Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats

Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviru...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 80; no. 8; pp. 1356 - 1363
Main Authors MUKAI, Yahiro, HORIE, Masayuki, TOMONAGA, Keizo
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 01.08.2018
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses.
AbstractList Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae ) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses.
Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses.
Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses.Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses.
Author MUKAI, Yahiro
TOMONAGA, Keizo
HORIE, Masayuki
Author_xml – sequence: 1
  fullname: MUKAI, Yahiro
  organization: Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan
– sequence: 2
  fullname: HORIE, Masayuki
  organization: Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan
– sequence: 3
  fullname: TOMONAGA, Keizo
  organization: Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29973433$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1URLcLN84oEhcOpHjsxB8XpFLxJVXiAFyxHGeyzZLYi52s1H-P011WUAkf7LHnmfHMvBfkzAePhDwHeglMszfb_ZguQZWUATwiK-CVLGXF9RlZUQ2ilKym5-QipS3NSCX0E3LOtJa84nxFfny9SxOOdupdgWnqFyv4InRF7xPG-0trJ0zLE_o2bNCHORVNiN7u-zincuh_YoEDjuinlMOKPaYdxqKxU3pKHnd2SPjseK7J9w_vv11_Km--fPx8fXVTulqLqeSUywZU7XJRDgRIJaqKWmURWio6paTOVtsBcFW3TIN0TommxaauoFHI1-TtIe9ubkZsXS4l2sHsYm4o3plge_Ovx_e3ZhP2RgDUrKpzglfHBDH8mvMkzNgnh8NgPeZ-DaOikrIGzTL68gG6DXOexpApxrUAxfNakxd_V3Qq5c_oM_D6ALgYUorYnRCgZlHWLMoaUGZRNuPsAe766V6s3E8__C_o3SFomya7wdMPNgvrBjzAihq1bMegk9Pd2mjQ898u48D3
CitedBy_id crossref_primary_10_2222_jsv_72_47
crossref_primary_10_3390_v16081210
crossref_primary_10_1073_pnas_2026235118
crossref_primary_10_1016_j_virusres_2020_198101
crossref_primary_10_1128_JVI_01621_18
crossref_primary_10_1186_s12985_020_1289_3
Cites_doi 10.1073/pnas.1407046111
10.1098/rspb.2014.1122
10.1098/rstb.2012.0499
10.1146/annurev.genet.42.110807.091501
10.1016/j.virol.2015.02.011
10.1186/1742-4690-3-67
10.1371/journal.ppat.1005279
10.1038/srep28965
10.1016/j.virusres.2018.04.006
10.1038/srep35548
10.1371/journal.ppat.1005785
10.3390/v3101836
10.1093/molbev/mst010
10.1093/molbev/msw054
10.1534/genetics.107.080275
10.1111/gtc.12278
10.1016/j.celrep.2015.08.007
10.1371/journal.ppat.1006881
10.1038/35001608
10.1016/j.virusres.2015.05.006
10.1038/srep25873
10.1128/CMR.00017-06
10.1292/jvms.16-0274
10.1371/journal.ppat.1001030
10.3390/v7112906
10.1093/molbev/msx116
10.1038/nature08695
10.1371/journal.pgen.1001191
10.1016/S1286-4579(02)01564-2
ContentType Journal Article
Copyright 2018 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency Aug 2018
2018 The Japanese Society of Veterinary Science 2018
Copyright_xml – notice: 2018 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency Aug 2018
– notice: 2018 The Japanese Society of Veterinary Science 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.18-0211
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Virology and AIDS Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 1363
ExternalDocumentID PMC6115245
29973433
10_1292_jvms_18_0211
article_jvms_80_8_80_18_0211_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c596t-3037b185c343c161786440a8ae1d06f8879e1ddf11385d2917cc86bdeb541b8e3
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 17:53:42 EDT 2025
Thu Jul 10 23:14:34 EDT 2025
Mon Jun 30 11:12:48 EDT 2025
Mon Jul 21 05:58:46 EDT 2025
Tue Jul 01 04:14:34 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Wed Apr 05 06:41:43 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords vesper bat
endogenous bornavirus-like element
paleovirology
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c596t-3037b185c343c161786440a8ae1d06f8879e1ddf11385d2917cc86bdeb541b8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.18-0211
PMID 29973433
PQID 2239618333
PQPubID 2028964
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6115245
proquest_miscellaneous_2064775192
proquest_journals_2239618333
pubmed_primary_29973433
crossref_primary_10_1292_jvms_18_0211
crossref_citationtrail_10_1292_jvms_18_0211
jstage_primary_article_jvms_80_8_80_18_0211_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2018
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 8. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6.
4. Cantrell, M. A., Scott, L., Brown, C. J., Martinez, A. R. and Wichman, H. A. 2008. Loss of LINE-1 activity in the megabats. Genetics 178: 393–404.
7. Gilbert, C., Meik, J. M., Dashevsky, D., Card, D. C., Castoe, T. A. and Schaack, S. 2014. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc. Biol. Sci. 281: 20141122.
26. Smith, R. H., Hallwirth, C. V., Westerman, M., Hetherington, N. A., Tseng, Y. S., Cecchini, S., Virag, T., Ziegler, M. L., Rogozin, I. B., Koonin, E. V., Agbandje-McKenna, M., Kotin, R. M. and Alexander, I. E. 2016. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Sci. Rep. 6: 28965.
13. Horie, M., Kobayashi, Y., Honda, T., Fujino, K., Akasaka, T., Kohl, C., Wibbelt, G., Mühldorfer, K., Kurth, A., Müller, M. A., Corman, V. M., Gillich, N., Suzuki, Y., Schwemmle, M. and Tomonaga, K. 2016. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci. Rep. 6: 25873.
19. Katzourakis, A. and Gifford, R. J. 2010. Endogenous viral elements in animal genomes. PLoS Genet. 6: e1001191.
30. Zhuo, X. and Feschotte, C. 2015. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 11: e1005279.
6. Fujino, K., Horie, M., Honda, T., Merriman, D. K. and Tomonaga, K. 2014. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc. Natl. Acad. Sci. U.S.A. 111: 13175–13180.
9. Horie, M. and Tomonaga, K. 2011. Non-retroviral fossils in vertebrate genomes. Viruses 3: 1836–1848.
18. Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780.
5. Cui, J. and Wang, L. F. 2015. Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses 7: 5792–5800.
11. Horie, M., Akasaka, T., Matsuda, S., Ogawa, H. and Imai, K. 2016. Establishment and characterization of a cell line derived from Eptesicus nilssonii. J. Vet. Med. Sci. 78: 1727–1729.
20. Kobayashi, Y., Horie, M., Nakano, A., Murata, K., Itou, T. and Suzuki, Y. 2016. Exaptation of bornavirus-like nucleoprotein elements in afrotherians. PLoS Pathog. 12: e1005785.
10. Horie, M. and Tomonaga, K. 2018. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res.
23. Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., Racie, L., LaVallie, E., Tang, X. Y., Edouard, P., Howes, S., Keith, J. C. Jr. and McCoy, J. M. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.
24. Myers, K. N., Barone, G., Ganesh, A., Staples, C. J., Howard, A. E., Beveridge, R. D., Maslen, S., Skehel, J. M. and Collis, S. J. 2016. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability. Sci. Rep. 6: 35548.
3. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545.
22. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874.
15. Hyndman, T. H., Shilton, C. M., Stenglein, M. D. and Wellehan, J. F. X. Jr 2018. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog. 14: e1006881.
2. Belyi, V. A., Levine, A. J. and Skalka, A. M. 2010. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 6: e1001030.
17. Jern, P. and Coffin, J. M. 2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42: 709–732.
1. Aiewsakun, P. and Katzourakis, A. 2015. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 479–480: 26–37.
21. Kumar, S., Stecher, G., Suleski, M. and Hedges, S. B. 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34: 1812–1819.
16. Imakawa, K., Nakagawa, S. and Miyazawa, T. 2015. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 20: 771–788.
14. Horie, M., Kobayashi, Y., Suzuki, Y. and Tomonaga, K. 2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20120499.
28. Tomonaga, K., Kobayashi, T. and Ikuta, K. 2002. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 4: 491–500.
25. Simmons, N. B. 2005. Order chiroptera. pp. 312–529 In: Mammal Species of the World. A Taxonomic and Geographic Reference (Wilson, D. E. and Reeder, D. M. E. eds.), Johns Hopkins University Press, Washington, D.C.
27. Sofuku, K., Parrish, N. F., Honda, T. and Tomonaga, K. 2015. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome. Cell Reports 12: 1548–1554.
29. Weiss, R. A. 2006. The discovery of endogenous retroviruses. Retrovirology 3: 67.
12. Horie, M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T., Ikuta, K., Jern, P., Gojobori, T., Coffin, J. M. and Tomonaga, K. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463: 84–87.
22
23
24
25
26
27
28
29
30
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 15. Hyndman, T. H., Shilton, C. M., Stenglein, M. D. and Wellehan, J. F. X. Jr 2018. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog. 14: e1006881.
– reference: 22. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874.
– reference: 16. Imakawa, K., Nakagawa, S. and Miyazawa, T. 2015. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 20: 771–788.
– reference: 19. Katzourakis, A. and Gifford, R. J. 2010. Endogenous viral elements in animal genomes. PLoS Genet. 6: e1001191.
– reference: 13. Horie, M., Kobayashi, Y., Honda, T., Fujino, K., Akasaka, T., Kohl, C., Wibbelt, G., Mühldorfer, K., Kurth, A., Müller, M. A., Corman, V. M., Gillich, N., Suzuki, Y., Schwemmle, M. and Tomonaga, K. 2016. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci. Rep. 6: 25873.
– reference: 26. Smith, R. H., Hallwirth, C. V., Westerman, M., Hetherington, N. A., Tseng, Y. S., Cecchini, S., Virag, T., Ziegler, M. L., Rogozin, I. B., Koonin, E. V., Agbandje-McKenna, M., Kotin, R. M. and Alexander, I. E. 2016. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Sci. Rep. 6: 28965.
– reference: 5. Cui, J. and Wang, L. F. 2015. Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses 7: 5792–5800.
– reference: 10. Horie, M. and Tomonaga, K. 2018. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res.
– reference: 4. Cantrell, M. A., Scott, L., Brown, C. J., Martinez, A. R. and Wichman, H. A. 2008. Loss of LINE-1 activity in the megabats. Genetics 178: 393–404.
– reference: 9. Horie, M. and Tomonaga, K. 2011. Non-retroviral fossils in vertebrate genomes. Viruses 3: 1836–1848.
– reference: 14. Horie, M., Kobayashi, Y., Suzuki, Y. and Tomonaga, K. 2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20120499.
– reference: 23. Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., Racie, L., LaVallie, E., Tang, X. Y., Edouard, P., Howes, S., Keith, J. C. Jr. and McCoy, J. M. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.
– reference: 27. Sofuku, K., Parrish, N. F., Honda, T. and Tomonaga, K. 2015. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome. Cell Reports 12: 1548–1554.
– reference: 17. Jern, P. and Coffin, J. M. 2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42: 709–732.
– reference: 11. Horie, M., Akasaka, T., Matsuda, S., Ogawa, H. and Imai, K. 2016. Establishment and characterization of a cell line derived from Eptesicus nilssonii. J. Vet. Med. Sci. 78: 1727–1729.
– reference: 30. Zhuo, X. and Feschotte, C. 2015. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 11: e1005279.
– reference: 28. Tomonaga, K., Kobayashi, T. and Ikuta, K. 2002. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 4: 491–500.
– reference: 25. Simmons, N. B. 2005. Order chiroptera. pp. 312–529 In: Mammal Species of the World. A Taxonomic and Geographic Reference (Wilson, D. E. and Reeder, D. M. E. eds.), Johns Hopkins University Press, Washington, D.C.
– reference: 7. Gilbert, C., Meik, J. M., Dashevsky, D., Card, D. C., Castoe, T. A. and Schaack, S. 2014. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc. Biol. Sci. 281: 20141122.
– reference: 6. Fujino, K., Horie, M., Honda, T., Merriman, D. K. and Tomonaga, K. 2014. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc. Natl. Acad. Sci. U.S.A. 111: 13175–13180.
– reference: 21. Kumar, S., Stecher, G., Suleski, M. and Hedges, S. B. 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34: 1812–1819.
– reference: 20. Kobayashi, Y., Horie, M., Nakano, A., Murata, K., Itou, T. and Suzuki, Y. 2016. Exaptation of bornavirus-like nucleoprotein elements in afrotherians. PLoS Pathog. 12: e1005785.
– reference: 24. Myers, K. N., Barone, G., Ganesh, A., Staples, C. J., Howard, A. E., Beveridge, R. D., Maslen, S., Skehel, J. M. and Collis, S. J. 2016. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability. Sci. Rep. 6: 35548.
– reference: 8. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6.
– reference: 12. Horie, M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T., Ikuta, K., Jern, P., Gojobori, T., Coffin, J. M. and Tomonaga, K. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463: 84–87.
– reference: 18. Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780.
– reference: 3. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545.
– reference: 2. Belyi, V. A., Levine, A. J. and Skalka, A. M. 2010. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 6: e1001030.
– reference: 1. Aiewsakun, P. and Katzourakis, A. 2015. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 479–480: 26–37.
– reference: 29. Weiss, R. A. 2006. The discovery of endogenous retroviruses. Retrovirology 3: 67.
– ident: 6
  doi: 10.1073/pnas.1407046111
– ident: 7
  doi: 10.1098/rspb.2014.1122
– ident: 14
  doi: 10.1098/rstb.2012.0499
– ident: 17
  doi: 10.1146/annurev.genet.42.110807.091501
– ident: 1
  doi: 10.1016/j.virol.2015.02.011
– ident: 29
  doi: 10.1186/1742-4690-3-67
– ident: 30
  doi: 10.1371/journal.ppat.1005279
– ident: 26
  doi: 10.1038/srep28965
– ident: 10
  doi: 10.1016/j.virusres.2018.04.006
– ident: 24
  doi: 10.1038/srep35548
– ident: 20
  doi: 10.1371/journal.ppat.1005785
– ident: 9
  doi: 10.3390/v3101836
– ident: 18
  doi: 10.1093/molbev/mst010
– ident: 22
  doi: 10.1093/molbev/msw054
– ident: 4
  doi: 10.1534/genetics.107.080275
– ident: 16
  doi: 10.1111/gtc.12278
– ident: 27
  doi: 10.1016/j.celrep.2015.08.007
– ident: 15
  doi: 10.1371/journal.ppat.1006881
– ident: 23
  doi: 10.1038/35001608
– ident: 8
  doi: 10.1016/j.virusres.2015.05.006
– ident: 13
  doi: 10.1038/srep25873
– ident: 3
  doi: 10.1128/CMR.00017-06
– ident: 11
  doi: 10.1292/jvms.16-0274
– ident: 2
  doi: 10.1371/journal.ppat.1001030
– ident: 5
  doi: 10.3390/v7112906
– ident: 21
  doi: 10.1093/molbev/msx116
– ident: 12
  doi: 10.1038/nature08695
– ident: 19
  doi: 10.1371/journal.pgen.1001191
– ident: 25
– ident: 28
  doi: 10.1016/S1286-4579(02)01564-2
SSID ssj0021469
Score 2.1981556
Snippet Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are...
Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae ) that are integrated into animal genomes. They are...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1356
SubjectTerms Animals
Bornaviridae - genetics
Chiroptera
Chiroptera - virology
endogenous bornavirus-like element
Evolution
Evolutionary genetics
Genome
Genomes
paleovirology
Phylogeny
vesper bat
Virology
Title Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats
URI https://www.jstage.jst.go.jp/article/jvms/80/8/80_18-0211/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29973433
https://www.proquest.com/docview/2239618333
https://www.proquest.com/docview/2064775192
https://pubmed.ncbi.nlm.nih.gov/PMC6115245
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2018, Vol.80(8), pp.1356-1363
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VLQcuiJaXoa0WCU7IJbt-7FoVqipEVUDhAkE9sfK-SkpwIE6j8u87k3UsUpUTl8jxzkrOzo7nm-zMNwAvnKiFspVMLa8FtTATqQmO_olDw3JBFLWheufhp_J0lH84K842YNVttFvA9tbQjvpJjWaTg6vff47Q4N8suREq8fpi8bM94CpFd4Vx0Bb6JEm9DIZ5f55A3asj6x4vU4lev0uBvzl7zTnduUB8du5vg543Myj_ckkn9-FehyXZcVT-Nmz4Zgd2vlKCy7LKlg27g_MH8O1zz9jMiFcjFiyyaWDjhs7j6QvF_i3d8o2bRu5WZqiB8WI8u2zTyfiHZz5mm7c4jS08sYwzU8_bhzA6effl7WnatVZIbVGV8xQdlzToqm2WZ5ZCHIW4aFCr2nM3KAO-eSq8coHzTBVOYExnrSqN86bIuVE-ewSbzbTxT4BhRObqMgQbLIZ6tjRSIQiSCDu8KqrAE3i1WlNtO95xan8x0RR_oAY0aUBzpUkDCbzspX9Fvo1_yB1G9fRSnaVFKTXQij466X6QStnwfZDA7kqnerXlND4xtb_JsiyB5_0wWhsdodSNx1XXgmpzJaJekcDjuAX6B0DHLnE5cbZc2xy9ADF5r4804-9LRu8ScbnIi6f_9aOewV1EcypmJ-7C5nx26fcQMc3NPsYK7z_uL03iGtWbG58
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+estimation+of+insertion+dates+of+endogenous+bornavirus-like+elements+in+vesper+bats&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=MUKAI%2C+Yahiro&rft.au=HORIE%2C+Masayuki&rft.au=TOMONAGA%2C+Keizo&rft.date=2018-08-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=80&rft.issue=8&rft.spage=1356&rft.epage=1363&rft_id=info:doi/10.1292%2Fjvms.18-0211&rft.externalDocID=article_jvms_80_8_80_18_0211_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon