Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS

Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been id...

Full description

Saved in:
Bibliographic Details
Published inBMC veterinary research Vol. 17; no. 1; p. 127
Main Authors Zhang, Bin, Wang, Yan, Wu, Caihong, Qiu, Shulei, Chen, Xiaolan, Cai, Bingyan, Xie, Huimei
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.03.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.
AbstractList Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. Results In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. Conclusion The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide. Keywords: Freeze-thawing, Boar spermatozoa, Motility, Apoptosis, ROS
Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.
Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. Results In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. Conclusion The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.
Abstract Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. Results In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. Conclusion The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.
Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified. In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes. The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.
Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified.BACKGROUNDCryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw cycling, excessive reactive oxygen species (ROS) are produced, and the effects of ROS on boar sperm during cryopreservation have not been identified.In this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes.RESULTSIn this study, we evaluated the quality of boar spermatozoa in different steps of cryopreservation (extension, cooling, and thawing for 30 min and 240 min) with or without boar-sperm antioxidant (N-acetylcysteine (NAC)). The ROS levels, sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, ATP content, and sperm apoptosis were assayed. After thawing, the ROS level and sperm apoptosis were significantly increased, and the sperm motility, plasma membrane integrity, mitochondrial activity, sperm chromatin structure, and ATP content were significantly impaired compared with those at the extension period and cooling period. Moreover, the addition of N-acetyl L-cysteine (NAC) reversed these changes.The freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.CONCLUSIONThe freeze-thawing of boar spermatozoa impaired their motility, plasma membrane, mitochondrial activity, sperm chromatin structure and apoptosis by producing excessive ROS. Thus, the downregulation of ROS level by antioxidants, especially the NAC, is important for manufacturing frozen pig sperm to increase reproductive cells and livestock propagation, as well as to improve the application of frozen semen in pigs worldwide.
ArticleNumber 127
Audience Academic
Author Qiu, Shulei
Cai, Bingyan
Zhang, Bin
Wu, Caihong
Chen, Xiaolan
Xie, Huimei
Wang, Yan
Author_xml – sequence: 1
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
– sequence: 2
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
– sequence: 3
  givenname: Caihong
  surname: Wu
  fullname: Wu, Caihong
– sequence: 4
  givenname: Shulei
  surname: Qiu
  fullname: Qiu, Shulei
– sequence: 5
  givenname: Xiaolan
  surname: Chen
  fullname: Chen, Xiaolan
– sequence: 6
  givenname: Bingyan
  surname: Cai
  fullname: Cai, Bingyan
– sequence: 7
  givenname: Huimei
  surname: Xie
  fullname: Xie, Huimei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33752649$$D View this record in MEDLINE/PubMed
BookMark eNqNkttqFTEUhgep2IO-gBcS8MYLp05mcrwRSrFaKBQ8XIdMZmV2ykyyTbJb23fwnc3ubrW7iEgYEpJvfcks_v1qxwcPVfUSN4cYC_Yu4VZiXjctLp9oSI2fVHuYE1YzTMTOg_VutZ_SRdMQIjl7Vu12HactI3Kv-nkSAW6gzgt95fyI3LzULiaUF4DmkN3k8vVbtJx0mjWaYe6j9oCczzDGcoS0H9DscjCL4IfoNLIrb7ILHgWL-qAjSkuIs87hJuhijWE1LtAIHqLO6wvhh4GU3CWgz-dfnldPrZ4SvLibD6pvJx--Hn-qz84_nh4fndWGSpZrJjXvWkz1IDvaCEqFwMx2VojO9kLixg7Y9i1reWP63mJCgQ9MMtNqy4WE7qA63XiHoC_UMrpZx2sVtFO3GyGOSsfszAQKOB8oNZRLKwixuKdDR4XRWgLp-3bter9xLVf9DIMBn6OetqTbJ94t1BguFZeCESyL4M2dIIbvK0hZzS4ZmKbS6bBKqqWkIaIR7H_QhnRESMYK-voRehFW0ZeuFgoTzqVk3R9q1OVfnbehPNGspeqIUUYazjEv1OFfqDIGmJ0pobSu7G8VvHrYk9_NuM9dAcQGMDGkFMEq47Je56aY3aRwo9YRV5uIqxJxdRtxhUtp-6j03v6Pol9BT_9B
CitedBy_id crossref_primary_10_1016_j_theriogenology_2023_12_030
crossref_primary_10_1016_j_theriogenology_2024_12_012
crossref_primary_10_3390_ani13182826
crossref_primary_10_1016_j_anireprosci_2025_107792
crossref_primary_10_1098_rsif_2023_0468
crossref_primary_10_3390_jcm10122687
crossref_primary_10_1016_j_vascn_2023_107474
crossref_primary_10_34172_jsums_921
crossref_primary_10_1111_and_14571
crossref_primary_10_3390_biology11050642
crossref_primary_10_1016_j_theriogenology_2023_01_009
crossref_primary_10_51335_organoid_2023_3_e15
crossref_primary_10_3390_ijms25084157
crossref_primary_10_1016_j_anireprosci_2024_107572
crossref_primary_10_3390_antiox13030322
crossref_primary_10_3390_ani13060990
crossref_primary_10_3390_antiox10071154
crossref_primary_10_54203_scil_2023_wvj60
crossref_primary_10_5713_ab_23_0234
crossref_primary_10_1071_FP22271
crossref_primary_10_1016_j_jddst_2024_105696
crossref_primary_10_1016_j_theriogenology_2022_08_022
crossref_primary_10_1016_j_ijbiomac_2025_139796
crossref_primary_10_1093_humrep_dead250
crossref_primary_10_1016_j_ijrefrig_2021_11_030
crossref_primary_10_20473_jmv_vol7_iss1_2024_105_122
crossref_primary_10_54203_scil_2024_wvj40
crossref_primary_10_3390_ani13182829
crossref_primary_10_1002_mrd_23738
crossref_primary_10_3389_fimmu_2023_1207631
Cites_doi 10.1006/cryo.1994.1028
10.1016/j.freeradbiomed.2020.07.008
10.1155/2019/2917513
10.1016/j.theriogenology.2018.09.031
10.1016/j.theriogenology.2013.05.006
10.1016/j.theriogenology.2004.09.021
10.1016/j.bbrc.2018.02.087
10.1016/j.lfs.2019.116735
10.3390/antiox9020134
10.1002/mrd.22840
10.2164/jandrol.112.016535
10.1016/j.theriogenology.2004.09.046
10.12750/JET.2013.28.3.265
10.1002/jcp.26321
10.1016/j.cryobiol.2020.11.007
10.1054/plef.2000.0174
10.1016/j.cryobiol.2014.09.005
10.1016/j.theriogenology.2015.11.026
10.1016/S0378-4320(99)00035-4
10.1002/mrd.22871
10.2174/0929867323666160425113518
10.1111/rda.13060
10.1007/s10695-018-0538-5
10.1007/s10815-017-0879-5
10.1016/j.theriogenology.2008.06.014
10.24425/119046
10.1071/RD9930639
10.1002/j.1939-4640.2000.tb03420.x
10.1016/j.theriogenology.2019.12.016
10.1530/REP-13-0178
10.1186/s12958-019-0468-9
10.1016/j.anireprosci.2019.03.004
10.1186/s12958-016-0177-6
10.1016/j.urology.2009.02.034
ContentType Journal Article
Copyright COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
NPM
3V.
7QG
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s12917-021-02804-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
Publicly Available Content Database
AGRICOLA


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1746-6148
EndPage 127
ExternalDocumentID oai_doaj_org_article_e77d55c579f844f1b5d358caa9e4bb2e
PMC7986419
A656407717
33752649
10_1186_s12917_021_02804_1
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
APEBS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECGQY
EMB
EMK
EMOBN
ESX
EYRJQ
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAG
IAO
IHR
INH
INR
ITC
ITG
ITH
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7QG
7U9
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c596t-69a73215ad93508558816f3f883fb8910fd1fb26270cbbf145e7d696c2af789e3
IEDL.DBID M48
ISSN 1746-6148
IngestDate Wed Aug 27 01:29:03 EDT 2025
Thu Aug 21 14:33:07 EDT 2025
Fri Jul 11 14:09:03 EDT 2025
Thu Jul 10 18:02:23 EDT 2025
Fri Jul 25 23:04:00 EDT 2025
Tue Jun 17 21:45:34 EDT 2025
Tue Jun 10 20:33:14 EDT 2025
Thu Jan 02 22:58:26 EST 2025
Tue Jul 01 03:24:39 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Motility
Boar spermatozoa
Freeze-thawing
ROS
Apoptosis
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-69a73215ad93508558816f3f883fb8910fd1fb26270cbbf145e7d696c2af789e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2514779963?pq-origsite=%requestingapplication%
PMID 33752649
PQID 2514779963
PQPubID 55144
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e77d55c579f844f1b5d358caa9e4bb2e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986419
proquest_miscellaneous_2540480869
proquest_miscellaneous_2504348966
proquest_journals_2514779963
gale_infotracmisc_A656407717
gale_infotracacademiconefile_A656407717
pubmed_primary_33752649
crossref_citationtrail_10_1186_s12917_021_02804_1
crossref_primary_10_1186_s12917_021_02804_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-22
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC veterinary research
PublicationTitleAlternate BMC Vet Res
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 2804_CR32
RJ Aitken (2804_CR17) 2012; 33
2804_CR33
2804_CR14
B Mislei (2804_CR16) 2020; 144
H Ciftci (2804_CR22) 2009; 74
A Amaral (2804_CR26) 2013; 146
M Adamkovicova (2804_CR4) 2016; 14
Z Zhu (2804_CR11) 2020; 159
JL Bailey (2804_CR7) 2008; 70
I Jofré (2804_CR15) 2019; 2019
R Jannatifar (2804_CR25) 2019; 17
M Xin (2804_CR28) 2018; 44
JF Brouwers (2804_CR21) 2005; 63
FH Comhaire (2804_CR24) 2000; 63
H Li (2804_CR37) 2019; 234
R Díaz (2804_CR2) 2019; 204
S Martínezabad (2804_CR31) 2017; 52
2804_CR1
L Fraser (2804_CR9) 2018; 21
Y Katoh (2804_CR10) 2018; 497
K Erkkilä (2804_CR23) 1998; 83
I Vilagran (2804_CR30) 2013; 80
J Fu (2804_CR13) 2018; 233
V Sagare-Patil (2804_CR29) 2017; 34
J Roca (2804_CR8) 2016; 86
F Lu (2804_CR35) 2014; 69
F Mazaheri (2804_CR3) 2020; 18
S Amaral (2804_CR34) 2016; 23
MT Orrego (2804_CR6) 2019; 123
J Baumber (2804_CR36) 2000; 21
2804_CR5
IG White (2804_CR20) 1993; 5
MM Buhr (2804_CR18) 1994; 31
S Cerolini (2804_CR19) 2000; 58
RJ Aitken (2804_CR12) 2017; 84
SJ Park (2804_CR27) 2012; 28
References_xml – volume: 31
  start-page: 224
  issue: 3
  year: 1994
  ident: 2804_CR18
  publication-title: Cryobiology
  doi: 10.1006/cryo.1994.1028
– volume: 159
  start-page: 44
  year: 2020
  ident: 2804_CR11
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2020.07.008
– volume: 2019
  start-page: 2917513
  year: 2019
  ident: 2804_CR15
  publication-title: Oxidative Med Cell Longev
  doi: 10.1155/2019/2917513
– volume: 123
  start-page: 151
  year: 2019
  ident: 2804_CR6
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2018.09.031
– volume: 80
  start-page: 443
  issue: 5
  year: 2013
  ident: 2804_CR30
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2013.05.006
– ident: 2804_CR5
  doi: 10.1016/j.theriogenology.2004.09.021
– volume: 497
  start-page: 374
  issue: 1
  year: 2018
  ident: 2804_CR10
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2018.02.087
– volume: 234
  start-page: 116735
  year: 2019
  ident: 2804_CR37
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2019.116735
– ident: 2804_CR33
  doi: 10.3390/antiox9020134
– ident: 2804_CR1
  doi: 10.1002/mrd.22840
– volume: 33
  start-page: 1096
  issue: 6
  year: 2012
  ident: 2804_CR17
  publication-title: J Androl
  doi: 10.2164/jandrol.112.016535
– volume: 63
  start-page: 458
  issue: 2
  year: 2005
  ident: 2804_CR21
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2004.09.046
– volume: 28
  start-page: 265
  issue: 3
  year: 2012
  ident: 2804_CR27
  publication-title: J Embryo Transf
  doi: 10.12750/JET.2013.28.3.265
– volume: 233
  start-page: 5267
  issue: 7
  year: 2018
  ident: 2804_CR13
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.26321
– ident: 2804_CR14
  doi: 10.1016/j.cryobiol.2020.11.007
– volume: 63
  start-page: 159
  issue: 3
  year: 2000
  ident: 2804_CR24
  publication-title: Prostaglandins Leukot Essent Fatty Acids
  doi: 10.1054/plef.2000.0174
– volume: 69
  start-page: 386
  issue: 3
  year: 2014
  ident: 2804_CR35
  publication-title: Cryobiology
  doi: 10.1016/j.cryobiol.2014.09.005
– volume: 86
  start-page: 187
  issue: 1
  year: 2016
  ident: 2804_CR8
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2015.11.026
– volume: 58
  start-page: 99
  issue: 1–2
  year: 2000
  ident: 2804_CR19
  publication-title: Anim Reprod Sci
  doi: 10.1016/S0378-4320(99)00035-4
– volume: 84
  start-page: 1039
  issue: 10
  year: 2017
  ident: 2804_CR12
  publication-title: Mol Reprod Dev
  doi: 10.1002/mrd.22871
– volume: 23
  start-page: 3575
  issue: 31
  year: 2016
  ident: 2804_CR34
  publication-title: Curr Med Chem
  doi: 10.2174/0929867323666160425113518
– volume: 52
  start-page: 65
  issue: S4
  year: 2017
  ident: 2804_CR31
  publication-title: Reprod Domest Anim
  doi: 10.1111/rda.13060
– volume: 44
  start-page: 1527
  issue: 6
  year: 2018
  ident: 2804_CR28
  publication-title: Fish Physiol Biochem
  doi: 10.1007/s10695-018-0538-5
– volume: 34
  start-page: 1
  issue: 4
  year: 2017
  ident: 2804_CR29
  publication-title: J Assist Reprod Genet
  doi: 10.1007/s10815-017-0879-5
– volume: 70
  start-page: 1251
  issue: 8
  year: 2008
  ident: 2804_CR7
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2008.06.014
– volume: 21
  start-page: 255
  issue: 2
  year: 2018
  ident: 2804_CR9
  publication-title: Pol J Vet Sci
  doi: 10.24425/119046
– volume: 5
  start-page: 639
  issue: 6
  year: 1993
  ident: 2804_CR20
  publication-title: Reprod Fertil Dev
  doi: 10.1071/RD9930639
– volume: 21
  start-page: 895
  issue: 6
  year: 2000
  ident: 2804_CR36
  publication-title: J Androl
  doi: 10.1002/j.1939-4640.2000.tb03420.x
– volume: 144
  start-page: 89
  year: 2020
  ident: 2804_CR16
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.12.016
– volume: 146
  start-page: R163
  issue: 5
  year: 2013
  ident: 2804_CR26
  publication-title: Reproduction
  doi: 10.1530/REP-13-0178
– volume: 17
  start-page: 24
  issue: 1
  year: 2019
  ident: 2804_CR25
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/s12958-019-0468-9
– volume: 204
  start-page: 50
  year: 2019
  ident: 2804_CR2
  publication-title: Anim Reprod Sci
  doi: 10.1016/j.anireprosci.2019.03.004
– volume: 14
  start-page: 42
  issue: 1
  year: 2016
  ident: 2804_CR4
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/s12958-016-0177-6
– ident: 2804_CR32
– volume: 18
  start-page: 785
  issue: 9
  year: 2020
  ident: 2804_CR3
  publication-title: Int J Reprod Biomed
– volume: 74
  start-page: 73
  issue: 1
  year: 2009
  ident: 2804_CR22
  publication-title: Urology
  doi: 10.1016/j.urology.2009.02.034
– volume: 83
  start-page: 2523
  issue: 7
  year: 1998
  ident: 2804_CR23
  publication-title: J Clin Endocrinol Metab
SSID ssj0044976
Score 2.4173982
Snippet Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During freeze-thaw...
Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During...
BACKGROUND: Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw process. During...
Abstract Background Cryopreservation is an efficient way to store spermatozoa and is closely associated with the quality of sperm after the freeze-thaw...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 127
SubjectTerms Acetylcysteine
Analysis
Antioxidants
Apoptosis
Boar spermatozoa
Boars
Chromatin
Cooling
Cryopreservation
cysteine
Deoxyribonucleic acid
DNA
Fatty acids
freeze-thaw cycles
Freeze-thawing
Health aspects
Livestock
Mitochondria
Mitochondrial DNA
Motility
Oxidative stress
Plasma
plasma membrane
Proteins
Reactive oxygen species
ROS
semen
Signal transduction
Sperm
sperm motility
Spermatozoa
Thawing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJy-i8TUapQXBgw7ZmX4fo7gEIQpqJLemnybgzoTdDUr-g__Zqp7ZZQchXrxO9cBM1-sruuprQl5CznSQBiO4uJ_V3DhXax54rYN32mWZUzloP_koj0_5hzNxtnPVF_aEDfTAw8YdJqWiEEEokzXnufEiMqGDcyZx79uE0Rdy3qaYGmIw55BlNyMyWh6uIKtBNMZ2BDxK5HUzSUOFrf_vmLyTlKYNkzsZaH6X3BmhIz0aPvkeuZW6fbL_DftZylAtPRnPye-T3_NlStepXp-7n5CbKM5CXixXFNAexe47xN5v6CUg54Wji7SAkrlLdKCOABF1XaQL8HWIjV0EE6WY_lCFtM_U925JkWAcwG5_3Ts63vVDvxcKa-yjpukXjh9AJKWfP315QE7n77--O67HixfqIIxc19I4xQALuGiYwEY2rRuZWdaaZa8BYOTYZN_KVs2C97nhIqkojQyty0qbxB6Sva7v0mNCdQgxeRnSzCfAhtEHxg32aQXsr5K-Is1GDzaMrOR4OcYPW6oTLe2gOwu6s0V3tqnI6-07lwMnx42r36J6tyuRT7s8ACuzo5XZf1lZRV6hcVj0evi84MbhBfhJ5M-yRwCLoTSG2rgiB5OV4K1hKt6Ylx2jxcoCxuRKQeXJKvJiK8Y3sQOuS_0VrplxxmHL5E1rOFIEaGkq8miw2O1vM6YEgF-QqIktT_ZlKukuzgvfuEIK_8Y8-R8b-ZTcbosbsrptD8jeenmVngGsW_vnxYP_AJjFTcY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggKK9AQUZC4gBRN7HjxwkVxKpCKkhA0d4s27HbSmyyZLcC9T_wn5nxepdGSHuNJ1KSeX0Tz3wm5CXkTAtpsAUXd5OSa2tLxT0vlXdW2ShiSBvtJ5_E8Sn_OGtm-YfbMrdVbmJiCtRt7_Ef-SHkYS4loHP2dvGzxFOjcHc1H6Fxk9xC6jK0ajnbFlycQ67dDMoocbiE3AYxGZsScEORl9UoGSXO_v8j87XUNG6bvJaHpnfJnQwg6dFa4_fIjdDtk_3v2NWSRmvpSd4tv0_-TIcQrkK5Ore_IENRnIi8GJYUMB_FHjxE4G_oAvDz3NJ5mEPh3AW6JpCAJWq7ls7B4yFCdi0YKsUkiIqkfaSutwNFmnGAvP1Vb2k-8YeeJSJr7Kam4TcOIUA8pV8-f31ATqcfvr0_LvPxC6VvtFiVQlvJABHYVrMG29mUqkRkUSkWnQKYEdsqulrUcuKdixVvgmyFFr62USod2EOy1_VdeEyo8r4NTvgwcQEQYus84xq7tTx2WQlXkGqjB-MzNzkekfHDpBpFCbPWnQHdmaQ7UxXk9faexZqZY6f0O1TvVhJZtdOFfjgz2UlNkLJtGt9IHRXnsXJNyxrlrdWBO1eHgrxC4zDo-_B43uYRBnhJZNEyRwCOoUCGCrkgByNJ8Fk_Xt6Yl8kxY2n-WXhBXmyX8U7sg-tCf4kyE844fDKxS4YjUYASuiCP1ha7fW3GZAMQGFbkyJZH32W80l2cJ9ZxiUT-lX6y-9Gfktt1cjBW1vUB2VsNl-EZwLaVe5588y8uc0Rm
  priority: 102
  providerName: ProQuest
Title Freeze-thawing impairs the motility, plasma membrane integrity and mitochondria function of boar spermatozoa through generating excessive ROS
URI https://www.ncbi.nlm.nih.gov/pubmed/33752649
https://www.proquest.com/docview/2514779963
https://www.proquest.com/docview/2504348966
https://www.proquest.com/docview/2540480869
https://pubmed.ncbi.nlm.nih.gov/PMC7986419
https://doaj.org/article/e77d55c579f844f1b5d358caa9e4bb2e
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGJqG9IBg_FhiVkZB4gEATO7bzgNCKVk1IHahQVPES2Y69TVqTkXZi7H_gf-bOTatFjL30oT5Xje_O9118_o6QlxAzNYTBElzc9GOeax0rbnmsrNFKe-FdOGgfHYnDCf80zaYbZNXuqF3A-Y2pHfaTmjRnby9__v4ADv8-OLwS7-YQs2CvxWIDPCjkMWRDWxCZJHY0GPH1qQLnEHtXF2dunLdN7jImMwAJeSdOBTr_fzfta1GrW1F5LUQN75N7Lbak-0tjeEA2XLVDdr5jwUu4dUtH7UH6Q_Jn2Dh35eLFif4FwYviZcnTZk4BDlIsz0Nw_oaeA7SeaTpzM8ipK0eX3BIwRHVV0hlsBrB-VQk2TDE-oo5p7ampdUORgRzQcH1Va9o2A6LHgeMaC62pu8T7CbDV0vHnr4_IZHjw7eNh3HZmiG2Wi0Usci0ZgAVd5izDSjelEuGZV4p5owCB-DLxJhWp7FtjfMIzJ0uRC5tqL1Xu2GOyWdWV2yVUWVs6I6zrGwfgsTSW8RwLuSwWYAkTkWSlh8K2tOXYPeOsCOmLEsVSjQWosQhqLJKIvF7POV-SdtwqPUD1riWRcDt8UTfHReu_hZOyzDKbydwrzn1ispJlymqdO25M6iLyCo2jQEOFv2d1e7sBHhIJtop9wM2QO0PyHJG9jiS4s-0Or8yrWHlDASCUSwmpKYvIi_UwzsQSucrVFyjT54zDkonbZDhyCCiRR-TJ0mLXj70y_IjIji131qU7Up2eBEJyiRz_Sf70v7_5jGynwc1YnKZ7ZHPRXLjnAOYWpkfuyKnska3BwdGXcS-8EukFr4XP8eDHXxs2S9Y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcoALgvIyFFgkEAewGnvXu-sDQuURpbQpErQot2V3vdtWInZIUhX6H_gr_EZmbCfUQsqt18w4sj2Pb8Y7D0KeAWYagMECTNz2Yp4bEyvueKycNcoEEXx90D7cF4ND_nGUjdbIn0UvDJZVLnxi7aiLyuE38i3AYS4lROfszeRHjFuj8HR1sUKjUYtd_-sMUrbZ6533IN_nadr_cPBuELdbBWKX5WIei9xIBkBnipxlWKWlVCICC0qxYBWgZyiSYFORyp6zNiQ887IQuXCpCVLlnsH_XiFXAXh7mOzJ0TLB4xywfdGYo8TWDLAUMACLIPAAk8dJB_zqHQH_I8EFKOyWaV7Avf5NcqMNWOl2o2G3yJovN8jGV6yiqVt56bA9nb9Nfven3p_7eH5szgARKXZgnkxnFGJMijV_GPG_ohOI18eGjv0YEvXS02ZgBZCoKQs6Bg8DHrkswDAogi4qDq0CtZWZUhxrDiF2dV4Z2m4Yokf14Gys3qb-JzY9gP-mnz99uUMOL0Uwd8l6WZX-PqHKucJb4XzPeohIC-sYz7E6zGFVl7ARSRZy0K6dhY4rOb7rOidSQjey0yA7XctOJxF5ubxm0kwCWcn9FsW75MQp3vUP1fRIt05BeymLLHOZzIPiPCQ2K1imnDG559amPiIvUDk0-hq4PWfalgl4SJzapbchGIeEHDLyiGx2OMFHuC55oV669VEz_c-iIvJ0ScYrse6u9NUp8vQ44_DKxCoejoMJlMgjcq_R2OVjMyYzCLmBIju63HkvXUp5clxPOZe4OCDJH6y-9Sfk2uBguKf3dvZ3H5LraW1sLE7TTbI-n576RxAyzu3j2k4p-XbZjuEv2SuANw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Freeze-thawing+impairs+the+motility%2C+plasma+membrane+integrity+and+mitochondria+function+of+boar+spermatozoa+through+generating+excessive+ROS&rft.jtitle=BMC+veterinary+research&rft.au=Zhang%2C+Bin&rft.au=Wang%2C+Yan&rft.au=Wu%2C+Caihong&rft.au=Qiu%2C+Shulei&rft.date=2021-03-22&rft.eissn=1746-6148&rft.volume=17&rft.issue=1&rft.spage=127&rft_id=info:doi/10.1186%2Fs12917-021-02804-1&rft_id=info%3Apmid%2F33752649&rft.externalDocID=33752649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-6148&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-6148&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-6148&client=summon