Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study

The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-resp...

Full description

Saved in:
Bibliographic Details
Published inTranslational psychiatry Vol. 10; no. 1; p. 232
Main Authors Cattaneo, Annamaria, Ferrari, Clarissa, Turner, Lorinda, Mariani, Nicole, Enache, Daniela, Hastings, Caitlin, Kose, Melisa, Lombardo, Giulia, McLaughlin, Anna P., Nettis, Maria A., Nikkheslat, Naghmeh, Sforzini, Luca, Worrell, Courtney, Zajkowska, Zuzanna, Cattane, Nadia, Lopizzo, Nicola, Mazzelli, Monica, Pointon, Linda, Cowen, Philip J., Cavanagh, Jonathan, Harrison, Neil A., de Boer, Peter, Jones, Declan, Drevets, Wayne C., Mondelli, Valeria, Bullmore, Edward T., Pariante, Carmine M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.07.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin ( IL)-1-beta , IL-6 , TNF-alpha , macrophage inhibiting factor ( MIF ), glucocorticoid receptor ( GR ), SGK1 , FKBP5 , the purinergic receptor P2RX7 , CCL2 , CXCL12 , c-reactive protein ( CRP ), alpha-2-macroglobulin ( A2M ), acquaporin-4 ( AQP4 ), ISG15 , STAT1 and USP-18 . All genes but AQP4 , ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12 . Most interestingly, using binomial logistics models we found that a signature of six mRNAs ( P2RX7 , IL-1-beta, IL-6 , TNF-alpha, CXCL12 and GR ) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.
AbstractList The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.
The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin ( IL)-1-beta , IL-6 , TNF-alpha , macrophage inhibiting factor ( MIF ), glucocorticoid receptor ( GR ), SGK1 , FKBP5 , the purinergic receptor P2RX7 , CCL2 , CXCL12 , c-reactive protein ( CRP ), alpha-2-macroglobulin ( A2M ), acquaporin-4 ( AQP4 ), ISG15 , STAT1 and USP-18 . All genes but AQP4 , ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12 . Most interestingly, using binomial logistics models we found that a signature of six mRNAs ( P2RX7 , IL-1-beta, IL-6 , TNF-alpha, CXCL12 and GR ) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.
The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.
ArticleNumber 232
Author Sforzini, Luca
Zajkowska, Zuzanna
Pointon, Linda
Drevets, Wayne C.
Turner, Lorinda
Mondelli, Valeria
Mazzelli, Monica
Mariani, Nicole
Bullmore, Edward T.
Nettis, Maria A.
Kose, Melisa
Cattaneo, Annamaria
Worrell, Courtney
de Boer, Peter
Cowen, Philip J.
Enache, Daniela
Jones, Declan
Pariante, Carmine M.
Nikkheslat, Naghmeh
Lopizzo, Nicola
McLaughlin, Anna P.
Cattane, Nadia
Cavanagh, Jonathan
Lombardo, Giulia
Harrison, Neil A.
Hastings, Caitlin
Ferrari, Clarissa
Author_xml – sequence: 1
  givenname: Annamaria
  surname: Cattaneo
  fullname: Cattaneo, Annamaria
  organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli
– sequence: 2
  givenname: Clarissa
  surname: Ferrari
  fullname: Ferrari, Clarissa
  organization: Statistical Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli
– sequence: 3
  givenname: Lorinda
  surname: Turner
  fullname: Turner, Lorinda
  organization: Department of Medicine, School of Clinical Medicine, University of Cambridge
– sequence: 4
  givenname: Nicole
  surname: Mariani
  fullname: Mariani, Nicole
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 5
  givenname: Daniela
  surname: Enache
  fullname: Enache, Daniela
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 6
  givenname: Caitlin
  surname: Hastings
  fullname: Hastings, Caitlin
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 7
  givenname: Melisa
  surname: Kose
  fullname: Kose, Melisa
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 8
  givenname: Giulia
  surname: Lombardo
  fullname: Lombardo, Giulia
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 9
  givenname: Anna P.
  surname: McLaughlin
  fullname: McLaughlin, Anna P.
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 10
  givenname: Maria A.
  surname: Nettis
  fullname: Nettis, Maria A.
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 11
  givenname: Naghmeh
  surname: Nikkheslat
  fullname: Nikkheslat, Naghmeh
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 12
  givenname: Luca
  surname: Sforzini
  fullname: Sforzini, Luca
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 13
  givenname: Courtney
  surname: Worrell
  fullname: Worrell, Courtney
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 14
  givenname: Zuzanna
  orcidid: 0000-0002-5214-305X
  surname: Zajkowska
  fullname: Zajkowska, Zuzanna
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 15
  givenname: Nadia
  surname: Cattane
  fullname: Cattane, Nadia
  organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli
– sequence: 16
  givenname: Nicola
  surname: Lopizzo
  fullname: Lopizzo, Nicola
  organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli
– sequence: 17
  givenname: Monica
  surname: Mazzelli
  fullname: Mazzelli, Monica
  organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli
– sequence: 18
  givenname: Linda
  orcidid: 0000-0003-2738-8589
  surname: Pointon
  fullname: Pointon, Linda
  organization: Department of Psychiatry, School of Clinical Medicine, University of Cambridge
– sequence: 19
  givenname: Philip J.
  surname: Cowen
  fullname: Cowen, Philip J.
  organization: University of Oxford Department of Psychiatry, Warneford Hospital
– sequence: 20
  givenname: Jonathan
  surname: Cavanagh
  fullname: Cavanagh, Jonathan
  organization: Centre for Immunobiology, University of Glasgow and Sackler Institute of Psychobiological Research, Queen Elizabeth University Hospital
– sequence: 21
  givenname: Neil A.
  surname: Harrison
  fullname: Harrison, Neil A.
  organization: School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre
– sequence: 22
  givenname: Peter
  surname: de Boer
  fullname: de Boer, Peter
  organization: Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV
– sequence: 23
  givenname: Declan
  surname: Jones
  fullname: Jones, Declan
  organization: Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre
– sequence: 24
  givenname: Wayne C.
  surname: Drevets
  fullname: Drevets, Wayne C.
  organization: Janssen Research & Development, Neuroscience Therapeutic Area
– sequence: 25
  givenname: Valeria
  surname: Mondelli
  fullname: Mondelli, Valeria
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
– sequence: 26
  givenname: Edward T.
  surname: Bullmore
  fullname: Bullmore, Edward T.
  organization: Department of Psychiatry, School of Clinical Medicine, University of Cambridge
– sequence: 28
  givenname: Carmine M.
  orcidid: 0000-0002-9132-5091
  surname: Pariante
  fullname: Pariante, Carmine M.
  email: carmine.pariante@kcl.ac.uk
  organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32699209$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URMvQF2CBLLFhE_BfYmeDVEqBShVFCMTS8jg3M64SO9hOxbwcz4Y709LSRfHGlu937vWRz1O054MHhJ5T8poSrt4kQXmrKsJIRYiSopKP0AGjtao4VWrvznkfHaZ0QcqqhaKSPkH7nDVty0h7gH7_WIcBquUQQofh1xQhJRc8Dj12vh_MOJoURqiw8R1eDbMNNsTsbHBdFWEwGTo8fv18lHC5j2DzsMEJJhNLJeEcweQRfC5scikbn3EH2yFFN5nsSi3hPoYRd3FeVX0E2I4qyBR8cpdwizmP8xrwu9Pz9ydfcMpzt3mGHvdmSHB4vS_Q9w8n344_VWfnH0-Pj84qW7dNrhpDJKHFs5AgONCllcu-gZ7XxrZt3VrOeEM6IxRI25adyr7payBKMNPUjC_Q213faV6O0NnynmgGPUU3mrjRwTj9b8W7tV6FSy25bJgQpcGr6wYx_JwhZT26ZGEYjIcwJ80Ea-rC1rSgL--hF2GOvtgrlJKsVoz_h5JUyEaWnDxIsYZQrsrYBXpx191fWzcxKYDaATaGlCL02rpcviVcmXWDpkRfhVLvQqlLKPU2lMX-ArF70pvuD4r4TpQK7FcQb5_9gOoPlwf3Ng
CitedBy_id crossref_primary_10_1016_j_bbi_2021_03_024
crossref_primary_10_1016_j_euroneuro_2024_05_015
crossref_primary_10_1007_s40266_021_00858_2
crossref_primary_10_1371_journal_pone_0319737
crossref_primary_10_1176_appi_ajp_2021_21101043
crossref_primary_10_1016_j_nsa_2024_104082
crossref_primary_10_3389_fphar_2023_1148190
crossref_primary_10_1016_j_jad_2022_09_011
crossref_primary_10_1093_brain_awab187
crossref_primary_10_1016_j_euroneuro_2021_12_005
crossref_primary_10_1016_j_psyneuen_2024_107086
crossref_primary_10_1016_j_euroneuro_2023_12_003
crossref_primary_10_1016_j_bbih_2021_100323
crossref_primary_10_1093_ijnp_pyae041
crossref_primary_10_1038_s41398_021_01469_6
crossref_primary_10_1186_s40246_025_00733_w
crossref_primary_10_1124_jpet_123_001823
crossref_primary_10_1016_j_bbi_2025_01_002
crossref_primary_10_1016_j_neuropharm_2022_109366
crossref_primary_10_1177_02698811211069110
crossref_primary_10_1016_j_tins_2024_08_015
crossref_primary_10_3390_cells13050423
crossref_primary_10_3390_ijms24076664
crossref_primary_10_1016_j_bbih_2021_100335
crossref_primary_10_1016_j_jad_2024_01_080
crossref_primary_10_1080_14656566_2021_1951225
crossref_primary_10_3390_jcm9123918
crossref_primary_10_1016_j_lfs_2023_122025
crossref_primary_10_3389_fpsyt_2021_612471
crossref_primary_10_3389_fnins_2023_1234409
crossref_primary_10_1016_j_bbih_2023_100690
crossref_primary_10_1016_j_bbi_2022_05_012
crossref_primary_10_3389_fpsyt_2023_1291176
crossref_primary_10_1038_s41380_021_01160_8
crossref_primary_10_1038_s41398_021_01581_7
crossref_primary_10_1038_s41398_021_01323_9
crossref_primary_10_1038_s41573_021_00368_1
crossref_primary_10_3390_ncrna11020021
crossref_primary_10_1016_j_bbih_2021_100325
crossref_primary_10_1016_j_drudis_2023_103518
crossref_primary_10_1016_j_coemr_2022_100356
crossref_primary_10_2174_1570159X21666230809112028
crossref_primary_10_1016_j_bbih_2024_100886
crossref_primary_10_3390_molecules27031066
crossref_primary_10_1002_ajmg_b_32839
crossref_primary_10_1016_j_bbih_2021_100383
crossref_primary_10_1016_j_bbih_2022_100561
crossref_primary_10_1016_j_bbih_2021_100385
crossref_primary_10_5498_wjp_v11_i12_1191
crossref_primary_10_3390_ijms242216327
crossref_primary_10_1371_journal_pcbi_1009800
crossref_primary_10_1016_j_jad_2024_03_018
crossref_primary_10_1007_s12035_024_04420_0
crossref_primary_10_3390_ijms25158075
crossref_primary_10_1124_pharmrev_120_000043
crossref_primary_10_1080_14728222_2024_2366872
crossref_primary_10_1016_j_heliyon_2023_e13059
crossref_primary_10_3389_fpsyt_2023_1029467
Cites_doi 10.1016/j.bbi.2019.11.024
10.1016/j.jad.2012.10.036
10.4088/JCP.10m06745
10.1038/mp.2013.161
10.1007/s10637-019-00830-3
10.1016/j.bbi.2015.02.002
10.1016/j.euroneuro.2017.04.001
10.1192/bjp.bp.108.050278
10.1038/s41380-019-0474-5
10.1093/ijnp/pyw045
10.1016/j.psyneuen.2003.10.009
10.1038/npp.2012.191
10.1007/s00213-004-1925-4
10.1002/cem.2609
10.1038/s41380-018-0123-4
10.1016/j.psyneuen.2018.08.015
10.1016/j.psyneuen.2008.03.008
10.1038/s41380-018-0096-3
10.1038/tp.2012.14
10.1016/j.psyneuen.2018.07.016
10.1016/j.bbi.2020.02.010
10.1016/j.psyneuen.2018.09.005
10.1038/s41380-017-0002-4
10.1016/j.jad.2019.07.045
10.1037/t07827-000
10.1016/j.pnpbp.2017.11.003
10.1016/j.psyneuen.2017.01.023
10.1038/npp.2016.102
10.1038/npp.2016.50
10.1038/mp.2015.57
10.1016/j.bbi.2013.10.017
10.1192/bjp.2018.66
10.1038/mp.2015.67
10.1037/t06496-000
10.1016/S0006-3223(00)01088-X
10.1038/tp.2016.79
10.1186/1741-7015-11-28
10.4049/jimmunol.156.12.4815
10.1016/j.biopsych.2009.09.033
10.1038/npp.2008.44
10.1002/cem.785
10.1073/pnas.1816847116
10.1016/0278-5846(92)90056-K
10.1016/j.biopsych.2017.01.021
10.4088/JCP.11ac07225
10.1523/JNEUROSCI.2568-17.2018
10.1093/ijnp/pyx083
10.1017/S0033291711002947
10.1186/1476-9255-11-7
10.1038/sj.npp.1301362
10.1016/j.bcp.2017.12.021
10.1016/j.neuron.2015.05.036
10.1016/j.bbi.2012.10.007
10.1038/s41398-019-0589-0
10.1016/j.bbi.2019.02.021
10.1176/ajp.151.8.1132
10.1007/s00213-006-0555-4
10.1016/j.pnpbp.2005.03.014
10.1016/j.bbi.2015.06.001
10.3389/fpsyt.2019.00423
10.1007/s12035-017-0632-1
10.1017/S0033291719001454
10.1016/j.tins.2008.06.006
10.1016/j.jbi.2008.08.010
10.1073/pnas.1300886110
10.1515/revneuro-2018-0027
10.1016/j.euroneuro.2015.06.007
10.1038/nn.3275
10.1016/S0893-133X(01)00407-9
10.3390/ijms20112778
10.1038/s41398-018-0234-3
10.3389/fphar.2018.00030
10.1111/j.1365-3083.1995.tb03604.x
10.1038/mp.2017.205
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor the Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium
Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium
CorporateAuthor_xml – name: the Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium
– name: Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41398-020-00874-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
Publicly Available Content Database
MEDLINE

CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2158-3188
ExternalDocumentID PMC7376244
32699209
10_1038_s41398_020_00874_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust (Wellcome)
  grantid: 104025
  funderid: https://doi.org/10.13039/100004440
– fundername: DH | National Institute for Health Research (NIHR)
  funderid: https://doi.org/10.13039/501100000272
– fundername: Medical Research Council
  grantid: G108/603
– fundername: Wellcome Trust
  grantid: 104025
– fundername: Medical Research Council
  grantid: MR/N029488/1
– fundername: Medical Research Council
  grantid: MC_G0802534
– fundername: Medical Research Council
  grantid: MR/J002739/1
– fundername: ;
  grantid: 104025
– fundername: ;
GroupedDBID ---
0R~
3V.
53G
5VS
7X7
88E
8FI
8FJ
AAJSJ
AAKDD
ABUWG
ACGFO
ACGFS
ACMJI
ACSMW
ADBBV
ADFRT
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
KQ8
LGEZI
LOTEE
M1P
M~E
NADUK
NAO
NXXTH
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c596t-6a070169947e43e1bc7bf6ef35ac9959c32360da48e7c9da417f6f5e0842a6523
IEDL.DBID AAJSJ
ISSN 2158-3188
IngestDate Thu Aug 21 17:50:30 EDT 2025
Fri Jul 11 03:56:05 EDT 2025
Wed Aug 13 07:17:39 EDT 2025
Wed Aug 13 03:25:43 EDT 2025
Wed Aug 13 08:05:37 EDT 2025
Mon Jul 21 06:06:38 EDT 2025
Tue Jul 01 00:55:12 EDT 2025
Thu Apr 24 23:12:58 EDT 2025
Fri Feb 21 02:39:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-6a070169947e43e1bc7bf6ef35ac9959c32360da48e7c9da417f6f5e0842a6523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5214-305X
0000-0003-2738-8589
0000-0002-9132-5091
OpenAccessLink https://www.nature.com/articles/s41398-020-00874-7
PMID 32699209
PQID 2426013865
PQPubID 2041978
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376244
proquest_miscellaneous_2426537651
proquest_journals_2487258231
proquest_journals_2471476710
proquest_journals_2426013865
pubmed_primary_32699209
crossref_citationtrail_10_1038_s41398_020_00874_7
crossref_primary_10_1038_s41398_020_00874_7
springer_journals_10_1038_s41398_020_00874_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-23
PublicationDateYYYYMMDD 2020-07-23
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Translational psychiatry
PublicationTitleAbbrev Transl Psychiatry
PublicationTitleAlternate Transl Psychiatry
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KlengelTBinderEBEpigenetics of stress-related psychiatric disorders and gene × environment interactionsNeuron201586134313571:CAS:528:DC%2BC2MXht1Sgu7zN10.1016/j.neuron.2015.05.036
Capuron L., et al. Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacologyhttps://doi.org/10.1016/S0893-133X(01)00407-9 (2002).
First M., Spitzer R., Gibbon, WilliamsJ. B. W. Structured Clinical Interview for DSM-IV Axis Disorders—Patient Edition (SCID-I/P Version 2.0). (New York Biometrics Research Department, New York State Psychiatric Institute, 1996).
Juruena M. F., et al. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacologyhttps://doi.org/10.1007/s00213-006-0555-4 (2006).
Osimo E. F., Baxter L. J., Lewis G., Jones P. B., Khandaker G. M. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol. Med. https://doi.org/10.1017/S0033291719001454 (2019).
FrodlTReduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorderTransl. Psychiatry201221:STN:280:DC%2BC38fjtVGmug%3D%3D10.1038/tp.2012.14
Osimo E. F., et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain. Behav. Immun. https://doi.org/10.1016/j.bbi.2020.02.010 (2020).
Borsini A., et al. Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms. Int. J. Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyx083 (2018).
BhattacharyaAJonesDNEmerging role of the P2X7-NLRP3-IL1β pathway in mood disordersPsychoneuroendocrinology201898951001:CAS:528:DC%2BC1cXhsFequr%2FM10.1016/j.psyneuen.2018.08.015
Ising M., et al. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2005.03.014 (2005).
Haapakoski R., Mathieu J., Ebmeier K. P., Alenius H., Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2015.06.001 (2015).
NikkheslatNChildhood trauma, HPA axis activity and antidepressant response in patients with depressionBrain Behav. Immun.2020872292371:CAS:528:DC%2BC1MXisVajtLbL10.1016/j.bbi.2019.11.024
Savitz J., et al. Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2012.10.007 (2013).
Pariante C. M., Thomas S. A., Lovestone S., Makoff A., Kerwin R. W. Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinologyhttps://doi.org/10.1016/j.psyneuen.2003.10.009 (2004).
Ribeiro D. E., et al. P2X7 Receptor Signaling in Stress and Depression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112778 (2019).
JansenRGene expression in major depressive disorderMol. Psychiatry2016213393471:CAS:528:DC%2BC2MXhtFOjtrfL10.1038/mp.2015.57
Yang C., Wardenaar K. J., Bosker F. J., Li J., Schoevers R. A. Inflammatory markers and treatment outcome in treatment resistant depression: a systematic review. J. Affect. Disord.257, 640–649 (2019).
Pariante C. M., Lightman S. L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.06.006 (2008).
Lago S. G., et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol. Psychiatryhttps://doi.org/10.1038/s41380-018-0123-4 (2018).
Leday G. G. R., et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2017.01.021 (2018).
DongQWrightJRExpression of C-reactive protein by alveolar macrophagesJ. Immunol.19961548154820
Noel M., et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugshttps://doi.org/10.1007/s10637-019-00830-3 (2019).
Nettis M. A., et al. Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology99, 145–153 (2019).
Anacker C., et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1300886110 (2013).
Hepgul N., Cattaneo A., Zunszain P. A., Pariante C. M. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. https://doi.org/10.1186/1741-7015-11-28 (2013).
Pariante C. M., Miller A. H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatryhttps://doi.org/10.1016/S0006-3223(00)01088-X (2001).
Adinolfi E., et al. The P2X7 receptor: a main player in inflammation. Biochem. Pharmacol. https://doi.org/10.1016/j.bcp.2017.12.021 (2018).
JhaMKCan C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trialPsychoneuroendocrinology2017781051131:CAS:528:DC%2BC2sXitlOrs78%3D10.1016/j.psyneuen.2017.01.023
Barker M., Rayens W. Partial least squares for discrimination. J. Chemometr. https://doi.org/10.1002/cem.785 (2003).
Perrin A. J., Horowitz M. A., Roelofs J., Zunszain P. A., Pariante C. M. Glucocorticoid resistance: is it a requisite for increased cytokine production in depression? A systematic review and meta-analysis. Front. Psychiatryhttps://doi.org/10.3389/fpsyt.2019.00423 (2019).
Cattaneo A., et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol. Psychiatryhttps://doi.org/10.1038/s41380-017-0002-4 (2018).
FerrariCMacisARossiRCamelettiMMultivariate Statistical Techniques to Manage Multiple Data in Psychology20191111
NiraulaAWangYGodboutJPSheridanJFCorticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expressionJ. Neurosci.201838232823401:CAS:528:DC%2BC1cXhs1Oqur%2FN10.1523/JNEUROSCI.2568-17.2018
Liu J. J., et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/s41380-019-0474-5 (2020).
Carvalho L. A., et al. Clomipramine in vitro reduces glucocorticoid receptor function in healthy subjects but not in patients with major depression. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2008.44 (2008).
Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front. Pharmacol. https://doi.org/10.3389/fphar.2018.00030 (2018).
Spielberger C. D., Gorsuch R. L., Lushene R. E. STAI manual for the state-trait anxiety inventory. Self-Evaluation Questionnaire. MANUALhttps://doi.org/10.1037/t06496-000 (1970).
Czamara D., Müller-Myhsok B., Lucae S. The P2RX7 polymorphism rs2230912 is associated with depression: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2017.11.003 (2018).
Desseilles M., et al. Assessing the adequacy of past antidepressant trials: a clinician’s guide to the antidepressant treatment response questionnaire. J. Clin. Psychiatryhttps://doi.org/10.4088/JCP.11ac07225 (2011).
Köhler C. A., et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol. https://doi.org/10.1007/s12035-017-0632-1 (2018).
ShariqASTherapeutic potential of JAK/STAT pathway modulation in mood disordersRev. Neurosci.2018301710.1515/revneuro-2018-0027
Le T. T., et al. Identification and replication of RNA-Seq gene network modules associated with depression severity. Transl. Psychiatryhttps://doi.org/10.1038/s41398-018-0234-3 (2018).
Mellon S. H., et al. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment. Transl. Psychiatryhttps://doi.org/10.1038/tp.2016.79 (2016).
Dowlati Y., et al. A meta-analysis of cytokines in major depression. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2009.09.033 (2010).
Bernstein D. P., et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatryhttps://doi.org/10.1176/ajp.151.8.1132 (1994).
Wang L., et al. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: a systematic review and meta-analysis. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2019.02.021 (2019).
Pariante C. M., et al. Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacologyhttps://doi.org/10.1007/s00213-004-1925-4 (2004).
Leighton S. P., et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/mp.2017.205 (2018).
FarooqRKA P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in micePsychoneuroendocrinology2018971201301:CAS:528:DC%2BC1cXhtlCrtb3L10.1016/j.psyneuen.2018.07.016
Pariante C. M. Why are depressed patients inflamed? A reflection on 20 years of research on d
N Nikkheslat (874_CR50) 2020; 87
874_CR18
874_CR19
874_CR27
874_CR28
874_CR25
M Maes (874_CR69) 1992; 16
874_CR23
874_CR67
874_CR21
874_CR65
874_CR22
874_CR63
874_CR64
874_CR61
874_CR60
A SEIDEL (874_CR68) 1995; 41
874_CR29
874_CR38
874_CR39
874_CR36
874_CR34
A Niraula (874_CR55) 2018; 38
874_CR35
874_CR32
874_CR33
874_CR1
874_CR30
874_CR74
874_CR2
874_CR31
874_CR75
874_CR3
874_CR72
874_CR4
874_CR5
874_CR6
S Mostafavi (874_CR24) 2014; 19
874_CR71
874_CR7
A Cattaneo (874_CR15) 2013; 38
874_CR8
874_CR9
R Jansen (874_CR20) 2016; 21
C Ferrari (874_CR37) 2019; 1
A Bhattacharya (874_CR26) 2018; 98
874_CR47
874_CR48
874_CR45
T Klengel (874_CR49) 2015; 86
874_CR46
874_CR44
874_CR41
874_CR42
T Frodl (874_CR62) 2012; 2
874_CR40
RK Farooq (874_CR43) 2018; 97
874_CR16
Q Dong (874_CR66) 1996; 15
874_CR17
874_CR14
874_CR58
874_CR59
874_CR12
874_CR56
AS Shariq (874_CR73) 2018; 30
874_CR13
874_CR57
874_CR10
874_CR54
874_CR11
MK Jha (874_CR70) 2017; 78
874_CR52
874_CR53
874_CR51
33077715 - Transl Psychiatry. 2020 Oct 19;10(1):352. doi: 10.1038/s41398-020-01044-5.
References_xml – reference: FarooqRKA P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in micePsychoneuroendocrinology2018971201301:CAS:528:DC%2BC1cXhtlCrtb3L10.1016/j.psyneuen.2018.07.016
– reference: JansenRGene expression in major depressive disorderMol. Psychiatry2016213393471:CAS:528:DC%2BC2MXhtFOjtrfL10.1038/mp.2015.57
– reference: Carvalho L. A., et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J. Affect. Disord. https://doi.org/10.1016/j.jad.2012.10.036 (2013).
– reference: Pariante C. M., Lightman S. L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.06.006 (2008).
– reference: FrodlTReduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorderTransl. Psychiatry201221:STN:280:DC%2BC38fjtVGmug%3D%3D10.1038/tp.2012.14
– reference: Lago S. G., et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol. Psychiatryhttps://doi.org/10.1038/s41380-018-0123-4 (2018).
– reference: Dowlati Y., et al. A meta-analysis of cytokines in major depression. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2009.09.033 (2010).
– reference: Pariante C. M., et al. Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacologyhttps://doi.org/10.1007/s00213-004-1925-4 (2004).
– reference: SEIDELACytokine production and serum proteins in depressionScand. J. Immunol.1995415345381:CAS:528:DyaK2MXmslGqs7s%3D10.1111/j.1365-3083.1995.tb03604.x
– reference: Weber M. D., Godbout J. P., Sheridan J. F. Repeated social defeat, neuroinflammation, and behavior: monocytes carry the signal. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2016.102 (2017).
– reference: Pariante C. M., Miller A. H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatryhttps://doi.org/10.1016/S0006-3223(00)01088-X (2001).
– reference: Anacker C., et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1300886110 (2013).
– reference: Baumeister D., Akhtar R., Ciufolini S., Pariante C. M., Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatryhttps://doi.org/10.1038/mp.2015.67 (2016).
– reference: CattaneoACandidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’Neuropsychopharmacology2013383773851:CAS:528:DC%2BC3sXhtV2nsL0%3D10.1038/npp.2012.191
– reference: Heim C., Newport D. J., Mletzko T., Miller A. H., Nemeroff C. B. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinologyhttps://doi.org/10.1016/j.psyneuen.2008.03.008 (2008).
– reference: Juruena M. F., et al. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacologyhttps://doi.org/10.1007/s00213-006-0555-4 (2006).
– reference: Ising M., et al. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2005.03.014 (2005).
– reference: NikkheslatNChildhood trauma, HPA axis activity and antidepressant response in patients with depressionBrain Behav. Immun.2020872292371:CAS:528:DC%2BC1MXisVajtLbL10.1016/j.bbi.2019.11.024
– reference: Leighton S. P., et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/mp.2017.205 (2018).
– reference: Hepgul N., et al. Transcriptomics in interferon-α-treated patients identifies inflammation-, neuroplasticity- and oxidative stress-related signatures as predictors and correlates of depression. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2016.50 (2016).
– reference: Harris P. A., et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. https://doi.org/10.1016/j.jbi.2008.08.010 (2009).
– reference: Hepgul N., Cattaneo A., Zunszain P. A., Pariante C. M. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. https://doi.org/10.1186/1741-7015-11-28 (2013).
– reference: Felger J. C., et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatryhttps://doi.org/10.1038/s41380-018-0096-3 (2018).
– reference: Noel M., et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugshttps://doi.org/10.1007/s10637-019-00830-3 (2019).
– reference: Chamberlain S. R., et al. Treatment-resistant depression and peripheral C-reactive protein. Br. J. Psychiatryhttps://doi.org/10.1192/bjp.2018.66 (2019).
– reference: Cattaneo A., et al. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-β mRNA levels accurately predict treatment response in depressed patients. Int. J. Neuropsychopharmacol.https://doi.org/10.1093/ijnp/pyw045 (2016).
– reference: Ju C., et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatryhttps://doi.org/10.1038/s41398-019-0589-0 (2019).
– reference: BhattacharyaAJonesDNEmerging role of the P2X7-NLRP3-IL1β pathway in mood disordersPsychoneuroendocrinology201898951001:CAS:528:DC%2BC1cXhsFequr%2FM10.1016/j.psyneuen.2018.08.015
– reference: Cattaneo A., et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol. Psychiatryhttps://doi.org/10.1038/s41380-017-0002-4 (2018).
– reference: Nikkheslat N., et al. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav. Immun.https://doi.org/10.1016/j.bbi.2015.02.002 (2015).
– reference: Savitz J., et al. Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2012.10.007 (2013).
– reference: ShariqASTherapeutic potential of JAK/STAT pathway modulation in mood disordersRev. Neurosci.2018301710.1515/revneuro-2018-0027
– reference: Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front. Pharmacol. https://doi.org/10.3389/fphar.2018.00030 (2018).
– reference: Klengel T., et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci.https://doi.org/10.1038/nn.3275 (2013).
– reference: Spielberger C. D., Gorsuch R. L., Lushene R. E. STAI manual for the state-trait anxiety inventory. Self-Evaluation Questionnaire. MANUALhttps://doi.org/10.1037/t06496-000 (1970).
– reference: Perrin A. J., Horowitz M. A., Roelofs J., Zunszain P. A., Pariante C. M. Glucocorticoid resistance: is it a requisite for increased cytokine production in depression? A systematic review and meta-analysis. Front. Psychiatryhttps://doi.org/10.3389/fpsyt.2019.00423 (2019).
– reference: Brereton R. G., Lloyd G. R. Partial least squares discriminant analysis: taking the magic away. J. Chemometr. https://doi.org/10.1002/cem.2609 (2014).
– reference: Köhler C. A., et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol. https://doi.org/10.1007/s12035-017-0632-1 (2018).
– reference: Wang L., et al. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: a systematic review and meta-analysis. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2019.02.021 (2019).
– reference: Hepgul N., et al. Childhood maltreatment is associated with increased body mass index and increased C-reactive protein levels in first-episode psychosis patients. Psychol. Med. https://doi.org/10.1017/S0033291711002947 (2012).
– reference: Alcocer-Gómez E., et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2013.10.017 (2014).
– reference: DongQWrightJRExpression of C-reactive protein by alveolar macrophagesJ. Immunol.19961548154820
– reference: Zannas A. S., et al. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1816847116 (2019).
– reference: Liu J. J., et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/s41380-019-0474-5 (2020).
– reference: Haapakoski R., Mathieu J., Ebmeier K. P., Alenius H., Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2015.06.001 (2015).
– reference: Pariante C. M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2017.04.001 (2017).
– reference: Mellon S. H., et al. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment. Transl. Psychiatryhttps://doi.org/10.1038/tp.2016.79 (2016).
– reference: First M., Spitzer R., Gibbon, WilliamsJ. B. W. Structured Clinical Interview for DSM-IV Axis Disorders—Patient Edition (SCID-I/P Version 2.0). (New York Biometrics Research Department, New York State Psychiatric Institute, 1996).
– reference: Desseilles M., et al. Assessing the adequacy of past antidepressant trials: a clinician’s guide to the antidepressant treatment response questionnaire. J. Clin. Psychiatryhttps://doi.org/10.4088/JCP.11ac07225 (2011).
– reference: KlengelTBinderEBEpigenetics of stress-related psychiatric disorders and gene × environment interactionsNeuron201586134313571:CAS:528:DC%2BC2MXht1Sgu7zN10.1016/j.neuron.2015.05.036
– reference: Yang C., Wardenaar K. J., Bosker F. J., Li J., Schoevers R. A. Inflammatory markers and treatment outcome in treatment resistant depression: a systematic review. J. Affect. Disord.257, 640–649 (2019).
– reference: Pariante C. M., Thomas S. A., Lovestone S., Makoff A., Kerwin R. W. Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinologyhttps://doi.org/10.1016/j.psyneuen.2003.10.009 (2004).
– reference: Bernstein D. P., et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatryhttps://doi.org/10.1176/ajp.151.8.1132 (1994).
– reference: FerrariCMacisARossiRCamelettiMMultivariate Statistical Techniques to Manage Multiple Data in Psychology20191111
– reference: Nettis M. A., et al. Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology99, 145–153 (2019).
– reference: Leday G. G. R., et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2017.01.021 (2018).
– reference: Mondelli V., et al. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J. Clin. Psychiatryhttps://doi.org/10.4088/JCP.10m06745 (2011).
– reference: Juruena M. F., et al. prednisolone suppression test in depression: prospective study of the role of HPA axis dysfunction in treatment resistance. Br. J. Psychiatryhttps://doi.org/10.1192/bjp.bp.108.050278 (2009).
– reference: Ribeiro D. E., et al. P2X7 Receptor Signaling in Stress and Depression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112778 (2019).
– reference: Capuron L., et al. Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacologyhttps://doi.org/10.1016/S0893-133X(01)00407-9 (2002).
– reference: Osimo E. F., et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain. Behav. Immun. https://doi.org/10.1016/j.bbi.2020.02.010 (2020).
– reference: Barker M., Rayens W. Partial least squares for discrimination. J. Chemometr. https://doi.org/10.1002/cem.785 (2003).
– reference: Carvalho L. A., et al. Clomipramine in vitro reduces glucocorticoid receptor function in healthy subjects but not in patients with major depression. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2008.44 (2008).
– reference: Borsini A., et al. Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms. Int. J. Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyx083 (2018).
– reference: Osimo E. F., Baxter L. J., Lewis G., Jones P. B., Khandaker G. M. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol. Med. https://doi.org/10.1017/S0033291719001454 (2019).
– reference: Strawbridge R., et al. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur. Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2015.06.007 (2015).
– reference: Czamara D., Müller-Myhsok B., Lucae S. The P2RX7 polymorphism rs2230912 is associated with depression: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2017.11.003 (2018).
– reference: JhaMKCan C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trialPsychoneuroendocrinology2017781051131:CAS:528:DC%2BC2sXitlOrs78%3D10.1016/j.psyneuen.2017.01.023
– reference: NiraulaAWangYGodboutJPSheridanJFCorticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expressionJ. Neurosci.201838232823401:CAS:528:DC%2BC1cXhs1Oqur%2FN10.1523/JNEUROSCI.2568-17.2018
– reference: Capuron L., et al. Basal ganglia hypermetabolism and symptoms of fatigue during interferon-α therapy. Neuropsychopharmacologyhttps://doi.org/10.1038/sj.npp.1301362 (2007).
– reference: Adinolfi E., et al. The P2X7 receptor: a main player in inflammation. Biochem. Pharmacol. https://doi.org/10.1016/j.bcp.2017.12.021 (2018).
– reference: MaesMDisturbances in acute phase plasma proteins during melancholia: additional evidence for the presence of an inflammatory process during that illnessProg. Neuropsychopharmacol. Biol. Psychiatry1992165015151:CAS:528:DyaK38XlvV2nsL8%3D10.1016/0278-5846(92)90056-K
– reference: Kaplan M., et al. A significant correlation between C—reactive protein levels in blood monocytes derived macrophages versus content in carotid atherosclerotic lesions. J. Inflamm. https://doi.org/10.1186/1476-9255-11-7 (2014).
– reference: MostafaviSType I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencingMol. Psychiatry201419126712741:CAS:528:DC%2BC3sXhvFensbjN10.1038/mp.2013.161
– reference: Le T. T., et al. Identification and replication of RNA-Seq gene network modules associated with depression severity. Transl. Psychiatryhttps://doi.org/10.1038/s41398-018-0234-3 (2018).
– volume: 87
  start-page: 229
  year: 2020
  ident: 874_CR50
  publication-title: Brain Behav. Immun.
  doi: 10.1016/j.bbi.2019.11.024
– ident: 874_CR64
  doi: 10.1016/j.jad.2012.10.036
– ident: 874_CR11
  doi: 10.4088/JCP.10m06745
– volume: 19
  start-page: 1267
  year: 2014
  ident: 874_CR24
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.161
– ident: 874_CR74
  doi: 10.1007/s10637-019-00830-3
– ident: 874_CR8
  doi: 10.1016/j.bbi.2015.02.002
– ident: 874_CR53
  doi: 10.1016/j.euroneuro.2017.04.001
– ident: 874_CR56
  doi: 10.1192/bjp.bp.108.050278
– ident: 874_CR42
  doi: 10.1038/s41380-019-0474-5
– ident: 874_CR17
  doi: 10.1093/ijnp/pyw045
– ident: 874_CR61
  doi: 10.1016/j.psyneuen.2003.10.009
– volume: 38
  start-page: 377
  year: 2013
  ident: 874_CR15
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2012.191
– ident: 874_CR60
  doi: 10.1007/s00213-004-1925-4
– ident: 874_CR39
  doi: 10.1002/cem.2609
– ident: 874_CR71
  doi: 10.1038/s41380-018-0123-4
– volume: 98
  start-page: 95
  year: 2018
  ident: 874_CR26
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2018.08.015
– ident: 874_CR54
  doi: 10.1016/j.psyneuen.2008.03.008
– ident: 874_CR65
  doi: 10.1038/s41380-018-0096-3
– volume: 2
  year: 2012
  ident: 874_CR62
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2012.14
– volume: 97
  start-page: 120
  year: 2018
  ident: 874_CR43
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2018.07.016
– ident: 874_CR4
  doi: 10.1016/j.bbi.2020.02.010
– ident: 874_CR10
  doi: 10.1016/j.psyneuen.2018.09.005
– ident: 874_CR28
  doi: 10.1038/s41380-017-0002-4
– ident: 874_CR6
  doi: 10.1016/j.jad.2019.07.045
– volume: 1
  start-page: 1
  year: 2019
  ident: 874_CR37
  publication-title: Multivariate Statistical Techniques to Manage Multiple Data in Psychology
– ident: 874_CR33
  doi: 10.1037/t07827-000
– ident: 874_CR47
  doi: 10.1016/j.pnpbp.2017.11.003
– volume: 78
  start-page: 105
  year: 2017
  ident: 874_CR70
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2017.01.023
– ident: 874_CR27
  doi: 10.1038/npp.2016.102
– ident: 874_CR29
  doi: 10.1038/npp.2016.50
– volume: 21
  start-page: 339
  year: 2016
  ident: 874_CR20
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2015.57
– ident: 874_CR46
  doi: 10.1016/j.bbi.2013.10.017
– ident: 874_CR3
  doi: 10.1192/bjp.2018.66
– ident: 874_CR9
  doi: 10.1038/mp.2015.67
– ident: 874_CR35
  doi: 10.1037/t06496-000
– ident: 874_CR52
  doi: 10.1016/S0006-3223(00)01088-X
– ident: 874_CR21
  doi: 10.1038/tp.2016.79
– ident: 874_CR14
  doi: 10.1186/1741-7015-11-28
– volume: 15
  start-page: 4815
  year: 1996
  ident: 874_CR66
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.156.12.4815
– ident: 874_CR5
  doi: 10.1016/j.biopsych.2009.09.033
– ident: 874_CR13
  doi: 10.1038/npp.2008.44
– ident: 874_CR38
  doi: 10.1002/cem.785
– ident: 874_CR16
  doi: 10.1073/pnas.1816847116
– volume: 16
  start-page: 501
  year: 1992
  ident: 874_CR69
  publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry
  doi: 10.1016/0278-5846(92)90056-K
– ident: 874_CR22
  doi: 10.1016/j.biopsych.2017.01.021
– ident: 874_CR34
  doi: 10.4088/JCP.11ac07225
– volume: 38
  start-page: 2328
  year: 2018
  ident: 874_CR55
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2568-17.2018
– ident: 874_CR32
  doi: 10.1093/ijnp/pyx083
– ident: 874_CR12
  doi: 10.1017/S0033291711002947
– ident: 874_CR67
  doi: 10.1186/1476-9255-11-7
– ident: 874_CR31
  doi: 10.1038/sj.npp.1301362
– ident: 874_CR44
  doi: 10.1016/j.bcp.2017.12.021
– volume: 86
  start-page: 1343
  year: 2015
  ident: 874_CR49
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.05.036
– ident: 874_CR19
  doi: 10.1016/j.bbi.2012.10.007
– ident: 874_CR25
  doi: 10.1038/s41398-019-0589-0
– ident: 874_CR41
  doi: 10.1016/j.bbi.2019.02.021
– ident: 874_CR36
  doi: 10.1176/ajp.151.8.1132
– ident: 874_CR58
  doi: 10.1007/s00213-006-0555-4
– ident: 874_CR57
  doi: 10.1016/j.pnpbp.2005.03.014
– ident: 874_CR1
  doi: 10.1016/j.bbi.2015.06.001
– ident: 874_CR59
  doi: 10.3389/fpsyt.2019.00423
– ident: 874_CR40
  doi: 10.1007/s12035-017-0632-1
– ident: 874_CR2
  doi: 10.1017/S0033291719001454
– ident: 874_CR51
  doi: 10.1016/j.tins.2008.06.006
– ident: 874_CR75
  doi: 10.1016/j.jbi.2008.08.010
– ident: 874_CR18
  doi: 10.1073/pnas.1300886110
– volume: 30
  start-page: 1
  year: 2018
  ident: 874_CR73
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2018-0027
– ident: 874_CR7
  doi: 10.1016/j.euroneuro.2015.06.007
– ident: 874_CR48
  doi: 10.1038/nn.3275
– ident: 874_CR30
  doi: 10.1016/S0893-133X(01)00407-9
– ident: 874_CR45
  doi: 10.3390/ijms20112778
– ident: 874_CR23
  doi: 10.1038/s41398-018-0234-3
– ident: 874_CR72
  doi: 10.3389/fphar.2018.00030
– volume: 41
  start-page: 534
  year: 1995
  ident: 874_CR68
  publication-title: Scand. J. Immunol.
  doi: 10.1111/j.1365-3083.1995.tb03604.x
– ident: 874_CR63
  doi: 10.1038/mp.2017.205
– reference: 33077715 - Transl Psychiatry. 2020 Oct 19;10(1):352. doi: 10.1038/s41398-020-01044-5.
SSID ssj0000548171
Score 2.5096946
Snippet The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression...
The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 232
SubjectTerms 692/53/2422
692/699/476/1414
Antidepressive Agents
Behavioral Sciences
Biological Psychology
Cytokines
Glucocorticoids
Humans
Inflammasomes
Medicine
Medicine & Public Health
Neurosciences
Pharmacotherapy
Psychiatry
Receptors, Glucocorticoid - genetics
RNA, Messenger
Treatment resistance
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4s1CQUbiBlYT2_HjhAq0KkgtCFGxt8hxbFipm5RNFsGf47cxdpxUS7U97cGT1854PPZ88w1CL621PFfKE9gbSMKd1URXLCN1XlnmBTM-kj0fn4ijU_5xXszTgVuXYJWjT4yOum5tOCPfo-BFuRSwIL45_0lC16iQXU0tNK6jG4G6LFi1nMvpjAXCEZXLPNXKZEztdeCzQ00ZDeXUKkARN9ejS0HmZazkfwnTuA4d3kG3UwCJ9weN30XXXHMP3TxOKfL76O-30PGWREA6dr8TzrXBrcdgTKD_penapSPYNDWOgHXYf8K92kVNYmGLq_Hyy8l-h21o3GH7sz-4c5Eh3HV4wqWDbBdCz6bHCUwL1yWS1g6HohVcr9bfiV85Fx-1SmDcX-5CbNFgiD_x2w-f3h98xpHp9gE6PTz4-u6IpCYNxBZa9EQYcBq50JpLx5kDFcvKC-dZYWzgMrOMMpHVhisnrYbfXHrhC5cpTo2AbfBDtNO0jXuMsGPca2p14Y3kqhDKGJNVQue0Ylq4bIbyUVWlTQzmoZHGWRkz6UyVg3pLUG8Z1VvKGXo1XXM-8HdcKb07WkCZ5nJXhiAm5HNFsWV4NMwtw0rSIiRbZ-jFNAxzOCRmTOPa9fCEQKtTgMyjwdyml4XwWmua6RmSG4Y4CQR-8M2RZvEj8oRLuCVEbzP0ejTZi9fa_h88ufojn6JbNE4fSSjbRTv9au2eQVzWV8_j5PsHAs85UA
  priority: 102
  providerName: ProQuest
Title Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study
URI https://link.springer.com/article/10.1038/s41398-020-00874-7
https://www.ncbi.nlm.nih.gov/pubmed/32699209
https://www.proquest.com/docview/2426013865
https://www.proquest.com/docview/2471476710
https://www.proquest.com/docview/2487258231
https://www.proquest.com/docview/2426537651
https://pubmed.ncbi.nlm.nih.gov/PMC7376244
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2kRAviDuBURmJN7BI4sSXx650GpVWpsFE3yLHsUelNUFNiuDP8ds4dt1MZRSJp0j1cWL1HDufc77zGaHXWussEcIS2BtwkhktiSxpTKqk1NQyqqwXez6bstPLbDLLZ3so3dTCeNK-l7T0y_SGHfauhcXWFYOlrg5aOA7hPjp0Uu0Q24fD4eTTpP-yAiBEJDwJFTIxFX_pvP0WugUtbzMk_0iT-rfPyX10L8BGPFwP9AHaM_VDdOcsJMYfoV9f3Dm3xNPQsfkR2K01biyGEAKvL1TbLAzBqq6wp6nDrhPu1cwr4stZTIUXF9Nhi7U7rkN31z9xa7wuuGlxz0YH29YBzrrDgUIL_YI0a4tdqQqulqsrYpfG-EctAwX3u7kxm9cYUCc-_vDx_fgce33bx-jyZPx5dErC0QxE55J1hClYKhImZcZNRg04lpeWGUtzpZ2CmaYpZXGlMmG4lnBNuGU2N7HIUsVg8_sEHdRNbZ4hbGhmZaplbhXPRM6EUioumUzSkkpm4gglG1cVOuiWu-MzrgufP6eiWLu3APcW3r0Fj9Cbvs-3tWrHP62PNhFQhBncFg66uCwuy3c08yTjDPDZjmbB09ylWCP0qm-GmevSMao2zWr9BCemk4PN03W49YMFUC1lGssI8a1A7A2cKvh2Sz3_6tXBOdwSMFuE3m5C9mZYu_-D5_9n_gLdTf104iSlR-igW67MS0BnXTlA-3zGB2FSwvV4PD2_gF9HbDTwXzx-Az8EPM4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIgEXxD_bFjASnMBqYid2fECo0Fa7tLsg1Iq9pY5jw0rdpGx2gb4Uj8CzMXZ-qqXa3nrKwZPEyYxnxp6ZbxB6qbWOwiSxBPYGgkRGSyIzFpA8zDSznCnrwZ6HI94_jj6O4_Ea-tPWwri0ylYnekWdl9qdkW9T0KKR4GAQ3539IK5rlIuuti00arE4MOe_YMtWvR3sAn9fUbq_d_ShT5quAkTHks8JVyDlIZcyEiZiBuYkMsuNZbHSDnxLM8p4kKsoMUJLuIbCchubIImo4rEDOgCVfwMMb-A2e2IsujMdcH-SUIRNbU7Aku0KbISrYaOufDtxqY_L9u-SU3s5N_O_AK23e_t30Z3GYcU7tYTdQ2umuI9uDpuQ_AP096vrsEt8Ajw2v5u82gKXFoPwgrxNVVVODcGqyLFPkIf9LjyrnOTEF9KYHE-_jHYqrF2jED0_PceV8YjkpsJdHjzQVs7VLea4Sd6F-xpQ2Aq7IhmczxbfiJ0Z4181a5J_f5oLskmBwd_F7wefdvc-Y4-s-xAdXwv7HqH1oizME4QNi6ykWsZWiSiJeaKUCjIuQ5oxyU3QQ2HLqlQ3iOmuccdp6iP3LElr9qbA3tSzNxU99Lq756zGC7mSequVgLTRHVXqnCYXP-bxiuF2IawYTgSNXXC3h150w6AzXCBIFaZc1G9wMD4x0Dyuxa2bLLjzUtJA9pBYEsSOwOGRL48Uk-8el1zAI8Fb7KE3rcheTGv1P9i4-iOfo1v9o-FhejgYHWyi29QvJUEo20Lr89nCPAWfcJ498wsRo5PrXvn_AMQ8dWU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemTpq4IL4pDDASnMBqYid2fEBoo61Wxko1MbFb5jg2VFqT0bTA_jUO_G08O0mnMm23nXqwkzh9H37O-73fQ-iV1joKk8QSOBsIEhkticxYQPIw08xypqwnez4Y872j6ONxfLyB_rS1MA5W2fpE76jzUrtv5D0KXjQSHDbEnm1gEZP-8P3ZD-I6SLlMa9tOo1aRfXP-C45v1btRH2T9mtLh4MuHPdJ0GCA6lnxBuAKND7mUkTARM7A-kVluLIuVdkRcmlHGg1xFiRFawm8oLLexCZKIKh470gNw_5vCnYo6aHN3MJ4crr7wQDCUhCJsKnUClvQq2DFcRRt1xdyJA0Ku74aXQtzLSM3_0rV-FxzeQbeb8BXv1Pp2F22Y4h7aOmgS9PfR36-u3y7xcHhsfjco2wKXFoMqg_bNVFXODMGqyLGHy8PpF-5VTnPiy2pMjmeH450Ka9c2RC9Oz3FlPD-5qfAKFQ9zKxf4FgvcQHnhuoYitsKuZAbn8-U3YufG-EfNGyjwT3MxbVpgiH7x7uhzfzDBnmf3ATq6EQE-RJ2iLMxjhA2LrKRaxlaJKIl5opQKMi5DmjHJTdBFYSuqVDf86a6Nx2nq8_gsSWvxpiDe1Is3FV30ZnXNWc0ecu3s7VYD0saTVKkLoVw2mcdXDLdmccVwImjsUr1d9HI1DB7EpYVUYcpl_QRH6hPDnEe1uq0WC8G9lDSQXSTWFHE1wbGTr48U0--epVzALSF27KK3rcpeLOvq_-DJ9S_5Am2B1aefRuP9p-gW9ZYkCGXbqLOYL80zCBAX2fPGEjE6uWnj_weCQnsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-blood+expression+of+inflammasome-+and+glucocorticoid-related+mRNAs+correctly+separates+treatment-resistant+depressed+patients+from+drug-free+and+responsive+patients+in+the+BIODEP+study&rft.jtitle=Translational+psychiatry&rft.au=Cattaneo%2C+Annamaria&rft.au=Ferrari%2C+Clarissa&rft.au=Turner%2C+Lorinda&rft.au=Mariani%2C+Nicole&rft.date=2020-07-23&rft.issn=2158-3188&rft.eissn=2158-3188&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41398-020-00874-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41398_020_00874_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3188&client=summon