
crossref_primary_10_1007_s10787_022_00946_8
crossref_primary_10_1186_s13020_020_00413_y
crossref_primary_10_23736_S1824_4777_22_01553_4
crossref_primary_10_29296_24999490_2024_03_02
crossref_primary_10_1139_cjpp_2020_0276
crossref_primary_10_1016_j_jss_2022_08_033
crossref_primary_10_1631_jzus_B2100420
crossref_primary_10_1016_j_expneurol_2024_115124
crossref_primary_10_3389_fendo_2022_900325
crossref_primary_10_1093_milmed_usae043
crossref_primary_10_1007_s00347_024_02063_z
crossref_primary_10_1016_j_expneurol_2024_115127
crossref_primary_10_1080_21691401_2019_1699831
crossref_primary_10_1186_s40001_023_00990_2
crossref_primary_10_1538_expanim_20_0080
crossref_primary_10_3390_ph16091314
crossref_primary_10_1016_j_ejphar_2019_01_057
crossref_primary_10_3390_life14040477
crossref_primary_10_2147_DDDT_S294779
crossref_primary_10_1002_jcb_28609
crossref_primary_10_1038_s41435_024_00283_6
crossref_primary_10_3390_transplantology4030013
crossref_primary_10_1016_j_intimp_2021_108494
crossref_primary_10_1080_02699052_2022_2034959
crossref_primary_10_1016_j_expneurol_2020_113247
crossref_primary_10_1016_j_expneurol_2021_113785
crossref_primary_10_1055_s_0040_1709487
crossref_primary_10_1177_1074248419841626
crossref_primary_10_1016_j_jep_2025_119587
crossref_primary_10_1080_07853890_2025_2458205
crossref_primary_10_3892_mmr_2019_10893
crossref_primary_10_1007_s11064_020_03179_9
crossref_primary_10_3389_fphys_2023_1179083
crossref_primary_10_1016_j_biopha_2021_112374
crossref_primary_10_1177_03000605231189651
crossref_primary_10_1007_s12035_022_03037_5
crossref_primary_10_1016_j_vph_2024_107378
crossref_primary_10_1155_2021_5370214
crossref_primary_10_4240_wjgs_v17_i2_100034
crossref_primary_10_31083_j_jin2101001
crossref_primary_10_1186_s13020_024_00944_8
crossref_primary_10_1002_jbt_23854
crossref_primary_10_3892_mmr_2021_12418
crossref_primary_10_1155_2020_1234840
crossref_primary_10_1042_CS20201091
crossref_primary_10_3390_medicina60050752
crossref_primary_10_3390_ijms241411727
crossref_primary_10_26724_2079_8334_2023_1_83_148_152
crossref_primary_10_3390_antiox12051082
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108101
crossref_primary_10_1097_CP9_0000000000000098
crossref_primary_10_1016_j_ejphar_2020_173295
crossref_primary_10_3390_cimb46070437
crossref_primary_10_34014_2227_1848_2023_1_145_154
crossref_primary_10_3389_fimmu_2020_01249
crossref_primary_10_4103_bc_bc_31_20
crossref_primary_10_3389_fphar_2020_00042
crossref_primary_10_1177_1753944718803309
crossref_primary_10_1007_s10495_024_02057_x
crossref_primary_10_1007_s11011_023_01290_8
crossref_primary_10_1016_j_cytogfr_2023_08_009
crossref_primary_10_1016_j_fct_2022_113546
crossref_primary_10_35401_2541_9897_2023_26_3_54_61
crossref_primary_10_3389_fimmu_2021_658840
crossref_primary_10_1021_acschemneuro_3c00374
crossref_primary_10_3390_medicina60040649
crossref_primary_10_3390_jcm8091421
crossref_primary_10_1016_j_niox_2024_11_008
crossref_primary_10_3390_e25030469
crossref_primary_10_3892_mmr_2021_12431
crossref_primary_10_1097_MCC_0000000000000802
crossref_primary_10_1159_000519010
crossref_primary_10_5606_tgkdc_dergisi_2021_21870
crossref_primary_10_1111_iwj_14184
crossref_primary_10_3389_fphys_2021_705256
crossref_primary_10_1016_j_jdermsci_2025_02_003
crossref_primary_10_1021_acsnano_2c02832
crossref_primary_10_1080_08941939_2022_2056273
crossref_primary_10_1111_aas_13713
crossref_primary_10_1016_j_jss_2022_07_039
crossref_primary_10_1111_ejn_15749
crossref_primary_10_3390_cells11243964
crossref_primary_10_1186_s12906_023_04316_x
crossref_primary_10_3389_fphys_2020_00510
crossref_primary_10_1016_j_pan_2020_11_014
crossref_primary_10_1016_j_wneu_2022_05_012
crossref_primary_10_1155_2022_2700000
crossref_primary_10_1016_j_biopha_2022_113711
crossref_primary_10_1007_s11033_024_09606_2
crossref_primary_10_3389_fcimb_2024_1491639
crossref_primary_10_2147_DDDT_S480774
crossref_primary_10_3892_mmr_2022_12890
crossref_primary_10_7554_eLife_101114
crossref_primary_10_1155_2022_3055039
crossref_primary_10_3390_ijms23052820
crossref_primary_10_1111_cbdd_70083
crossref_primary_10_12677_HJBM_2022_122012
crossref_primary_10_1039_D3SC02338A
crossref_primary_10_3390_ijms221910349
crossref_primary_10_1016_j_ejps_2023_106439
crossref_primary_10_1039_D2RA06036A
crossref_primary_10_1016_j_phyplu_2021_100196
crossref_primary_10_1016_j_lfs_2021_120227
crossref_primary_10_3389_fphys_2022_908689
crossref_primary_10_1089_ars_2019_8009
crossref_primary_10_11603_1811_2471_2024_v_i2_14716
crossref_primary_10_3390_jcm11237217
crossref_primary_10_1016_j_jneumeth_2024_110278
crossref_primary_10_1080_13510002_2021_1891808
crossref_primary_10_1155_2021_4954070
crossref_primary_10_1038_s41419_020_02863_6
crossref_primary_10_1002_jssc_202000032
crossref_primary_10_54680_fr23610110212
crossref_primary_10_1016_j_jep_2024_117808
crossref_primary_10_4103_ija_ija_1267_23
crossref_primary_10_1016_j_jep_2023_117543
crossref_primary_10_1590_1806_9282_20210477
crossref_primary_10_1016_j_mtbio_2025_101529
crossref_primary_10_1016_j_ijcard_2021_07_042
crossref_primary_10_5501_wjv_v12_i1_12
crossref_primary_10_1007_s12640_023_00680_1
crossref_primary_10_1002_ddr_22210
crossref_primary_10_3390_biom12071010
crossref_primary_10_1016_j_avsg_2020_01_106
crossref_primary_10_3390_antiox12081539
crossref_primary_10_3389_fvets_2022_947482
crossref_primary_10_1016_j_ebiom_2022_104431
crossref_primary_10_1016_j_yexcr_2023_113860
crossref_primary_10_1038_s41598_023_32222_2
crossref_primary_10_3390_ijms231911730
crossref_primary_10_1080_01443615_2022_2035332
crossref_primary_10_1007_s10126_024_10371_3
crossref_primary_10_1007_s11626_023_00801_2
crossref_primary_10_3390_foods13131999
crossref_primary_10_3892_etm_2022_11484
crossref_primary_10_3390_jcm8040520
crossref_primary_10_1111_acel_13930
crossref_primary_10_3390_ijms25169082
crossref_primary_10_1002_adhm_202200030
crossref_primary_10_1038_s44222_025_00293_7
crossref_primary_10_1155_2022_2152746
crossref_primary_10_3390_cells7120270
crossref_primary_10_1038_s41392_023_01688_x
crossref_primary_10_3389_fphar_2023_1128147
crossref_primary_10_3389_fphys_2020_595516
crossref_primary_10_3389_fmed_2022_999481
crossref_primary_10_1016_j_phrs_2020_105297
crossref_primary_10_1038_s41598_023_33635_9
crossref_primary_10_2174_1570161120666220720101352
crossref_primary_10_1016_j_fitote_2024_106098
crossref_primary_10_4240_wjgs_v16_i12_3843
crossref_primary_10_1016_j_expneurol_2020_113359
crossref_primary_10_1590_acb380123
crossref_primary_10_1111_cbdd_14326
crossref_primary_10_1155_2022_7767598
crossref_primary_10_1016_j_jstrokecerebrovasdis_2023_107142
crossref_primary_10_3389_fcell_2022_948256
crossref_primary_10_1096_fj_202100066R
crossref_primary_10_1186_s12882_021_02473_0
crossref_primary_10_1007_s11095_021_03046_4
crossref_primary_10_3389_fphar_2023_1091616
crossref_primary_10_3390_ijms22010028
crossref_primary_10_31083_j_rcm2301023
crossref_primary_10_1016_j_jep_2023_116898
crossref_primary_10_3390_antiox12091760
crossref_primary_10_3390_cells11071165
crossref_primary_10_1016_j_eng_2023_11_016
crossref_primary_10_1155_2022_8624318
crossref_primary_10_1038_s41420_023_01308_1
crossref_primary_10_3389_fphar_2023_1134408
crossref_primary_10_3389_fphar_2022_927611
crossref_primary_10_1016_j_bioorg_2023_106961
crossref_primary_10_1093_eurjpc_zwad261
crossref_primary_10_1002_iid3_1220
crossref_primary_10_3389_frtra_2023_1060992
crossref_primary_10_3892_etm_2021_10557
crossref_primary_10_1152_physrev_00026_2023
crossref_primary_10_7759_cureus_66490
crossref_primary_10_11603_mie_1996_1960_2019_4_11017
crossref_primary_10_3390_molecules27031031
crossref_primary_10_1016_j_tcam_2020_100432
crossref_primary_10_1016_j_gendis_2022_02_012
crossref_primary_10_1016_j_lfs_2021_120002
crossref_primary_10_1002_jso_26980
crossref_primary_10_1016_j_lfs_2021_120005
crossref_primary_10_3892_mmr_2024_13321
crossref_primary_10_1002_bab_2554
crossref_primary_10_38109_2225_1685_2023_3_68_74
crossref_primary_10_2174_1381612826666200509232610
crossref_primary_10_1016_j_mito_2024_101883
crossref_primary_10_1371_journal_pone_0209624
crossref_primary_10_3892_mmr_2024_13329
crossref_primary_10_3390_ijms23179648
crossref_primary_10_1007_s00360_025_01604_5
crossref_primary_10_1111_1440_1681_13736
crossref_primary_10_1016_j_neuroscience_2023_12_016
crossref_primary_10_1016_j_ajps_2024_100965
crossref_primary_10_1017_S1047951119001847
crossref_primary_10_1134_S0026893323060067
crossref_primary_10_1590_acb370102
crossref_primary_10_3389_fcell_2020_00147
crossref_primary_10_1007_s11064_021_03257_6
crossref_primary_10_1002_adfm_202212326
crossref_primary_10_1159_000509710
crossref_primary_10_1016_j_mito_2022_01_006
crossref_primary_10_1016_j_freeradbiomed_2021_10_033
crossref_primary_10_1016_j_tice_2023_102056
crossref_primary_10_1016_j_taap_2025_117275
crossref_primary_10_1161_STROKEAHA_124_047384
crossref_primary_10_3390_metabo14010019
crossref_primary_10_1007_s11626_024_00986_0
crossref_primary_10_1016_S2707_3688_23_00009_2
crossref_primary_10_3390_ijms25158393
crossref_primary_10_1016_j_pharmthera_2025_108827
crossref_primary_10_1080_08037051_2021_1947777
crossref_primary_10_5937_zdravzast51_40055
crossref_primary_10_1016_j_bjps_2024_02_053
crossref_primary_10_1155_2021_9925561
crossref_primary_10_1007_s12010_024_04965_9
crossref_primary_10_1016_j_yjmcc_2022_12_002
crossref_primary_10_34172_jcvtr_2023_31724
crossref_primary_10_1038_s41401_020_0490_7
crossref_primary_10_1111_1440_1681_13714
crossref_primary_10_3390_ijms25084476
crossref_primary_10_1111_ctr_15006
crossref_primary_10_1093_jleuko_qiad063
crossref_primary_10_1007_s00018_020_03615_7
crossref_primary_10_1016_j_biomaterials_2022_121914
crossref_primary_10_1016_j_phrs_2023_106832
crossref_primary_10_3390_ijms232012529
crossref_primary_10_1016_j_cellsig_2021_110118
crossref_primary_10_1016_j_omtn_2024_102445
crossref_primary_10_1080_10717544_2021_1943058
crossref_primary_10_1093_cvr_cvz145
crossref_primary_10_1097_ACO_0000000000001226
crossref_primary_10_15407_ubj93_01_051
crossref_primary_10_3390_jcm10163664
crossref_primary_10_1007_s00232_023_00277_x
crossref_primary_10_3390_ijms23063133
crossref_primary_10_3390_ijms21218015
crossref_primary_10_1016_j_cej_2025_160833
crossref_primary_10_1016_j_cbi_2019_03_010
crossref_primary_10_1155_2021_3925136
crossref_primary_10_1245_s10434_024_16705_8
crossref_primary_10_1097_TP_0000000000003138
crossref_primary_10_1186_s13019_024_02924_3
crossref_primary_10_1002_brb3_3195
crossref_primary_10_1080_21655979_2022_2061304
crossref_primary_10_3389_fimmu_2022_998952
crossref_primary_10_1155_2021_5515396
crossref_primary_10_52420_umj_23_5_63
crossref_primary_10_1016_j_pharmthera_2021_107819
crossref_primary_10_1155_2021_6687386
crossref_primary_10_1016_j_lfs_2019_117014
crossref_primary_10_1038_s41598_022_11343_0
crossref_primary_10_1007_s12033_024_01173_y
crossref_primary_10_1080_08941939_2022_2073489
crossref_primary_10_1016_j_redox_2025_103490
crossref_primary_10_3390_biom14070740
crossref_primary_10_1093_jpp_rgae086
crossref_primary_10_3389_fphar_2021_804030
crossref_primary_10_3389_fphar_2023_1057144
crossref_primary_10_1007_s00268_022_06544_7
crossref_primary_10_1016_j_cplett_2025_141902
crossref_primary_10_1155_2021_6620677
crossref_primary_10_2147_DDDT_S328837
crossref_primary_10_1016_j_abb_2023_109672
crossref_primary_10_1152_japplphysiol_00259_2021
crossref_primary_10_3390_cells11050826
crossref_primary_10_1016_j_exger_2024_112448
crossref_primary_10_1155_2021_8968464
crossref_primary_10_1080_13510002_2023_2289740
crossref_primary_10_1080_27694127_2024_2320605
crossref_primary_10_1016_j_biopha_2023_114222
crossref_primary_10_1111_and_14272
crossref_primary_10_1016_j_ccc_2020_11_009
crossref_primary_10_3389_fcell_2021_656370
crossref_primary_10_1007_s11011_022_01011_7
crossref_primary_10_1016_j_yexcr_2021_112861
crossref_primary_10_1016_j_ijcard_2022_12_018
crossref_primary_10_1111_1750_3841_15505
crossref_primary_10_4097_kja_24457
crossref_primary_10_1007_s12010_024_05063_6
crossref_primary_10_2139_ssrn_4156323
crossref_primary_10_3390_ijms22168373
crossref_primary_10_1016_j_brainres_2022_148132
crossref_primary_10_1016_j_ahj_2020_07_014
crossref_primary_10_1080_01635581_2021_1973045
crossref_primary_10_1089_ars_2020_8175
crossref_primary_10_1177_09603271211041998
crossref_primary_10_1016_j_hest_2020_11_004
crossref_primary_10_1016_j_jor_2024_08_005
crossref_primary_10_1111_fcp_12782
crossref_primary_10_1038_s41598_023_41275_2
crossref_primary_10_1155_2018_6209679
crossref_primary_10_1007_s12975_020_00806_z
crossref_primary_10_15441_ceem_23_106
crossref_primary_10_3389_fncel_2021_633610
crossref_primary_10_1016_j_healun_2025_02_1695
crossref_primary_10_1016_j_peptides_2019_170226
crossref_primary_10_1016_j_nefroe_2019_08_002
crossref_primary_10_3390_ddc2010001
crossref_primary_10_1111_jcmm_17275
crossref_primary_10_3390_antiox11040627
crossref_primary_10_3390_ijms24021789
crossref_primary_10_21272_eumj_2024_12_3__522_532
crossref_primary_10_1021_acsbiomaterials_9b00119
crossref_primary_10_1016_j_intimp_2022_109057
crossref_primary_10_3390_ijms22031121
crossref_primary_10_3389_fimmu_2021_692061
crossref_primary_10_1016_j_jphotobiol_2024_112991
crossref_primary_10_1111_aogs_14979
crossref_primary_10_5812_jjcmb_136185
crossref_primary_10_1039_D4TB01621A
crossref_primary_10_3390_biom13020275
crossref_primary_10_3390_ijms21114106
crossref_primary_10_1210_clinem_dgaa310
crossref_primary_10_1016_j_expneurol_2023_114468
crossref_primary_10_3390_antiox9030248
crossref_primary_10_1007_s10142_023_01063_7
crossref_primary_10_1038_d41586_022_01995_3
crossref_primary_10_1111_febs_16380
crossref_primary_10_1016_j_dscb_2023_100087
crossref_primary_10_1007_s12033_024_01116_7
crossref_primary_10_1055_s_0044_1787691
crossref_primary_10_3390_ijms21124370
crossref_primary_10_1080_10520295_2021_1961863
crossref_primary_10_1016_j_exer_2022_109082
crossref_primary_10_1038_s41598_022_16512_9
crossref_primary_10_4103_2045_9912_344980
crossref_primary_10_3389_fcell_2023_1093113
crossref_primary_10_1016_j_heliyon_2023_e17702
crossref_primary_10_1016_j_yexcr_2020_112146
crossref_primary_10_1242_jeb_246549
crossref_primary_10_1097_MD_0000000000035890
crossref_primary_10_1007_s00384_023_04346_4
crossref_primary_10_2337_db19_0762
crossref_primary_10_1159_000511457
crossref_primary_10_3390_diagnostics12102378
crossref_primary_10_1016_j_biopha_2024_117383
crossref_primary_10_1155_2019_3945672
crossref_primary_10_1155_2022_2785113
crossref_primary_10_1016_j_numecd_2022_03_023
crossref_primary_10_1080_01913123_2022_2035874
crossref_primary_10_1093_abbs_gmaa162
crossref_primary_10_1177_09603271211014596
crossref_primary_10_1080_0886022X_2023_2285865
crossref_primary_10_1155_2019_7910930
crossref_primary_10_1016_j_resuscitation_2023_110003
crossref_primary_10_1007_s00238_020_01719_8
crossref_primary_10_1007_s11064_021_03412_z
crossref_primary_10_1016_j_jss_2021_04_013
crossref_primary_10_1039_D0NR08478F
crossref_primary_10_3389_fimmu_2021_727861
crossref_primary_10_1002_tox_23385
crossref_primary_10_1097_TP_0000000000004503
crossref_primary_10_3390_ijms25147884
crossref_primary_10_1007_s11560_023_00707_w
crossref_primary_10_35440_hutfd_1341349
crossref_primary_10_1007_s43450_024_00594_9
crossref_primary_10_1016_j_phrs_2020_104990
crossref_primary_10_1155_2021_5584809
crossref_primary_10_3390_cells11172763
crossref_primary_10_3390_ijms242115729
crossref_primary_10_1021_acsanm_3c02097
crossref_primary_10_1155_2021_6621921
crossref_primary_10_18632_aging_202429
crossref_primary_10_3390_ph15030271
crossref_primary_10_1016_j_fct_2025_115298
crossref_primary_10_1080_21655979_2021_1995115
crossref_primary_10_1055_a_1239_9236
crossref_primary_10_3390_ijms21165931
crossref_primary_10_5527_wjn_v11_i1_13
crossref_primary_10_1038_s41581_022_00658_w
crossref_primary_10_1161_STROKEAHA_119_025494
crossref_primary_10_3390_antiox8030063
crossref_primary_10_1007_s11033_021_07108_z
crossref_primary_10_14336_AD_2019_0518
crossref_primary_10_1016_j_injury_2021_11_046
crossref_primary_10_1152_physiol_00025_2021
crossref_primary_10_1080_10717544_2023_2298514
crossref_primary_10_1186_s12014_022_09343_3
crossref_primary_10_1016_j_jep_2022_115836
crossref_primary_10_1016_j_mtbio_2023_100693
crossref_primary_10_1080_21655979_2023_2253414
crossref_primary_10_3923_ijp_2024_1440_1447
crossref_primary_10_1007_s12015_020_10096_5
crossref_primary_10_1016_j_yjmcc_2023_11_001
crossref_primary_10_3389_fphys_2021_690696
crossref_primary_10_1002_iub_2657
crossref_primary_10_1016_j_nefro_2018_10_006
crossref_primary_10_7554_eLife_101114_3
crossref_primary_10_1016_j_aanat_2021_151785
crossref_primary_10_1371_journal_pone_0273921
crossref_primary_10_36290_aim_2023_006
crossref_primary_10_1016_j_biomaterials_2023_122368
crossref_primary_10_1016_j_biochi_2023_05_010
crossref_primary_10_1177_10742484211046674
crossref_primary_10_1016_j_wneu_2024_02_014
crossref_primary_10_1038_s41419_020_03135_z
crossref_primary_10_1080_02699052_2024_2346147
crossref_primary_10_1002_kjm2_12219
crossref_primary_10_1016_j_intimp_2024_112439
crossref_primary_10_4103_1673_5374_322466
crossref_primary_10_3390_molecules27113383
crossref_primary_10_1177_20503121251329163
crossref_primary_10_18632_aging_202889
crossref_primary_10_2139_ssrn_4066505
crossref_primary_10_3389_fmolb_2021_698975
crossref_primary_10_1111_ijcp_14838
crossref_primary_10_1016_j_exer_2022_109278
crossref_primary_10_3390_medicina60050804
crossref_primary_10_3390_cells10061391
crossref_primary_10_1097_TXD_0000000000001728
crossref_primary_10_2174_1570161121666230502141044
crossref_primary_10_1097_TXD_0000000000001727
crossref_primary_10_3389_fmed_2024_1477099
crossref_primary_10_1016_j_lfs_2022_121070
crossref_primary_10_1002_hep_32202
crossref_primary_10_1152_ajpcell_00394_2022
crossref_primary_10_1097_TP_0000000000004546
crossref_primary_10_1177_1849543520970819
crossref_primary_10_3389_fphar_2020_593225
crossref_primary_10_3892_etm_2023_12269
crossref_primary_10_1111_1440_1681_13299
crossref_primary_10_3389_ti_2024_13796
crossref_primary_10_3390_antiox8100454
crossref_primary_10_1016_j_heliyon_2024_e33258
crossref_primary_10_1080_01478885_2023_2261093
crossref_primary_10_1089_can_2022_0242
crossref_primary_10_1016_j_ejphar_2021_174719
crossref_primary_10_3389_fnmol_2020_00028
crossref_primary_10_1038_s12276_019_0235_1
crossref_primary_10_1155_2023_8141129
crossref_primary_10_1166_sam_2024_4598
crossref_primary_10_1007_s43032_022_01132_5
crossref_primary_10_1016_j_jtcvs_2023_08_005
crossref_primary_10_1007_s11011_021_00895_1
crossref_primary_10_3389_fncel_2022_864426
crossref_primary_10_1016_j_bbrc_2020_07_009
crossref_primary_10_3390_biology13070542
crossref_primary_10_31083_j_rcm2305167
crossref_primary_10_1111_iwj_14235
crossref_primary_10_1016_j_toxrep_2021_01_015
crossref_primary_10_29333_jcei_12410
crossref_primary_10_1007_s43440_021_00258_8
crossref_primary_10_1007_s12640_024_00712_4
crossref_primary_10_1186_s13244_022_01339_9
crossref_primary_10_1016_j_lfs_2021_119986
crossref_primary_10_1016_j_jtv_2024_11_004
crossref_primary_10_1038_s41598_024_63412_1
crossref_primary_10_3389_fphys_2021_670653
crossref_primary_10_12677_ACM_2021_116392
crossref_primary_10_1016_j_ijbiomac_2023_124296
crossref_primary_10_3389_fped_2022_945175
crossref_primary_10_1016_j_repbio_2023_100816
crossref_primary_10_3389_fphar_2025_1485340
crossref_primary_10_4103_1673_5374_357907
crossref_primary_10_3390_ijms20215446
crossref_primary_10_12671_jkfs_2023_36_2_62
crossref_primary_10_1097_SHK_0000000000002211
crossref_primary_10_1007_s10735_024_10303_4
crossref_primary_10_1016_j_jep_2020_113284
crossref_primary_10_1039_D2FO00834C
crossref_primary_10_18632_aging_204461
crossref_primary_10_1089_ars_2023_0531
crossref_primary_10_3892_mmr_2021_12515
crossref_primary_10_24884_2078_5658_2024_21_4_104_114
crossref_primary_10_3390_antiox10060823
crossref_primary_10_3389_fimmu_2019_01461
crossref_primary_10_1016_j_intimp_2024_113310
crossref_primary_10_1016_j_biopha_2021_112258
crossref_primary_10_2147_DDDT_S501289
crossref_primary_10_3389_fimmu_2019_02797
crossref_primary_10_1038_s41420_022_01205_z
crossref_primary_10_3390_medicina59111995
crossref_primary_10_1016_j_amjcard_2025_02_015
crossref_primary_10_1080_15384101_2022_2161959
crossref_primary_10_1016_j_surg_2023_04_033
crossref_primary_10_1177_20587392211000577
crossref_primary_10_22159_ijap_2025v17i2_52879
crossref_primary_10_3923_ijp_2023_455_465
crossref_primary_10_3390_ijms232315063
crossref_primary_10_1016_j_heliyon_2024_e39162
crossref_primary_10_1080_1061186X_2021_1882470
crossref_primary_10_1007_s12012_025_09974_6
crossref_primary_10_1002_ptr_8234
crossref_primary_10_1177_1934578X211029528
crossref_primary_10_1039_D3FO01583A
crossref_primary_10_32322_jhsm_963439
crossref_primary_10_1016_j_kint_2021_04_039
crossref_primary_10_1017_S1047951123003451
crossref_primary_10_1111_odi_14537
crossref_primary_10_1007_s12035_021_02494_8
crossref_primary_10_1080_10942912_2023_2236327
crossref_primary_10_1111_ejn_15833
crossref_primary_10_1016_j_ejphar_2021_174549
crossref_primary_10_1186_s12864_019_5743_9
crossref_primary_10_1080_14779072_2021_1941874
crossref_primary_10_3390_biom11101522
crossref_primary_10_3390_ijms23116176
crossref_primary_10_2174_0929866530666230721143705
crossref_primary_10_1007_s11239_021_02540_1
crossref_primary_10_3389_fimmu_2023_1162671
crossref_primary_10_1002_cbin_12114
crossref_primary_10_1177_0963689720946663
crossref_primary_10_3389_fcvm_2023_1223496
crossref_primary_10_1021_acsbiomaterials_0c01197
crossref_primary_10_11603_bmbr_2706_6290_2020_2_11267
crossref_primary_10_3389_fphar_2024_1508060
crossref_primary_10_3390_ijms25126297
crossref_primary_10_1161_CIRCRESAHA_122_321604
crossref_primary_10_3389_fnmol_2024_1439994
crossref_primary_10_1016_j_jbc_2024_107372
crossref_primary_10_1016_j_ejphar_2022_174839
crossref_primary_10_3389_fnmol_2024_1394932
crossref_primary_10_1097_MD_0000000000039820
crossref_primary_10_3389_fncel_2023_1191629
crossref_primary_10_1007_s11011_025_01570_5
crossref_primary_10_1016_j_biopha_2020_111086
crossref_primary_10_1016_j_phymed_2021_153569
crossref_primary_10_1172_JCI126428
crossref_primary_10_3390_ijms231810715
crossref_primary_10_3233_JAD_230264
crossref_primary_10_1080_01913123_2022_2044945
crossref_primary_10_1186_s12872_023_03475_6
crossref_primary_10_1161_JAHA_122_027600
crossref_primary_10_23736_S0375_9393_23_17268_3
crossref_primary_10_3390_ijms222010914
crossref_primary_10_3390_cells13040353
crossref_primary_10_1166_jbt_2021_2761
crossref_primary_10_3390_jcdd10070303
crossref_primary_10_1016_j_freeradbiomed_2023_05_028
crossref_primary_10_2217_fca_2021_0006
crossref_primary_10_4103_wjtcm_wjtcm_21_21
crossref_primary_10_1007_s11010_022_04451_y
crossref_primary_10_3390_ijms242316880
crossref_primary_10_1016_j_freeradbiomed_2021_02_047
crossref_primary_10_1096_fj_202200596RRRRRR
crossref_primary_10_3390_ijms222312800
crossref_primary_10_1248_bpb_b23_00154
crossref_primary_10_1007_s00441_020_03345_z
crossref_primary_10_1016_j_envres_2023_115674
crossref_primary_10_1155_2023_9380398
crossref_primary_10_3389_fimmu_2021_681504
crossref_primary_10_1021_jacs_3c01984
crossref_primary_10_1016_j_cmet_2021_08_014
crossref_primary_10_1155_2021_9937264
crossref_primary_10_3389_fimmu_2020_01346
crossref_primary_10_1126_scitranslmed_abj4906
crossref_primary_10_1111_jfbc_14320
crossref_primary_10_1016_j_heliyon_2023_e21151
crossref_primary_10_3390_cells12101345
crossref_primary_10_2174_1874467217666230803114856
crossref_primary_10_3389_fcell_2021_747842
crossref_primary_10_1538_expanim_22_0034
crossref_primary_10_1016_j_nmd_2023_09_007
crossref_primary_10_17116_profmed202124101119
crossref_primary_10_1016_j_jtcvs_2019_11_019
crossref_primary_10_3390_ijms23073677
crossref_primary_10_1016_j_ultras_2024_107263
crossref_primary_10_3892_etm_2021_10623
crossref_primary_10_1016_j_transproceed_2021_09_044
crossref_primary_10_2174_1567202620666230522155944
crossref_primary_10_1016_j_bbcan_2023_189024
crossref_primary_10_1515_biol_2022_0700
crossref_primary_10_1111_jocs_14426
crossref_primary_10_1007_s11033_024_10041_6
crossref_primary_10_2174_1574888X18666230509113912
crossref_primary_10_1016_j_healun_2020_10_004
crossref_primary_10_1016_j_injury_2023_02_047
crossref_primary_10_47717_turkjsurg_2022_5620
crossref_primary_10_3389_fcell_2022_1065702
crossref_primary_10_3390_pharmaceutics15010155
crossref_primary_10_1016_j_biopha_2024_116849
crossref_primary_10_3389_fphys_2020_596507
crossref_primary_10_1186_s43094_020_00127_w
crossref_primary_10_3390_ijms20205034
crossref_primary_10_3390_ijms25052948
crossref_primary_10_3389_fphar_2024_1525456
crossref_primary_10_3389_fcell_2021_643996
crossref_primary_10_1111_nyas_14507
crossref_primary_10_1042_BCJ20220154
crossref_primary_10_1007_s12013_023_01137_0
crossref_primary_10_1021_acschemneuro_1c00506
crossref_primary_10_3390_antiox11061046
crossref_primary_10_3390_nu13103312
crossref_primary_10_1080_21655979_2022_2026861
crossref_primary_10_1096_fj_202000960R
crossref_primary_10_1007_s11011_024_01470_0
crossref_primary_10_1016_j_jss_2022_01_010
crossref_primary_10_1038_s41598_024_83783_9
crossref_primary_10_1016_j_biopha_2023_115201
crossref_primary_10_1097_TP_0000000000005042
crossref_primary_10_2478_sjecr_2022_0025
crossref_primary_10_1038_s41598_021_92159_2
crossref_primary_10_1360_TB_2022_0148
crossref_primary_10_1016_j_jep_2020_113212
crossref_primary_10_1016_j_healun_2024_10_020
crossref_primary_10_1021_acs_jmedchem_3c01048
crossref_primary_10_1096_fj_202201962R
crossref_primary_10_3389_fcvm_2021_749113
crossref_primary_10_3390_biomedicines11082163
crossref_primary_10_3389_fphar_2021_701564
crossref_primary_10_17116_Cardiobulletin20241901123
crossref_primary_10_1097_TA_0000000000002489
crossref_primary_10_1007_s11910_022_01236_0
crossref_primary_10_1097_TXD_0000000000001271
crossref_primary_10_1016_j_jconrel_2025_01_018
crossref_primary_10_1177_0963689721997151
crossref_primary_10_3390_biom9120825
crossref_primary_10_1016_j_mehy_2020_109558
crossref_primary_10_3389_fnagi_2023_1227513
crossref_primary_10_3389_fphar_2023_1112743
crossref_primary_10_1039_D4RA00046C
crossref_primary_10_2147_NDT_S308360
crossref_primary_10_1007_s40620_019_00582_6
crossref_primary_10_1177_0960327120954243
crossref_primary_10_32604_biocell_2022_021661
crossref_primary_10_1080_13880209_2020_1762667
crossref_primary_10_1007_s12011_019_01824_1
crossref_primary_10_1097_SHK_0000000000002018
crossref_primary_10_1021_acsbiomaterials_3c00414
crossref_primary_10_3389_fnins_2022_901360
crossref_primary_10_3390_antiox10121910
crossref_primary_10_1002_advs_202402557
crossref_primary_10_1089_ars_2021_0277
crossref_primary_10_17826_cumj_993250
crossref_primary_10_3390_ijms23105796
crossref_primary_10_1016_j_ejmech_2022_114848
crossref_primary_10_1186_s13287_019_1225_x
crossref_primary_10_1186_s10020_022_00494_5
crossref_primary_10_22270_jddt_v11i3_S_4852
crossref_primary_10_1016_j_ajt_2024_04_001
crossref_primary_10_1016_j_ejvs_2024_01_081
crossref_primary_10_1016_j_mito_2023_03_002
crossref_primary_10_1213_ANE_0000000000005175
crossref_primary_10_1007_s12035_024_04494_w
crossref_primary_10_3389_fcell_2022_849905
crossref_primary_10_1016_j_molimm_2024_12_003
crossref_primary_10_1155_2022_1571705
crossref_primary_10_1038_s41598_025_90457_7
crossref_primary_10_3389_fphar_2022_974216
crossref_primary_10_3390_life12050657
crossref_primary_10_1111_cbdd_14475
crossref_primary_10_1016_j_avsg_2020_03_003
crossref_primary_10_1016_j_neulet_2022_136978
crossref_primary_10_1007_s12192_022_01290_0
crossref_primary_10_1016_j_heliyon_2023_e22644
crossref_primary_10_3389_fphar_2021_689007
crossref_primary_10_7759_cureus_45475
crossref_primary_10_1007_s12035_024_04005_x
crossref_primary_10_1093_chromsci_bmac103
crossref_primary_10_1111_and_13922
crossref_primary_10_1155_2019_4842592
crossref_primary_10_1016_j_jep_2020_113014
crossref_primary_10_1002_ptr_7620
crossref_primary_10_3390_diagnostics10050271
crossref_primary_10_3390_ijms20071762
crossref_primary_10_31083_j_fbl2711300
crossref_primary_10_1016_j_actbio_2024_06_008
crossref_primary_10_1016_j_intimp_2024_111835
crossref_primary_10_1016_j_jep_2024_118621
crossref_primary_10_1007_s00441_021_03468_x
crossref_primary_10_1016_j_cpcardiol_2023_101910
crossref_primary_10_34014_2227_1848_2024_2_155_165
crossref_primary_10_1186_s40659_020_00304_4
crossref_primary_10_36740_WLek202211213
crossref_primary_10_1155_2021_5391706
crossref_primary_10_1016_j_yexcr_2021_112942
crossref_primary_10_3892_etm_2022_11302
crossref_primary_10_1016_j_ijbiomac_2020_07_212
crossref_primary_10_3389_fphar_2022_827770
crossref_primary_10_1096_fj_202200109RR
crossref_primary_10_33549_physiolres_935307
crossref_primary_10_1002_mba2_16
crossref_primary_10_1016_j_aca_2024_343425
crossref_primary_10_1016_j_lfs_2022_120697
crossref_primary_10_1155_2022_7013299
crossref_primary_10_1016_j_biopha_2020_110108
crossref_primary_10_1016_j_freeradbiomed_2023_07_015
crossref_primary_10_2174_157016112003220825112123
crossref_primary_10_1152_ajprenal_00192_2024
crossref_primary_10_1111_febs_15675
crossref_primary_10_1038_s41598_024_67532_6
crossref_primary_10_1038_s41598_020_71411_1
crossref_primary_10_3389_fcvm_2021_648947
crossref_primary_10_1155_2022_6121407
crossref_primary_10_1007_s11626_022_00725_3
crossref_primary_10_3389_fneur_2022_844697
crossref_primary_10_1111_cpr_12753
crossref_primary_10_3389_fphar_2022_946668
crossref_primary_10_1002_jcp_30649
crossref_primary_10_1186_s13613_023_01236_4
crossref_primary_10_18632_aging_203907
crossref_primary_10_1111_jcmm_17355
crossref_primary_10_1111_wrr_13145
crossref_primary_10_1016_j_tice_2025_102746
crossref_primary_10_1016_j_ejphar_2024_176919
crossref_primary_10_1007_s12031_022_02014_w
crossref_primary_10_1111_febs_16993
crossref_primary_10_12998_wjcc_v12_i1_142
crossref_primary_10_2174_0125899775280160240122065607
crossref_primary_10_1159_000512367
crossref_primary_10_3390_ijms23052591
crossref_primary_10_1002_jcp_30875
crossref_primary_10_1155_2022_8433464
crossref_primary_10_1186_s12882_024_03488_z
crossref_primary_10_1007_s00210_020_01984_1
crossref_primary_10_1097_TXD_0000000000001620
crossref_primary_10_2174_1389450123666220913121422
crossref_primary_10_1097_FJC_0000000000000867
crossref_primary_10_1016_j_biopha_2023_114506
crossref_primary_10_1155_2021_1815098
crossref_primary_10_3390_antiox11061213
crossref_primary_10_1016_j_xcrm_2022_100654
crossref_primary_10_1089_dna_2023_0106
crossref_primary_10_12677_PI_2022_112016
crossref_primary_10_1021_acsomega_1c03265
crossref_primary_10_1515_med_2024_1063
crossref_primary_10_1136_bmjopen_2024_087303
crossref_primary_10_1002_adtp_202200066
crossref_primary_10_1016_j_neulet_2021_135954
crossref_primary_10_1111_fcp_12886
crossref_primary_10_2147_JIR_S406562
crossref_primary_10_17116_hirurgia202109171
crossref_primary_10_3892_etm_2024_12602
crossref_primary_10_1016_j_jointm_2022_01_001
crossref_primary_10_1016_j_brainresbull_2023_110807
crossref_primary_10_1139_cjpp_2023_0382
crossref_primary_10_3390_antiox11040769
crossref_primary_10_1016_j_ijbiomac_2022_09_264
crossref_primary_10_1080_10715762_2019_1584399
crossref_primary_10_1007_s12035_022_02795_6
crossref_primary_10_1128_spectrum_02526_22
crossref_primary_10_1166_jbn_2022_3244
crossref_primary_10_1016_j_clinbiochem_2024_110806
crossref_primary_10_1016_j_trim_2022_101718
crossref_primary_10_1055_a_1806_1453
crossref_primary_10_1080_01443615_2019_1701639
crossref_primary_10_1155_2021_5093216
crossref_primary_10_1177_00368504241239444
crossref_primary_10_1002_smll_202007727
crossref_primary_10_1002_adbi_202300416
crossref_primary_10_3390_biomedicines10040791
crossref_primary_10_3892_etm_2022_11111
crossref_primary_10_3892_etm_2022_11357
crossref_primary_10_1007_s00414_020_02311_2
crossref_primary_10_1093_tas_txac012
crossref_primary_10_1371_journal_pone_0212076
crossref_primary_10_1002_nbm_4993
crossref_primary_10_3390_ijms23042357
crossref_primary_10_3390_ijms22158229
crossref_primary_10_1055_s_0042_1743246
crossref_primary_10_3892_ijmm_2019_4123
crossref_primary_10_1038_s41419_021_03876_5
crossref_primary_10_1007_s10557_021_07231_w
crossref_primary_10_5798_dicletip_620570
crossref_primary_10_3390_oxygen2010004
crossref_primary_10_1016_j_mcp_2019_101500
crossref_primary_10_3390_vetsci9020033
crossref_primary_10_1016_j_ijsu_2020_08_061
crossref_primary_10_25122_jml_2021_0154
crossref_primary_10_3390_pharmaceutics14081737
crossref_primary_10_3390_antiox9090858
crossref_primary_10_1186_s43556_023_00142_2
crossref_primary_10_1002_mco2_70047
crossref_primary_10_1016_j_brainresbull_2023_110822
crossref_primary_10_1016_j_heliyon_2024_e30952
crossref_primary_10_1016_j_tcm_2022_09_003
crossref_primary_10_1016_j_expneurol_2023_114583
crossref_primary_10_3390_antiox12040965
crossref_primary_10_1016_j_ijbiomac_2020_12_124
crossref_primary_10_1038_s41420_024_02221_x
crossref_primary_10_1177_15353702211021601
crossref_primary_10_1155_2021_8886666
crossref_primary_10_1155_2020_8815349
crossref_primary_10_3390_cells10071680
crossref_primary_10_1111_ajt_17012
crossref_primary_10_3389_fphar_2021_601846
crossref_primary_10_1002_jcb_30293
crossref_primary_10_3389_fcvm_2022_934279
ContentType Journal Article
Copyright 2018 The Author(s). Published by S. Karger AG, Basel
2018 The Author(s). Published by S. Karger AG, Basel.
Copyright_xml – notice: 2018 The Author(s). Published by S. Karger AG, Basel
– notice: 2018 The Author(s). Published by S. Karger AG, Basel.
DBID M--
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.1159/000489241
DatabaseName Karger Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

ProQuest One Academic Middle East (New)

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 5
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1421-9778
EndPage 1667
ExternalDocumentID oai_doaj_org_article_630a38a128a34f53b65c7ef49c5600c2
29694958
10_1159_000489241
489241
Genre Journal Article
Review
GroupedDBID ---
0R~
0~B
29B
326
36B
3O.
3V.
4.4
53G
5GY
5VS
6J9
7X7
88E
8FI
8FJ
8UI
AAFWJ
AAYIC
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AEYAO
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CS3
CYUIP
DIK
DU5
E0A
E3Z
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GROUPED_DOAJ
HMCUK
HZ~
IAO
IHR
IPNFZ
KQ8
KUZGX
M--
M1P
ML-
N9A
O1H
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
RIG
RKO
RNS
SV3
UJ6
UKHRP
30W
AAYXX
ABBTS
ABWCG
ACQXL
ADAGL
AFSIO
AHFRZ
AIOBO
CAG
CITATION
COF
ITC
PHGZM
PHGZT
RXVBD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c596t-89ce3ab2534835e1849c0f332898457826366861ce374ef350381f491089ee083
IEDL.DBID 7X7
ISSN 1015-8987
1421-9778
IngestDate Wed Aug 27 01:26:48 EDT 2025
Fri Jul 11 08:52:43 EDT 2025
Fri Jul 25 23:10:46 EDT 2025
Wed Feb 19 02:34:37 EST 2025
Thu Apr 24 22:56:21 EDT 2025
Tue Jul 01 05:08:59 EDT 2025
Thu Sep 05 19:48:42 EDT 2024
Thu Aug 29 12:04:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ischemia-reperfusion injury
Mitoptosis
Necroptosis
Autophagy
Apoptosis
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
https://creativecommons.org/licenses/by-nc-nd/4.0
2018 The Author(s). Published by S. Karger AG, Basel.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-89ce3ab2534835e1849c0f332898457826366861ce374ef350381f491089ee083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://karger.com/doi/10.1159/000489241
PMID 29694958
PQID 2117165355
PQPubID 2047990
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_630a38a128a34f53b65c7ef49c5600c2
karger_primary_489241
crossref_primary_10_1159_000489241
proquest_miscellaneous_2031421955
proquest_journals_2117165355
crossref_citationtrail_10_1159_000489241
pubmed_primary_29694958
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Germany
– name: Basel
PublicationTitle Cellular physiology and biochemistry
PublicationTitleAlternate Cell Physiol Biochem
PublicationYear 2018
Publisher S. Karger AG
Cell Physiol Biochem Press GmbH & Co KG
Publisher_xml – name: S. Karger AG
– name: Cell Physiol Biochem Press GmbH & Co KG
References McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2004; 286:H1923-1935.1471550910.1152/ajpheart.00935.2003
Carden DL, Granger DN: Pathophysiology of ischaemia–reperfusion injury. J Pathol 2000; 190: 255-266.1068506010.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6
Chen C, Chen W, Nong Z, Ma Y, Qiu S, Wu G: Cardioprotective Effects of Combined Therapy with Hyperbaric Oxygen and Diltiazem Pretreatment on Myocardial Ischemia-Reperfusion Injury in Rats. Cell Physiol Biochem 2016; 38: 2015-2029.2716009110.1159/000445561
Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 2008; 51: 211-217.1808695610.1161/HYPERTENSIONAHA.107.100214
Nagasaka Y, Buys ES, Spagnolli E, Steinbicker AU, Hayton SR, Rauwerdink KM, Brouckaert P, Zapol WM, Bloch KD: Soluble guanylate cyclase-alpha1 is required for the cardioprotective effects of inhaled nitric oxide. Am J Physiol Heart Circ Physiol 2011; 300:H1477-1483.2125791510.1152/ajpheart.00948.2010
Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, Pedrozo Z, Chiong M, Sanchez G, Lavandero S: Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol 2014; 63: 477-487.2447704410.1097/FJC.0000000000000071
Kim CR, Kim JH, Park HL, Park CK: Ischemia Reperfusion Injury Triggers TNFalpha Induced-Necroptosis in Rat Retina. Curr Eye Res 2017; 42: 771-779.2773210910.1080/02713683.2016.1227449
Wang HB, Yang J, Ding JW, Chen LH, Li S, Liu XW, Yang CJ, Fan ZX: RNAi-Mediated Down-Regulation of CD47 Protects against Ischemia/Reperfusion-Induced Myocardial Damage via Activation of eNOS in a Rat Model. Cell Physiol Biochem 2016; 40: 1163-1174.2796018710.1159/000453170
Linas SL, Whittenburg D, Parsons PE, Repine JE: Ischemia increases neutrophil retention and worsens acute renal failure: Role of oxygen metabolites and ICAM 1. Kidney Int 1995; 48: 1584-1591.854441810.1038/ki.1995.451
Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC: NADPH Oxidase Mediates Hypersomnolence and Brain Oxidative Injury in a Murine Model of Sleep Apnea. Am J Respir Crit Care Med 2005; 172: 921-929.1599446510.1164/rccm.200504-581OC
Forstermann U, Sessa WC: Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33: 829-837, 837a-837d.2189048910.1093/eurheartj/ehr304
Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N: Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 20172894117110.1111/jcmm.13330
Wu MY, Li CJ, Hou MF, Chu PY: New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 182893765210.3390/ijms18102034
Yu H, Zhang H, Zhao W, Guo L, Li X, Li Y, Zhang X, Sun Y: Gypenoside Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocytes Apoptosis via Inhibition of CHOP Pathway and Activation of PI3K/Akt Pathway In vivo and In vitro. Cell Physiol Biochem 2016; 39: 123-136.2732283110.1159/000445611
Granger DN, Korthuis RJ: Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995; 57: 311-332.777887110.1146/annurev.ph.57.030195.001523
Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H: A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 2010; 5: 981-993.2071584510.1021/cb100219n
Crabtree MJ, Channon KM: Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011; 25: 81-88.2155041210.1016/j.niox.2011.04.004
Lv Y, Ren Y, Sun L, Wang S, Wei M, Jia D: Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats. Cell Biochem Biophys 2013; 66: 357-363.2321217810.1007/s12013-012-9474-7
Peralta C, Prats N, Xaus C, Gelpi E, Rosello-Catafau J: Protective effect of liver ischemic preconditioning on liver and lung injury induced by hepatic ischemia-reperfusion in the rat. Hepatology 1999; 30: 1481-1489.1057352810.1002/hep.510300622
Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67: 1016-1023.683166510.1161/01.CIR.67.5.1016
Jones AE, Puskarich MA: The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. Ann Emerg Med 2014; 63: 35-47.2406775510.1016/j.annemergmed.2013.08.004
Mullane KM, Read N, Salmon JA, Moncada S: Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 1984; 228: 510-522.6420544
Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, Carano RA, Cao TC, van Bruggen N, Bernstein L, Lee WP, Wu X, DeVoss J, Zhang J, Jeet S, Peng I, McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 2016; 23: 1565-1576.2717701910.1038/cdd.2016.46
Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: 304-377.2810160510.1007/s00134-017-4683-6
McCann SK, Roulston CL: NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3: 561-598.2496141510.3390/brainsci3020561
Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005
Mousa SA, Brown R, Thoolen MJ, Smith RD: Evaluation of the effect of azapropazone on neutrophil migration in regional myocardial ischaemia/reperfusion injury in rabbits. Br J Pharmacol 1990; 100: 379-382.216584010.1111/j.1476-5381.1990.tb15813.x
Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS: Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314-319.282380710.1016/0006-291X(87)91112-0
Gottlieb RA: Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 2011; 16: 233-238.2182152110.1177/1074248411409581
Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B: Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126: 163-175.1683988410.1016/j.cell.2006.06.021
Yamazaki S, Fujibayashi Y, Rajagopalan RE, Meerbaum S, Corday E: Effects of staged versus sudden reperfusion after acute coronary occlusion in the dog. J Am Coll Cardiol 1986; 7: 564-572.395023610.1016/S0735-1097(86)80466-1
Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P: Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922-930.2001078310.1038/cdd.2009.184
Brandes RP, Weissmann N, Schröder K: Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76: 208-226.2515778610.1016/j.freeradbiomed.2014.07.046
Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113: 1708-1714.1658540310.1161/CIRCULATIONAHA.105.602532
Kalogeris T, Bao Y, Korthuis RJ: Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology 2014; 2: 702-714.2494491310.1016/j.redox.2014.05.006
Li Y, Trush MA: Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 1998; 253: 295-299.987853110.1006/bbrc.1998.9729
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228.2336162510.1007/s00134-012-2769-8
Nakagiri A, Sunamoto M, Takeuchi K, Murakami M: Evidence for the involvement of NADPH oxidase in ischemia/reperfusion-induced gastric damage via angiotensin II. J Physiol Pharmacol 2010; 61: 171-179.20436217
Zuo Y, Wang Y, Hu H, Cui W: Atorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p. Cell Physiol Biochem 2016; 39: 1021-1030.2753706610.1159/000447809
Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J: Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain in
References_xml – reference: Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH: NADPH Oxidases: A Perspective on Reactive Oxygen Species Production in Tumor Biology. Antioxid Redox Signal 2014; 20: 2873-2889.2415635510.1089/ars.2013.5603
– reference: Brandes RP, Weissmann N, Schröder K: Nox Family NADPH Oxidases in Mechano-Transduction: Mechanisms and Consequences. Antioxid Redox Signal 2014; 20: 887-898.2368299310.1089/ars.2013.5414
– reference: Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005
– reference: Yu H, Zhang H, Zhao W, Guo L, Li X, Li Y, Zhang X, Sun Y: Gypenoside Protects against Myocardial Ischemia-Reperfusion Injury by Inhibiting Cardiomyocytes Apoptosis via Inhibition of CHOP Pathway and Activation of PI3K/Akt Pathway In vivo and In vitro. Cell Physiol Biochem 2016; 39: 123-136.2732283110.1159/000445611
– reference: Nakagiri A, Sunamoto M, Murakami M: NADPH oxidase is involved in ischaemia/reperfusion-induced damage in rat gastric mucosa via ROS production – Role of NADPH oxidase in rat stomachs. Inflammopharmacology 2007; 15: 278-281.1823602010.1007/s10787-007-1587-z
– reference: Shrestha GS, Kwizera A, Lundeg G, Baelani JI, Azevedo LCP, Pattnaik R, Haniffa R, Gavrilovic S, Mai NTH, Kissoon N, Lodha R, Misango D, Neto AS, Schultz MJ, Dondorp AM, Thevanayagam J, Dunser MW, Alam A, Mukhtar AM, Hashmi M, Ranjit S, Otu A, Gomersall C, Amito J, Vaeza NN, Nakibuuka J, Mujyarugamba P, Estenssoro E, Ospina-Tascon GA, Mohanty S, Mer M: International Surviving Sepsis Campaign guidelines 2016: the perspective from low-income and middle-income countries. Lancet Infect Dis 2017; 17: 893-895.2884578910.1016/S1473-3099(17)30453-X
– reference: Kuzuya T, Hoshida S, Nishida M, Kim Y, Fuji H, Kitabatake A, Kamada T, Tada M: Role of free radicals and neutrophils in canine myocardial reperfusion injury: myocardial salvage by a novel free radical scavenger, 2-octadecylascorbic acid. Cardiovasc Res 1989; 23: 323-330.255621610.1093/cvr/23.4.323
– reference: Kubes P, Suzuki M, Granger DN: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991; 88: 4651-4655.1675786
– reference: Fraser PA: The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 2011; 51: 967-977.2171208710.1016/j.freeradbiomed.2011.06.003
– reference: Lassègue B, Griendling KK: NADPH Oxidases: Functions and Pathologies in the Vasculature. Arterioscler Thromb Vasc Biol 2010; 30: 653-661.1991064010.1161/ATVBAHA.108.181610
– reference: Mullane KM, Read N, Salmon JA, Moncada S: Role of leukocytes in acute myocardial infarction in anesthetized dogs: relationship to myocardial salvage by anti-inflammatory drugs. J Pharmacol Exp Ther 1984; 228: 510-522.6420544
– reference: Linas SL, Whittenburg D, Parsons PE, Repine JE: Ischemia increases neutrophil retention and worsens acute renal failure: Role of oxygen metabolites and ICAM 1. Kidney Int 1995; 48: 1584-1591.854441810.1038/ki.1995.451
– reference: Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS: Role of xanthine oxidase inhibitor as free radical scavenger: A novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 1987; 148: 314-319.282380710.1016/0006-291X(87)91112-0
– reference: Kalogeris T, Bao Y, Korthuis RJ: Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology 2014; 2: 702-714.2494491310.1016/j.redox.2014.05.006
– reference: Yamazaki S, Fujibayashi Y, Rajagopalan RE, Meerbaum S, Corday E: Effects of staged versus sudden reperfusion after acute coronary occlusion in the dog. J Am Coll Cardiol 1986; 7: 564-572.395023610.1016/S0735-1097(86)80466-1
– reference: Ornellas FM, Ornellas DS, Martini SV, Castiglione RC, Ventura GM, Rocco PR, Gutfilen B, de Souza SA, Takiya CM, Morales MM: Bone Marrow-Derived Mononuclear Cell Therapy Accelerates Renal Ischemia-Reperfusion Injury Recovery by Modulating Inflammatory, Antioxidant and Apoptotic Related Molecules. Cell Physiol Biochem 2017; 41: 1736-1752.2836568110.1159/000471866
– reference: Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ: Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 2002; 159: 931-938.1249935210.1083/jcb.200209124
– reference: Al-Herz W, Babiker F: Acute Intravenous Infusion of Immunoglobulins Protects Against Myocardial Ischemia-Reperfusion Injury Through Inhibition of Caspase-3. Cell Physiol Biochem 2017; 42: 2295-2306.2884814810.1159/000480002
– reference: Roseborough G, Gao D, Chen L, Trush MA, Zhou S, Williams GM, Wei C: The mitochondrial K-ATP channel opener, diazoxide, prevents ischemia-reperfusion injury in the rabbit spinal cord. Am J Pathol 2006; 168: 1443-1451.1665161210.2353/ajpath.2006.050569
– reference: De Pascali F, Hemann C, Samons K, Chen CA, Zweier JL: Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry 2014; 53: 3679-3688.2475813610.1021/bi500076r
– reference: Nakagiri A, Sunamoto M, Takeuchi K, Murakami M: Evidence for the involvement of NADPH oxidase in ischemia/reperfusion-induced gastric damage via angiotensin II. J Physiol Pharmacol 2010; 61: 171-179.20436217
– reference: McCully JD, Wakiyama H, Hsieh YJ, Jones M, Levitsky S: Differential contribution of necrosis and apoptosis in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2004; 286:H1923-1935.1471550910.1152/ajpheart.00935.2003
– reference: Matsui N, Kasajima K, Hada M, Nagata T, Senga N, Yasui Y, Fukuishi N, Akagi M: Inhibiton of NF-kappaB activation during ischemia reduces hepatic ischemia/reperfusion injury in rats. J Toxicol Sci 2005; 30: 103-110.1592845810.2131/jts.30.103
– reference: Linas SL, Whittenburg D, Parsons PE, Repine JE: Mild renal ischemia activates primed neutrophils to cause acute renal failure. Kidney Int 1992; 42: 610-616.140533910.1038/ki.1992.325
– reference: Kietadisorn R, Juni RP, Moens AL: Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. Am J Physiol Endocrinol Metab 2012; 302:E481-495.2216752210.1152/ajpendo.00540.2011
– reference: Zhu J, Yao K, Wang Q, Guo J, Shi H, Ma L, Liu H, Gao W, Zou Y, Ge J: Ischemic Postconditioning-Regulated miR-499 Protects the Rat Heart Against Ischemia/Reperfusion Injury by Inhibiting Apoptosis through PDCD4. Cell Physiol Biochem 2016; 39: 2364-2380.2783262610.1159/000452506
– reference: Crabtree MJ, Channon KM: Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide 2011; 25: 81-88.2155041210.1016/j.niox.2011.04.004
– reference: Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P: Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922-930.2001078310.1038/cdd.2009.184
– reference: Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM: Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant 2013; 13: 2797-2804.2410302910.1111/ajt.12448
– reference: Ma S, Wang Y, Chen Y, Cao F: The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta 2015; 1852: 271-276.2485922610.1016/j.bbadis.2014.05.010
– reference: Kusaka I, Kusaka G, Zhou C, Ishikawa M, Nanda A, Granger DN, Zhang JH, Tang J: Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Am J Physiol Heart Circ Physiol 2004; 286:H2442-2451.1514806210.1152/ajpheart.01169.2003
– reference: Wu H, Wang Y, Wu C, Yang P, Li H, Li Z: Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission. J Agric Food Chem 2016; 64: 9356-9367.2796027910.1021/acs.jafc.6b04549
– reference: Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N: Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 20172894117110.1111/jcmm.13330
– reference: Wu MY, Li CJ, Hou MF, Chu PY: New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 182893765210.3390/ijms18102034
– reference: Granger D, R Kvietys P: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 523-551.2648480210.1016/j.redox.2015.08.020
– reference: Nauta RJ, Tsimoyiannis E, Uribe M, Walsh DB, Miller D, Butterfield A: The role of calcium ions and calcium channel entry blockers in experimental ischemia-reperfusion-induced liver injury. Ann Surg 1991; 213: 137-142.199294010.1097/00000658-199102000-00008
– reference: Ling Q, Yu X, Wang T, Wang SG, Ye ZQ, Liu JH: Roles of the Exogenous H2S-Mediated SR-A Signaling Pathway in Renal Ischemia/ Reperfusion Injury in Regulating Endoplasmic Reticulum Stress-Induced Autophagy in a Rat Model. Cell Physiol Biochem 2017; 41: 2461-2474.2847278610.1159/000475915
– reference: Xu S, Cherok E, Das S, Li S, Roelofs BA, Ge SX, Polster BM, Boyman L, Lederer WJ, Wang C, Karbowski M: Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein. Mol Biol Cell 2016; 27: 349-359.2656479610.1091/mbc.E15-09-0678
– reference: Hotchkiss RS, Strasser A, McDunn JE, Swanson PE: Cell death. N Engl J Med 2009; 361: 1570-1583.1982853410.1056/NEJMra0901217
– reference: Bedard K, Krause K-H: The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol Rev 2007; 87: 245-313.1723734710.1152/physrev.00044.2005
– reference: Kurose I, Wolf R, Grisham MB, Granger DN: Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 1994; 74: 376-382.811894610.1161/01.RES.74.3.376
– reference: Jing N, Fang B, Wang ZL, Ma H: Remote Ischemia Preconditioning Attenuates Blood-Spinal Cord Barrier Breakdown in Rats Undergoing Spinal Cord Ischemia Reperfusion Injury: Associated with Activation and Upregulation of CB1 and CB2 Receptors. Cell Physiol Biochem 2017; 43: 2516-2524.2913094110.1159/000484460
– reference: Grek A, Booth S, Festic E, Maniaci M, Shirazi E, Thompson K, Starbuck A, McRee C, Naessens JM, Moreno Franco P: Sepsis and Shock Response Team: Impact of a Multidisciplinary Approach to Implementing Surviving Sepsis Campaign Guidelines and Surviving the Process. Am J Med Qual 2017; 32: 500-507.2783716310.1177/1062860616676887
– reference: Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP: Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 2008; 51: 211-217.1808695610.1161/HYPERTENSIONAHA.107.100214
– reference: Zhu S, Xu T, Luo Y, Zhang Y, Xuan H, Ma Y, Pan D, Li D, Zhu H: Luteolin Enhances Sarcoplasmic Reticulum Ca2+-ATPase Activity through p38 MAPK Signaling thus Improving Rat Cardiac Function after Ischemia/ Reperfusion. Cell Physiol Biochem 2017; 41: 999-1010.2822242110.1159/000460837
– reference: Mousa SA, Brown R, Thoolen MJ, Smith RD: Evaluation of the effect of azapropazone on neutrophil migration in regional myocardial ischaemia/reperfusion injury in rabbits. Br J Pharmacol 1990; 100: 379-382.216584010.1111/j.1476-5381.1990.tb15813.x
– reference: Lv Y, Ren Y, Sun L, Wang S, Wei M, Jia D: Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats. Cell Biochem Biophys 2013; 66: 357-363.2321217810.1007/s12013-012-9474-7
– reference: Harrison R: Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 2002; 33: 774-797.1220836610.1016/S0891-5849(02)00956-5
– reference: Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS: Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010; 467: 863-867.2094474910.1038/nature09413
– reference: Sedeek M, Nasrallah R, Touyz RM, Hébert RL: NADPH Oxidases, Reactive Oxygen Species, and the Kidney: Friend and Foe. J Am Soc Nephrol 2013; 24: 1512-1518.2397012410.1681/ASN.2012111112
– reference: Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quindere AL, Montessuit C, Krause KH, Mach F, Jaquet V: Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 2013; 64: 99-107.2405136910.1016/j.yjmcc.2013.09.007
– reference: Tong G, Zhang B, Zhou X, Zhao J, Sun Z, Tao Y, Pei J, Zhang W: Kappa-Opioid Agonist U50, 488H-Mediated Protection Against Heart Failure Following Myocardial Ischemia/Reperfusion: Dual Roles of Heme Oxygenase-1. Cell Physiol Biochem 2016; 39: 2158-2172.2780242910.1159/000447911
– reference: Kim CR, Kim JH, Park HL, Park CK: Ischemia Reperfusion Injury Triggers TNFalpha Induced-Necroptosis in Rat Retina. Curr Eye Res 2017; 42: 771-779.2773210910.1080/02713683.2016.1227449
– reference: Liu A, Huang L, Guo E, Li R, Yang J, Li A, Yang Y, Liu S, Hu J, Jiang X, Dirsch O, Dahmen U, Sun J: Baicalein pretreatment reduces liver ischemia/reperfusion injury via induction of autophagy in rats. Sci Rep 2016; 6: 25042.2715084310.1038/srep25042
– reference: Briegel J, Mohnle P: [International guidelines of the Surviving Sepsis Campaign : update 2012]. Anaesthesist 2013; 62: 304-309.2355871810.1007/s00101-013-2158-x
– reference: Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B: Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 2006; 126: 163-175.1683988410.1016/j.cell.2006.06.021
– reference: Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 2005; 132: 233-238.1580217710.1016/j.neuroscience.2004.12.038
– reference: Berry CE, Hare JM: Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 2004; 555: 589-606.1469414710.1113/jphysiol.2003.055913
– reference: Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R: Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013; 39: 165-228.2336162510.1007/s00134-012-2769-8
– reference: Chen X, Zhang X, Xue L, Hao C, Liao W, Wan Q: Treatment with Enriched Environment Reduces Neuronal Apoptosis in the Periinfarct Cortex after Cerebral Ischemia/Reperfusion Injury. Cell Physiol Biochem 2017; 41: 1445-1456.2846797710.1159/000468368
– reference: Paravicini TM, Touyz RM: NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31:S170-180.1822748110.2337/dc08-s247
– reference: Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J: RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell death and differentiation 2010; 17: 482-487.1992715810.1038/cdd.2009.178
– reference: Lang J, Li W, Meng Z, Liu Y, Patel R: The protective effect of nitrite on liver ischemia reperfusion injury during transplantation. 2009.
– reference: Shinbo T, Kokubo K, Sato Y, Hagiri S, Hataishi R, Hirose M, Kobayashi H: Breathing nitric oxide plus hydrogen gas reduces ischemia-reperfusion injury and nitrotyrosine production in murine heart. Am J Physiol Heart Circ Physiol 2013; 305:H542-550.2377169010.1152/ajpheart.00844.2012
– reference: Wood KC, Gladwin MT: The hydrogen highway to reperfusion therapy. Nat Med 2007; 13: 673-674.1755433210.1038/nm0607-673
– reference: Miller AA, Dusting GJ, Roulston CL, Sobey CG: NADPH-oxidase activity is elevated in penumbral and ischemic cerebral arteries following stroke. Brain Res 2006; 1111: 111-116.1687980610.1016/j.brainres.2006.06.082
– reference: Liu F, Ni W, Zhang J, Wang G, Li F, Ren W: Administration of Curcumin Protects Kidney Tubules Against Renal Ischemia-Reperfusion Injury (RIRI) by Modulating Nitric Oxide (NO) Signaling Pathway. Cell Physiol Biochem 2017; 44: 401-411.2913212910.1159/000484920
– reference: Yokota H, Narayanan SP, Zhang W, Liu H, Rojas M, Xu Z, Lemtalsi T, Nagaoka T, Yoshida A, Brooks SE, Caldwell RW, Caldwell RB: Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion. Invest Ophthalmol Vis Sci 2011; 52: 8123-8131.2191793910.1167/iovs.11-8318
– reference: Carden DL, Granger DN: Pathophysiology of ischaemia–reperfusion injury. J Pathol 2000; 190: 255-266.1068506010.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6
– reference: Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, Carano RA, Cao TC, van Bruggen N, Bernstein L, Lee WP, Wu X, DeVoss J, Zhang J, Jeet S, Peng I, McKenzie BS, Roose-Girma M, Caplazi P, Diehl L, Webster JD, Vucic D: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ 2016; 23: 1565-1576.2717701910.1038/cdd.2016.46
– reference: Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH: Molecular biology of apoptosis in ischemia and reperfusion. J Invest Surg 2005; 18: 335-350.1631905510.1080/08941930500328862
– reference: Zhan G, Serrano F, Fenik P, Hsu R, Kong L, Pratico D, Klann E, Veasey SC: NADPH Oxidase Mediates Hypersomnolence and Brain Oxidative Injury in a Murine Model of Sleep Apnea. Am J Respir Crit Care Med 2005; 172: 921-929.1599446510.1164/rccm.200504-581OC
– reference: Hataishi R, Rodrigues AC, Neilan TG, Morgan JG, Buys E, Shiva S, Tambouret R, Jassal DS, Raher MJ, Furutani E, Ichinose F, Gladwin MT, Rosenzweig A, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M: Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006; 291:H379-384.1644367310.1152/ajpheart.01172.2005
– reference: Sugioka R, Shimizu S, Tsujimoto Y: Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 2004; 279: 52726-52734.1545919510.1074/jbc.M408910200
– reference: Liu H, Jing X, Dong A, Bai B, Wang H: Overexpression of TIMP3 Protects Against Cardiac Ischemia/ Reperfusion Injury by Inhibiting Myocardial Apoptosis Through ROS/Mapks Pathway. Cell Physiol Biochem 2017; 44: 1011-1023.2917920510.1159/000485401
– reference: Forstermann U, Sessa WC: Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33: 829-837, 837a-837d.2189048910.1093/eurheartj/ehr304
– reference: Gottlieb RA: Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 2011; 16: 233-238.2182152110.1177/1074248411409581
– reference: Shu L, Zhang W, Huang C, Huang G, Su G: Troxerutin Protects Against Myocardial Ischemia/Reperfusion Injury Via Pi3k/Akt Pathway in Rats. Cell Physiol Biochem 2017; 44: 1939-1948.2924116110.1159/000485884
– reference: Wu B, Lin R, Dai R, Chen C, Wu H, Hong M: Valsartan attenuates oxidative stress and NF-κB activation and reduces myocardial apoptosis after ischemia and reperfusion. Eur J Pharmacol 2013; 705: 140-147.2349969110.1016/j.ejphar.2013.02.036
– reference: Bice JS, Jones BR, Chamberlain GR, Baxter GF: Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Res Cardiol 2016; 1112691206410.1007/s00395-016-0540-y
– reference: Nagasaka Y, Buys ES, Spagnolli E, Steinbicker AU, Hayton SR, Rauwerdink KM, Brouckaert P, Zapol WM, Bloch KD: Soluble guanylate cyclase-alpha1 is required for the cardioprotective effects of inhaled nitric oxide. Am J Physiol Heart Circ Physiol 2011; 300:H1477-1483.2125791510.1152/ajpheart.00948.2010
– reference: Phillips L, Toledo AH, Lopez-Neblina F, Anaya-Prado R, Toledo-Pereyra LH: Nitric oxide mechanism of protection in ischemia and reperfusion injury. J Invest Surg 2009; 22: 46-55.1919115710.1080/08941930802709470
– reference: Calo L, Dong Y, Kumar R, Przyklenk K, Sanderson TH: Mitochondrial dynamics: an emerging paradigm in ischemia-reperfusion injury. Curr Pharm Des 2013; 19: 6848-6857.2359015710.2174/138161281939131127110701
– reference: Paysant JR, Rupin A, Verbeuren TJ: Effect of NADPH Oxidase Inhibition on E-Selectin Expression Induced by Concomitant Anoxia/Reoxygenation and TNF-α. Endothelium 2002; 9: 263-271.1257285710.1080/10623320214737
– reference: Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans J-P, Vrints CJ, Kass DA: High-Dose Folic Acid Pretreatment Blunts Cardiac Dysfunction During Ischemia Coupled to Maintenance of High-Energy Phosphates and Reduces Postreperfusion Injury. Circulation 2008; 117: 1810-1819.1836223310.1161/CIRCULATIONAHA.107.725481
– reference: Forstermann U, Munzel T: Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113: 1708-1714.1658540310.1161/CIRCULATIONAHA.105.602532
– reference: Zeng Q, Fu Q, Wang X, Zhao Y, Liu H, Li Z, Li F: Protective Effects of Sonic Hedgehog Against Ischemia/ Reperfusion Injury in Mouse Skeletal Muscle via AKT/mTOR/p70S6K Signaling. Cell Physiol Biochem 2017; 43: 1813-1828.2906541410.1159/000484068
– reference: Gianni D, Taulet N, Zhang H, DerMardirossian C, Kister J, Martinez L, Roush WR, Brown SJ, Bokoch GM, Rosen H: A novel and specific NADPH oxidase-1 (Nox1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 2010; 5: 981-993.2071584510.1021/cb100219n
– reference: Neye N, Enigk F, Shiva S, Habazettl H, Plesnila N, Kuppe H, Gladwin MT, Kuebler WM: Inhalation of NO during myocardial ischemia reduces infarct size and improves cardiac function. Intensive Care Med 2012; 38: 1381-1391.2265337010.1007/s00134-012-2605-1
– reference: Perkins K-AA, Pershad S, Chen Q, McGraw S, Adams JS, Zambrano C, Krass S, Emrich J, Bell B, Iyamu M, Prince C, Kay H, Teng JC-w, Young LH: The effects of modulating eNOS activity and coupling in ischemia/ reperfusion (I/R). Naunyn Schmiedebergs Arch Pharmacol 2012; 385: 27-38.2194725410.1007/s00210-011-0693-z
– reference: Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ, Lips DJ, Doevendans PA: Role of apoptosis in reperfusion injury. Cardiovasc Res 2004; 61: 414-426.1496247310.1016/j.cardiores.2003.12.023
– reference: Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW: NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12.2809592310.1186/s13024-017-0150-7
– reference: Chen CB, Liu LS, Zhou J, Wang XP, Han M, Jiao XY, He XS, Yuan XP: Up-Regulation of HMGB1 Exacerbates Renal Ischemia-Reperfusion Injury by Stimulating Inflammatory and Immune Responses through the TLR4 Signaling Pathway in Mice. Cell Physiol Biochem 2017; 41: 2447-2460.2847279710.1159/000475914
– reference: Li CJ, Liao WT, Wu MY, Chu PY: New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci 2017; 182875395910.3390/ijms18071566
– reference: Chen C, Chen W, Nong Z, Ma Y, Qiu S, Wu G: Cardioprotective Effects of Combined Therapy with Hyperbaric Oxygen and Diltiazem Pretreatment on Myocardial Ischemia-Reperfusion Injury in Rats. Cell Physiol Biochem 2016; 38: 2015-2029.2716009110.1159/000445561
– reference: Tatham AL, Crabtree MJ, Warrick N, Cai S, Alp NJ, Channon KM: GTP cyclohydrolase I expression, protein, and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression. J Biol Chem 2009; 284: 13660-13668.1928665910.1074/jbc.M807959200
– reference: Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, Kim KW, Lee KH: Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) 1997; 20: 127-140.2360430510.1007/s11357-997-0012-2
– reference: Abramov AY, Scorziello A, Duchen MR: Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 2007; 27: 1129-1138.1726756810.1523/JNEUROSCI.4468-06.2007
– reference: Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P, Nediani C: Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia-reperfusion. J Cell Mol Med 2009; 13: 2724-2735.1875481510.1111/j.1582-4934.2008.00485.x
– reference: Peralta C, Prats N, Xaus C, Gelpi E, Rosello-Catafau J: Protective effect of liver ischemic preconditioning on liver and lung injury induced by hepatic ischemia-reperfusion in the rat. Hepatology 1999; 30: 1481-1489.1057352810.1002/hep.510300622
– reference: Oudot A, Vergely C, Ecarnot-Laubriet A, Rochette L: Angiotensin II activates NADPH oxidase in isolated rat hearts subjected to ischaemia–reperfusion. Eur J Pharmacol 2003; 462: 145-154.1259110710.1016/S0014-2999(03)01315-3
– reference: Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, Barit D, Schwarz T, Geis C, Kraft P, Barthel K, Schuhmann MK, Herrmann AM, Meuth SG, Stoll G, Meurer S, Schrewe A, Becker L, Gailus-Durner V, Fuchs H, Klopstock T, de Angelis MH, Jandeleit-Dahm K, Shah AM, Weissmann N, Schmidt HHHW: Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLOS Biol 2010; 8:e1000479.2087771510.1371/journal.pbio.1000479
– reference: Crabtree MJ, Tatham AL, Al-Wakeel Y, Warrick N, Hale AB, Cai S, Channon KM, Alp NJ: Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 2009; 284: 1136-1144.1901123910.1074/jbc.M805403200
– reference: Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P: Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 2008; 8: 207-220.1847382010.2174/156652408784221306
– reference: Xu Z, Yu J, Wu J, Qi F, Wang H, Wang Z: The Effects of Two Anesthetics, Propofol and Sevoflurane, on Liver Ischemia/Reperfusion Injury. Cell Physiol Biochem 2016; 38: 1631-1642.2711951310.1159/000443103
– reference: Hoehn RS, Seitz AP, Jernigan PL, Gulbins E, Edwards MJ: Ischemia/Reperfusion Injury Alters Sphingolipid Metabolism in the Gut. Cell Physiol Biochem 2016; 39: 1262-1270.2760791510.1159/000447831
– reference: Wang HB, Yang J, Ding JW, Chen LH, Li S, Liu XW, Yang CJ, Fan ZX: RNAi-Mediated Down-Regulation of CD47 Protects against Ischemia/Reperfusion-Induced Myocardial Damage via Activation of eNOS in a Rat Model. Cell Physiol Biochem 2016; 40: 1163-1174.2796018710.1159/000453170
– reference: Granger DN, Kvietys PR: Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6: 524-551.2648480210.1016/j.redox.2015.08.020
– reference: Qin J, Zhou J, Dai X, Zhou H, Pan X, Wang X, Zhang F, Rao J, Lu L: Short-term starvation attenuates liver ischemia-reperfusion injury (IRI) by Sirt1-autophagy signaling in mice. Am J Transl Res 2016; 8: 3364-337527648127
– reference: Liu X, Huang Y, Pokreisz P, Vermeersch P, Marsboom G, Swinnen M, Verbeken E, Santos J, Pellens M, Gillijns H, Van de Werf F, Bloch KD, Janssens S: Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion. J Am Coll Cardiol 2007; 50: 808-817.1770718810.1016/j.jacc.2007.04.069
– reference: Park HS, Chun JN, Jung HY, Choi C, Bae YS: Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 2006; 72: 447-455.1706467510.1016/j.cardiores.2006.09.012
– reference: Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP: Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43: 304-377.2810160510.1007/s00134-017-4683-6
– reference: Gao Y, Yang H, Chi J, Xu Q, Zhao L, Yang W, Liu W: Hydrogen Gas Attenuates Myocardial Ischemia Reperfusion Injury Independent of Postconditioning in Rats by Attenuating Endoplasmic Reticulum Stress-Induced Autophagy. Cell Physiol Biochem 2017; 43: 1503-1514.2903587610.1159/000481974
– reference: Zepeda R, Kuzmicic J, Parra V, Troncoso R, Pennanen C, Riquelme JA, Pedrozo Z, Chiong M, Sanchez G, Lavandero S: Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury. J Cardiovasc Pharmacol 2014; 63: 477-487.2447704410.1097/FJC.0000000000000071
– reference: Barth BM, Stewart-Smeets S, Kuhn TB: Proinflammatory Cytokines Provoke Oxidative Damage to Actin in Neuronal Cells Mediated by Rac1 and NADPH oxidase. Mol Cell Neurosci 2009; 41: 274-285.1934476610.1016/j.mcn.2009.03.007
– reference: Simone S, Rascio F, Castellano G, Divella C, Chieti A, Ditonno P, Battaglia M, Crovace A, Staffieri F, Oortwijn B, Stallone G, Gesualdo L, Pertosa G, Grandaliano G: Complement-dependent NADPH oxidase enzyme activation in renal ischemia/reperfusion injury. Free Radic Biol Med 2014; 74: 263-273.2501796710.1016/j.freeradbiomed.2014.07.003
– reference: Jones AE, Puskarich MA: The Surviving Sepsis Campaign guidelines 2012: update for emergency physicians. Ann Emerg Med 2014; 63: 35-47.2406775510.1016/j.annemergmed.2013.08.004
– reference: Zuo Y, Wang Y, Hu H, Cui W: Atorvastatin Protects Myocardium Against Ischemia-Reperfusion Injury Through Inhibiting miR-199a-5p. Cell Physiol Biochem 2016; 39: 1021-1030.2753706610.1159/000447809
– reference: Granger DN, Korthuis RJ: Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995; 57: 311-332.777887110.1146/annurev.ph.57.030195.001523
– reference: Li Y, Trush MA: Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 1998; 253: 295-299.987853110.1006/bbrc.1998.9729
– reference: Di Lisa F, Bernardi P: Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006; 70: 191-199.1649728610.1016/j.cardiores.2006.01.016
– reference: Yoshida N, Yoshikawa T, Nakamura Y, Arai M, Matsuyama K, Iinuma S, Yagi N, Naito Y, Miyasaka M, Kondo M: Role of neutrophil-mediated inflammation in aspirin-induced gastric mucosal injury. Dig Dis Sci 1995; 40: 2300-2304.758780510.1007/BF02063228
– reference: Lee M-C-i, Velayutham M, Komatsu T, Hille R, Zweier JL: Measurement and Characterization of Superoxide Generation from Xanthine Dehydrogenase: A Redox-Regulated Pathway of Radical Generation in Ischemic Tissues. Biochemistry 2014; 53: 6615-6623.2524382910.1021/bi500582r
– reference: Alkaitis MS, Crabtree MJ: Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling. Curr Heart Fail Rep 2012; 9: 200-210.2271131310.1007/s11897-012-0097-5
– reference: Dewald B, Baggiolini M: Activation of NADPH oxidase in human neutrophils. Synergism between fMLP and the neutrophil products PAF and LTB4. Biochem Biophys Res Commun 1985; 128: 297-304.298507510.1016/0006-291X(85)91678-X
– reference: Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH: 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Soc Cardiovasc Angiography Interv 2011; 58:e44-e122.2207083410.1016/j.jacc.2011.08.007
– reference: Cantu-Medellin N, Kelley EE: Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biol 2013; 1: 353-358.2402417110.1016/j.redox.2013.05.002
– reference: Brandes RP, Weissmann N, Schröder K: Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76: 208-226.2515778610.1016/j.freeradbiomed.2014.07.046
– reference: Silvestri L, van Saene HK, Rommes JH, Petros AJ, de la Cal MA, Bion JF: Surviving Sepsis Campaign guidelines 2016: omission of selective decontamination of the digestive tract deprives patients of a level 2B therapy. Minerva Anestesiol 20172860734410.23736/S0375-9393.17.12105-X
– reference: Gustafsson AB, Gottlieb RA: Eat your heart out: Role of autophagy in myocardial ischemia/reperfusion. Autophagy 2008; 4: 416-421.18253087
– reference: Donoso P, Finkelstein JP, Montecinos L, Said M, Sánchez G, Vittone L, Bull R: Stimulation of NOX2 in isolated hearts reversibly sensitizes RyR2 channels to activation by cytoplasmic calcium. J Mol Cell Cardiol 2014; 68: 38-46.2441796110.1016/j.yjmcc.2013.12.028
– reference: Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR: Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67: 1016-1023.683166510.1161/01.CIR.67.5.1016
– reference: McCann SK, Dusting GJ, Roulston CL: Early increase of Nox4 NADPH oxidase and superoxide generation following endothelin-1-induced stroke in conscious rats. J Neurosci Res 2008; 86: 2524-2534.1843894210.1002/jnr.21700
– reference: McCann SK, Roulston CL: NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3: 561-598.2496141510.3390/brainsci3020561
– reference: Decuypere JP, Ceulemans LJ, Agostinis P, Monbaliu D, Naesens M, Pirenne J, Jochmans I: Autophagy and the Kidney: Implications for Ischemia-Reperfusion Injury and Therapy. Am J Kidney Dis 2015; 66: 699-709.2616972110.1053/j.ajkd.2015.05.021
– reference: Saeed WK, Jun DW, Jang K, Chae YJ, Lee JS, Kang HT: Does necroptosis have a crucial role in hepatic ischemia-reperfusion injury? PLoS One 2017; 12:e0184752.2895735010.1371/journal.pone.0184752
SSID ssj0015792
Score 2.66532
SecondaryResourceType review_article
Snippet Ischemia-reperfusion injury is associated with serious clinical manifestations, including myocardial hibernation, acute heart failure, cerebral dysfunction,...
SourceID doaj
proquest
pubmed
crossref
karger
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1650
SubjectTerms Anti-Inflammatory Agents - therapeutic use
Apoptosis
Autophagy
Humans
Ischemia
Ischemia-reperfusion injury
Mitochondrial Degradation
Mitoptosis
NADPH Oxidases - metabolism
Necroptosis
NF-kappa B - metabolism
Nitric oxide
Oxidation
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reperfusion Injury - metabolism
Reperfusion Injury - pathology
Reperfusion Injury - therapy
Review
Rodents
Xanthine Oxidase - metabolism
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yEL2IzqnVKVE8eClrzEfTk7jh2ISJBwe7lSxNwA-6sY-D_70vTVtUFC9em0favJfmvV-S93sIXRLFZcQjHRpGbMgybUMVaRJyriOuhQCn4XKHRw9iMGb3Ez75VOrL3Qnz9MBecR1BI0WlgmVUUWY5nQquY2NZop2v1sXqCz6vAlPl-QGPE3_OSXgoAVaXnELguztFGjWgDvLFExWE_eCFXt3968Xv4Wbhdvq7aKeMF_Gt_849tGHyJtr0FSTfm2irVxVs20c3JdcSHhmXzlswMOOeT0tc4uccDwHJgrTCKs8wRN5mYdduswwP8xdQbQuN-3dPvUFY1kcINU_ECgamDVXTa04ZxFEGsFqiI0spYCjJHE29oEJIQUAqZsZSx_xCQHMkkokxEHsdoEY-y80RwmCoLKJKSgDaTGVaikxlwsYZYYRZQgJ0Vekq1SV5uKth8ZYWIIInaa3WAF3UonPPmPGTUNcpvBZwJNfFAzB9Wpo-_cv0AWp5c9XdVJ23vz3vPXZ9UzrPLDRXxk3LH3aZAg4G5Mgh-grQed0MBnTnJyo3szXIOKp_WOGdzKGfFPUbrhORANaUx_8xsBO0DXGZ9Ds9bdRYLdbmFGKf1fSsmOYfZQH43w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Karger Open Access Journals
  dbid: M--
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3NS8MwFA-iiF5E59TplCgevASb5WPpSdxwbMLEg4PdSpYm4gfd2MfB_96Xpi1M3LV5bZq8pO_3S_p-QeiWaqEiERliOXWEp8YRHRlKhDCRMFJC0PC5w8MX2R_x57EYF-sdPhfmy___nEujVtoCEHDv89xnoArAc3aARzH_896QkGq_QLTjsK9JBVFAowsNobVbve5vLGNgBGotCOVa_RCAQtWbkWYecXqH6KCAivgx-PYIbdmshnbD4ZE_NbTXLc9qO0YPhcwSHlqfyZuLL-NuyEhc4I8MD4DEgrXGOksxgG47dyu_ToYH2Sf0ah2Nek9v3T4pjkYgRsRyCW00lulJSzAOEMoCTYtN5BgD-qS4V6iXTEolKVi1uXXMi75QxwEbqNhagF0naDubZvYMYfBRGjGtFHBsrlOjZKpT6dop5ZQ7ShvoruyrxBS64f74iu8k5w8iTqoebqCbynQWxDL-M-r4Dq8MvL51fmE6f0-K6ZJIFmmmNARPzbgTbCKFaVtogPEIzbQaqB7cVT2mfHjzz_XuaycUJbPUQXHp3KSYq4sEKDCQRgHAq4Guq2JwoN860ZmdrsDGq_zDx93bnIZBUdVQDqrzDe90gfYBZamwbtNE28v5yl4CkllOrvJB_Avmx-W3
  priority: 102
  providerName: Karger AG
Title Current Mechanistic Concepts in Ischemia and Reperfusion Injury
URI https://karger.com/doi/10.1159/000489241
https://www.ncbi.nlm.nih.gov/pubmed/29694958
https://www.proquest.com/docview/2117165355
https://www.proquest.com/docview/2031421955
https://doaj.org/article/630a38a128a34f53b65c7ef49c5600c2
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFYJLVUqhW8rKIA5crMbrR5xTxa5atUhbVYhKe4u8flRAlV32ceDfMxM7QaDCJYd45Cgex_N94_gbQt5zq0yhCseC5JFJ7yKzheNMKVcopzUEDTw7PL3Wl7fy00zNcsJtnX-r7NbEdqH2C4c58lMgKgDtFYTHs-UPhlWjcHc1l9B4THZRugxndTnrCRdXZZV2O7liBsh1VhaCCH7aHqYG7sH_iEetbD_Eou_4F_bq36CzDT4X-2Qvo0b6Mbn5OXkUmgPyJNWR_HlAnk66sm0vyFlWXKLTgId6Wx1mOkmHE9f0a0OvgM-CtaW28RTwd1jFLabM6FXzDQb4kNxenH-ZXLJcJYE5VekNvJgLws5HSkhAUwEYW-WKKAQwKSNRrF4LrY3mYFXKEAXqv_AoASaYKgRAYC_JTrNowhGh4C5fCGsM0G1pvTPaW69j6bnkMnI-IB-6sapdlhDHShb3dUslVFX3wzog73rTZdLNeMhojAPeG6DUdXtjsbqr85dTa1FYYSzEUStkVGKulSsDvIBDsOZGA3KY3NV303V-8tf9yc04NdVLH6G5c26dP9t1_XuSDcjbvhkciLsotgmLLdig4D-s82jzKk2K_gmjSlfAOM3x_zt_TZ4B7jIpk3NCdjarbXgD2GYzH7YTeEh2x-fXN5-HbYYArlPGfgFCQPRo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReKiil3baAQSBxiRrHjzgHVNGFapd2Kw6ttDfjdWzEQ9llH6r6p_iNjOMkCATceo1HtuIZe77P9swAvKBGqFSkNnGc-oSX1icmtTQRwqbCSolOI8QOjy7k4Iq_H4vxGvxoY2HCs8p2T6w36nJqwxn5ERIVhPYC3ePx7HsSqkaF29W2hEY0izN3c42UbfF6-Bb1-zLLTt9d9gdJU1UgsaKQy0QV1jEzyQTjiD4cMpzCpp4xZB6Kh-TukkmpJEWpnDvPQr4U6jm6VVU4h4gF-70Dd9HxpoHs5eOO4FGRF_F2lQocRuVNJiNEDEd18DZyHfqb_6vLBKDv-xpefc__DXJrZ3d6H7YalEreRLN6AGuu2oZ7sW7lzTZs9NsycQ_huMnwREYuBBHXeZ9JPwZDLsjnigyRP6O0IaYqCeJ9N_ercERHhtUXVOgOXN3K_D2C9WpauT0gaB5lyoxSSO-5Ka2SpSmlz0vKKfeU9uBVO1faNinLQ-WMb7qmLqLQ3bT24HknOot5Ov4mdBImvBMIqbXrD9P5J92sVC1Zapgy6LcN416wiRQ2d_gDNoBDm_VgJ6qr66bt_PCP7_0PJ7FJz0qPza1ydbNNLPQvo-7Bs64ZFRhubUzlpiuUCQUG0K8Emd1oFN0IWSELZLhq__-dP4WNweXoXJ8PL84OYBMxn4qnSIewvpyv3GPEVcvJk9qYCXy87dXzE2KOKl0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrXhcEJRCtxQwCCQu0cbxI84BVey2qy6lqxWiUm_B69hVocou-1DVv8avYxwnQSDg1ms8shXP2PN9tmcG4DXVQsUiNpHl1EW8MC7SsaGRECYWRkp0Gj52-GQsj075hzNxtgE_mlgY_6yy2ROrjbqYGX9G3kOigtBeoHvsufpZxORguD__HvkKUv6mtSmnEUzk2F5fIX1bvhsdoK7fJMnw8PPgKKorDERGZHIVqcxYpqeJYByRiEW2k5nYMYYsRHGf6F0yKZWkKJVy65jPnUIdRxerMmsRvWC_t2Az9ayoA5v9w_HkU3uHIdIs3LVSgQOptM5rhPihV4VyI_Ohv3nDqmgAesJv_g344t-Qt3J9wwdwv8as5H0wsoewYcstuB2qWF5vwd1BUzTuEezX-Z7IifUhxVUWaDIIoZFLclGSEbJplNZElwVB9G8Xbu0P7Mio_Irq3YbTG5nBx9ApZ6XdAYLGUsRMK4Vkn-vCKFnoQrq0oJxyR2kX3jZzlZs6gbmvo3GZV0RGZHk7rV141YrOQ9aOvwn1_YS3Aj7RdvVhtjjP63WbSxZrpjR6cc24E2wqhUkt_oDxUNEkXdgO6mq7aTrf--P7YNIPTfm8cNjcKDevN41l_svEu_CybUYF-jscXdrZGmV8uQH0Ml7mSTCKdoQkkxnyXbX7_85fwB1cOfnH0fj4KdxDAKjCkdIedFaLtX2GIGs1fV5bM4EvN72AfgLxIC_4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Mechanistic+Concepts+in+Ischemia+and+Reperfusion+Injury&rft.jtitle=Cellular+physiology+and+biochemistry&rft.au=Meng-Yu%2C+Wu&rft.au=Giou-Teng+Yiang&rft.au=Wan-Ting%2C+Liao&rft.au=Tsai%2C+Andy+Po-Yi&rft.date=2018-01-01&rft.pub=S.+Karger+AG&rft.issn=1015-8987&rft.eissn=1421-9778&rft.volume=46&rft.issue=4&rft.spage=1650&rft.epage=1667&rft_id=info:doi/10.1159%2F000489241&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-8987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-8987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-8987&client=summon