Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats
Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviru...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 80; no. 8; pp. 1356 - 1363 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
01.08.2018
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses. |
---|---|
AbstractList | Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the
family
Bornaviridae
) that are integrated into animal genomes. They are
formed through germline insertions of segments of bornaviral transcripts into animal
genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious
sources of information to understand the evolutionary history of bornaviruses. Previous
studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and
suggested the long-term association between bats and bornaviruses. However, insertion
dates of EBLs are largely unknown because of the limitations of available bat genome
sequences in the public database. In this study, through a combination of database
searches, PCR, and sequencing approaches, we systematically determined the gene
orthologies of 13 lineages of EBLs in bats of the genus
Myotis
and
Eptesicus
and family Vespertilionidae. Using the above data, we
estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2
to 53 million years ago. These results suggest that vesper bats have been repeatedly
infected by bornaviruses at different points in time during evolution. This study provides
novel insights into the evolutionary history of bornaviruses and demonstrates the
robustness of combining database searches, PCR, and sequencing approaches to estimate
insertion dates of bornaviruses. Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses. Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses.Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are formed through germline insertions of segments of bornaviral transcripts into animal genomes. Because EBLs are molecular fossils of bornaviruses, they serve as precious sources of information to understand the evolutionary history of bornaviruses. Previous studies revealed the presence of many EBLs in bat genomes, especially in vesper bats, and suggested the long-term association between bats and bornaviruses. However, insertion dates of EBLs are largely unknown because of the limitations of available bat genome sequences in the public database. In this study, through a combination of database searches, PCR, and sequencing approaches, we systematically determined the gene orthologies of 13 lineages of EBLs in bats of the genus Myotis and Eptesicus and family Vespertilionidae. Using the above data, we estimated their insertion dates: the EBLs in vesper bats were inserted approximately 14.2 to 53 million years ago. These results suggest that vesper bats have been repeatedly infected by bornaviruses at different points in time during evolution. This study provides novel insights into the evolutionary history of bornaviruses and demonstrates the robustness of combining database searches, PCR, and sequencing approaches to estimate insertion dates of bornaviruses. |
Author | MUKAI, Yahiro TOMONAGA, Keizo HORIE, Masayuki |
Author_xml | – sequence: 1 fullname: MUKAI, Yahiro organization: Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan – sequence: 2 fullname: HORIE, Masayuki organization: Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan – sequence: 3 fullname: TOMONAGA, Keizo organization: Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences (InFRONT), Kyoto University, Kyoto 606-8507, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29973433$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhi1URLcLN84oEhcOpHjsxB8XpFLxJVXiAFyxHGeyzZLYi52s1H-P011WUAkf7LHnmfHMvBfkzAePhDwHeglMszfb_ZguQZWUATwiK-CVLGXF9RlZUQ2ilKym5-QipS3NSCX0E3LOtJa84nxFfny9SxOOdupdgWnqFyv4InRF7xPG-0trJ0zLE_o2bNCHORVNiN7u-zincuh_YoEDjuinlMOKPaYdxqKxU3pKHnd2SPjseK7J9w_vv11_Km--fPx8fXVTulqLqeSUywZU7XJRDgRIJaqKWmURWio6paTOVtsBcFW3TIN0TommxaauoFHI1-TtIe9ubkZsXS4l2sHsYm4o3plge_Ovx_e3ZhP2RgDUrKpzglfHBDH8mvMkzNgnh8NgPeZ-DaOikrIGzTL68gG6DXOexpApxrUAxfNakxd_V3Qq5c_oM_D6ALgYUorYnRCgZlHWLMoaUGZRNuPsAe766V6s3E8__C_o3SFomya7wdMPNgvrBjzAihq1bMegk9Pd2mjQ898u48D3 |
CitedBy_id | crossref_primary_10_2222_jsv_72_47 crossref_primary_10_3390_v16081210 crossref_primary_10_1073_pnas_2026235118 crossref_primary_10_1016_j_virusres_2020_198101 crossref_primary_10_1128_JVI_01621_18 crossref_primary_10_1186_s12985_020_1289_3 |
Cites_doi | 10.1073/pnas.1407046111 10.1098/rspb.2014.1122 10.1098/rstb.2012.0499 10.1146/annurev.genet.42.110807.091501 10.1016/j.virol.2015.02.011 10.1186/1742-4690-3-67 10.1371/journal.ppat.1005279 10.1038/srep28965 10.1016/j.virusres.2018.04.006 10.1038/srep35548 10.1371/journal.ppat.1005785 10.3390/v3101836 10.1093/molbev/mst010 10.1093/molbev/msw054 10.1534/genetics.107.080275 10.1111/gtc.12278 10.1016/j.celrep.2015.08.007 10.1371/journal.ppat.1006881 10.1038/35001608 10.1016/j.virusres.2015.05.006 10.1038/srep25873 10.1128/CMR.00017-06 10.1292/jvms.16-0274 10.1371/journal.ppat.1001030 10.3390/v7112906 10.1093/molbev/msx116 10.1038/nature08695 10.1371/journal.pgen.1001191 10.1016/S1286-4579(02)01564-2 |
ContentType | Journal Article |
Copyright | 2018 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency Aug 2018 2018 The Japanese Society of Veterinary Science 2018 |
Copyright_xml | – notice: 2018 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency Aug 2018 – notice: 2018 The Japanese Society of Veterinary Science 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.18-0211 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 1363 |
ExternalDocumentID | PMC6115245 29973433 10_1292_jvms_18_0211 article_jvms_80_8_80_18_0211_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c596t-3037b185c343c161786440a8ae1d06f8879e1ddf11385d2917cc86bdeb541b8e3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 17:53:42 EDT 2025 Thu Jul 10 23:14:34 EDT 2025 Mon Jun 30 11:12:48 EDT 2025 Mon Jul 21 05:58:46 EDT 2025 Tue Jul 01 04:14:34 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Wed Apr 05 06:41:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | vesper bat endogenous bornavirus-like element paleovirology |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c596t-3037b185c343c161786440a8ae1d06f8879e1ddf11385d2917cc86bdeb541b8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.18-0211 |
PMID | 29973433 |
PQID | 2239618333 |
PQPubID | 2028964 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6115245 proquest_miscellaneous_2064775192 proquest_journals_2239618333 pubmed_primary_29973433 crossref_primary_10_1292_jvms_18_0211 crossref_citationtrail_10_1292_jvms_18_0211 jstage_primary_article_jvms_80_8_80_18_0211_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2018 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 8. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6. 4. Cantrell, M. A., Scott, L., Brown, C. J., Martinez, A. R. and Wichman, H. A. 2008. Loss of LINE-1 activity in the megabats. Genetics 178: 393–404. 7. Gilbert, C., Meik, J. M., Dashevsky, D., Card, D. C., Castoe, T. A. and Schaack, S. 2014. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc. Biol. Sci. 281: 20141122. 26. Smith, R. H., Hallwirth, C. V., Westerman, M., Hetherington, N. A., Tseng, Y. S., Cecchini, S., Virag, T., Ziegler, M. L., Rogozin, I. B., Koonin, E. V., Agbandje-McKenna, M., Kotin, R. M. and Alexander, I. E. 2016. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Sci. Rep. 6: 28965. 13. Horie, M., Kobayashi, Y., Honda, T., Fujino, K., Akasaka, T., Kohl, C., Wibbelt, G., Mühldorfer, K., Kurth, A., Müller, M. A., Corman, V. M., Gillich, N., Suzuki, Y., Schwemmle, M. and Tomonaga, K. 2016. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci. Rep. 6: 25873. 19. Katzourakis, A. and Gifford, R. J. 2010. Endogenous viral elements in animal genomes. PLoS Genet. 6: e1001191. 30. Zhuo, X. and Feschotte, C. 2015. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 11: e1005279. 6. Fujino, K., Horie, M., Honda, T., Merriman, D. K. and Tomonaga, K. 2014. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc. Natl. Acad. Sci. U.S.A. 111: 13175–13180. 9. Horie, M. and Tomonaga, K. 2011. Non-retroviral fossils in vertebrate genomes. Viruses 3: 1836–1848. 18. Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780. 5. Cui, J. and Wang, L. F. 2015. Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses 7: 5792–5800. 11. Horie, M., Akasaka, T., Matsuda, S., Ogawa, H. and Imai, K. 2016. Establishment and characterization of a cell line derived from Eptesicus nilssonii. J. Vet. Med. Sci. 78: 1727–1729. 20. Kobayashi, Y., Horie, M., Nakano, A., Murata, K., Itou, T. and Suzuki, Y. 2016. Exaptation of bornavirus-like nucleoprotein elements in afrotherians. PLoS Pathog. 12: e1005785. 10. Horie, M. and Tomonaga, K. 2018. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res. 23. Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., Racie, L., LaVallie, E., Tang, X. Y., Edouard, P., Howes, S., Keith, J. C. Jr. and McCoy, J. M. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789. 24. Myers, K. N., Barone, G., Ganesh, A., Staples, C. J., Howard, A. E., Beveridge, R. D., Maslen, S., Skehel, J. M. and Collis, S. J. 2016. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability. Sci. Rep. 6: 35548. 3. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545. 22. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874. 15. Hyndman, T. H., Shilton, C. M., Stenglein, M. D. and Wellehan, J. F. X. Jr 2018. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog. 14: e1006881. 2. Belyi, V. A., Levine, A. J. and Skalka, A. M. 2010. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 6: e1001030. 17. Jern, P. and Coffin, J. M. 2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42: 709–732. 1. Aiewsakun, P. and Katzourakis, A. 2015. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 479–480: 26–37. 21. Kumar, S., Stecher, G., Suleski, M. and Hedges, S. B. 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34: 1812–1819. 16. Imakawa, K., Nakagawa, S. and Miyazawa, T. 2015. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 20: 771–788. 14. Horie, M., Kobayashi, Y., Suzuki, Y. and Tomonaga, K. 2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20120499. 28. Tomonaga, K., Kobayashi, T. and Ikuta, K. 2002. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 4: 491–500. 25. Simmons, N. B. 2005. Order chiroptera. pp. 312–529 In: Mammal Species of the World. A Taxonomic and Geographic Reference (Wilson, D. E. and Reeder, D. M. E. eds.), Johns Hopkins University Press, Washington, D.C. 27. Sofuku, K., Parrish, N. F., Honda, T. and Tomonaga, K. 2015. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome. Cell Reports 12: 1548–1554. 29. Weiss, R. A. 2006. The discovery of endogenous retroviruses. Retrovirology 3: 67. 12. Horie, M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T., Ikuta, K., Jern, P., Gojobori, T., Coffin, J. M. and Tomonaga, K. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463: 84–87. 22 23 24 25 26 27 28 29 30 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 15. Hyndman, T. H., Shilton, C. M., Stenglein, M. D. and Wellehan, J. F. X. Jr 2018. Divergent bornaviruses from Australian carpet pythons with neurological disease date the origin of extant Bornaviridae prior to the end-Cretaceous extinction. PLoS Pathog. 14: e1006881. – reference: 22. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870–1874. – reference: 16. Imakawa, K., Nakagawa, S. and Miyazawa, T. 2015. Baton pass hypothesis: successive incorporation of unconserved endogenous retroviral genes for placentation during mammalian evolution. Genes Cells 20: 771–788. – reference: 19. Katzourakis, A. and Gifford, R. J. 2010. Endogenous viral elements in animal genomes. PLoS Genet. 6: e1001191. – reference: 13. Horie, M., Kobayashi, Y., Honda, T., Fujino, K., Akasaka, T., Kohl, C., Wibbelt, G., Mühldorfer, K., Kurth, A., Müller, M. A., Corman, V. M., Gillich, N., Suzuki, Y., Schwemmle, M. and Tomonaga, K. 2016. An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus. Sci. Rep. 6: 25873. – reference: 26. Smith, R. H., Hallwirth, C. V., Westerman, M., Hetherington, N. A., Tseng, Y. S., Cecchini, S., Virag, T., Ziegler, M. L., Rogozin, I. B., Koonin, E. V., Agbandje-McKenna, M., Kotin, R. M. and Alexander, I. E. 2016. Germline viral “fossils” guide in silico reconstruction of a mid-Cenozoic era marsupial adeno-associated virus. Sci. Rep. 6: 28965. – reference: 5. Cui, J. and Wang, L. F. 2015. Genomic Mining Reveals Deep Evolutionary Relationships between Bornaviruses and Bats. Viruses 7: 5792–5800. – reference: 10. Horie, M. and Tomonaga, K. 2018. Paleovirology of bornaviruses: What can be learned from molecular fossils of bornaviruses. Virus Res. – reference: 4. Cantrell, M. A., Scott, L., Brown, C. J., Martinez, A. R. and Wichman, H. A. 2008. Loss of LINE-1 activity in the megabats. Genetics 178: 393–404. – reference: 9. Horie, M. and Tomonaga, K. 2011. Non-retroviral fossils in vertebrate genomes. Viruses 3: 1836–1848. – reference: 14. Horie, M., Kobayashi, Y., Suzuki, Y. and Tomonaga, K. 2013. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20120499. – reference: 23. Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., Racie, L., LaVallie, E., Tang, X. Y., Edouard, P., Howes, S., Keith, J. C. Jr. and McCoy, J. M. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789. – reference: 27. Sofuku, K., Parrish, N. F., Honda, T. and Tomonaga, K. 2015. Transcription Profiling Demonstrates Epigenetic Control of Non-retroviral RNA Virus-Derived Elements in the Human Genome. Cell Reports 12: 1548–1554. – reference: 17. Jern, P. and Coffin, J. M. 2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42: 709–732. – reference: 11. Horie, M., Akasaka, T., Matsuda, S., Ogawa, H. and Imai, K. 2016. Establishment and characterization of a cell line derived from Eptesicus nilssonii. J. Vet. Med. Sci. 78: 1727–1729. – reference: 30. Zhuo, X. and Feschotte, C. 2015. Cross-species transmission and differential fate of an endogenous retrovirus in three mammal lineages. PLoS Pathog. 11: e1005279. – reference: 28. Tomonaga, K., Kobayashi, T. and Ikuta, K. 2002. Molecular and cellular biology of Borna disease virus infection. Microbes Infect. 4: 491–500. – reference: 25. Simmons, N. B. 2005. Order chiroptera. pp. 312–529 In: Mammal Species of the World. A Taxonomic and Geographic Reference (Wilson, D. E. and Reeder, D. M. E. eds.), Johns Hopkins University Press, Washington, D.C. – reference: 7. Gilbert, C., Meik, J. M., Dashevsky, D., Card, D. C., Castoe, T. A. and Schaack, S. 2014. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc. Biol. Sci. 281: 20141122. – reference: 6. Fujino, K., Horie, M., Honda, T., Merriman, D. K. and Tomonaga, K. 2014. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc. Natl. Acad. Sci. U.S.A. 111: 13175–13180. – reference: 21. Kumar, S., Stecher, G., Suleski, M. and Hedges, S. B. 2017. Timetree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34: 1812–1819. – reference: 20. Kobayashi, Y., Horie, M., Nakano, A., Murata, K., Itou, T. and Suzuki, Y. 2016. Exaptation of bornavirus-like nucleoprotein elements in afrotherians. PLoS Pathog. 12: e1005785. – reference: 24. Myers, K. N., Barone, G., Ganesh, A., Staples, C. J., Howard, A. E., Beveridge, R. D., Maslen, S., Skehel, J. M. and Collis, S. J. 2016. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability. Sci. Rep. 6: 35548. – reference: 8. Han, H. J., Wen, H. L., Zhou, C. M., Chen, F. F., Luo, L. M., Liu, J. W. and Yu, X. J. 2015. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205: 1–6. – reference: 12. Horie, M., Honda, T., Suzuki, Y., Kobayashi, Y., Daito, T., Oshida, T., Ikuta, K., Jern, P., Gojobori, T., Coffin, J. M. and Tomonaga, K. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463: 84–87. – reference: 18. Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30: 772–780. – reference: 3. Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. and Schountz, T. 2006. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19: 531–545. – reference: 2. Belyi, V. A., Levine, A. J. and Skalka, A. M. 2010. Unexpected inheritance: multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 6: e1001030. – reference: 1. Aiewsakun, P. and Katzourakis, A. 2015. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 479–480: 26–37. – reference: 29. Weiss, R. A. 2006. The discovery of endogenous retroviruses. Retrovirology 3: 67. – ident: 6 doi: 10.1073/pnas.1407046111 – ident: 7 doi: 10.1098/rspb.2014.1122 – ident: 14 doi: 10.1098/rstb.2012.0499 – ident: 17 doi: 10.1146/annurev.genet.42.110807.091501 – ident: 1 doi: 10.1016/j.virol.2015.02.011 – ident: 29 doi: 10.1186/1742-4690-3-67 – ident: 30 doi: 10.1371/journal.ppat.1005279 – ident: 26 doi: 10.1038/srep28965 – ident: 10 doi: 10.1016/j.virusres.2018.04.006 – ident: 24 doi: 10.1038/srep35548 – ident: 20 doi: 10.1371/journal.ppat.1005785 – ident: 9 doi: 10.3390/v3101836 – ident: 18 doi: 10.1093/molbev/mst010 – ident: 22 doi: 10.1093/molbev/msw054 – ident: 4 doi: 10.1534/genetics.107.080275 – ident: 16 doi: 10.1111/gtc.12278 – ident: 27 doi: 10.1016/j.celrep.2015.08.007 – ident: 15 doi: 10.1371/journal.ppat.1006881 – ident: 23 doi: 10.1038/35001608 – ident: 8 doi: 10.1016/j.virusres.2015.05.006 – ident: 13 doi: 10.1038/srep25873 – ident: 3 doi: 10.1128/CMR.00017-06 – ident: 11 doi: 10.1292/jvms.16-0274 – ident: 2 doi: 10.1371/journal.ppat.1001030 – ident: 5 doi: 10.3390/v7112906 – ident: 21 doi: 10.1093/molbev/msx116 – ident: 12 doi: 10.1038/nature08695 – ident: 19 doi: 10.1371/journal.pgen.1001191 – ident: 25 – ident: 28 doi: 10.1016/S1286-4579(02)01564-2 |
SSID | ssj0021469 |
Score | 2.1981556 |
Snippet | Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae) that are integrated into animal genomes. They are... Endogenous bornavirus-like elements (EBLs) are sequences derived from bornaviruses (the family Bornaviridae ) that are integrated into animal genomes. They are... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1356 |
SubjectTerms | Animals Bornaviridae - genetics Chiroptera Chiroptera - virology endogenous bornavirus-like element Evolution Evolutionary genetics Genome Genomes paleovirology Phylogeny vesper bat Virology |
Title | Systematic estimation of insertion dates of endogenous bornavirus-like elements in vesper bats |
URI | https://www.jstage.jst.go.jp/article/jvms/80/8/80_18-0211/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29973433 https://www.proquest.com/docview/2239618333 https://www.proquest.com/docview/2064775192 https://pubmed.ncbi.nlm.nih.gov/PMC6115245 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2018, Vol.80(8), pp.1356-1363 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VLQcuiJaXoa0WCU7IJbt-7FoVqipEVUDhAkE9sfK-SkpwIE6j8u87k3UsUpUTl8jxzkrOzo7nm-zMNwAvnKiFspVMLa8FtTATqQmO_olDw3JBFLWheufhp_J0lH84K842YNVttFvA9tbQjvpJjWaTg6vff47Q4N8suREq8fpi8bM94CpFd4Vx0Bb6JEm9DIZ5f55A3asj6x4vU4lev0uBvzl7zTnduUB8du5vg543Myj_ckkn9-FehyXZcVT-Nmz4Zgd2vlKCy7LKlg27g_MH8O1zz9jMiFcjFiyyaWDjhs7j6QvF_i3d8o2bRu5WZqiB8WI8u2zTyfiHZz5mm7c4jS08sYwzU8_bhzA6effl7WnatVZIbVGV8xQdlzToqm2WZ5ZCHIW4aFCr2nM3KAO-eSq8coHzTBVOYExnrSqN86bIuVE-ewSbzbTxT4BhRObqMgQbLIZ6tjRSIQiSCDu8KqrAE3i1WlNtO95xan8x0RR_oAY0aUBzpUkDCbzspX9Fvo1_yB1G9fRSnaVFKTXQij466X6QStnwfZDA7kqnerXlND4xtb_JsiyB5_0wWhsdodSNx1XXgmpzJaJekcDjuAX6B0DHLnE5cbZc2xy9ADF5r4804-9LRu8ScbnIi6f_9aOewV1EcypmJ-7C5nx26fcQMc3NPsYK7z_uL03iGtWbG58 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+estimation+of+insertion+dates+of+endogenous+bornavirus-like+elements+in+vesper+bats&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=MUKAI%2C+Yahiro&rft.au=HORIE%2C+Masayuki&rft.au=TOMONAGA%2C+Keizo&rft.date=2018-08-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=80&rft.issue=8&rft.spage=1356&rft.epage=1363&rft_id=info:doi/10.1292%2Fjvms.18-0211&rft.externalDocID=article_jvms_80_8_80_18_0211_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |