Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study
The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-resp...
Saved in:
Published in | Translational psychiatry Vol. 10; no. 1; p. 232 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (
IL)-1-beta
,
IL-6
,
TNF-alpha
, macrophage inhibiting factor (
MIF
), glucocorticoid receptor (
GR
),
SGK1
,
FKBP5
, the purinergic receptor
P2RX7
,
CCL2
,
CXCL12
, c-reactive protein (
CRP
), alpha-2-macroglobulin (
A2M
), acquaporin-4 (
AQP4
),
ISG15
,
STAT1
and
USP-18
. All genes but
AQP4
,
ISG15
and
USP-18
were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher
P2RX7
and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower
GR
and higher
FKBP5
mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower
CXCL12
. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (
P2RX7
,
IL-1-beta, IL-6
,
TNF-alpha, CXCL12
and
GR
) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications. |
---|---|
AbstractList | The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications. The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin ( IL)-1-beta , IL-6 , TNF-alpha , macrophage inhibiting factor ( MIF ), glucocorticoid receptor ( GR ), SGK1 , FKBP5 , the purinergic receptor P2RX7 , CCL2 , CXCL12 , c-reactive protein ( CRP ), alpha-2-macroglobulin ( A2M ), acquaporin-4 ( AQP4 ), ISG15 , STAT1 and USP-18 . All genes but AQP4 , ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12 . Most interestingly, using binomial logistics models we found that a signature of six mRNAs ( P2RX7 , IL-1-beta, IL-6 , TNF-alpha, CXCL12 and GR ) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications. The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications.The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated. Treatment-resistant and drug-free depressed patients had both increased inflammasome activation (higher P2RX7 and proinflammatory cytokines/chemokines mRNAs expression) and glucocorticoid resistance (lower GR and higher FKBP5 mRNAs expression), while responsive patients had an intermediate phenotype with, additionally, lower CXCL12. Most interestingly, using binomial logistics models we found that a signature of six mRNAs (P2RX7, IL-1-beta, IL-6, TNF-alpha, CXCL12 and GR) distinguished treatment-resistant from responsive patients, even after adjusting for other variables that were different between groups, such as a trait- and state-anxiety, history of childhood maltreatment and serum CRP. Future studies should replicate these findings in larger, longitudinal cohorts, and test whether this mRNA signature can identify patients that are more likely to respond to adjuvant strategies for treatment-resistant depression, including combinations with anti-inflammatory medications. |
ArticleNumber | 232 |
Author | Sforzini, Luca Zajkowska, Zuzanna Pointon, Linda Drevets, Wayne C. Turner, Lorinda Mondelli, Valeria Mazzelli, Monica Mariani, Nicole Bullmore, Edward T. Nettis, Maria A. Kose, Melisa Cattaneo, Annamaria Worrell, Courtney de Boer, Peter Cowen, Philip J. Enache, Daniela Jones, Declan Pariante, Carmine M. Nikkheslat, Naghmeh Lopizzo, Nicola McLaughlin, Anna P. Cattane, Nadia Cavanagh, Jonathan Lombardo, Giulia Harrison, Neil A. Hastings, Caitlin Ferrari, Clarissa |
Author_xml | – sequence: 1 givenname: Annamaria surname: Cattaneo fullname: Cattaneo, Annamaria organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 2 givenname: Clarissa surname: Ferrari fullname: Ferrari, Clarissa organization: Statistical Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 3 givenname: Lorinda surname: Turner fullname: Turner, Lorinda organization: Department of Medicine, School of Clinical Medicine, University of Cambridge – sequence: 4 givenname: Nicole surname: Mariani fullname: Mariani, Nicole organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 5 givenname: Daniela surname: Enache fullname: Enache, Daniela organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 6 givenname: Caitlin surname: Hastings fullname: Hastings, Caitlin organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 7 givenname: Melisa surname: Kose fullname: Kose, Melisa organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 8 givenname: Giulia surname: Lombardo fullname: Lombardo, Giulia organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 9 givenname: Anna P. surname: McLaughlin fullname: McLaughlin, Anna P. organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 10 givenname: Maria A. surname: Nettis fullname: Nettis, Maria A. organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 11 givenname: Naghmeh surname: Nikkheslat fullname: Nikkheslat, Naghmeh organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 12 givenname: Luca surname: Sforzini fullname: Sforzini, Luca organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 13 givenname: Courtney surname: Worrell fullname: Worrell, Courtney organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 14 givenname: Zuzanna orcidid: 0000-0002-5214-305X surname: Zajkowska fullname: Zajkowska, Zuzanna organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 15 givenname: Nadia surname: Cattane fullname: Cattane, Nadia organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 16 givenname: Nicola surname: Lopizzo fullname: Lopizzo, Nicola organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 17 givenname: Monica surname: Mazzelli fullname: Mazzelli, Monica organization: Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli – sequence: 18 givenname: Linda orcidid: 0000-0003-2738-8589 surname: Pointon fullname: Pointon, Linda organization: Department of Psychiatry, School of Clinical Medicine, University of Cambridge – sequence: 19 givenname: Philip J. surname: Cowen fullname: Cowen, Philip J. organization: University of Oxford Department of Psychiatry, Warneford Hospital – sequence: 20 givenname: Jonathan surname: Cavanagh fullname: Cavanagh, Jonathan organization: Centre for Immunobiology, University of Glasgow and Sackler Institute of Psychobiological Research, Queen Elizabeth University Hospital – sequence: 21 givenname: Neil A. surname: Harrison fullname: Harrison, Neil A. organization: School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre – sequence: 22 givenname: Peter surname: de Boer fullname: de Boer, Peter organization: Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV – sequence: 23 givenname: Declan surname: Jones fullname: Jones, Declan organization: Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre – sequence: 24 givenname: Wayne C. surname: Drevets fullname: Drevets, Wayne C. organization: Janssen Research & Development, Neuroscience Therapeutic Area – sequence: 25 givenname: Valeria surname: Mondelli fullname: Mondelli, Valeria organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London – sequence: 26 givenname: Edward T. surname: Bullmore fullname: Bullmore, Edward T. organization: Department of Psychiatry, School of Clinical Medicine, University of Cambridge – sequence: 28 givenname: Carmine M. orcidid: 0000-0002-9132-5091 surname: Pariante fullname: Pariante, Carmine M. email: carmine.pariante@kcl.ac.uk organization: Stress, Psychiatry and Immunology Laboratory & Perinatal Psychiatry, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, King’s College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32699209$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1u1DAUhS1URMvQF2CBLLFhE_BfYmeDVEqBShVFCMTS8jg3M64SO9hOxbwcz4Y709LSRfHGlu937vWRz1O054MHhJ5T8poSrt4kQXmrKsJIRYiSopKP0AGjtao4VWrvznkfHaZ0QcqqhaKSPkH7nDVty0h7gH7_WIcBquUQQofh1xQhJRc8Dj12vh_MOJoURqiw8R1eDbMNNsTsbHBdFWEwGTo8fv18lHC5j2DzsMEJJhNLJeEcweQRfC5scikbn3EH2yFFN5nsSi3hPoYRd3FeVX0E2I4qyBR8cpdwizmP8xrwu9Pz9ydfcMpzt3mGHvdmSHB4vS_Q9w8n344_VWfnH0-Pj84qW7dNrhpDJKHFs5AgONCllcu-gZ7XxrZt3VrOeEM6IxRI25adyr7payBKMNPUjC_Q213faV6O0NnynmgGPUU3mrjRwTj9b8W7tV6FSy25bJgQpcGr6wYx_JwhZT26ZGEYjIcwJ80Ea-rC1rSgL--hF2GOvtgrlJKsVoz_h5JUyEaWnDxIsYZQrsrYBXpx191fWzcxKYDaATaGlCL02rpcviVcmXWDpkRfhVLvQqlLKPU2lMX-ArF70pvuD4r4TpQK7FcQb5_9gOoPlwf3Ng |
CitedBy_id | crossref_primary_10_1016_j_bbi_2021_03_024 crossref_primary_10_1016_j_euroneuro_2024_05_015 crossref_primary_10_1007_s40266_021_00858_2 crossref_primary_10_1371_journal_pone_0319737 crossref_primary_10_1176_appi_ajp_2021_21101043 crossref_primary_10_1016_j_nsa_2024_104082 crossref_primary_10_3389_fphar_2023_1148190 crossref_primary_10_1016_j_jad_2022_09_011 crossref_primary_10_1093_brain_awab187 crossref_primary_10_1016_j_euroneuro_2021_12_005 crossref_primary_10_1016_j_psyneuen_2024_107086 crossref_primary_10_1016_j_euroneuro_2023_12_003 crossref_primary_10_1016_j_bbih_2021_100323 crossref_primary_10_1093_ijnp_pyae041 crossref_primary_10_1038_s41398_021_01469_6 crossref_primary_10_1186_s40246_025_00733_w crossref_primary_10_1124_jpet_123_001823 crossref_primary_10_1016_j_bbi_2025_01_002 crossref_primary_10_1016_j_neuropharm_2022_109366 crossref_primary_10_1177_02698811211069110 crossref_primary_10_1016_j_tins_2024_08_015 crossref_primary_10_3390_cells13050423 crossref_primary_10_3390_ijms24076664 crossref_primary_10_1016_j_bbih_2021_100335 crossref_primary_10_1016_j_jad_2024_01_080 crossref_primary_10_1080_14656566_2021_1951225 crossref_primary_10_3390_jcm9123918 crossref_primary_10_1016_j_lfs_2023_122025 crossref_primary_10_3389_fpsyt_2021_612471 crossref_primary_10_3389_fnins_2023_1234409 crossref_primary_10_1016_j_bbih_2023_100690 crossref_primary_10_1016_j_bbi_2022_05_012 crossref_primary_10_3389_fpsyt_2023_1291176 crossref_primary_10_1038_s41380_021_01160_8 crossref_primary_10_1038_s41398_021_01581_7 crossref_primary_10_1038_s41398_021_01323_9 crossref_primary_10_1038_s41573_021_00368_1 crossref_primary_10_3390_ncrna11020021 crossref_primary_10_1016_j_bbih_2021_100325 crossref_primary_10_1016_j_drudis_2023_103518 crossref_primary_10_1016_j_coemr_2022_100356 crossref_primary_10_2174_1570159X21666230809112028 crossref_primary_10_1016_j_bbih_2024_100886 crossref_primary_10_3390_molecules27031066 crossref_primary_10_1002_ajmg_b_32839 crossref_primary_10_1016_j_bbih_2021_100383 crossref_primary_10_1016_j_bbih_2022_100561 crossref_primary_10_1016_j_bbih_2021_100385 crossref_primary_10_5498_wjp_v11_i12_1191 crossref_primary_10_3390_ijms242216327 crossref_primary_10_1371_journal_pcbi_1009800 crossref_primary_10_1016_j_jad_2024_03_018 crossref_primary_10_1007_s12035_024_04420_0 crossref_primary_10_3390_ijms25158075 crossref_primary_10_1124_pharmrev_120_000043 crossref_primary_10_1080_14728222_2024_2366872 crossref_primary_10_1016_j_heliyon_2023_e13059 crossref_primary_10_3389_fpsyt_2023_1029467 |
Cites_doi | 10.1016/j.bbi.2019.11.024 10.1016/j.jad.2012.10.036 10.4088/JCP.10m06745 10.1038/mp.2013.161 10.1007/s10637-019-00830-3 10.1016/j.bbi.2015.02.002 10.1016/j.euroneuro.2017.04.001 10.1192/bjp.bp.108.050278 10.1038/s41380-019-0474-5 10.1093/ijnp/pyw045 10.1016/j.psyneuen.2003.10.009 10.1038/npp.2012.191 10.1007/s00213-004-1925-4 10.1002/cem.2609 10.1038/s41380-018-0123-4 10.1016/j.psyneuen.2018.08.015 10.1016/j.psyneuen.2008.03.008 10.1038/s41380-018-0096-3 10.1038/tp.2012.14 10.1016/j.psyneuen.2018.07.016 10.1016/j.bbi.2020.02.010 10.1016/j.psyneuen.2018.09.005 10.1038/s41380-017-0002-4 10.1016/j.jad.2019.07.045 10.1037/t07827-000 10.1016/j.pnpbp.2017.11.003 10.1016/j.psyneuen.2017.01.023 10.1038/npp.2016.102 10.1038/npp.2016.50 10.1038/mp.2015.57 10.1016/j.bbi.2013.10.017 10.1192/bjp.2018.66 10.1038/mp.2015.67 10.1037/t06496-000 10.1016/S0006-3223(00)01088-X 10.1038/tp.2016.79 10.1186/1741-7015-11-28 10.4049/jimmunol.156.12.4815 10.1016/j.biopsych.2009.09.033 10.1038/npp.2008.44 10.1002/cem.785 10.1073/pnas.1816847116 10.1016/0278-5846(92)90056-K 10.1016/j.biopsych.2017.01.021 10.4088/JCP.11ac07225 10.1523/JNEUROSCI.2568-17.2018 10.1093/ijnp/pyx083 10.1017/S0033291711002947 10.1186/1476-9255-11-7 10.1038/sj.npp.1301362 10.1016/j.bcp.2017.12.021 10.1016/j.neuron.2015.05.036 10.1016/j.bbi.2012.10.007 10.1038/s41398-019-0589-0 10.1016/j.bbi.2019.02.021 10.1176/ajp.151.8.1132 10.1007/s00213-006-0555-4 10.1016/j.pnpbp.2005.03.014 10.1016/j.bbi.2015.06.001 10.3389/fpsyt.2019.00423 10.1007/s12035-017-0632-1 10.1017/S0033291719001454 10.1016/j.tins.2008.06.006 10.1016/j.jbi.2008.08.010 10.1073/pnas.1300886110 10.1515/revneuro-2018-0027 10.1016/j.euroneuro.2015.06.007 10.1038/nn.3275 10.1016/S0893-133X(01)00407-9 10.3390/ijms20112778 10.1038/s41398-018-0234-3 10.3389/fphar.2018.00030 10.1111/j.1365-3083.1995.tb03604.x 10.1038/mp.2017.205 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | the Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium |
CorporateAuthor_xml | – name: the Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium – name: Neuroimmunology of Mood Disorders and Alzheimer’s Disease (NIMA) Consortium |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41398-020-00874-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2158-3188 |
ExternalDocumentID | PMC7376244 32699209 10_1038_s41398_020_00874_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust (Wellcome) grantid: 104025 funderid: https://doi.org/10.13039/100004440 – fundername: DH | National Institute for Health Research (NIHR) funderid: https://doi.org/10.13039/501100000272 – fundername: Medical Research Council grantid: G108/603 – fundername: Wellcome Trust grantid: 104025 – fundername: Medical Research Council grantid: MR/N029488/1 – fundername: Medical Research Council grantid: MC_G0802534 – fundername: Medical Research Council grantid: MR/J002739/1 – fundername: ; grantid: 104025 – fundername: ; |
GroupedDBID | --- 0R~ 3V. 53G 5VS 7X7 88E 8FI 8FJ AAJSJ AAKDD ABUWG ACGFO ACGFS ACMJI ACSMW ADBBV ADFRT AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HMCUK HYE KQ8 LGEZI LOTEE M1P M~E NADUK NAO NXXTH OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c596t-6a070169947e43e1bc7bf6ef35ac9959c32360da48e7c9da417f6f5e0842a6523 |
IEDL.DBID | AAJSJ |
ISSN | 2158-3188 |
IngestDate | Thu Aug 21 17:50:30 EDT 2025 Fri Jul 11 03:56:05 EDT 2025 Wed Aug 13 07:17:39 EDT 2025 Wed Aug 13 03:25:43 EDT 2025 Wed Aug 13 08:05:37 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 Tue Jul 01 00:55:12 EDT 2025 Thu Apr 24 23:12:58 EDT 2025 Fri Feb 21 02:39:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c596t-6a070169947e43e1bc7bf6ef35ac9959c32360da48e7c9da417f6f5e0842a6523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5214-305X 0000-0003-2738-8589 0000-0002-9132-5091 |
OpenAccessLink | https://www.nature.com/articles/s41398-020-00874-7 |
PMID | 32699209 |
PQID | 2426013865 |
PQPubID | 2041978 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7376244 proquest_miscellaneous_2426537651 proquest_journals_2487258231 proquest_journals_2471476710 proquest_journals_2426013865 pubmed_primary_32699209 crossref_citationtrail_10_1038_s41398_020_00874_7 crossref_primary_10_1038_s41398_020_00874_7 springer_journals_10_1038_s41398_020_00874_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-23 |
PublicationDateYYYYMMDD | 2020-07-23 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Translational psychiatry |
PublicationTitleAbbrev | Transl Psychiatry |
PublicationTitleAlternate | Transl Psychiatry |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KlengelTBinderEBEpigenetics of stress-related psychiatric disorders and gene × environment interactionsNeuron201586134313571:CAS:528:DC%2BC2MXht1Sgu7zN10.1016/j.neuron.2015.05.036 Capuron L., et al. Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacologyhttps://doi.org/10.1016/S0893-133X(01)00407-9 (2002). First M., Spitzer R., Gibbon, WilliamsJ. B. W. Structured Clinical Interview for DSM-IV Axis Disorders—Patient Edition (SCID-I/P Version 2.0). (New York Biometrics Research Department, New York State Psychiatric Institute, 1996). Juruena M. F., et al. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacologyhttps://doi.org/10.1007/s00213-006-0555-4 (2006). Osimo E. F., Baxter L. J., Lewis G., Jones P. B., Khandaker G. M. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol. Med. https://doi.org/10.1017/S0033291719001454 (2019). FrodlTReduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorderTransl. Psychiatry201221:STN:280:DC%2BC38fjtVGmug%3D%3D10.1038/tp.2012.14 Osimo E. F., et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain. Behav. Immun. https://doi.org/10.1016/j.bbi.2020.02.010 (2020). Borsini A., et al. Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms. Int. J. Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyx083 (2018). BhattacharyaAJonesDNEmerging role of the P2X7-NLRP3-IL1β pathway in mood disordersPsychoneuroendocrinology201898951001:CAS:528:DC%2BC1cXhsFequr%2FM10.1016/j.psyneuen.2018.08.015 Ising M., et al. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2005.03.014 (2005). Haapakoski R., Mathieu J., Ebmeier K. P., Alenius H., Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2015.06.001 (2015). NikkheslatNChildhood trauma, HPA axis activity and antidepressant response in patients with depressionBrain Behav. Immun.2020872292371:CAS:528:DC%2BC1MXisVajtLbL10.1016/j.bbi.2019.11.024 Savitz J., et al. Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2012.10.007 (2013). Pariante C. M., Thomas S. A., Lovestone S., Makoff A., Kerwin R. W. Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinologyhttps://doi.org/10.1016/j.psyneuen.2003.10.009 (2004). Ribeiro D. E., et al. P2X7 Receptor Signaling in Stress and Depression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112778 (2019). JansenRGene expression in major depressive disorderMol. Psychiatry2016213393471:CAS:528:DC%2BC2MXhtFOjtrfL10.1038/mp.2015.57 Yang C., Wardenaar K. J., Bosker F. J., Li J., Schoevers R. A. Inflammatory markers and treatment outcome in treatment resistant depression: a systematic review. J. Affect. Disord.257, 640–649 (2019). Pariante C. M., Lightman S. L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.06.006 (2008). Lago S. G., et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol. Psychiatryhttps://doi.org/10.1038/s41380-018-0123-4 (2018). Leday G. G. R., et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2017.01.021 (2018). DongQWrightJRExpression of C-reactive protein by alveolar macrophagesJ. Immunol.19961548154820 Noel M., et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugshttps://doi.org/10.1007/s10637-019-00830-3 (2019). Nettis M. A., et al. Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology99, 145–153 (2019). Anacker C., et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1300886110 (2013). Hepgul N., Cattaneo A., Zunszain P. A., Pariante C. M. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. https://doi.org/10.1186/1741-7015-11-28 (2013). Pariante C. M., Miller A. H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatryhttps://doi.org/10.1016/S0006-3223(00)01088-X (2001). Adinolfi E., et al. The P2X7 receptor: a main player in inflammation. Biochem. Pharmacol. https://doi.org/10.1016/j.bcp.2017.12.021 (2018). JhaMKCan C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trialPsychoneuroendocrinology2017781051131:CAS:528:DC%2BC2sXitlOrs78%3D10.1016/j.psyneuen.2017.01.023 Barker M., Rayens W. Partial least squares for discrimination. J. Chemometr. https://doi.org/10.1002/cem.785 (2003). Perrin A. J., Horowitz M. A., Roelofs J., Zunszain P. A., Pariante C. M. Glucocorticoid resistance: is it a requisite for increased cytokine production in depression? A systematic review and meta-analysis. Front. Psychiatryhttps://doi.org/10.3389/fpsyt.2019.00423 (2019). Cattaneo A., et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol. Psychiatryhttps://doi.org/10.1038/s41380-017-0002-4 (2018). FerrariCMacisARossiRCamelettiMMultivariate Statistical Techniques to Manage Multiple Data in Psychology20191111 NiraulaAWangYGodboutJPSheridanJFCorticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expressionJ. Neurosci.201838232823401:CAS:528:DC%2BC1cXhs1Oqur%2FN10.1523/JNEUROSCI.2568-17.2018 Liu J. J., et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/s41380-019-0474-5 (2020). Carvalho L. A., et al. Clomipramine in vitro reduces glucocorticoid receptor function in healthy subjects but not in patients with major depression. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2008.44 (2008). Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front. Pharmacol. https://doi.org/10.3389/fphar.2018.00030 (2018). Spielberger C. D., Gorsuch R. L., Lushene R. E. STAI manual for the state-trait anxiety inventory. Self-Evaluation Questionnaire. MANUALhttps://doi.org/10.1037/t06496-000 (1970). Czamara D., Müller-Myhsok B., Lucae S. The P2RX7 polymorphism rs2230912 is associated with depression: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2017.11.003 (2018). Desseilles M., et al. Assessing the adequacy of past antidepressant trials: a clinician’s guide to the antidepressant treatment response questionnaire. J. Clin. Psychiatryhttps://doi.org/10.4088/JCP.11ac07225 (2011). Köhler C. A., et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol. https://doi.org/10.1007/s12035-017-0632-1 (2018). ShariqASTherapeutic potential of JAK/STAT pathway modulation in mood disordersRev. Neurosci.2018301710.1515/revneuro-2018-0027 Le T. T., et al. Identification and replication of RNA-Seq gene network modules associated with depression severity. Transl. Psychiatryhttps://doi.org/10.1038/s41398-018-0234-3 (2018). Mellon S. H., et al. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment. Transl. Psychiatryhttps://doi.org/10.1038/tp.2016.79 (2016). Dowlati Y., et al. A meta-analysis of cytokines in major depression. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2009.09.033 (2010). Bernstein D. P., et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatryhttps://doi.org/10.1176/ajp.151.8.1132 (1994). Wang L., et al. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: a systematic review and meta-analysis. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2019.02.021 (2019). Pariante C. M., et al. Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacologyhttps://doi.org/10.1007/s00213-004-1925-4 (2004). Leighton S. P., et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/mp.2017.205 (2018). FarooqRKA P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in micePsychoneuroendocrinology2018971201301:CAS:528:DC%2BC1cXhtlCrtb3L10.1016/j.psyneuen.2018.07.016 Pariante C. M. Why are depressed patients inflamed? A reflection on 20 years of research on d N Nikkheslat (874_CR50) 2020; 87 874_CR18 874_CR19 874_CR27 874_CR28 874_CR25 M Maes (874_CR69) 1992; 16 874_CR23 874_CR67 874_CR21 874_CR65 874_CR22 874_CR63 874_CR64 874_CR61 874_CR60 A SEIDEL (874_CR68) 1995; 41 874_CR29 874_CR38 874_CR39 874_CR36 874_CR34 A Niraula (874_CR55) 2018; 38 874_CR35 874_CR32 874_CR33 874_CR1 874_CR30 874_CR74 874_CR2 874_CR31 874_CR75 874_CR3 874_CR72 874_CR4 874_CR5 874_CR6 S Mostafavi (874_CR24) 2014; 19 874_CR71 874_CR7 A Cattaneo (874_CR15) 2013; 38 874_CR8 874_CR9 R Jansen (874_CR20) 2016; 21 C Ferrari (874_CR37) 2019; 1 A Bhattacharya (874_CR26) 2018; 98 874_CR47 874_CR48 874_CR45 T Klengel (874_CR49) 2015; 86 874_CR46 874_CR44 874_CR41 874_CR42 T Frodl (874_CR62) 2012; 2 874_CR40 RK Farooq (874_CR43) 2018; 97 874_CR16 Q Dong (874_CR66) 1996; 15 874_CR17 874_CR14 874_CR58 874_CR59 874_CR12 874_CR56 AS Shariq (874_CR73) 2018; 30 874_CR13 874_CR57 874_CR10 874_CR54 874_CR11 MK Jha (874_CR70) 2017; 78 874_CR52 874_CR53 874_CR51 33077715 - Transl Psychiatry. 2020 Oct 19;10(1):352. doi: 10.1038/s41398-020-01044-5. |
References_xml | – reference: FarooqRKA P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in micePsychoneuroendocrinology2018971201301:CAS:528:DC%2BC1cXhtlCrtb3L10.1016/j.psyneuen.2018.07.016 – reference: JansenRGene expression in major depressive disorderMol. Psychiatry2016213393471:CAS:528:DC%2BC2MXhtFOjtrfL10.1038/mp.2015.57 – reference: Carvalho L. A., et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J. Affect. Disord. https://doi.org/10.1016/j.jad.2012.10.036 (2013). – reference: Pariante C. M., Lightman S. L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.06.006 (2008). – reference: FrodlTReduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorderTransl. Psychiatry201221:STN:280:DC%2BC38fjtVGmug%3D%3D10.1038/tp.2012.14 – reference: Lago S. G., et al. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol. Psychiatryhttps://doi.org/10.1038/s41380-018-0123-4 (2018). – reference: Dowlati Y., et al. A meta-analysis of cytokines in major depression. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2009.09.033 (2010). – reference: Pariante C. M., et al. Four days of citalopram increase suppression of cortisol secretion by prednisolone in healthy volunteers. Psychopharmacologyhttps://doi.org/10.1007/s00213-004-1925-4 (2004). – reference: SEIDELACytokine production and serum proteins in depressionScand. J. Immunol.1995415345381:CAS:528:DyaK2MXmslGqs7s%3D10.1111/j.1365-3083.1995.tb03604.x – reference: Weber M. D., Godbout J. P., Sheridan J. F. Repeated social defeat, neuroinflammation, and behavior: monocytes carry the signal. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2016.102 (2017). – reference: Pariante C. M., Miller A. H. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatryhttps://doi.org/10.1016/S0006-3223(00)01088-X (2001). – reference: Anacker C., et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1300886110 (2013). – reference: Baumeister D., Akhtar R., Ciufolini S., Pariante C. M., Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatryhttps://doi.org/10.1038/mp.2015.67 (2016). – reference: CattaneoACandidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’Neuropsychopharmacology2013383773851:CAS:528:DC%2BC3sXhtV2nsL0%3D10.1038/npp.2012.191 – reference: Heim C., Newport D. J., Mletzko T., Miller A. H., Nemeroff C. B. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinologyhttps://doi.org/10.1016/j.psyneuen.2008.03.008 (2008). – reference: Juruena M. F., et al. Different responses to dexamethasone and prednisolone in the same depressed patients. Psychopharmacologyhttps://doi.org/10.1007/s00213-006-0555-4 (2006). – reference: Ising M., et al. The combined dexamethasone/CRH test as a potential surrogate marker in depression. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2005.03.014 (2005). – reference: NikkheslatNChildhood trauma, HPA axis activity and antidepressant response in patients with depressionBrain Behav. Immun.2020872292371:CAS:528:DC%2BC1MXisVajtLbL10.1016/j.bbi.2019.11.024 – reference: Leighton S. P., et al. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/mp.2017.205 (2018). – reference: Hepgul N., et al. Transcriptomics in interferon-α-treated patients identifies inflammation-, neuroplasticity- and oxidative stress-related signatures as predictors and correlates of depression. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2016.50 (2016). – reference: Harris P. A., et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. https://doi.org/10.1016/j.jbi.2008.08.010 (2009). – reference: Hepgul N., Cattaneo A., Zunszain P. A., Pariante C. M. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. https://doi.org/10.1186/1741-7015-11-28 (2013). – reference: Felger J. C., et al. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol. Psychiatryhttps://doi.org/10.1038/s41380-018-0096-3 (2018). – reference: Noel M., et al. Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest. New Drugshttps://doi.org/10.1007/s10637-019-00830-3 (2019). – reference: Chamberlain S. R., et al. Treatment-resistant depression and peripheral C-reactive protein. Br. J. Psychiatryhttps://doi.org/10.1192/bjp.2018.66 (2019). – reference: Cattaneo A., et al. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-β mRNA levels accurately predict treatment response in depressed patients. Int. J. Neuropsychopharmacol.https://doi.org/10.1093/ijnp/pyw045 (2016). – reference: Ju C., et al. Integrated genome-wide methylation and expression analyses reveal functional predictors of response to antidepressants. Transl Psychiatryhttps://doi.org/10.1038/s41398-019-0589-0 (2019). – reference: BhattacharyaAJonesDNEmerging role of the P2X7-NLRP3-IL1β pathway in mood disordersPsychoneuroendocrinology201898951001:CAS:528:DC%2BC1cXhsFequr%2FM10.1016/j.psyneuen.2018.08.015 – reference: Cattaneo A., et al. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol. Psychiatryhttps://doi.org/10.1038/s41380-017-0002-4 (2018). – reference: Nikkheslat N., et al. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav. Immun.https://doi.org/10.1016/j.bbi.2015.02.002 (2015). – reference: Savitz J., et al. Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2012.10.007 (2013). – reference: ShariqASTherapeutic potential of JAK/STAT pathway modulation in mood disordersRev. Neurosci.2018301710.1515/revneuro-2018-0027 – reference: Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front. Pharmacol. https://doi.org/10.3389/fphar.2018.00030 (2018). – reference: Klengel T., et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci.https://doi.org/10.1038/nn.3275 (2013). – reference: Spielberger C. D., Gorsuch R. L., Lushene R. E. STAI manual for the state-trait anxiety inventory. Self-Evaluation Questionnaire. MANUALhttps://doi.org/10.1037/t06496-000 (1970). – reference: Perrin A. J., Horowitz M. A., Roelofs J., Zunszain P. A., Pariante C. M. Glucocorticoid resistance: is it a requisite for increased cytokine production in depression? A systematic review and meta-analysis. Front. Psychiatryhttps://doi.org/10.3389/fpsyt.2019.00423 (2019). – reference: Brereton R. G., Lloyd G. R. Partial least squares discriminant analysis: taking the magic away. J. Chemometr. https://doi.org/10.1002/cem.2609 (2014). – reference: Köhler C. A., et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol. https://doi.org/10.1007/s12035-017-0632-1 (2018). – reference: Wang L., et al. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: a systematic review and meta-analysis. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2019.02.021 (2019). – reference: Hepgul N., et al. Childhood maltreatment is associated with increased body mass index and increased C-reactive protein levels in first-episode psychosis patients. Psychol. Med. https://doi.org/10.1017/S0033291711002947 (2012). – reference: Alcocer-Gómez E., et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2013.10.017 (2014). – reference: DongQWrightJRExpression of C-reactive protein by alveolar macrophagesJ. Immunol.19961548154820 – reference: Zannas A. S., et al. Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-κB-driven inflammation and cardiovascular risk. Proc. Natl Acad. Sci. USAhttps://doi.org/10.1073/pnas.1816847116 (2019). – reference: Liu J. J., et al. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol. Psychiatryhttps://doi.org/10.1038/s41380-019-0474-5 (2020). – reference: Haapakoski R., Mathieu J., Ebmeier K. P., Alenius H., Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2015.06.001 (2015). – reference: Pariante C. M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2017.04.001 (2017). – reference: Mellon S. H., et al. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment. Transl. Psychiatryhttps://doi.org/10.1038/tp.2016.79 (2016). – reference: First M., Spitzer R., Gibbon, WilliamsJ. B. W. Structured Clinical Interview for DSM-IV Axis Disorders—Patient Edition (SCID-I/P Version 2.0). (New York Biometrics Research Department, New York State Psychiatric Institute, 1996). – reference: Desseilles M., et al. Assessing the adequacy of past antidepressant trials: a clinician’s guide to the antidepressant treatment response questionnaire. J. Clin. Psychiatryhttps://doi.org/10.4088/JCP.11ac07225 (2011). – reference: KlengelTBinderEBEpigenetics of stress-related psychiatric disorders and gene × environment interactionsNeuron201586134313571:CAS:528:DC%2BC2MXht1Sgu7zN10.1016/j.neuron.2015.05.036 – reference: Yang C., Wardenaar K. J., Bosker F. J., Li J., Schoevers R. A. Inflammatory markers and treatment outcome in treatment resistant depression: a systematic review. J. Affect. Disord.257, 640–649 (2019). – reference: Pariante C. M., Thomas S. A., Lovestone S., Makoff A., Kerwin R. W. Do antidepressants regulate how cortisol affects the brain? Psychoneuroendocrinologyhttps://doi.org/10.1016/j.psyneuen.2003.10.009 (2004). – reference: Bernstein D. P., et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatryhttps://doi.org/10.1176/ajp.151.8.1132 (1994). – reference: FerrariCMacisARossiRCamelettiMMultivariate Statistical Techniques to Manage Multiple Data in Psychology20191111 – reference: Nettis M. A., et al. Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology99, 145–153 (2019). – reference: Leday G. G. R., et al. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatryhttps://doi.org/10.1016/j.biopsych.2017.01.021 (2018). – reference: Mondelli V., et al. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J. Clin. Psychiatryhttps://doi.org/10.4088/JCP.10m06745 (2011). – reference: Juruena M. F., et al. prednisolone suppression test in depression: prospective study of the role of HPA axis dysfunction in treatment resistance. Br. J. Psychiatryhttps://doi.org/10.1192/bjp.bp.108.050278 (2009). – reference: Ribeiro D. E., et al. P2X7 Receptor Signaling in Stress and Depression. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20112778 (2019). – reference: Capuron L., et al. Neurobehavioral effects of interferon-α in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacologyhttps://doi.org/10.1016/S0893-133X(01)00407-9 (2002). – reference: Osimo E. F., et al. Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain. Behav. Immun. https://doi.org/10.1016/j.bbi.2020.02.010 (2020). – reference: Barker M., Rayens W. Partial least squares for discrimination. J. Chemometr. https://doi.org/10.1002/cem.785 (2003). – reference: Carvalho L. A., et al. Clomipramine in vitro reduces glucocorticoid receptor function in healthy subjects but not in patients with major depression. Neuropsychopharmacologyhttps://doi.org/10.1038/npp.2008.44 (2008). – reference: Borsini A., et al. Interferon-alpha reduces human hippocampal neurogenesis and increases apoptosis via activation of distinct STAT1-dependent mechanisms. Int. J. Neuropsychopharmacol. https://doi.org/10.1093/ijnp/pyx083 (2018). – reference: Osimo E. F., Baxter L. J., Lewis G., Jones P. B., Khandaker G. M. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol. Med. https://doi.org/10.1017/S0033291719001454 (2019). – reference: Strawbridge R., et al. Inflammation and clinical response to treatment in depression: a meta-analysis. Eur. Neuropsychopharmacol. https://doi.org/10.1016/j.euroneuro.2015.06.007 (2015). – reference: Czamara D., Müller-Myhsok B., Lucae S. The P2RX7 polymorphism rs2230912 is associated with depression: a meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatryhttps://doi.org/10.1016/j.pnpbp.2017.11.003 (2018). – reference: JhaMKCan C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trialPsychoneuroendocrinology2017781051131:CAS:528:DC%2BC2sXitlOrs78%3D10.1016/j.psyneuen.2017.01.023 – reference: NiraulaAWangYGodboutJPSheridanJFCorticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expressionJ. Neurosci.201838232823401:CAS:528:DC%2BC1cXhs1Oqur%2FN10.1523/JNEUROSCI.2568-17.2018 – reference: Capuron L., et al. Basal ganglia hypermetabolism and symptoms of fatigue during interferon-α therapy. Neuropsychopharmacologyhttps://doi.org/10.1038/sj.npp.1301362 (2007). – reference: Adinolfi E., et al. The P2X7 receptor: a main player in inflammation. Biochem. Pharmacol. https://doi.org/10.1016/j.bcp.2017.12.021 (2018). – reference: MaesMDisturbances in acute phase plasma proteins during melancholia: additional evidence for the presence of an inflammatory process during that illnessProg. Neuropsychopharmacol. Biol. Psychiatry1992165015151:CAS:528:DyaK38XlvV2nsL8%3D10.1016/0278-5846(92)90056-K – reference: Kaplan M., et al. A significant correlation between C—reactive protein levels in blood monocytes derived macrophages versus content in carotid atherosclerotic lesions. J. Inflamm. https://doi.org/10.1186/1476-9255-11-7 (2014). – reference: MostafaviSType I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencingMol. Psychiatry201419126712741:CAS:528:DC%2BC3sXhvFensbjN10.1038/mp.2013.161 – reference: Le T. T., et al. Identification and replication of RNA-Seq gene network modules associated with depression severity. Transl. Psychiatryhttps://doi.org/10.1038/s41398-018-0234-3 (2018). – volume: 87 start-page: 229 year: 2020 ident: 874_CR50 publication-title: Brain Behav. Immun. doi: 10.1016/j.bbi.2019.11.024 – ident: 874_CR64 doi: 10.1016/j.jad.2012.10.036 – ident: 874_CR11 doi: 10.4088/JCP.10m06745 – volume: 19 start-page: 1267 year: 2014 ident: 874_CR24 publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.161 – ident: 874_CR74 doi: 10.1007/s10637-019-00830-3 – ident: 874_CR8 doi: 10.1016/j.bbi.2015.02.002 – ident: 874_CR53 doi: 10.1016/j.euroneuro.2017.04.001 – ident: 874_CR56 doi: 10.1192/bjp.bp.108.050278 – ident: 874_CR42 doi: 10.1038/s41380-019-0474-5 – ident: 874_CR17 doi: 10.1093/ijnp/pyw045 – ident: 874_CR61 doi: 10.1016/j.psyneuen.2003.10.009 – volume: 38 start-page: 377 year: 2013 ident: 874_CR15 publication-title: Neuropsychopharmacology doi: 10.1038/npp.2012.191 – ident: 874_CR60 doi: 10.1007/s00213-004-1925-4 – ident: 874_CR39 doi: 10.1002/cem.2609 – ident: 874_CR71 doi: 10.1038/s41380-018-0123-4 – volume: 98 start-page: 95 year: 2018 ident: 874_CR26 publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2018.08.015 – ident: 874_CR54 doi: 10.1016/j.psyneuen.2008.03.008 – ident: 874_CR65 doi: 10.1038/s41380-018-0096-3 – volume: 2 year: 2012 ident: 874_CR62 publication-title: Transl. Psychiatry doi: 10.1038/tp.2012.14 – volume: 97 start-page: 120 year: 2018 ident: 874_CR43 publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2018.07.016 – ident: 874_CR4 doi: 10.1016/j.bbi.2020.02.010 – ident: 874_CR10 doi: 10.1016/j.psyneuen.2018.09.005 – ident: 874_CR28 doi: 10.1038/s41380-017-0002-4 – ident: 874_CR6 doi: 10.1016/j.jad.2019.07.045 – volume: 1 start-page: 1 year: 2019 ident: 874_CR37 publication-title: Multivariate Statistical Techniques to Manage Multiple Data in Psychology – ident: 874_CR33 doi: 10.1037/t07827-000 – ident: 874_CR47 doi: 10.1016/j.pnpbp.2017.11.003 – volume: 78 start-page: 105 year: 2017 ident: 874_CR70 publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2017.01.023 – ident: 874_CR27 doi: 10.1038/npp.2016.102 – ident: 874_CR29 doi: 10.1038/npp.2016.50 – volume: 21 start-page: 339 year: 2016 ident: 874_CR20 publication-title: Mol. Psychiatry doi: 10.1038/mp.2015.57 – ident: 874_CR46 doi: 10.1016/j.bbi.2013.10.017 – ident: 874_CR3 doi: 10.1192/bjp.2018.66 – ident: 874_CR9 doi: 10.1038/mp.2015.67 – ident: 874_CR35 doi: 10.1037/t06496-000 – ident: 874_CR52 doi: 10.1016/S0006-3223(00)01088-X – ident: 874_CR21 doi: 10.1038/tp.2016.79 – ident: 874_CR14 doi: 10.1186/1741-7015-11-28 – volume: 15 start-page: 4815 year: 1996 ident: 874_CR66 publication-title: J. Immunol. doi: 10.4049/jimmunol.156.12.4815 – ident: 874_CR5 doi: 10.1016/j.biopsych.2009.09.033 – ident: 874_CR13 doi: 10.1038/npp.2008.44 – ident: 874_CR38 doi: 10.1002/cem.785 – ident: 874_CR16 doi: 10.1073/pnas.1816847116 – volume: 16 start-page: 501 year: 1992 ident: 874_CR69 publication-title: Prog. Neuropsychopharmacol. Biol. Psychiatry doi: 10.1016/0278-5846(92)90056-K – ident: 874_CR22 doi: 10.1016/j.biopsych.2017.01.021 – ident: 874_CR34 doi: 10.4088/JCP.11ac07225 – volume: 38 start-page: 2328 year: 2018 ident: 874_CR55 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2568-17.2018 – ident: 874_CR32 doi: 10.1093/ijnp/pyx083 – ident: 874_CR12 doi: 10.1017/S0033291711002947 – ident: 874_CR67 doi: 10.1186/1476-9255-11-7 – ident: 874_CR31 doi: 10.1038/sj.npp.1301362 – ident: 874_CR44 doi: 10.1016/j.bcp.2017.12.021 – volume: 86 start-page: 1343 year: 2015 ident: 874_CR49 publication-title: Neuron doi: 10.1016/j.neuron.2015.05.036 – ident: 874_CR19 doi: 10.1016/j.bbi.2012.10.007 – ident: 874_CR25 doi: 10.1038/s41398-019-0589-0 – ident: 874_CR41 doi: 10.1016/j.bbi.2019.02.021 – ident: 874_CR36 doi: 10.1176/ajp.151.8.1132 – ident: 874_CR58 doi: 10.1007/s00213-006-0555-4 – ident: 874_CR57 doi: 10.1016/j.pnpbp.2005.03.014 – ident: 874_CR1 doi: 10.1016/j.bbi.2015.06.001 – ident: 874_CR59 doi: 10.3389/fpsyt.2019.00423 – ident: 874_CR40 doi: 10.1007/s12035-017-0632-1 – ident: 874_CR2 doi: 10.1017/S0033291719001454 – ident: 874_CR51 doi: 10.1016/j.tins.2008.06.006 – ident: 874_CR75 doi: 10.1016/j.jbi.2008.08.010 – ident: 874_CR18 doi: 10.1073/pnas.1300886110 – volume: 30 start-page: 1 year: 2018 ident: 874_CR73 publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2018-0027 – ident: 874_CR7 doi: 10.1016/j.euroneuro.2015.06.007 – ident: 874_CR48 doi: 10.1038/nn.3275 – ident: 874_CR30 doi: 10.1016/S0893-133X(01)00407-9 – ident: 874_CR45 doi: 10.3390/ijms20112778 – ident: 874_CR23 doi: 10.1038/s41398-018-0234-3 – ident: 874_CR72 doi: 10.3389/fphar.2018.00030 – volume: 41 start-page: 534 year: 1995 ident: 874_CR68 publication-title: Scand. J. Immunol. doi: 10.1111/j.1365-3083.1995.tb03604.x – ident: 874_CR63 doi: 10.1038/mp.2017.205 – reference: 33077715 - Transl Psychiatry. 2020 Oct 19;10(1):352. doi: 10.1038/s41398-020-01044-5. |
SSID | ssj0000548171 |
Score | 2.5096946 |
Snippet | The mRNA expression signatures associated with the ‘pro-inflammatory’ phenotype of depression, and the differential signatures associated with depression... The mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 232 |
SubjectTerms | 692/53/2422 692/699/476/1414 Antidepressive Agents Behavioral Sciences Biological Psychology Cytokines Glucocorticoids Humans Inflammasomes Medicine Medicine & Public Health Neurosciences Pharmacotherapy Psychiatry Receptors, Glucocorticoid - genetics RNA, Messenger Treatment resistance |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagSIgL4s1CQUbiBlYT2_HjhAq0KkgtCFGxt8hxbFipm5RNFsGf47cxdpxUS7U97cGT1854PPZ88w1CL621PFfKE9gbSMKd1URXLCN1XlnmBTM-kj0fn4ijU_5xXszTgVuXYJWjT4yOum5tOCPfo-BFuRSwIL45_0lC16iQXU0tNK6jG4G6LFi1nMvpjAXCEZXLPNXKZEztdeCzQ00ZDeXUKkARN9ejS0HmZazkfwnTuA4d3kG3UwCJ9weN30XXXHMP3TxOKfL76O-30PGWREA6dr8TzrXBrcdgTKD_penapSPYNDWOgHXYf8K92kVNYmGLq_Hyy8l-h21o3GH7sz-4c5Eh3HV4wqWDbBdCz6bHCUwL1yWS1g6HohVcr9bfiV85Fx-1SmDcX-5CbNFgiD_x2w-f3h98xpHp9gE6PTz4-u6IpCYNxBZa9EQYcBq50JpLx5kDFcvKC-dZYWzgMrOMMpHVhisnrYbfXHrhC5cpTo2AbfBDtNO0jXuMsGPca2p14Y3kqhDKGJNVQue0Ylq4bIbyUVWlTQzmoZHGWRkz6UyVg3pLUG8Z1VvKGXo1XXM-8HdcKb07WkCZ5nJXhiAm5HNFsWV4NMwtw0rSIiRbZ-jFNAxzOCRmTOPa9fCEQKtTgMyjwdyml4XwWmua6RmSG4Y4CQR-8M2RZvEj8oRLuCVEbzP0ejTZi9fa_h88ufojn6JbNE4fSSjbRTv9au2eQVzWV8_j5PsHAs85UA priority: 102 providerName: ProQuest |
Title | Whole-blood expression of inflammasome- and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study |
URI | https://link.springer.com/article/10.1038/s41398-020-00874-7 https://www.ncbi.nlm.nih.gov/pubmed/32699209 https://www.proquest.com/docview/2426013865 https://www.proquest.com/docview/2471476710 https://www.proquest.com/docview/2487258231 https://www.proquest.com/docview/2426537651 https://pubmed.ncbi.nlm.nih.gov/PMC7376244 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2kRAviDuBURmJN7BI4sSXx650GpVWpsFE3yLHsUelNUFNiuDP8ds4dt1MZRSJp0j1cWL1HDufc77zGaHXWussEcIS2BtwkhktiSxpTKqk1NQyqqwXez6bstPLbDLLZ3so3dTCeNK-l7T0y_SGHfauhcXWFYOlrg5aOA7hPjp0Uu0Q24fD4eTTpP-yAiBEJDwJFTIxFX_pvP0WugUtbzMk_0iT-rfPyX10L8BGPFwP9AHaM_VDdOcsJMYfoV9f3Dm3xNPQsfkR2K01biyGEAKvL1TbLAzBqq6wp6nDrhPu1cwr4stZTIUXF9Nhi7U7rkN31z9xa7wuuGlxz0YH29YBzrrDgUIL_YI0a4tdqQqulqsrYpfG-EctAwX3u7kxm9cYUCc-_vDx_fgce33bx-jyZPx5dErC0QxE55J1hClYKhImZcZNRg04lpeWGUtzpZ2CmaYpZXGlMmG4lnBNuGU2N7HIUsVg8_sEHdRNbZ4hbGhmZaplbhXPRM6EUioumUzSkkpm4gglG1cVOuiWu-MzrgufP6eiWLu3APcW3r0Fj9Cbvs-3tWrHP62PNhFQhBncFg66uCwuy3c08yTjDPDZjmbB09ylWCP0qm-GmevSMao2zWr9BCemk4PN03W49YMFUC1lGssI8a1A7A2cKvh2Sz3_6tXBOdwSMFuE3m5C9mZYu_-D5_9n_gLdTf104iSlR-igW67MS0BnXTlA-3zGB2FSwvV4PD2_gF9HbDTwXzx-Az8EPM4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIgEXxD_bFjASnMBqYid2fECo0Fa7tLsg1Iq9pY5jw0rdpGx2gb4Uj8CzMXZ-qqXa3nrKwZPEyYxnxp6ZbxB6qbWOwiSxBPYGgkRGSyIzFpA8zDSznCnrwZ6HI94_jj6O4_Ea-tPWwri0ylYnekWdl9qdkW9T0KKR4GAQ3539IK5rlIuuti00arE4MOe_YMtWvR3sAn9fUbq_d_ShT5quAkTHks8JVyDlIZcyEiZiBuYkMsuNZbHSDnxLM8p4kKsoMUJLuIbCchubIImo4rEDOgCVfwMMb-A2e2IsujMdcH-SUIRNbU7Aku0KbISrYaOufDtxqY_L9u-SU3s5N_O_AK23e_t30Z3GYcU7tYTdQ2umuI9uDpuQ_AP096vrsEt8Ajw2v5u82gKXFoPwgrxNVVVODcGqyLFPkIf9LjyrnOTEF9KYHE-_jHYqrF2jED0_PceV8YjkpsJdHjzQVs7VLea4Sd6F-xpQ2Aq7IhmczxbfiJ0Z4181a5J_f5oLskmBwd_F7wefdvc-Y4-s-xAdXwv7HqH1oizME4QNi6ykWsZWiSiJeaKUCjIuQ5oxyU3QQ2HLqlQ3iOmuccdp6iP3LElr9qbA3tSzNxU99Lq756zGC7mSequVgLTRHVXqnCYXP-bxiuF2IawYTgSNXXC3h150w6AzXCBIFaZc1G9wMD4x0Dyuxa2bLLjzUtJA9pBYEsSOwOGRL48Uk-8el1zAI8Fb7KE3rcheTGv1P9i4-iOfo1v9o-FhejgYHWyi29QvJUEo20Lr89nCPAWfcJ498wsRo5PrXvn_AMQ8dWU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemTpq4IL4pDDASnMBqYid2fEBoo61Wxko1MbFb5jg2VFqT0bTA_jUO_G08O0mnMm23nXqwkzh9H37O-73fQ-iV1joKk8QSOBsIEhkticxYQPIw08xypqwnez4Y872j6ONxfLyB_rS1MA5W2fpE76jzUrtv5D0KXjQSHDbEnm1gEZP-8P3ZD-I6SLlMa9tOo1aRfXP-C45v1btRH2T9mtLh4MuHPdJ0GCA6lnxBuAKND7mUkTARM7A-kVluLIuVdkRcmlHGg1xFiRFawm8oLLexCZKIKh470gNw_5vCnYo6aHN3MJ4crr7wQDCUhCJsKnUClvQq2DFcRRt1xdyJA0Ku74aXQtzLSM3_0rV-FxzeQbeb8BXv1Pp2F22Y4h7aOmgS9PfR36-u3y7xcHhsfjco2wKXFoMqg_bNVFXODMGqyLGHy8PpF-5VTnPiy2pMjmeH450Ka9c2RC9Oz3FlPD-5qfAKFQ9zKxf4FgvcQHnhuoYitsKuZAbn8-U3YufG-EfNGyjwT3MxbVpgiH7x7uhzfzDBnmf3ATq6EQE-RJ2iLMxjhA2LrKRaxlaJKIl5opQKMi5DmjHJTdBFYSuqVDf86a6Nx2nq8_gsSWvxpiDe1Is3FV30ZnXNWc0ecu3s7VYD0saTVKkLoVw2mcdXDLdmccVwImjsUr1d9HI1DB7EpYVUYcpl_QRH6hPDnEe1uq0WC8G9lDSQXSTWFHE1wbGTr48U0--epVzALSF27KK3rcpeLOvq_-DJ9S_5Am2B1aefRuP9p-gW9ZYkCGXbqLOYL80zCBAX2fPGEjE6uWnj_weCQnsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole-blood+expression+of+inflammasome-+and+glucocorticoid-related+mRNAs+correctly+separates+treatment-resistant+depressed+patients+from+drug-free+and+responsive+patients+in+the+BIODEP+study&rft.jtitle=Translational+psychiatry&rft.au=Cattaneo%2C+Annamaria&rft.au=Ferrari%2C+Clarissa&rft.au=Turner%2C+Lorinda&rft.au=Mariani%2C+Nicole&rft.date=2020-07-23&rft.issn=2158-3188&rft.eissn=2158-3188&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41398-020-00874-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41398_020_00874_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3188&client=summon |