Influence of body temperature on the development of fatigue during prolonged exercise in the heat

Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase i...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 86; no. 3; pp. 1032 - 1039
Main Authors Gonzalez-Alonso, Jose, Teller, Christina, Andersen, Signe L, Jensen, Frank B, Hyldig, Tino, Nielsen, Bodil
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.03.1999
American Physiological Society
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
DOI10.1152/jappl.1999.86.3.1032

Cover

Abstract Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T es ) = 35.9 ± 0.2, 37.4   ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O 2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O 2 uptake) in the heat (40°C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T es of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T es  = 40.1-40.2°C, muscle temperature =   40.7-40.9°C, skin temperature = 37.0-37.2°C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 ± 3, 46 ± 3, and 28 ± 2 min with initial T es of ~36, 37, and 38°C, respectively (all P  < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T es and muscle temperature (40.1-40.3 and 40.7-40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage, respectively, P  < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31   ± 4 vs. 56 ± 11 min, respectively, P  < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40°C), with skin blood flow plateauing at T es of ~38°C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. hyperthermia; skin blood flow; heart rate; stroke volume
AbstractList We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T sub(es)) = 35.9 plus or minus 0.2, 37.4 plus or minus 0.1, or 38.2 plus or minus 0.1 (SE) degree C induced by 30 min of water immersion], seven cyclists (maximal O sub(2) uptake = 5.1 plus or minus 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O sub(2) uptake) in the heat (40 degree C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degree C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T sub(es) of 37.0 degree C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T sub(es) = 40.1-40.2 degree C, muscle temperature = 40.7-40.9 degree C, skin temperature = 37.0-37.2 degree C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 plus or minus 3, 46 plus or minus 3, and 28 plus or minus 2 min with initial T sub(es) of similar to 36, 37, and 38 degree C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T sub(es) and muscle temperature (40.1-40.3 and 40.7-40.9 degree C, respectively), but with significantly different skin temperature (38.4 plus or minus 0.4 vs. 35.6 plus or minus 0.2 degree C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 plus or minus 4 vs. 56 plus or minus 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degree C), with skin blood flow plateauing at T sub(es) of similar to 38 degree C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature, seven cyclists performed three randomly assigned bouts of cycle ergometer exercise in the heat (40 C) until volitional exhaustion. To determine the influence of rate of heat storage, four cyclists performed two additional exercise bouts, starting with an esophageal temperature (Tes) of 37 C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia and cardiovascular strain. Time to exhaustion was inversely related to the initial body temperature. Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature, but with significantly different skin temperature. Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage. Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 C), with skin blood flow plateauing at Tes of about 38 C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. (Author)
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T es ) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O 2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O 2 uptake) in the heat (40°C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T es of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T es = 40.1–40.2°C, muscle temperature = 40.7–40.9°C, skin temperature = 37.0–37.2°C) and cardiovascular strain (heart rate = 196–198 beats/min, cardiac output = 19.9–20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 ± 3, 46 ± 3, and 28 ± 2 min with initial T es of ∼36, 37, and 38°C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T es and muscle temperature (40.1–40.3 and 40.7–40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 ± 4 vs. 56 ± 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36–40°C), with skin blood flow plateauing at T es of ∼38°C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.
Gonzalez-Alonso et al investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered.
Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T es ) = 35.9 ± 0.2, 37.4   ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O 2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O 2 uptake) in the heat (40°C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T es of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T es  = 40.1-40.2°C, muscle temperature =   40.7-40.9°C, skin temperature = 37.0-37.2°C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 ± 3, 46 ± 3, and 28 ± 2 min with initial T es of ~36, 37, and 38°C, respectively (all P  < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T es and muscle temperature (40.1-40.3 and 40.7-40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage, respectively, P  < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31   ± 4 vs. 56 ± 11 min, respectively, P  < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40°C), with skin blood flow plateauing at T es of ~38°C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. hyperthermia; skin blood flow; heart rate; stroke volume
Author Gonzalez-Alonso, Jose
Nielsen, Bodil
Hyldig, Tino
Teller, Christina
Andersen, Signe L
Jensen, Frank B
Author_xml – sequence: 1
  fullname: Gonzalez-Alonso, Jose
– sequence: 2
  fullname: Teller, Christina
– sequence: 3
  fullname: Andersen, Signe L
– sequence: 4
  fullname: Jensen, Frank B
– sequence: 5
  fullname: Hyldig, Tino
– sequence: 6
  fullname: Nielsen, Bodil
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1730894$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10066720$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Lb6D0QGEfFm13xMkol3UqwWCt7U65DJnNnNks2MSaZ2_70Zd_0qSL0K5DzPOeHkPUMnYQiA0HOCV4Rw-nZrxtGviFJq1YgVWxHM6CO0KCW6JAKTE7RoJMdLyRt5is5S2mJM6pqTJ-iUYCyEpHiBzFXo_QTBQjX0VTt0-yrDboRo8hTLXajyBqoObsEP4w5CnrHeZLeeyvUUXVhXYxz8ENbQVXAH0boElTt4GzD5KXrcG5_g2fE8R18uP9xcfFpef_54dfH-emm5EnlJjW0FNgCs5ZwSC5L3suuVEV3Lcc0aXlsFqpNYtoYKa4ngLS0l2VPe8Jado9eHvuU5XydIWe9csuC9CTBMSQsleKOIfBCkElOlmHoQJA3hZbT4H5AxLufRL--B22GKoaxFU0pJzbmYx744QlO7g06P0e1M3Oufn1aAV0fAJGt8H00oS__NSYYbVResPmA2DilF6P_opOcI6R8R0nOEdCM003OEivbunmZdLh8-hByN8w_Jbw7yxq0331wEPW72yZV8rPez8Rda_xu9nLy_gbs8O78UPXY9-w6Cv-4n
CODEN JAPHEV
CitedBy_id crossref_primary_10_1098_rstb_2015_0386
crossref_primary_10_1113_expphysiol_2013_075275
crossref_primary_10_1152_japplphysiol_00541_2005
crossref_primary_10_1016_j_jtherbio_2015_03_008
crossref_primary_10_1186_s12970_016_0121_3
crossref_primary_10_1152_ajpregu_00109_2017
crossref_primary_10_2165_00007256_200232010_00003
crossref_primary_10_3390_cells11030383
crossref_primary_10_1146_annurev_nutr_011720_122637
crossref_primary_10_1519_JSC_0000000000004497
crossref_primary_10_1016_j_ccm_2004_01_001
crossref_primary_10_3390_math9212808
crossref_primary_10_1016_j_bspc_2023_105520
crossref_primary_10_1113_jphysiol_2005_086025
crossref_primary_10_1249_MSS_0b013e31827ded04
crossref_primary_10_1016_j_autcon_2017_03_003
crossref_primary_10_1016_j_resp_2024_104350
crossref_primary_10_1080_23328940_2023_2210477
crossref_primary_10_1016_j_jtherbio_2024_103926
crossref_primary_10_1016_j_jsams_2007_07_002
crossref_primary_10_3389_fspor_2025_1514963
crossref_primary_10_1113_EP086352
crossref_primary_10_1080_02640414_2023_2178872
crossref_primary_10_1371_journal_pone_0111501
crossref_primary_10_3389_fpsyt_2022_985983
crossref_primary_10_3389_fphys_2019_00711
crossref_primary_10_1310_sci2001_70
crossref_primary_10_1177_19417381251320095
crossref_primary_10_1249_MSS_0b013e318178465d
crossref_primary_10_3389_fphys_2017_00532
crossref_primary_10_1371_journal_pone_0061157
crossref_primary_10_3389_fphys_2018_01139
crossref_primary_10_1136_bjsm_2006_033860
crossref_primary_10_1016_j_scispo_2021_10_002
crossref_primary_10_5812_iranjradiol_34016
crossref_primary_10_1111_j_1600_0838_2011_01350_x
crossref_primary_10_1007_s00421_008_0741_7
crossref_primary_10_1016_j_physbeh_2009_12_003
crossref_primary_10_14814_phy2_14003
crossref_primary_10_1136_bjsm_2009_057562
crossref_primary_10_1519_JSC_0b013e318182169d
crossref_primary_10_1113_EP089993
crossref_primary_10_1113_expphysiol_2005_031294
crossref_primary_10_1123_ijspp_2012_0366
crossref_primary_10_1071_WF18092
crossref_primary_10_1111_j_1600_0838_2010_01211_x
crossref_primary_10_1113_jphysiol_2004_079202
crossref_primary_10_1080_02640414_2011_625968
crossref_primary_10_1007_s00421_007_0468_x
crossref_primary_10_1007_s00421_014_3096_2
crossref_primary_10_2165_00007256_200737040_00025
crossref_primary_10_1016_j_physbeh_2014_01_028
crossref_primary_10_1007_s40279_014_0230_6
crossref_primary_10_1093_annhyg_meu044
crossref_primary_10_1016_j_jtherbio_2018_08_006
crossref_primary_10_2486_indhealth_44_331
crossref_primary_10_1016_j_scispo_2018_10_017
crossref_primary_10_1136_bjsm_2007_037259
crossref_primary_10_1152_japplphysiol_00367_2010
crossref_primary_10_1249_MSS_0000000000001597
crossref_primary_10_1016_j_sbspro_2014_02_388
crossref_primary_10_1123_ijspp_2019_0308
crossref_primary_10_1515_bhk_2018_0022
crossref_primary_10_1152_ajpcell_00028_2012
crossref_primary_10_3390_ijerph191912328
crossref_primary_10_1080_15438627_2024_2428602
crossref_primary_10_1016_j_jtherbio_2025_104079
crossref_primary_10_1016_j_jsams_2009_11_004
crossref_primary_10_1111_sms_13386
crossref_primary_10_1007_s40279_015_0343_6
crossref_primary_10_1111_sms_12176
crossref_primary_10_1007_s40279_013_0030_4
crossref_primary_10_1016_j_jsams_2018_06_009
crossref_primary_10_1152_jappl_2001_91_5_2055
crossref_primary_10_1177_0887302X211053007
crossref_primary_10_1007_s00421_013_2652_5
crossref_primary_10_1113_jphysiol_2005_101733
crossref_primary_10_1016_j_apergo_2015_07_003
crossref_primary_10_1080_15459620902790277
crossref_primary_10_1007_s00415_023_12147_6
crossref_primary_10_1007_s12221_018_8555_7
crossref_primary_10_1113_expphysiol_2004_027839
crossref_primary_10_4085_1062_6050_51_10_13
crossref_primary_10_1016_j_jtherbio_2014_10_003
crossref_primary_10_1080_02640414_2016_1164885
crossref_primary_10_1152_ajpheart_00525_2015
crossref_primary_10_1111_sms_13015
crossref_primary_10_1088_1742_6596_1165_1_012001
crossref_primary_10_1152_physiol_00028_2024
crossref_primary_10_1249_01_MSS_0000150063_22718_38
crossref_primary_10_1016_j_jsams_2008_08_003
crossref_primary_10_1016_j_pbb_2004_03_015
crossref_primary_10_1080_15459624_2013_875185
crossref_primary_10_1080_02640414_2016_1192294
crossref_primary_10_1016_j_jtherbio_2015_02_005
crossref_primary_10_1093_annhyg_mes084
crossref_primary_10_1152_japplphysiol_00965_2017
crossref_primary_10_1016_S1440_2440_05_80020_9
crossref_primary_10_3390_ijerph17031031
crossref_primary_10_7600_jspfsm_71_345
crossref_primary_10_1186_s40101_016_0122_6
crossref_primary_10_1007_s00421_016_3504_x
crossref_primary_10_1152_jappl_2001_90_3_1057
crossref_primary_10_1519_JSC_0000000000002025
crossref_primary_10_1177_1088868315597841
crossref_primary_10_1016_j_jtherbio_2024_103964
crossref_primary_10_1007_s10640_023_00803_4
crossref_primary_10_1016_j_cbpa_2023_111476
crossref_primary_10_1249_01_MSS_0000155397_42481_53
crossref_primary_10_7600_jpfsm_1_73
crossref_primary_10_1016_S0765_1597_02_00165_X
crossref_primary_10_1016_S1095_6433_01_00273_2
crossref_primary_10_1007_s00421_010_1692_3
crossref_primary_10_1016_j_jtherbio_2011_10_009
crossref_primary_10_1016_j_pmr_2009_07_010
crossref_primary_10_1152_japplphysiol_00582_2003
crossref_primary_10_1080_17470218_2013_804849
crossref_primary_10_2165_00007256_200535020_00005
crossref_primary_10_1061__ASCE_CO_1943_7862_0001580
crossref_primary_10_2165_00007256_200737040_00009
crossref_primary_10_1007_s00421_019_04177_8
crossref_primary_10_1016_j_ergon_2020_103028
crossref_primary_10_1124_pharmrev_122_000782
crossref_primary_10_1080_21641846_2022_2051995
crossref_primary_10_1249_MSS_0b013e31802fa199
crossref_primary_10_4085_1062_6050_45_2_117
crossref_primary_10_1007_s00421_011_2165_z
crossref_primary_10_1007_s00484_013_0699_y
crossref_primary_10_1007_s40279_013_0040_2
crossref_primary_10_1371_journal_pone_0057602
crossref_primary_10_3390_ijerph120708034
crossref_primary_10_1080_02640414_2014_915425
crossref_primary_10_1136_bjsm_2006_031351
crossref_primary_10_2486_indhealth_45_579
crossref_primary_10_1016_j_brainres_2005_12_007
crossref_primary_10_1111_j_1753_4887_2005_tb00149_x
crossref_primary_10_1086_671766
crossref_primary_10_3390_s22197639
crossref_primary_10_1016_j_wem_2011_01_008
crossref_primary_10_1123_ijspp_5_2_140
crossref_primary_10_1590_1414_431x20143561
crossref_primary_10_1139_y11_030
crossref_primary_10_1007_s12144_020_00822_0
crossref_primary_10_1080_23328940_2016_1156801
crossref_primary_10_1519_JSC_0000000000003017
crossref_primary_10_1080_02640411003716942
crossref_primary_10_1080_17461391_2017_1405077
crossref_primary_10_1111_sms_12379
crossref_primary_10_1016_j_jtherbio_2017_01_010
crossref_primary_10_4085_1062_6050_46_6_592
crossref_primary_10_1111_sms_12373
crossref_primary_10_1080_02640410410001730214
crossref_primary_10_1111_sms_12370
crossref_primary_10_1016_S1095_6433_01_00272_0
crossref_primary_10_1152_japplphysiol_00658_2012
crossref_primary_10_1123_ijspp_8_5_527
crossref_primary_10_1186_s40101_024_00377_0
crossref_primary_10_1080_23328940_2016_1277003
crossref_primary_10_1111_j_1600_079X_2005_00256_x
crossref_primary_10_3390_sports6040154
crossref_primary_10_1080_23328940_2022_2109931
crossref_primary_10_1016_S1734_1140_10_70242_5
crossref_primary_10_2165_00007256_200636100_00006
crossref_primary_10_1186_s40101_020_0212_3
crossref_primary_10_2486_indhealth_44_414
crossref_primary_10_3354_cr01417
crossref_primary_10_1080_07315724_2007_10719666
crossref_primary_10_1111_sms_12366
crossref_primary_10_1113_expphysiol_2007_037010
crossref_primary_10_1111_j_1600_0838_2010_01212_x
crossref_primary_10_1136_bjsm_2008_048173
crossref_primary_10_1080_02640410701552872
crossref_primary_10_1097_00005768_200103000_00014
crossref_primary_10_1111_j_1600_0838_2010_01216_x
crossref_primary_10_1260_174795406776338481
crossref_primary_10_1152_japplphysiol_00241_2003
crossref_primary_10_1016_j_jesf_2023_05_003
crossref_primary_10_1111_j_1748_1716_2010_02119_x
crossref_primary_10_1179_2049396715Y_0000000006
crossref_primary_10_1249_mss_0b013e31815adf31
crossref_primary_10_1519_JSC_0000000000000295
crossref_primary_10_1139_h05_107
crossref_primary_10_2165_00007256_200838030_00004
crossref_primary_10_1080_17461391_2011_589474
crossref_primary_10_1152_ajpheart_2000_278_2_H321
crossref_primary_10_1016_j_burns_2024_107364
crossref_primary_10_1109_TBME_2018_2871638
crossref_primary_10_47102_annals_acadmedsg_V37N4p347
crossref_primary_10_1152_ajpregu_00038_2006
crossref_primary_10_1519_JSC_0b013e3181b1f6a7
crossref_primary_10_1007_s00421_010_1405_y
crossref_primary_10_1080_02640414_2015_1021275
crossref_primary_10_1111_j_1469_7793_1999_00577_x
crossref_primary_10_1111_sms_12351
crossref_primary_10_1016_j_csm_2005_01_003
crossref_primary_10_1007_s00421_015_3143_7
crossref_primary_10_1111_j_1600_0838_2010_01204_x
crossref_primary_10_1016_j_jtherbio_2013_05_002
crossref_primary_10_1152_japplphysiol_01119_2012
crossref_primary_10_1260_174795408785100617
crossref_primary_10_1016_j_jshs_2023_09_001
crossref_primary_10_1186_1550_2783_9_55
crossref_primary_10_1007_s00484_012_0537_7
crossref_primary_10_1249_01_mss_0000241639_97972_4a
crossref_primary_10_1097_JOM_0000000000001530
crossref_primary_10_1111_sms_12349
crossref_primary_10_1142_S2010007815500074
crossref_primary_10_1080_23328940_2019_1631731
crossref_primary_10_1111_sms_12467
crossref_primary_10_1111_sms_14403
crossref_primary_10_1111_sms_12345
crossref_primary_10_2165_00007256_200636080_00004
crossref_primary_10_1080_17461391_2015_1111938
crossref_primary_10_1123_jsr_2016_0116
crossref_primary_10_1519_JSC_0b013e318291b29f
crossref_primary_10_1080_00140139_2018_1497207
crossref_primary_10_2165_00007256_200131100_00004
crossref_primary_10_23736_S0022_4707_20_10877_6
crossref_primary_10_1109_TIM_2018_2817400
crossref_primary_10_1111_j_1365_201X_2004_01390_x
crossref_primary_10_1016_j_jce_2018_06_003
crossref_primary_10_3390_ijerph192013009
crossref_primary_10_1061_JCEMD4_COENG_14023
crossref_primary_10_3390_physiologia2040013
crossref_primary_10_1249_MSS_0b013e3181b675da
crossref_primary_10_1249_MSS_0b013e3181aa275d
crossref_primary_10_1007_s00421_011_1921_4
crossref_primary_10_1016_j_asieco_2023_101622
crossref_primary_10_2165_00007256_200131100_00001
crossref_primary_10_1016_j_jtherbio_2020_102698
crossref_primary_10_1007_s00484_014_0794_8
crossref_primary_10_1007_s00421_011_1847_x
crossref_primary_10_1590_S0100_879X2004000300019
crossref_primary_10_1016_j_ejor_2021_09_048
crossref_primary_10_1080_02640410400022185
crossref_primary_10_1136_jramc_2013_000204
crossref_primary_10_1113_JP280970
crossref_primary_10_1080_00140139_2012_746738
crossref_primary_10_1007_s13233_022_0096_7
crossref_primary_10_1074_jbc_M112_372961
crossref_primary_10_1080_23328940_2015_1119615
crossref_primary_10_1016_j_physbeh_2014_11_069
crossref_primary_10_1080_17461391_2011_651491
crossref_primary_10_1097_JES_0b013e318246ee56
crossref_primary_10_1186_1741_7015_10_166
crossref_primary_10_1016_j_jtherbio_2021_102858
crossref_primary_10_1123_ijspp_6_2_208
crossref_primary_10_1249_MSS_0000000000003240
crossref_primary_10_1152_japplphysiol_00093_2005
crossref_primary_10_1007_s00421_017_3797_4
crossref_primary_10_1007_s00421_010_1734_x
crossref_primary_10_1080_02640414_2016_1245436
crossref_primary_10_1136_bjsports_2012_091102
crossref_primary_10_1249_MSS_0000000000003126
crossref_primary_10_1016_j_mehy_2007_05_028
crossref_primary_10_1111_j_1748_1716_2009_02051_x
crossref_primary_10_1111_sms_12449
crossref_primary_10_1007_s00484_022_02411_1
crossref_primary_10_1016_j_ijpsycho_2014_11_004
crossref_primary_10_1080_23328940_2015_1110655
crossref_primary_10_1152_physrev_00038_2020
crossref_primary_10_1007_s00421_004_1206_2
crossref_primary_10_1152_japplphysiol_01388_2009
crossref_primary_10_1111_sms_12322
crossref_primary_10_1111_sms_12444
crossref_primary_10_1519_JSC_0b013e31823f29c6
crossref_primary_10_1016_j_jtherbio_2003_08_008
crossref_primary_10_1113_jphysiol_2002_030023
crossref_primary_10_3389_fspor_2021_735923
crossref_primary_10_1152_japplphysiol_00916_2004
crossref_primary_10_1016_j_jtherbio_2016_02_006
crossref_primary_10_1177_0269215513484772
crossref_primary_10_1007_s00421_024_05460_z
crossref_primary_10_1007_s00421_018_3970_4
crossref_primary_10_1016_j_jeem_2020_102376
crossref_primary_10_2165_00007256_200333070_00004
crossref_primary_10_1080_0264041031000140545
crossref_primary_10_4085_1062_6050_46_1_61
crossref_primary_10_1016_j_pneurobio_2004_03_005
crossref_primary_10_1007_s00421_011_1945_9
crossref_primary_10_5812_intjssh_121714
crossref_primary_10_1519_JSC_0000000000000365
crossref_primary_10_3992_jgb_19_4_55
crossref_primary_10_1111_sms_12555
crossref_primary_10_1249_01_mss_0000210202_33070_55
crossref_primary_10_1016_j_jsams_2017_10_007
crossref_primary_10_1519_JSC_0b013e3181fb3e15
crossref_primary_10_1113_jphysiol_2007_130955
crossref_primary_10_1249_JES_0000000000000238
crossref_primary_10_7600_jspfsm_61_459
crossref_primary_10_3109_10715762_2012_680193
crossref_primary_10_3390_ani12182347
crossref_primary_10_1080_02640414_2012_750006
crossref_primary_10_1111_j_1469_7793_2001_t01_1_00279_x
crossref_primary_10_1080_17461391_2015_1009495
crossref_primary_10_5812_asjsm_33125
crossref_primary_10_1080_00140130600558007
crossref_primary_10_1080_1091367X_2015_1062381
crossref_primary_10_3389_fphys_2021_708737
crossref_primary_10_1080_02640414_2016_1235790
crossref_primary_10_1080_23328940_2019_1599182
crossref_primary_10_2165_00007256_200029050_00004
crossref_primary_10_1016_j_msard_2022_103557
crossref_primary_10_1249_MSS_0b013e3181bf257a
crossref_primary_10_1007_s00484_017_1425_y
crossref_primary_10_1080_10413200_2017_1395930
crossref_primary_10_1016_j_jobe_2021_103348
crossref_primary_10_1021_acsami_9b04045
crossref_primary_10_1177_19417381211050643
crossref_primary_10_3389_fphys_2017_00618
crossref_primary_10_1152_japplphysiol_00577_2009
crossref_primary_10_1371_journal_pone_0254224
crossref_primary_10_1519_JSC_0000000000002793
crossref_primary_10_1080_23328940_2017_1388343
crossref_primary_10_1016_j_brainres_2018_03_026
crossref_primary_10_1016_j_trd_2024_104431
crossref_primary_10_1519_JSC_0000000000004739
crossref_primary_10_1080_02640414_2011_614269
crossref_primary_10_1113_EP086283
crossref_primary_10_1016_S1440_2440_99_80172_8
crossref_primary_10_1016_j_brainresbull_2005_06_002
crossref_primary_10_1080_02640410410001730197
crossref_primary_10_1113_expphysiol_2010_056176
crossref_primary_10_1152_japplphysiol_00683_2007
crossref_primary_10_1519_01_JSC_0000491321_12969_1d
crossref_primary_10_3390_nu16234217
crossref_primary_10_1016_S0162_0908_09_79547_9
crossref_primary_10_1016_j_jsams_2023_04_008
crossref_primary_10_1080_02640410903406216
crossref_primary_10_1080_00140139_2011_582960
crossref_primary_10_1123_ijspp_8_3_307
crossref_primary_10_1016_j_jsams_2007_05_013
crossref_primary_10_1139_h05_128
crossref_primary_10_1590_S1807_55092010000200002
crossref_primary_10_1080_02656736_2017_1354402
crossref_primary_10_1249_MSS_0b013e3182656f13
crossref_primary_10_1519_JSC_0000000000000392
crossref_primary_10_1371_journal_pcbi_1004911
crossref_primary_10_1080_1612197X_2005_9671772
crossref_primary_10_1139_h05_130
crossref_primary_10_1519_JSC_0000000000002441
crossref_primary_10_1371_journal_pone_0093976
crossref_primary_10_1093_annhyg_mer012
crossref_primary_10_1177_0954411919837305
crossref_primary_10_1618_jhes_4_11
crossref_primary_10_1016_j_jsams_2022_02_005
crossref_primary_10_1139_h05_011
crossref_primary_10_1136_bjsm_2006_032292
crossref_primary_10_3390_nu12030867
crossref_primary_10_1152_japplphysiol_00979_2003
crossref_primary_10_1016_j_neulet_2007_01_035
crossref_primary_10_1080_02656730802294020
crossref_primary_10_1007_s11062_019_09794_9
crossref_primary_10_1519_JSC_0b013e3181bf7a4f
crossref_primary_10_1111_j_1600_0838_2010_01205_x
crossref_primary_10_2165_11587320_000000000_00000
crossref_primary_10_1016_j_jtherbio_2021_102935
crossref_primary_10_1113_expphysiol_2004_028977
crossref_primary_10_4085_1062_6050_46_1_55
crossref_primary_10_1080_23744731_2023_2299174
crossref_primary_10_1016_j_autcon_2020_103079
crossref_primary_10_1007_s00421_014_3054_z
crossref_primary_10_1002_ejsc_12195
crossref_primary_10_3390_sports12020059
crossref_primary_10_1002_ajpa_25036
crossref_primary_10_1249_MSS_0000000000003168
crossref_primary_10_1249_MSS_0b013e3181788da9
crossref_primary_10_1111_sms_12408
crossref_primary_10_1152_japplphysiol_00135_2010
crossref_primary_10_4161_23328940_2014_987564
crossref_primary_10_1152_physrev_00015_2007
crossref_primary_10_1111_j_1600_0838_2012_01464_x
crossref_primary_10_1007_s00421_012_2371_3
crossref_primary_10_1249_MSS_0b013e3182148a9a
crossref_primary_10_1249_mss_0b013e318031b026
crossref_primary_10_1007_s00421_013_2737_1
crossref_primary_10_1139_h11_111
crossref_primary_10_1016_j_jtherbio_2004_08_047
crossref_primary_10_1136_bjsm_2003_007187
crossref_primary_10_1152_japplphysiol_00910_2007
crossref_primary_10_1519_SSC_0000000000000637
crossref_primary_10_4085_1062_6050_45_6_594
crossref_primary_10_1080_23328940_2017_1356427
crossref_primary_10_1080_24748668_2019_1613588
crossref_primary_10_15758_ajk_2024_26_2_65
crossref_primary_10_4100_jhse_2014_91_02
crossref_primary_10_4085_1062_6050_51_8_07
crossref_primary_10_1016_j_lfs_2015_09_001
crossref_primary_10_1080_00140139_2023_2281272
crossref_primary_10_1080_02640410310001655813
crossref_primary_10_1097_JOM_0000000000000837
crossref_primary_10_1016_j_jtherbio_2004_08_044
crossref_primary_10_1186_s40779_020_00287_z
crossref_primary_10_1080_02640414_2016_1215501
crossref_primary_10_3810_psm_2005_10_226
crossref_primary_10_1007_s42978_024_00274_z
crossref_primary_10_1371_journal_pone_0222923
crossref_primary_10_1007_s12192_008_0022_8
crossref_primary_10_1113_jphysiol_2009_176883
crossref_primary_10_1007_s40279_021_01500_2
crossref_primary_10_1007_s00421_017_3645_6
crossref_primary_10_3390_ijerph19116412
crossref_primary_10_1016_j_enbuild_2023_113864
crossref_primary_10_1016_j_cbpc_2004_09_010
crossref_primary_10_3390_ijms221910353
crossref_primary_10_1152_japplphysiol_00988_2011
crossref_primary_10_1152_japplphysiol_00188_2003
crossref_primary_10_1002_app_49645
crossref_primary_10_1080_17461391_2017_1347205
crossref_primary_10_1519_JSC_0b013e3182259b1d
crossref_primary_10_1111_sms_12744
crossref_primary_10_1249_MSS_0b013e31827e13a2
crossref_primary_10_1097_JOM_0000000000001815
crossref_primary_10_14814_phy2_12505
crossref_primary_10_1136_bcr_2015_212592
crossref_primary_10_1113_EP088191
crossref_primary_10_1007_s00421_010_1533_4
crossref_primary_10_1080_00140139_2011_611895
crossref_primary_10_1249_MSS_0b013e318211be3e
crossref_primary_10_1007_s00421_021_04614_7
crossref_primary_10_1113_jphysiol_2007_142158
crossref_primary_10_1016_j_jtherbio_2019_06_006
crossref_primary_10_5805_SFTI_2014_16_1_167
crossref_primary_10_1007_s00421_010_1511_x
crossref_primary_10_1152_jappl_2000_89_6_2283
crossref_primary_10_1080_23328940_2016_1182669
crossref_primary_10_1123_ijspp_2022_0222
crossref_primary_10_1203_PDR_0b013e318227503b
crossref_primary_10_1589_rika_24_761
crossref_primary_10_2478_v10036_011_0026_9
crossref_primary_10_1590_S1517_86922009000100005
crossref_primary_10_1152_japplphysiol_00049_2002
crossref_primary_10_1371_journal_pone_0171119
crossref_primary_10_2165_11630550_000000000_00000
crossref_primary_10_1086_658083
crossref_primary_10_1080_17461391_2021_1986140
crossref_primary_10_1080_23328940_2016_1179380
crossref_primary_10_1080_02640410500483022
crossref_primary_10_1113_EP091017
crossref_primary_10_1079_ECP200437
crossref_primary_10_1016_j_jsams_2016_07_009
crossref_primary_10_1007_s00421_010_1567_7
crossref_primary_10_3389_fspor_2023_1147845
crossref_primary_10_3390_life11111149
crossref_primary_10_1007_s00421_019_04269_5
crossref_primary_10_1038_s42255_020_0251_4
crossref_primary_10_1589_jpts_28_1860
crossref_primary_10_1152_japplphysiol_01000_2012
crossref_primary_10_1111_j_1750_3841_2009_01199_x
crossref_primary_10_1007_s00395_006_0607_2
crossref_primary_10_1080_17461391_2014_965751
crossref_primary_10_1136_bjsports_2012_091739
crossref_primary_10_1016_j_chieco_2024_102161
crossref_primary_10_1111_j_1365_2435_2008_01399_x
crossref_primary_10_1007_s00421_011_1876_5
crossref_primary_10_1016_j_apergo_2015_05_011
crossref_primary_10_2165_00007256_200636010_00004
crossref_primary_10_1016_j_jsams_2013_02_013
crossref_primary_10_1152_ajpregu_00048_2011
crossref_primary_10_1080_00140139_2020_1818835
crossref_primary_10_1111_j_1600_0838_2009_00952_x
crossref_primary_10_2165_00007256_200333010_00005
crossref_primary_10_1017_S1755254012000013
crossref_primary_10_1152_japplphysiol_00619_2021
crossref_primary_10_4085_1062_6050_49_3_27
crossref_primary_10_1007_s00421_017_3740_8
crossref_primary_10_1136_bjsm_37_2_164
crossref_primary_10_3389_fspor_2022_878022
crossref_primary_10_1007_s40279_016_0625_7
crossref_primary_10_1113_expphysiol_2011_062273
crossref_primary_10_2165_00007256_200333010_00001
crossref_primary_10_1016_j_jtherbio_2017_12_007
crossref_primary_10_1152_japplphysiol_00253_2021
crossref_primary_10_1242_jeb_244847
crossref_primary_10_1016_j_jtherbio_2014_04_002
crossref_primary_10_1124_dmd_124_001809
crossref_primary_10_3389_fphys_2019_00071
crossref_primary_10_1590_2317_6369000015317
crossref_primary_10_2165_00007256_200939050_00005
crossref_primary_10_1136_bmjsem_2024_002410
crossref_primary_10_1371_journal_pone_0274584
crossref_primary_10_1249_MSS_0b013e318180bc98
crossref_primary_10_1007_s40279_016_0592_z
crossref_primary_10_1016_j_gaitpost_2015_10_010
crossref_primary_10_1016_j_jsams_2012_06_004
crossref_primary_10_1152_jappl_2001_91_3_1055
crossref_primary_10_3389_fphys_2016_00464
crossref_primary_10_1016_j_jtherbio_2005_11_013
crossref_primary_10_1111_j_1600_0838_2009_01055_x
crossref_primary_10_1080_15459624_2011_584840
crossref_primary_10_2165_11589150_000000000_00000
crossref_primary_10_1016_j_expthermflusci_2016_04_008
crossref_primary_10_1016_j_trf_2018_09_022
crossref_primary_10_1016_S0013_9351_02_00024_5
crossref_primary_10_1093_annweh_wxx101
crossref_primary_10_1590_S1517_86922007000600011
crossref_primary_10_1152_japplphysiol_00377_2010
crossref_primary_10_1016_j_jtherbio_2005_11_018
crossref_primary_10_1016_j_jtherbio_2017_02_017
crossref_primary_10_1016_j_tacc_2016_11_003
crossref_primary_10_1007_s00421_012_2316_x
crossref_primary_10_1002_mus_22029
crossref_primary_10_1152_japplphysiol_00353_2015
crossref_primary_10_1136_bjsm_2006_026344
crossref_primary_10_1007_s00421_007_0632_3
crossref_primary_10_1371_journal_pone_0270093
crossref_primary_10_1113_expphysiol_2006_034223
crossref_primary_10_1007_s00421_006_0152_6
crossref_primary_10_1136_bjsm_2003_010330
crossref_primary_10_1152_japplphysiol_00122_2008
crossref_primary_10_3390_ijerph16162869
crossref_primary_10_1080_02656736_2017_1392046
crossref_primary_10_1002_ajim_23672
crossref_primary_10_1113_expphysiol_2011_064238
crossref_primary_10_1123_ijspp_2016_0766
crossref_primary_10_1123_ijspp_4_2_254
crossref_primary_10_3389_fphys_2022_1091228
crossref_primary_10_1016_j_apergo_2014_04_011
crossref_primary_10_1111_1440_1681_12407
crossref_primary_10_2165_11533670_000000000_00000
crossref_primary_10_1080_02640410701567425
crossref_primary_10_1136_bjsm_2009_063024
crossref_primary_10_1519_JSC_0000000000000301
crossref_primary_10_7600_jpfsm_10_243
crossref_primary_10_1249_MSS_0b013e3181844e63
crossref_primary_10_1007_s00421_016_3335_9
crossref_primary_10_1007_s11356_022_22479_x
crossref_primary_10_2165_00007256_200232100_00001
crossref_primary_10_1080_03772063_2018_1530074
crossref_primary_10_1152_ajpregu_00061_2015
crossref_primary_10_2478_v10036_008_0028_4
crossref_primary_10_1113_jphysiol_2007_142190
crossref_primary_10_1080_17461390500076741
crossref_primary_10_3390_ijerph17155418
crossref_primary_10_1111_j_1600_0838_2010_01209_x
crossref_primary_10_1136_bmjopen_2011_000741
crossref_primary_10_1136_bjsports_2015_094915
crossref_primary_10_1186_2046_7648_4_S1_A130
crossref_primary_10_1016_j_apergo_2014_04_006
crossref_primary_10_1371_journal_pone_0254636
crossref_primary_10_1016_j_apergo_2018_02_006
crossref_primary_10_1007_s00421_005_0063_y
crossref_primary_10_1007_s00421_014_3022_7
crossref_primary_10_1016_j_rbce_2018_06_006
crossref_primary_10_52082_jssm_2021_26
crossref_primary_10_1519_JSC_0000000000000558
crossref_primary_10_7600_jpfsm_4_143
crossref_primary_10_1519_JSC_0000000000000319
crossref_primary_10_1519_SSC_0000000000000118
crossref_primary_10_1016_S1440_2440_00_80080_8
crossref_primary_10_1007_s00421_010_1781_3
crossref_primary_10_1007_s00421_012_2336_6
crossref_primary_10_1139_h2001_044
crossref_primary_10_1016_j_jtherbio_2014_11_007
crossref_primary_10_2165_00007256_200434010_00005
crossref_primary_10_23736_S0022_4707_19_09865_7
crossref_primary_10_4085_1062_6050_49_2_11
crossref_primary_10_1016_j_csm_2006_11_001
crossref_primary_10_2165_11596870_000000000_00000
crossref_primary_10_1249_MSS_0b013e318200d25f
crossref_primary_10_1080_23328940_2021_1957367
crossref_primary_10_1016_j_jsams_2012_11_884
crossref_primary_10_2298_VSP211012099M
crossref_primary_10_1080_02640410903473836
crossref_primary_10_1519_JSC_0000000000000840
crossref_primary_10_1080_02701367_2019_1599799
crossref_primary_10_1152_japplphysiol_90632_2008
crossref_primary_10_1080_02640414_2014_977938
crossref_primary_10_1123_ijspp_2_2_182
crossref_primary_10_1152_japplphysiol_00742_2003
crossref_primary_10_1371_journal_pone_0095336
crossref_primary_10_1007_s00421_012_2348_2
crossref_primary_10_1007_s00421_008_0876_6
crossref_primary_10_1080_07420528_2018_1448855
crossref_primary_10_4103_0044_0507_137845
crossref_primary_10_1519_JSC_0b013e318194e0b1
crossref_primary_10_1016_j_jshs_2015_12_002
crossref_primary_10_1016_j_physbeh_2020_113264
crossref_primary_10_1097_HP_0000000000000930
crossref_primary_10_1007_s00421_019_04292_6
crossref_primary_10_7759_cureus_42146
crossref_primary_10_1007_s00421_007_0519_3
crossref_primary_10_1152_jappl_2000_89_2_799
crossref_primary_10_1152_ajpendo_00503_2020
crossref_primary_10_1519_SSC_0000000000000493
crossref_primary_10_3390_nu14010141
crossref_primary_10_1519_SSC_0000000000000016
crossref_primary_10_1016_S1095_6433_01_00275_6
crossref_primary_10_1007_s00421_010_1607_3
crossref_primary_10_1152_japplphysiol_00523_2012
crossref_primary_10_1016_j_brainresbull_2007_03_004
crossref_primary_10_1016_j_jsams_2021_04_006
crossref_primary_10_1249_MSS_0b013e3181659c4d
crossref_primary_10_1080_02640410802298268
crossref_primary_10_1139_H07_043
crossref_primary_10_1007_s00421_013_2668_x
crossref_primary_10_1088_1361_6579_aaad52
crossref_primary_10_1111_j_1600_0846_2007_00231_x
crossref_primary_10_2165_00007256_200333110_00003
crossref_primary_10_5432_jjpehss_15089
crossref_primary_10_1016_j_infrared_2015_12_002
crossref_primary_10_1249_MSS_0b013e318222ef72
crossref_primary_10_1016_j_jesf_2013_04_002
crossref_primary_10_2165_00007256_200535100_00004
crossref_primary_10_1111_caje_12633
crossref_primary_10_2114_jpa2_27_263
crossref_primary_10_3390_nu13020438
crossref_primary_10_1097_JWH_0000000000000188
crossref_primary_10_1016_j_jsams_2017_06_005
crossref_primary_10_1007_s00421_010_1771_5
crossref_primary_10_1152_japplphysiol_00139_2016
crossref_primary_10_1080_00405160208688955
crossref_primary_10_2165_11536580_000000000_00000
crossref_primary_10_1007_s00421_023_05284_3
crossref_primary_10_1007_s11302_021_09816_4
crossref_primary_10_3389_fpsyg_2021_622184
crossref_primary_10_1152_japplphysiol_00146_2007
crossref_primary_10_3390_nu14142930
crossref_primary_10_7600_jpfsm_1_271
crossref_primary_10_1007_s00484_010_0320_6
crossref_primary_10_1016_j_jelekin_2011_06_002
crossref_primary_10_1007_s00421_011_2049_2
crossref_primary_10_1016_j_brainres_2015_02_037
crossref_primary_10_1080_15459624_2017_1321844
crossref_primary_10_1249_MSS_0000000000000539
crossref_primary_10_1080_00140130500122276
crossref_primary_10_1123_ijsnem_2018_0256
crossref_primary_10_1007_s00421_016_3329_7
crossref_primary_10_1080_10790268_2016_1180098
crossref_primary_10_1152_ajpheart_1999_277_2_H576
crossref_primary_10_1186_s40798_022_00411_4
crossref_primary_10_15366_rimcafd2017_68_003
crossref_primary_10_2165_00007256_200737080_00001
crossref_primary_10_2165_00007256_200939070_00001
crossref_primary_10_1007_s00421_023_05272_7
crossref_primary_10_1519_SSC_0b013e3181ada1cb
crossref_primary_10_1093_annweh_wxx055
crossref_primary_10_3233_MNM_200434
crossref_primary_10_1152_japplphysiol_01430_2005
crossref_primary_10_1152_japplphysiol_01259_2010
crossref_primary_10_1080_08995600802554664
crossref_primary_10_2165_00007256_200939010_00001
crossref_primary_10_3920_CEP11012
crossref_primary_10_1016_j_infrared_2016_08_003
crossref_primary_10_1186_s13728_015_0031_z
crossref_primary_10_1002_prp2_31
crossref_primary_10_1007_s00421_015_3311_9
crossref_primary_10_1111_j_1600_0838_2010_01221_x
crossref_primary_10_1113_jphysiol_2004_077115
crossref_primary_10_3177_jnsv_55_506
crossref_primary_10_3390_su15043193
crossref_primary_10_1136_bmjopen_2020_039691
crossref_primary_10_3390_sports5010019
crossref_primary_10_1061__ASCE_CO_1943_7862_0002038
crossref_primary_10_1017_S1049023X12001847
crossref_primary_10_1136_bjsm_36_2_89
crossref_primary_10_23736_S0022_4707_24_16100_2
crossref_primary_10_1080_02640414_2013_779740
crossref_primary_10_1123_ijspp_2021_0536
crossref_primary_10_1016_j_jtherbio_2015_10_001
crossref_primary_10_1080_08995605_2019_1654293
crossref_primary_10_4085_1062_6050_51_7_02
crossref_primary_10_1364_BOE_428207
crossref_primary_10_3390_sports5010004
crossref_primary_10_1139_apnm_2012_0489
crossref_primary_10_1249_MSS_0000000000001403
crossref_primary_10_1007_s00421_007_0652_z
crossref_primary_10_1007_s00421_010_1577_5
crossref_primary_10_1007_s00421_008_0677_y
crossref_primary_10_1249_01_mss_0000230120_83641_98
crossref_primary_10_1519_JSC_0b013e3181e07585
crossref_primary_10_1136_bjsports_2014_094449
crossref_primary_10_4236_ijcm_2018_93012
crossref_primary_10_1007_s00421_011_1972_6
crossref_primary_10_3389_fspor_2023_1274141
crossref_primary_10_1007_s40279_018_1033_y
crossref_primary_10_1113_expphysiol_2011_061002
crossref_primary_10_1016_j_bandc_2013_07_013
crossref_primary_10_3109_02656736_2011_589096
crossref_primary_10_1152_advan_00126_2014
crossref_primary_10_1007_s40279_012_0014_9
crossref_primary_10_1152_ajpregu_00196_2002
crossref_primary_10_1089_whr_2021_0094
crossref_primary_10_3109_10903127_2014_959221
crossref_primary_10_1007_s40279_019_01188_5
crossref_primary_10_1177_0040517506063388
crossref_primary_10_1152_japplphysiol_00945_2005
crossref_primary_10_1111_brv_13002
crossref_primary_10_1007_s00421_009_1135_1
crossref_primary_10_1186_s13102_022_00546_7
crossref_primary_10_3389_fphys_2019_01469
crossref_primary_10_1139_H08_139
crossref_primary_10_1097_00003677_200407000_00005
crossref_primary_10_1152_jappl_2001_91_5_2017
crossref_primary_10_1007_s00424_003_1020_4
crossref_primary_10_1371_journal_pone_0078918
crossref_primary_10_1097_00005768_200209000_00009
crossref_primary_10_52082_jssm_2022_164
crossref_primary_10_1111_1467_8489_12469
crossref_primary_10_1080_17569370_2016_1216990
crossref_primary_10_1371_journal_pone_0103718
crossref_primary_10_1016_j_jsams_2007_09_004
crossref_primary_10_1007_s00421_022_05032_z
crossref_primary_10_1016_j_mjafi_2017_04_004
crossref_primary_10_1257_aer_102_7_3652
crossref_primary_10_3390_ijerph17217795
crossref_primary_10_1080_15459621003785554
crossref_primary_10_1123_ijspp_2018_0668
Cites_doi 10.1152/jappl.1967.23.3.347
10.1152/jappl.1956.9.1.25
10.1152/jappl.1997.82.4.1229
10.1152/jappl.1979.47.5.954
10.1152/ajplegacy.1971.220.4.1053
10.1161/01.RES.24.5.711
10.1172/JCI105484
10.1139/y87-203
10.1093/jn/15.5.461
10.1152/jappl.1998.84.6.1858
10.1007/s004240050361
10.1152/jappl.1994.77.6.2827
10.1152/jappl.1981.50.4.772
10.1152/jappl.1990.69.3.1040
10.1152/jappl.1977.43.5.790
10.1113/jphysiol.1993.sp019482
10.1097/00005768-199709000-00018
10.1152/jappl.1995.79.5.1487
10.1113/jphysiol.1953.sp004926
10.1152/jappl.1992.73.1.368
10.1152/jappl.1998.84.3.877
10.1007/BF00586681
10.1055/s-2007-971973
10.1097/00005768-199707000-00014
10.1152/jappl.1975.39.6.920
10.1152/jappl.1988.64.2.803
10.1007/BF02388622
10.1152/jappl.1979.46.3.430
10.1152/jappl.1974.36.5.538
10.1152/jappl.1994.77.1.216
10.1111/j.1469-7793.1998.895ba.x
10.1152/jappl.1992.73.3.903
10.1152/jappl.1998.84.5.1731
10.1007/BF00374769
10.1152/jappl.1987.62.5.1997
ContentType Journal Article
Copyright 1999 INIST-CNRS
Copyright American Physiological Society Mar 1999
Copyright_xml – notice: 1999 INIST-CNRS
– notice: Copyright American Physiological Society Mar 1999
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
H8D
L7M
7X8
DOI 10.1152/jappl.1999.86.3.1032
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE
Physical Education Index
Technology Research Database
MEDLINE - Academic
Physical Education Index
CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1039
ExternalDocumentID 48866329
10066720
1730894
10_1152_jappl_1999_86_3_1032
jap_86_3_1032
Genre Clinical Trial
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
02
08R
2WC
39C
3O-
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFMIJ
AFRAH
AGNAY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MVM
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
VH1
WH7
WOQ
X
X7M
YCJ
YQJ
ZXP
---
-~X
.55
.GJ
18M
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ACBEA
ACGFO
ADFNX
ADXHL
AFOSN
AI.
BKKCC
BTFSW
CITATION
EMOBN
ITBOX
P6G
RPRKH
TR2
W8F
XSW
YBH
YQT
YWH
~02
1CY
29J
4.4
8M5
ACKIV
ACYGS
AETEA
AGCDD
AIDAL
AJUXI
C2-
IQODW
J5H
XOL
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
H8D
L7M
7X8
ID FETCH-LOGICAL-c596t-2acb60aee3b5521ce75f7df9a6db5043854c9e9d707ba26cc165b2b507f2585b3
ISSN 8750-7587
IngestDate Fri Sep 05 14:23:06 EDT 2025
Fri Sep 05 05:26:15 EDT 2025
Fri Sep 05 10:49:13 EDT 2025
Fri Sep 05 10:34:31 EDT 2025
Mon Jun 30 09:04:10 EDT 2025
Wed Feb 19 02:41:02 EST 2025
Mon Jul 21 09:15:58 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
Tue Jul 01 02:43:25 EDT 2025
Tue Jan 05 18:11:15 EST 2021
Mon May 06 11:47:33 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Physical exercise
Human
Regional blood flow
Temperature
Body temperature
Bicycle ergometer
Environmental factor
Fatigue
Heat
Skin
Hemodynamics
Hyperthermia
Prolonged
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596t-2acb60aee3b5521ce75f7df9a6db5043854c9e9d707ba26cc165b2b507f2585b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Undefined-3
PMID 10066720
PQID 222145569
PQPubID 23462
PageCount 8
ParticipantIDs pubmed_primary_10066720
proquest_miscellaneous_27029939
crossref_primary_10_1152_jappl_1999_86_3_1032
proquest_miscellaneous_69658917
proquest_miscellaneous_18155856
crossref_citationtrail_10_1152_jappl_1999_86_3_1032
pascalfrancis_primary_1730894
proquest_miscellaneous_18133577
proquest_journals_222145569
highwire_physiology_jap_86_3_1032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-03-01
PublicationDateYYYYMMDD 1999-03-01
PublicationDate_xml – month: 03
  year: 1999
  text: 1999-03-01
  day: 01
PublicationDecade 1990
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 1999
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Brooks G. A. (B4) 1971; 220
B30
B31
B10
B32
B11
B33
B12
B13
B35
B36
B15
B37
B16
B38
B39
B18
B19
Febbraio M. A. (B9) 1996; 271
B1
B3
B5
B6
B7
B8
B40
References_xml – ident: B33
  doi: 10.1152/jappl.1967.23.3.347
– ident: B8
  doi: 10.1152/jappl.1956.9.1.25
– ident: B16
  doi: 10.1152/jappl.1997.82.4.1229
– volume: 271
  start-page: R1251
  issue: 40
  year: 1996
  ident: B9
  publication-title: Am. J. Physiol.
– ident: B21
  doi: 10.1152/jappl.1979.47.5.954
– volume: 220
  start-page: 1053
  year: 1971
  ident: B4
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajplegacy.1971.220.4.1053
– ident: B36
  doi: 10.1161/01.RES.24.5.711
– ident: B35
  doi: 10.1172/JCI105484
– ident: B5
  doi: 10.1139/y87-203
– ident: B18
  doi: 10.1093/jn/15.5.461
– ident: B23
  doi: 10.1152/jappl.1998.84.6.1858
– ident: B30
  doi: 10.1007/s004240050361
– ident: B10
  doi: 10.1152/jappl.1994.77.6.2827
– ident: B39
  doi: 10.1152/jappl.1981.50.4.772
– ident: B29
  doi: 10.1152/jappl.1990.69.3.1040
– ident: B3
  doi: 10.1152/jappl.1977.43.5.790
– ident: B28
  doi: 10.1113/jphysiol.1993.sp019482
– ident: B12
  doi: 10.1097/00005768-199709000-00018
– ident: B15
  doi: 10.1152/jappl.1995.79.5.1487
– ident: B40
  doi: 10.1113/jphysiol.1953.sp004926
– ident: B38
  doi: 10.1152/jappl.1992.73.1.368
– ident: B11
  doi: 10.1152/jappl.1998.84.3.877
– ident: B6
  doi: 10.1007/BF00586681
– ident: B19
  doi: 10.1055/s-2007-971973
– ident: B1
  doi: 10.1097/00005768-199707000-00014
– ident: B20
  doi: 10.1152/jappl.1975.39.6.920
– ident: B32
  doi: 10.1152/jappl.1988.64.2.803
– ident: B22
  doi: 10.1007/BF02388622
– ident: B27
  doi: 10.1152/jappl.1979.46.3.430
– ident: B24
  doi: 10.1152/jappl.1974.36.5.538
– ident: B26
  doi: 10.1152/jappl.1994.77.1.216
– ident: B13
  doi: 10.1111/j.1469-7793.1998.895ba.x
– ident: B25
  doi: 10.1152/jappl.1992.73.3.903
– ident: B7
  doi: 10.1152/jappl.1998.84.5.1731
– ident: B31
  doi: 10.1007/BF00374769
– ident: B37
  doi: 10.1152/jappl.1987.62.5.1997
SSID ssj0014451
Score 2.2201595
Snippet Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark We investigated whether fatigue during prolonged...
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the...
Gonzalez-Alonso et al investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1032
SubjectTerms Adult
Biological and medical sciences
Body temperature
Body Temperature - physiology
Dehydration - physiopathology
Exercise
Exercise - physiology
Exercise Test
Fatigue
Fever
Fundamental and applied biological sciences. Psychology
Heart
Heat
Hemodynamics - physiology
Hot Temperature - adverse effects
Humans
Male
Muscle Fatigue - physiology
Muscle, Skeletal - physiology
Oxygen Consumption - physiology
Physical Endurance - physiology
Physical Fitness - physiology
Regional Blood Flow - physiology
Skin - blood supply
Temperature
Thermoregulation. Hibernation. Estivation. Ecophysiology and environmental effects
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Influence of body temperature on the development of fatigue during prolonged exercise in the heat
URI http://jap.physiology.org/cgi/content/abstract/86/3/1032
https://www.ncbi.nlm.nih.gov/pubmed/10066720
https://www.proquest.com/docview/222145569
https://www.proquest.com/docview/18133577
https://www.proquest.com/docview/18155856
https://www.proquest.com/docview/27029939
https://www.proquest.com/docview/69658917
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuZQyMhHhBKU0cO8ljhRhjCASik_ZmObEzTeqSirYPVPx4jq9JoR2Xl6qNj2M357NzfK4IvSBjFSsZi4iwLIlSkdIoJ_CTxlJWMHNYfybb5yd2cpaentPzweBHP7pkWY6q9da4kv_hKlwDvuoo2X_gbLgpXIDvwF_4BA7D51_x-L2vMKJFvrKVIEkqEINtmmRnBvBhUd7oX0Pfi5Xy8Ymwgc7a5gLETl98yXs-6l16h-gqnOhq1CI2iZPO91TktKdYeNc2a2OGj2dqHU1glEW7YYeaqhCG2CkjtF-13Qm_vgp66VPVuIvHrkq0dIF7ReeoFVw5xxGcTrL-3uvSYF_2j-ZzWwvXqj1_3-FpYioLwB_VkZaACTYio1_JgU_zK8P12LjxJuPufRe8EH3TDXQzyTJj5P_wpbNB6dRtVjts5-0CL2ECr7cNr9PPuhtuyjg-77R2uxULWHm1LZmy-0xjZJvpXXTHcRZPLMLuoYFq9tHBpBHL9uo7fok_Bz7vo1sfnTfGARIBf7itscYf7uEPtw0GHOEe_jSZwx-2-MMBf9jjD1_afhp_99HZ8dvpm5PIleyIKlqwZZSIqmRjoRQpKQiGlcponcm6EEyWOldeTtOqUIXMxlkpElZVMaNlAk1ZncDBtSQP0F7TNuoRwqmEo0RVUyVBZicmjVFOVBzXRVLVUsRDRPxD5pXLZ6_Lqsy4OdfShBsucc0lnjNOuObSEEWh19zmc_kTvecf7xYV1_qhKaBJ9wm0fC7rIXq-jR7I-vc82gBCNxF43eZFOkSHHhjc7TYLDnK8rinAiiF6FlrhVaDte6JR7WrBQVgnhGbZtRQUHjPbTaHDU-HIcs0oTKeLKmIY5aHFbO85Wvg_3tlyiG53W8MTtLf8tlJHINQvy6dm7f0EH8n1Zg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+body+temperature+on+the+development+of+fatigue+during+prolonged+exercise+in+the+heat&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Gonz%C3%A1lez-Alonso%2C+J&rft.au=Teller%2C+C&rft.au=Andersen%2C+S+L&rft.au=Jensen%2C+F+B&rft.date=1999-03-01&rft.issn=8750-7587&rft.volume=86&rft.issue=3&rft.spage=1032&rft_id=info:doi/10.1152%2Fjappl.1999.86.3.1032&rft_id=info%3Apmid%2F10066720&rft.externalDocID=10066720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon