Influence of body temperature on the development of fatigue during prolonged exercise in the heat
Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase i...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 86; no. 3; pp. 1032 - 1039 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Am Physiological Soc
01.03.1999
American Physiological Society |
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 |
DOI | 10.1152/jappl.1999.86.3.1032 |
Cover
Abstract | Human Physiology Department, August Krogh Institute, University
of Copenhagen, DK-2100 Copenhagen, Denmark
We
investigated whether fatigue during prolonged exercise in uncompensable
hot environments occurred at the same critical level of hyperthermia
when the initial value and the rate of increase in body temperature are
altered. To examine the effect of initial body temperature
[esophageal temperature
(T es ) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water
immersion], seven cyclists (maximal
O 2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer
exercise (60% maximal O 2 uptake)
in the heat (40°C) until volitional exhaustion. To determine the
influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a
water-perfused jacket), four cyclists performed two additional exercise
bouts, starting with T es of
37.0°C. Despite different initial temperatures, all subjects
fatigued at an identical level of hyperthermia
(T es = 40.1-40.2°C,
muscle temperature = 40.7-40.9°C, skin temperature = 37.0-37.2°C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min).
Time to exhaustion was inversely related to the initial body
temperature: 63 ± 3, 46 ± 3, and 28 ± 2 min with initial T es of ~36, 37, and 38°C,
respectively (all P < 0.05).
Similarly, with different rates of heat storage, all subjects reached
exhaustion at similar T es and
muscle temperature (40.1-40.3 and 40.7-40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at
the lower rate of heat storage (31 ± 4 vs. 56 ± 11 min,
respectively, P < 0.05). Increases
in heart rate and reductions in stroke volume paralleled the rise in
core temperature (36-40°C), with skin blood flow plateauing at
T es of ~38°C. These results
demonstrate that high internal body temperature per se causes fatigue
in trained subjects during prolonged exercise in uncompensable hot
environments. Furthermore, time to exhaustion in hot environments is
inversely related to the initial temperature and directly related to
the rate of heat storage.
hyperthermia; skin blood flow; heart rate; stroke
volume |
---|---|
AbstractList | We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T sub(es)) = 35.9 plus or minus 0.2, 37.4 plus or minus 0.1, or 38.2 plus or minus 0.1 (SE) degree C induced by 30 min of water immersion], seven cyclists (maximal O sub(2) uptake = 5.1 plus or minus 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O sub(2) uptake) in the heat (40 degree C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degree C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T sub(es) of 37.0 degree C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T sub(es) = 40.1-40.2 degree C, muscle temperature = 40.7-40.9 degree C, skin temperature = 37.0-37.2 degree C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 plus or minus 3, 46 plus or minus 3, and 28 plus or minus 2 min with initial T sub(es) of similar to 36, 37, and 38 degree C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T sub(es) and muscle temperature (40.1-40.3 and 40.7-40.9 degree C, respectively), but with significantly different skin temperature (38.4 plus or minus 0.4 vs. 35.6 plus or minus 0.2 degree C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 plus or minus 4 vs. 56 plus or minus 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degree C), with skin blood flow plateauing at T sub(es) of similar to 38 degree C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature, seven cyclists performed three randomly assigned bouts of cycle ergometer exercise in the heat (40 C) until volitional exhaustion. To determine the influence of rate of heat storage, four cyclists performed two additional exercise bouts, starting with an esophageal temperature (Tes) of 37 C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia and cardiovascular strain. Time to exhaustion was inversely related to the initial body temperature. Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature, but with significantly different skin temperature. Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage. Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 C), with skin blood flow plateauing at Tes of about 38 C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. (Author) We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T es ) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O 2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O 2 uptake) in the heat (40°C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T es of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T es = 40.1–40.2°C, muscle temperature = 40.7–40.9°C, skin temperature = 37.0–37.2°C) and cardiovascular strain (heart rate = 196–198 beats/min, cardiac output = 19.9–20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 ± 3, 46 ± 3, and 28 ± 2 min with initial T es of ∼36, 37, and 38°C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T es and muscle temperature (40.1–40.3 and 40.7–40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 ± 4 vs. 56 ± 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36–40°C), with skin blood flow plateauing at T es of ∼38°C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. Gonzalez-Alonso et al investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (T es ) = 35.9 ± 0.2, 37.4 ± 0.1, or 38.2 ± 0.1 (SE) °C induced by 30 min of water immersion], seven cyclists (maximal O 2 uptake = 5.1 ± 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O 2 uptake) in the heat (40°C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05°C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with T es of 37.0°C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (T es = 40.1-40.2°C, muscle temperature = 40.7-40.9°C, skin temperature = 37.0-37.2°C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 ± 3, 46 ± 3, and 28 ± 2 min with initial T es of ~36, 37, and 38°C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar T es and muscle temperature (40.1-40.3 and 40.7-40.9°C, respectively), but with significantly different skin temperature (38.4 ± 0.4 vs. 35.6 ± 0.2°C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 ± 4 vs. 56 ± 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40°C), with skin blood flow plateauing at T es of ~38°C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage. hyperthermia; skin blood flow; heart rate; stroke volume |
Author | Gonzalez-Alonso, Jose Nielsen, Bodil Hyldig, Tino Teller, Christina Andersen, Signe L Jensen, Frank B |
Author_xml | – sequence: 1 fullname: Gonzalez-Alonso, Jose – sequence: 2 fullname: Teller, Christina – sequence: 3 fullname: Andersen, Signe L – sequence: 4 fullname: Jensen, Frank B – sequence: 5 fullname: Hyldig, Tino – sequence: 6 fullname: Nielsen, Bodil |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1730894$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/10066720$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7Lb6D0QGEfFm13xMkol3UqwWCt7U65DJnNnNks2MSaZ2_70Zd_0qSL0K5DzPOeHkPUMnYQiA0HOCV4Rw-nZrxtGviFJq1YgVWxHM6CO0KCW6JAKTE7RoJMdLyRt5is5S2mJM6pqTJ-iUYCyEpHiBzFXo_QTBQjX0VTt0-yrDboRo8hTLXajyBqoObsEP4w5CnrHeZLeeyvUUXVhXYxz8ENbQVXAH0boElTt4GzD5KXrcG5_g2fE8R18uP9xcfFpef_54dfH-emm5EnlJjW0FNgCs5ZwSC5L3suuVEV3Lcc0aXlsFqpNYtoYKa4ngLS0l2VPe8Jado9eHvuU5XydIWe9csuC9CTBMSQsleKOIfBCkElOlmHoQJA3hZbT4H5AxLufRL--B22GKoaxFU0pJzbmYx744QlO7g06P0e1M3Oufn1aAV0fAJGt8H00oS__NSYYbVResPmA2DilF6P_opOcI6R8R0nOEdCM003OEivbunmZdLh8-hByN8w_Jbw7yxq0331wEPW72yZV8rPez8Rda_xu9nLy_gbs8O78UPXY9-w6Cv-4n |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1098_rstb_2015_0386 crossref_primary_10_1113_expphysiol_2013_075275 crossref_primary_10_1152_japplphysiol_00541_2005 crossref_primary_10_1016_j_jtherbio_2015_03_008 crossref_primary_10_1186_s12970_016_0121_3 crossref_primary_10_1152_ajpregu_00109_2017 crossref_primary_10_2165_00007256_200232010_00003 crossref_primary_10_3390_cells11030383 crossref_primary_10_1146_annurev_nutr_011720_122637 crossref_primary_10_1519_JSC_0000000000004497 crossref_primary_10_1016_j_ccm_2004_01_001 crossref_primary_10_3390_math9212808 crossref_primary_10_1016_j_bspc_2023_105520 crossref_primary_10_1113_jphysiol_2005_086025 crossref_primary_10_1249_MSS_0b013e31827ded04 crossref_primary_10_1016_j_autcon_2017_03_003 crossref_primary_10_1016_j_resp_2024_104350 crossref_primary_10_1080_23328940_2023_2210477 crossref_primary_10_1016_j_jtherbio_2024_103926 crossref_primary_10_1016_j_jsams_2007_07_002 crossref_primary_10_3389_fspor_2025_1514963 crossref_primary_10_1113_EP086352 crossref_primary_10_1080_02640414_2023_2178872 crossref_primary_10_1371_journal_pone_0111501 crossref_primary_10_3389_fpsyt_2022_985983 crossref_primary_10_3389_fphys_2019_00711 crossref_primary_10_1310_sci2001_70 crossref_primary_10_1177_19417381251320095 crossref_primary_10_1249_MSS_0b013e318178465d crossref_primary_10_3389_fphys_2017_00532 crossref_primary_10_1371_journal_pone_0061157 crossref_primary_10_3389_fphys_2018_01139 crossref_primary_10_1136_bjsm_2006_033860 crossref_primary_10_1016_j_scispo_2021_10_002 crossref_primary_10_5812_iranjradiol_34016 crossref_primary_10_1111_j_1600_0838_2011_01350_x crossref_primary_10_1007_s00421_008_0741_7 crossref_primary_10_1016_j_physbeh_2009_12_003 crossref_primary_10_14814_phy2_14003 crossref_primary_10_1136_bjsm_2009_057562 crossref_primary_10_1519_JSC_0b013e318182169d crossref_primary_10_1113_EP089993 crossref_primary_10_1113_expphysiol_2005_031294 crossref_primary_10_1123_ijspp_2012_0366 crossref_primary_10_1071_WF18092 crossref_primary_10_1111_j_1600_0838_2010_01211_x crossref_primary_10_1113_jphysiol_2004_079202 crossref_primary_10_1080_02640414_2011_625968 crossref_primary_10_1007_s00421_007_0468_x crossref_primary_10_1007_s00421_014_3096_2 crossref_primary_10_2165_00007256_200737040_00025 crossref_primary_10_1016_j_physbeh_2014_01_028 crossref_primary_10_1007_s40279_014_0230_6 crossref_primary_10_1093_annhyg_meu044 crossref_primary_10_1016_j_jtherbio_2018_08_006 crossref_primary_10_2486_indhealth_44_331 crossref_primary_10_1016_j_scispo_2018_10_017 crossref_primary_10_1136_bjsm_2007_037259 crossref_primary_10_1152_japplphysiol_00367_2010 crossref_primary_10_1249_MSS_0000000000001597 crossref_primary_10_1016_j_sbspro_2014_02_388 crossref_primary_10_1123_ijspp_2019_0308 crossref_primary_10_1515_bhk_2018_0022 crossref_primary_10_1152_ajpcell_00028_2012 crossref_primary_10_3390_ijerph191912328 crossref_primary_10_1080_15438627_2024_2428602 crossref_primary_10_1016_j_jtherbio_2025_104079 crossref_primary_10_1016_j_jsams_2009_11_004 crossref_primary_10_1111_sms_13386 crossref_primary_10_1007_s40279_015_0343_6 crossref_primary_10_1111_sms_12176 crossref_primary_10_1007_s40279_013_0030_4 crossref_primary_10_1016_j_jsams_2018_06_009 crossref_primary_10_1152_jappl_2001_91_5_2055 crossref_primary_10_1177_0887302X211053007 crossref_primary_10_1007_s00421_013_2652_5 crossref_primary_10_1113_jphysiol_2005_101733 crossref_primary_10_1016_j_apergo_2015_07_003 crossref_primary_10_1080_15459620902790277 crossref_primary_10_1007_s00415_023_12147_6 crossref_primary_10_1007_s12221_018_8555_7 crossref_primary_10_1113_expphysiol_2004_027839 crossref_primary_10_4085_1062_6050_51_10_13 crossref_primary_10_1016_j_jtherbio_2014_10_003 crossref_primary_10_1080_02640414_2016_1164885 crossref_primary_10_1152_ajpheart_00525_2015 crossref_primary_10_1111_sms_13015 crossref_primary_10_1088_1742_6596_1165_1_012001 crossref_primary_10_1152_physiol_00028_2024 crossref_primary_10_1249_01_MSS_0000150063_22718_38 crossref_primary_10_1016_j_jsams_2008_08_003 crossref_primary_10_1016_j_pbb_2004_03_015 crossref_primary_10_1080_15459624_2013_875185 crossref_primary_10_1080_02640414_2016_1192294 crossref_primary_10_1016_j_jtherbio_2015_02_005 crossref_primary_10_1093_annhyg_mes084 crossref_primary_10_1152_japplphysiol_00965_2017 crossref_primary_10_1016_S1440_2440_05_80020_9 crossref_primary_10_3390_ijerph17031031 crossref_primary_10_7600_jspfsm_71_345 crossref_primary_10_1186_s40101_016_0122_6 crossref_primary_10_1007_s00421_016_3504_x crossref_primary_10_1152_jappl_2001_90_3_1057 crossref_primary_10_1519_JSC_0000000000002025 crossref_primary_10_1177_1088868315597841 crossref_primary_10_1016_j_jtherbio_2024_103964 crossref_primary_10_1007_s10640_023_00803_4 crossref_primary_10_1016_j_cbpa_2023_111476 crossref_primary_10_1249_01_MSS_0000155397_42481_53 crossref_primary_10_7600_jpfsm_1_73 crossref_primary_10_1016_S0765_1597_02_00165_X crossref_primary_10_1016_S1095_6433_01_00273_2 crossref_primary_10_1007_s00421_010_1692_3 crossref_primary_10_1016_j_jtherbio_2011_10_009 crossref_primary_10_1016_j_pmr_2009_07_010 crossref_primary_10_1152_japplphysiol_00582_2003 crossref_primary_10_1080_17470218_2013_804849 crossref_primary_10_2165_00007256_200535020_00005 crossref_primary_10_1061__ASCE_CO_1943_7862_0001580 crossref_primary_10_2165_00007256_200737040_00009 crossref_primary_10_1007_s00421_019_04177_8 crossref_primary_10_1016_j_ergon_2020_103028 crossref_primary_10_1124_pharmrev_122_000782 crossref_primary_10_1080_21641846_2022_2051995 crossref_primary_10_1249_MSS_0b013e31802fa199 crossref_primary_10_4085_1062_6050_45_2_117 crossref_primary_10_1007_s00421_011_2165_z crossref_primary_10_1007_s00484_013_0699_y crossref_primary_10_1007_s40279_013_0040_2 crossref_primary_10_1371_journal_pone_0057602 crossref_primary_10_3390_ijerph120708034 crossref_primary_10_1080_02640414_2014_915425 crossref_primary_10_1136_bjsm_2006_031351 crossref_primary_10_2486_indhealth_45_579 crossref_primary_10_1016_j_brainres_2005_12_007 crossref_primary_10_1111_j_1753_4887_2005_tb00149_x crossref_primary_10_1086_671766 crossref_primary_10_3390_s22197639 crossref_primary_10_1016_j_wem_2011_01_008 crossref_primary_10_1123_ijspp_5_2_140 crossref_primary_10_1590_1414_431x20143561 crossref_primary_10_1139_y11_030 crossref_primary_10_1007_s12144_020_00822_0 crossref_primary_10_1080_23328940_2016_1156801 crossref_primary_10_1519_JSC_0000000000003017 crossref_primary_10_1080_02640411003716942 crossref_primary_10_1080_17461391_2017_1405077 crossref_primary_10_1111_sms_12379 crossref_primary_10_1016_j_jtherbio_2017_01_010 crossref_primary_10_4085_1062_6050_46_6_592 crossref_primary_10_1111_sms_12373 crossref_primary_10_1080_02640410410001730214 crossref_primary_10_1111_sms_12370 crossref_primary_10_1016_S1095_6433_01_00272_0 crossref_primary_10_1152_japplphysiol_00658_2012 crossref_primary_10_1123_ijspp_8_5_527 crossref_primary_10_1186_s40101_024_00377_0 crossref_primary_10_1080_23328940_2016_1277003 crossref_primary_10_1111_j_1600_079X_2005_00256_x crossref_primary_10_3390_sports6040154 crossref_primary_10_1080_23328940_2022_2109931 crossref_primary_10_1016_S1734_1140_10_70242_5 crossref_primary_10_2165_00007256_200636100_00006 crossref_primary_10_1186_s40101_020_0212_3 crossref_primary_10_2486_indhealth_44_414 crossref_primary_10_3354_cr01417 crossref_primary_10_1080_07315724_2007_10719666 crossref_primary_10_1111_sms_12366 crossref_primary_10_1113_expphysiol_2007_037010 crossref_primary_10_1111_j_1600_0838_2010_01212_x crossref_primary_10_1136_bjsm_2008_048173 crossref_primary_10_1080_02640410701552872 crossref_primary_10_1097_00005768_200103000_00014 crossref_primary_10_1111_j_1600_0838_2010_01216_x crossref_primary_10_1260_174795406776338481 crossref_primary_10_1152_japplphysiol_00241_2003 crossref_primary_10_1016_j_jesf_2023_05_003 crossref_primary_10_1111_j_1748_1716_2010_02119_x crossref_primary_10_1179_2049396715Y_0000000006 crossref_primary_10_1249_mss_0b013e31815adf31 crossref_primary_10_1519_JSC_0000000000000295 crossref_primary_10_1139_h05_107 crossref_primary_10_2165_00007256_200838030_00004 crossref_primary_10_1080_17461391_2011_589474 crossref_primary_10_1152_ajpheart_2000_278_2_H321 crossref_primary_10_1016_j_burns_2024_107364 crossref_primary_10_1109_TBME_2018_2871638 crossref_primary_10_47102_annals_acadmedsg_V37N4p347 crossref_primary_10_1152_ajpregu_00038_2006 crossref_primary_10_1519_JSC_0b013e3181b1f6a7 crossref_primary_10_1007_s00421_010_1405_y crossref_primary_10_1080_02640414_2015_1021275 crossref_primary_10_1111_j_1469_7793_1999_00577_x crossref_primary_10_1111_sms_12351 crossref_primary_10_1016_j_csm_2005_01_003 crossref_primary_10_1007_s00421_015_3143_7 crossref_primary_10_1111_j_1600_0838_2010_01204_x crossref_primary_10_1016_j_jtherbio_2013_05_002 crossref_primary_10_1152_japplphysiol_01119_2012 crossref_primary_10_1260_174795408785100617 crossref_primary_10_1016_j_jshs_2023_09_001 crossref_primary_10_1186_1550_2783_9_55 crossref_primary_10_1007_s00484_012_0537_7 crossref_primary_10_1249_01_mss_0000241639_97972_4a crossref_primary_10_1097_JOM_0000000000001530 crossref_primary_10_1111_sms_12349 crossref_primary_10_1142_S2010007815500074 crossref_primary_10_1080_23328940_2019_1631731 crossref_primary_10_1111_sms_12467 crossref_primary_10_1111_sms_14403 crossref_primary_10_1111_sms_12345 crossref_primary_10_2165_00007256_200636080_00004 crossref_primary_10_1080_17461391_2015_1111938 crossref_primary_10_1123_jsr_2016_0116 crossref_primary_10_1519_JSC_0b013e318291b29f crossref_primary_10_1080_00140139_2018_1497207 crossref_primary_10_2165_00007256_200131100_00004 crossref_primary_10_23736_S0022_4707_20_10877_6 crossref_primary_10_1109_TIM_2018_2817400 crossref_primary_10_1111_j_1365_201X_2004_01390_x crossref_primary_10_1016_j_jce_2018_06_003 crossref_primary_10_3390_ijerph192013009 crossref_primary_10_1061_JCEMD4_COENG_14023 crossref_primary_10_3390_physiologia2040013 crossref_primary_10_1249_MSS_0b013e3181b675da crossref_primary_10_1249_MSS_0b013e3181aa275d crossref_primary_10_1007_s00421_011_1921_4 crossref_primary_10_1016_j_asieco_2023_101622 crossref_primary_10_2165_00007256_200131100_00001 crossref_primary_10_1016_j_jtherbio_2020_102698 crossref_primary_10_1007_s00484_014_0794_8 crossref_primary_10_1007_s00421_011_1847_x crossref_primary_10_1590_S0100_879X2004000300019 crossref_primary_10_1016_j_ejor_2021_09_048 crossref_primary_10_1080_02640410400022185 crossref_primary_10_1136_jramc_2013_000204 crossref_primary_10_1113_JP280970 crossref_primary_10_1080_00140139_2012_746738 crossref_primary_10_1007_s13233_022_0096_7 crossref_primary_10_1074_jbc_M112_372961 crossref_primary_10_1080_23328940_2015_1119615 crossref_primary_10_1016_j_physbeh_2014_11_069 crossref_primary_10_1080_17461391_2011_651491 crossref_primary_10_1097_JES_0b013e318246ee56 crossref_primary_10_1186_1741_7015_10_166 crossref_primary_10_1016_j_jtherbio_2021_102858 crossref_primary_10_1123_ijspp_6_2_208 crossref_primary_10_1249_MSS_0000000000003240 crossref_primary_10_1152_japplphysiol_00093_2005 crossref_primary_10_1007_s00421_017_3797_4 crossref_primary_10_1007_s00421_010_1734_x crossref_primary_10_1080_02640414_2016_1245436 crossref_primary_10_1136_bjsports_2012_091102 crossref_primary_10_1249_MSS_0000000000003126 crossref_primary_10_1016_j_mehy_2007_05_028 crossref_primary_10_1111_j_1748_1716_2009_02051_x crossref_primary_10_1111_sms_12449 crossref_primary_10_1007_s00484_022_02411_1 crossref_primary_10_1016_j_ijpsycho_2014_11_004 crossref_primary_10_1080_23328940_2015_1110655 crossref_primary_10_1152_physrev_00038_2020 crossref_primary_10_1007_s00421_004_1206_2 crossref_primary_10_1152_japplphysiol_01388_2009 crossref_primary_10_1111_sms_12322 crossref_primary_10_1111_sms_12444 crossref_primary_10_1519_JSC_0b013e31823f29c6 crossref_primary_10_1016_j_jtherbio_2003_08_008 crossref_primary_10_1113_jphysiol_2002_030023 crossref_primary_10_3389_fspor_2021_735923 crossref_primary_10_1152_japplphysiol_00916_2004 crossref_primary_10_1016_j_jtherbio_2016_02_006 crossref_primary_10_1177_0269215513484772 crossref_primary_10_1007_s00421_024_05460_z crossref_primary_10_1007_s00421_018_3970_4 crossref_primary_10_1016_j_jeem_2020_102376 crossref_primary_10_2165_00007256_200333070_00004 crossref_primary_10_1080_0264041031000140545 crossref_primary_10_4085_1062_6050_46_1_61 crossref_primary_10_1016_j_pneurobio_2004_03_005 crossref_primary_10_1007_s00421_011_1945_9 crossref_primary_10_5812_intjssh_121714 crossref_primary_10_1519_JSC_0000000000000365 crossref_primary_10_3992_jgb_19_4_55 crossref_primary_10_1111_sms_12555 crossref_primary_10_1249_01_mss_0000210202_33070_55 crossref_primary_10_1016_j_jsams_2017_10_007 crossref_primary_10_1519_JSC_0b013e3181fb3e15 crossref_primary_10_1113_jphysiol_2007_130955 crossref_primary_10_1249_JES_0000000000000238 crossref_primary_10_7600_jspfsm_61_459 crossref_primary_10_3109_10715762_2012_680193 crossref_primary_10_3390_ani12182347 crossref_primary_10_1080_02640414_2012_750006 crossref_primary_10_1111_j_1469_7793_2001_t01_1_00279_x crossref_primary_10_1080_17461391_2015_1009495 crossref_primary_10_5812_asjsm_33125 crossref_primary_10_1080_00140130600558007 crossref_primary_10_1080_1091367X_2015_1062381 crossref_primary_10_3389_fphys_2021_708737 crossref_primary_10_1080_02640414_2016_1235790 crossref_primary_10_1080_23328940_2019_1599182 crossref_primary_10_2165_00007256_200029050_00004 crossref_primary_10_1016_j_msard_2022_103557 crossref_primary_10_1249_MSS_0b013e3181bf257a crossref_primary_10_1007_s00484_017_1425_y crossref_primary_10_1080_10413200_2017_1395930 crossref_primary_10_1016_j_jobe_2021_103348 crossref_primary_10_1021_acsami_9b04045 crossref_primary_10_1177_19417381211050643 crossref_primary_10_3389_fphys_2017_00618 crossref_primary_10_1152_japplphysiol_00577_2009 crossref_primary_10_1371_journal_pone_0254224 crossref_primary_10_1519_JSC_0000000000002793 crossref_primary_10_1080_23328940_2017_1388343 crossref_primary_10_1016_j_brainres_2018_03_026 crossref_primary_10_1016_j_trd_2024_104431 crossref_primary_10_1519_JSC_0000000000004739 crossref_primary_10_1080_02640414_2011_614269 crossref_primary_10_1113_EP086283 crossref_primary_10_1016_S1440_2440_99_80172_8 crossref_primary_10_1016_j_brainresbull_2005_06_002 crossref_primary_10_1080_02640410410001730197 crossref_primary_10_1113_expphysiol_2010_056176 crossref_primary_10_1152_japplphysiol_00683_2007 crossref_primary_10_1519_01_JSC_0000491321_12969_1d crossref_primary_10_3390_nu16234217 crossref_primary_10_1016_S0162_0908_09_79547_9 crossref_primary_10_1016_j_jsams_2023_04_008 crossref_primary_10_1080_02640410903406216 crossref_primary_10_1080_00140139_2011_582960 crossref_primary_10_1123_ijspp_8_3_307 crossref_primary_10_1016_j_jsams_2007_05_013 crossref_primary_10_1139_h05_128 crossref_primary_10_1590_S1807_55092010000200002 crossref_primary_10_1080_02656736_2017_1354402 crossref_primary_10_1249_MSS_0b013e3182656f13 crossref_primary_10_1519_JSC_0000000000000392 crossref_primary_10_1371_journal_pcbi_1004911 crossref_primary_10_1080_1612197X_2005_9671772 crossref_primary_10_1139_h05_130 crossref_primary_10_1519_JSC_0000000000002441 crossref_primary_10_1371_journal_pone_0093976 crossref_primary_10_1093_annhyg_mer012 crossref_primary_10_1177_0954411919837305 crossref_primary_10_1618_jhes_4_11 crossref_primary_10_1016_j_jsams_2022_02_005 crossref_primary_10_1139_h05_011 crossref_primary_10_1136_bjsm_2006_032292 crossref_primary_10_3390_nu12030867 crossref_primary_10_1152_japplphysiol_00979_2003 crossref_primary_10_1016_j_neulet_2007_01_035 crossref_primary_10_1080_02656730802294020 crossref_primary_10_1007_s11062_019_09794_9 crossref_primary_10_1519_JSC_0b013e3181bf7a4f crossref_primary_10_1111_j_1600_0838_2010_01205_x crossref_primary_10_2165_11587320_000000000_00000 crossref_primary_10_1016_j_jtherbio_2021_102935 crossref_primary_10_1113_expphysiol_2004_028977 crossref_primary_10_4085_1062_6050_46_1_55 crossref_primary_10_1080_23744731_2023_2299174 crossref_primary_10_1016_j_autcon_2020_103079 crossref_primary_10_1007_s00421_014_3054_z crossref_primary_10_1002_ejsc_12195 crossref_primary_10_3390_sports12020059 crossref_primary_10_1002_ajpa_25036 crossref_primary_10_1249_MSS_0000000000003168 crossref_primary_10_1249_MSS_0b013e3181788da9 crossref_primary_10_1111_sms_12408 crossref_primary_10_1152_japplphysiol_00135_2010 crossref_primary_10_4161_23328940_2014_987564 crossref_primary_10_1152_physrev_00015_2007 crossref_primary_10_1111_j_1600_0838_2012_01464_x crossref_primary_10_1007_s00421_012_2371_3 crossref_primary_10_1249_MSS_0b013e3182148a9a crossref_primary_10_1249_mss_0b013e318031b026 crossref_primary_10_1007_s00421_013_2737_1 crossref_primary_10_1139_h11_111 crossref_primary_10_1016_j_jtherbio_2004_08_047 crossref_primary_10_1136_bjsm_2003_007187 crossref_primary_10_1152_japplphysiol_00910_2007 crossref_primary_10_1519_SSC_0000000000000637 crossref_primary_10_4085_1062_6050_45_6_594 crossref_primary_10_1080_23328940_2017_1356427 crossref_primary_10_1080_24748668_2019_1613588 crossref_primary_10_15758_ajk_2024_26_2_65 crossref_primary_10_4100_jhse_2014_91_02 crossref_primary_10_4085_1062_6050_51_8_07 crossref_primary_10_1016_j_lfs_2015_09_001 crossref_primary_10_1080_00140139_2023_2281272 crossref_primary_10_1080_02640410310001655813 crossref_primary_10_1097_JOM_0000000000000837 crossref_primary_10_1016_j_jtherbio_2004_08_044 crossref_primary_10_1186_s40779_020_00287_z crossref_primary_10_1080_02640414_2016_1215501 crossref_primary_10_3810_psm_2005_10_226 crossref_primary_10_1007_s42978_024_00274_z crossref_primary_10_1371_journal_pone_0222923 crossref_primary_10_1007_s12192_008_0022_8 crossref_primary_10_1113_jphysiol_2009_176883 crossref_primary_10_1007_s40279_021_01500_2 crossref_primary_10_1007_s00421_017_3645_6 crossref_primary_10_3390_ijerph19116412 crossref_primary_10_1016_j_enbuild_2023_113864 crossref_primary_10_1016_j_cbpc_2004_09_010 crossref_primary_10_3390_ijms221910353 crossref_primary_10_1152_japplphysiol_00988_2011 crossref_primary_10_1152_japplphysiol_00188_2003 crossref_primary_10_1002_app_49645 crossref_primary_10_1080_17461391_2017_1347205 crossref_primary_10_1519_JSC_0b013e3182259b1d crossref_primary_10_1111_sms_12744 crossref_primary_10_1249_MSS_0b013e31827e13a2 crossref_primary_10_1097_JOM_0000000000001815 crossref_primary_10_14814_phy2_12505 crossref_primary_10_1136_bcr_2015_212592 crossref_primary_10_1113_EP088191 crossref_primary_10_1007_s00421_010_1533_4 crossref_primary_10_1080_00140139_2011_611895 crossref_primary_10_1249_MSS_0b013e318211be3e crossref_primary_10_1007_s00421_021_04614_7 crossref_primary_10_1113_jphysiol_2007_142158 crossref_primary_10_1016_j_jtherbio_2019_06_006 crossref_primary_10_5805_SFTI_2014_16_1_167 crossref_primary_10_1007_s00421_010_1511_x crossref_primary_10_1152_jappl_2000_89_6_2283 crossref_primary_10_1080_23328940_2016_1182669 crossref_primary_10_1123_ijspp_2022_0222 crossref_primary_10_1203_PDR_0b013e318227503b crossref_primary_10_1589_rika_24_761 crossref_primary_10_2478_v10036_011_0026_9 crossref_primary_10_1590_S1517_86922009000100005 crossref_primary_10_1152_japplphysiol_00049_2002 crossref_primary_10_1371_journal_pone_0171119 crossref_primary_10_2165_11630550_000000000_00000 crossref_primary_10_1086_658083 crossref_primary_10_1080_17461391_2021_1986140 crossref_primary_10_1080_23328940_2016_1179380 crossref_primary_10_1080_02640410500483022 crossref_primary_10_1113_EP091017 crossref_primary_10_1079_ECP200437 crossref_primary_10_1016_j_jsams_2016_07_009 crossref_primary_10_1007_s00421_010_1567_7 crossref_primary_10_3389_fspor_2023_1147845 crossref_primary_10_3390_life11111149 crossref_primary_10_1007_s00421_019_04269_5 crossref_primary_10_1038_s42255_020_0251_4 crossref_primary_10_1589_jpts_28_1860 crossref_primary_10_1152_japplphysiol_01000_2012 crossref_primary_10_1111_j_1750_3841_2009_01199_x crossref_primary_10_1007_s00395_006_0607_2 crossref_primary_10_1080_17461391_2014_965751 crossref_primary_10_1136_bjsports_2012_091739 crossref_primary_10_1016_j_chieco_2024_102161 crossref_primary_10_1111_j_1365_2435_2008_01399_x crossref_primary_10_1007_s00421_011_1876_5 crossref_primary_10_1016_j_apergo_2015_05_011 crossref_primary_10_2165_00007256_200636010_00004 crossref_primary_10_1016_j_jsams_2013_02_013 crossref_primary_10_1152_ajpregu_00048_2011 crossref_primary_10_1080_00140139_2020_1818835 crossref_primary_10_1111_j_1600_0838_2009_00952_x crossref_primary_10_2165_00007256_200333010_00005 crossref_primary_10_1017_S1755254012000013 crossref_primary_10_1152_japplphysiol_00619_2021 crossref_primary_10_4085_1062_6050_49_3_27 crossref_primary_10_1007_s00421_017_3740_8 crossref_primary_10_1136_bjsm_37_2_164 crossref_primary_10_3389_fspor_2022_878022 crossref_primary_10_1007_s40279_016_0625_7 crossref_primary_10_1113_expphysiol_2011_062273 crossref_primary_10_2165_00007256_200333010_00001 crossref_primary_10_1016_j_jtherbio_2017_12_007 crossref_primary_10_1152_japplphysiol_00253_2021 crossref_primary_10_1242_jeb_244847 crossref_primary_10_1016_j_jtherbio_2014_04_002 crossref_primary_10_1124_dmd_124_001809 crossref_primary_10_3389_fphys_2019_00071 crossref_primary_10_1590_2317_6369000015317 crossref_primary_10_2165_00007256_200939050_00005 crossref_primary_10_1136_bmjsem_2024_002410 crossref_primary_10_1371_journal_pone_0274584 crossref_primary_10_1249_MSS_0b013e318180bc98 crossref_primary_10_1007_s40279_016_0592_z crossref_primary_10_1016_j_gaitpost_2015_10_010 crossref_primary_10_1016_j_jsams_2012_06_004 crossref_primary_10_1152_jappl_2001_91_3_1055 crossref_primary_10_3389_fphys_2016_00464 crossref_primary_10_1016_j_jtherbio_2005_11_013 crossref_primary_10_1111_j_1600_0838_2009_01055_x crossref_primary_10_1080_15459624_2011_584840 crossref_primary_10_2165_11589150_000000000_00000 crossref_primary_10_1016_j_expthermflusci_2016_04_008 crossref_primary_10_1016_j_trf_2018_09_022 crossref_primary_10_1016_S0013_9351_02_00024_5 crossref_primary_10_1093_annweh_wxx101 crossref_primary_10_1590_S1517_86922007000600011 crossref_primary_10_1152_japplphysiol_00377_2010 crossref_primary_10_1016_j_jtherbio_2005_11_018 crossref_primary_10_1016_j_jtherbio_2017_02_017 crossref_primary_10_1016_j_tacc_2016_11_003 crossref_primary_10_1007_s00421_012_2316_x crossref_primary_10_1002_mus_22029 crossref_primary_10_1152_japplphysiol_00353_2015 crossref_primary_10_1136_bjsm_2006_026344 crossref_primary_10_1007_s00421_007_0632_3 crossref_primary_10_1371_journal_pone_0270093 crossref_primary_10_1113_expphysiol_2006_034223 crossref_primary_10_1007_s00421_006_0152_6 crossref_primary_10_1136_bjsm_2003_010330 crossref_primary_10_1152_japplphysiol_00122_2008 crossref_primary_10_3390_ijerph16162869 crossref_primary_10_1080_02656736_2017_1392046 crossref_primary_10_1002_ajim_23672 crossref_primary_10_1113_expphysiol_2011_064238 crossref_primary_10_1123_ijspp_2016_0766 crossref_primary_10_1123_ijspp_4_2_254 crossref_primary_10_3389_fphys_2022_1091228 crossref_primary_10_1016_j_apergo_2014_04_011 crossref_primary_10_1111_1440_1681_12407 crossref_primary_10_2165_11533670_000000000_00000 crossref_primary_10_1080_02640410701567425 crossref_primary_10_1136_bjsm_2009_063024 crossref_primary_10_1519_JSC_0000000000000301 crossref_primary_10_7600_jpfsm_10_243 crossref_primary_10_1249_MSS_0b013e3181844e63 crossref_primary_10_1007_s00421_016_3335_9 crossref_primary_10_1007_s11356_022_22479_x crossref_primary_10_2165_00007256_200232100_00001 crossref_primary_10_1080_03772063_2018_1530074 crossref_primary_10_1152_ajpregu_00061_2015 crossref_primary_10_2478_v10036_008_0028_4 crossref_primary_10_1113_jphysiol_2007_142190 crossref_primary_10_1080_17461390500076741 crossref_primary_10_3390_ijerph17155418 crossref_primary_10_1111_j_1600_0838_2010_01209_x crossref_primary_10_1136_bmjopen_2011_000741 crossref_primary_10_1136_bjsports_2015_094915 crossref_primary_10_1186_2046_7648_4_S1_A130 crossref_primary_10_1016_j_apergo_2014_04_006 crossref_primary_10_1371_journal_pone_0254636 crossref_primary_10_1016_j_apergo_2018_02_006 crossref_primary_10_1007_s00421_005_0063_y crossref_primary_10_1007_s00421_014_3022_7 crossref_primary_10_1016_j_rbce_2018_06_006 crossref_primary_10_52082_jssm_2021_26 crossref_primary_10_1519_JSC_0000000000000558 crossref_primary_10_7600_jpfsm_4_143 crossref_primary_10_1519_JSC_0000000000000319 crossref_primary_10_1519_SSC_0000000000000118 crossref_primary_10_1016_S1440_2440_00_80080_8 crossref_primary_10_1007_s00421_010_1781_3 crossref_primary_10_1007_s00421_012_2336_6 crossref_primary_10_1139_h2001_044 crossref_primary_10_1016_j_jtherbio_2014_11_007 crossref_primary_10_2165_00007256_200434010_00005 crossref_primary_10_23736_S0022_4707_19_09865_7 crossref_primary_10_4085_1062_6050_49_2_11 crossref_primary_10_1016_j_csm_2006_11_001 crossref_primary_10_2165_11596870_000000000_00000 crossref_primary_10_1249_MSS_0b013e318200d25f crossref_primary_10_1080_23328940_2021_1957367 crossref_primary_10_1016_j_jsams_2012_11_884 crossref_primary_10_2298_VSP211012099M crossref_primary_10_1080_02640410903473836 crossref_primary_10_1519_JSC_0000000000000840 crossref_primary_10_1080_02701367_2019_1599799 crossref_primary_10_1152_japplphysiol_90632_2008 crossref_primary_10_1080_02640414_2014_977938 crossref_primary_10_1123_ijspp_2_2_182 crossref_primary_10_1152_japplphysiol_00742_2003 crossref_primary_10_1371_journal_pone_0095336 crossref_primary_10_1007_s00421_012_2348_2 crossref_primary_10_1007_s00421_008_0876_6 crossref_primary_10_1080_07420528_2018_1448855 crossref_primary_10_4103_0044_0507_137845 crossref_primary_10_1519_JSC_0b013e318194e0b1 crossref_primary_10_1016_j_jshs_2015_12_002 crossref_primary_10_1016_j_physbeh_2020_113264 crossref_primary_10_1097_HP_0000000000000930 crossref_primary_10_1007_s00421_019_04292_6 crossref_primary_10_7759_cureus_42146 crossref_primary_10_1007_s00421_007_0519_3 crossref_primary_10_1152_jappl_2000_89_2_799 crossref_primary_10_1152_ajpendo_00503_2020 crossref_primary_10_1519_SSC_0000000000000493 crossref_primary_10_3390_nu14010141 crossref_primary_10_1519_SSC_0000000000000016 crossref_primary_10_1016_S1095_6433_01_00275_6 crossref_primary_10_1007_s00421_010_1607_3 crossref_primary_10_1152_japplphysiol_00523_2012 crossref_primary_10_1016_j_brainresbull_2007_03_004 crossref_primary_10_1016_j_jsams_2021_04_006 crossref_primary_10_1249_MSS_0b013e3181659c4d crossref_primary_10_1080_02640410802298268 crossref_primary_10_1139_H07_043 crossref_primary_10_1007_s00421_013_2668_x crossref_primary_10_1088_1361_6579_aaad52 crossref_primary_10_1111_j_1600_0846_2007_00231_x crossref_primary_10_2165_00007256_200333110_00003 crossref_primary_10_5432_jjpehss_15089 crossref_primary_10_1016_j_infrared_2015_12_002 crossref_primary_10_1249_MSS_0b013e318222ef72 crossref_primary_10_1016_j_jesf_2013_04_002 crossref_primary_10_2165_00007256_200535100_00004 crossref_primary_10_1111_caje_12633 crossref_primary_10_2114_jpa2_27_263 crossref_primary_10_3390_nu13020438 crossref_primary_10_1097_JWH_0000000000000188 crossref_primary_10_1016_j_jsams_2017_06_005 crossref_primary_10_1007_s00421_010_1771_5 crossref_primary_10_1152_japplphysiol_00139_2016 crossref_primary_10_1080_00405160208688955 crossref_primary_10_2165_11536580_000000000_00000 crossref_primary_10_1007_s00421_023_05284_3 crossref_primary_10_1007_s11302_021_09816_4 crossref_primary_10_3389_fpsyg_2021_622184 crossref_primary_10_1152_japplphysiol_00146_2007 crossref_primary_10_3390_nu14142930 crossref_primary_10_7600_jpfsm_1_271 crossref_primary_10_1007_s00484_010_0320_6 crossref_primary_10_1016_j_jelekin_2011_06_002 crossref_primary_10_1007_s00421_011_2049_2 crossref_primary_10_1016_j_brainres_2015_02_037 crossref_primary_10_1080_15459624_2017_1321844 crossref_primary_10_1249_MSS_0000000000000539 crossref_primary_10_1080_00140130500122276 crossref_primary_10_1123_ijsnem_2018_0256 crossref_primary_10_1007_s00421_016_3329_7 crossref_primary_10_1080_10790268_2016_1180098 crossref_primary_10_1152_ajpheart_1999_277_2_H576 crossref_primary_10_1186_s40798_022_00411_4 crossref_primary_10_15366_rimcafd2017_68_003 crossref_primary_10_2165_00007256_200737080_00001 crossref_primary_10_2165_00007256_200939070_00001 crossref_primary_10_1007_s00421_023_05272_7 crossref_primary_10_1519_SSC_0b013e3181ada1cb crossref_primary_10_1093_annweh_wxx055 crossref_primary_10_3233_MNM_200434 crossref_primary_10_1152_japplphysiol_01430_2005 crossref_primary_10_1152_japplphysiol_01259_2010 crossref_primary_10_1080_08995600802554664 crossref_primary_10_2165_00007256_200939010_00001 crossref_primary_10_3920_CEP11012 crossref_primary_10_1016_j_infrared_2016_08_003 crossref_primary_10_1186_s13728_015_0031_z crossref_primary_10_1002_prp2_31 crossref_primary_10_1007_s00421_015_3311_9 crossref_primary_10_1111_j_1600_0838_2010_01221_x crossref_primary_10_1113_jphysiol_2004_077115 crossref_primary_10_3177_jnsv_55_506 crossref_primary_10_3390_su15043193 crossref_primary_10_1136_bmjopen_2020_039691 crossref_primary_10_3390_sports5010019 crossref_primary_10_1061__ASCE_CO_1943_7862_0002038 crossref_primary_10_1017_S1049023X12001847 crossref_primary_10_1136_bjsm_36_2_89 crossref_primary_10_23736_S0022_4707_24_16100_2 crossref_primary_10_1080_02640414_2013_779740 crossref_primary_10_1123_ijspp_2021_0536 crossref_primary_10_1016_j_jtherbio_2015_10_001 crossref_primary_10_1080_08995605_2019_1654293 crossref_primary_10_4085_1062_6050_51_7_02 crossref_primary_10_1364_BOE_428207 crossref_primary_10_3390_sports5010004 crossref_primary_10_1139_apnm_2012_0489 crossref_primary_10_1249_MSS_0000000000001403 crossref_primary_10_1007_s00421_007_0652_z crossref_primary_10_1007_s00421_010_1577_5 crossref_primary_10_1007_s00421_008_0677_y crossref_primary_10_1249_01_mss_0000230120_83641_98 crossref_primary_10_1519_JSC_0b013e3181e07585 crossref_primary_10_1136_bjsports_2014_094449 crossref_primary_10_4236_ijcm_2018_93012 crossref_primary_10_1007_s00421_011_1972_6 crossref_primary_10_3389_fspor_2023_1274141 crossref_primary_10_1007_s40279_018_1033_y crossref_primary_10_1113_expphysiol_2011_061002 crossref_primary_10_1016_j_bandc_2013_07_013 crossref_primary_10_3109_02656736_2011_589096 crossref_primary_10_1152_advan_00126_2014 crossref_primary_10_1007_s40279_012_0014_9 crossref_primary_10_1152_ajpregu_00196_2002 crossref_primary_10_1089_whr_2021_0094 crossref_primary_10_3109_10903127_2014_959221 crossref_primary_10_1007_s40279_019_01188_5 crossref_primary_10_1177_0040517506063388 crossref_primary_10_1152_japplphysiol_00945_2005 crossref_primary_10_1111_brv_13002 crossref_primary_10_1007_s00421_009_1135_1 crossref_primary_10_1186_s13102_022_00546_7 crossref_primary_10_3389_fphys_2019_01469 crossref_primary_10_1139_H08_139 crossref_primary_10_1097_00003677_200407000_00005 crossref_primary_10_1152_jappl_2001_91_5_2017 crossref_primary_10_1007_s00424_003_1020_4 crossref_primary_10_1371_journal_pone_0078918 crossref_primary_10_1097_00005768_200209000_00009 crossref_primary_10_52082_jssm_2022_164 crossref_primary_10_1111_1467_8489_12469 crossref_primary_10_1080_17569370_2016_1216990 crossref_primary_10_1371_journal_pone_0103718 crossref_primary_10_1016_j_jsams_2007_09_004 crossref_primary_10_1007_s00421_022_05032_z crossref_primary_10_1016_j_mjafi_2017_04_004 crossref_primary_10_1257_aer_102_7_3652 crossref_primary_10_3390_ijerph17217795 crossref_primary_10_1080_15459621003785554 crossref_primary_10_1123_ijspp_2018_0668 |
Cites_doi | 10.1152/jappl.1967.23.3.347 10.1152/jappl.1956.9.1.25 10.1152/jappl.1997.82.4.1229 10.1152/jappl.1979.47.5.954 10.1152/ajplegacy.1971.220.4.1053 10.1161/01.RES.24.5.711 10.1172/JCI105484 10.1139/y87-203 10.1093/jn/15.5.461 10.1152/jappl.1998.84.6.1858 10.1007/s004240050361 10.1152/jappl.1994.77.6.2827 10.1152/jappl.1981.50.4.772 10.1152/jappl.1990.69.3.1040 10.1152/jappl.1977.43.5.790 10.1113/jphysiol.1993.sp019482 10.1097/00005768-199709000-00018 10.1152/jappl.1995.79.5.1487 10.1113/jphysiol.1953.sp004926 10.1152/jappl.1992.73.1.368 10.1152/jappl.1998.84.3.877 10.1007/BF00586681 10.1055/s-2007-971973 10.1097/00005768-199707000-00014 10.1152/jappl.1975.39.6.920 10.1152/jappl.1988.64.2.803 10.1007/BF02388622 10.1152/jappl.1979.46.3.430 10.1152/jappl.1974.36.5.538 10.1152/jappl.1994.77.1.216 10.1111/j.1469-7793.1998.895ba.x 10.1152/jappl.1992.73.3.903 10.1152/jappl.1998.84.5.1731 10.1007/BF00374769 10.1152/jappl.1987.62.5.1997 |
ContentType | Journal Article |
Copyright | 1999 INIST-CNRS Copyright American Physiological Society Mar 1999 |
Copyright_xml | – notice: 1999 INIST-CNRS – notice: Copyright American Physiological Society Mar 1999 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 H8D L7M 7X8 |
DOI | 10.1152/jappl.1999.86.3.1032 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | MEDLINE Physical Education Index Technology Research Database MEDLINE - Academic Physical Education Index CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1039 |
ExternalDocumentID | 48866329 10066720 1730894 10_1152_jappl_1999_86_3_1032 jap_86_3_1032 |
Genre | Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - 02 08R 2WC 39C 3O- 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFMIJ AFRAH AGNAY ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GJ GX1 H13 H~9 KQ8 L7B MVM MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT VH1 WH7 WOQ X X7M YCJ YQJ ZXP --- -~X .55 .GJ 18M AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ACBEA ACGFO ADFNX ADXHL AFOSN AI. BKKCC BTFSW CITATION EMOBN ITBOX P6G RPRKH TR2 W8F XSW YBH YQT YWH ~02 1CY 29J 4.4 8M5 ACKIV ACYGS AETEA AGCDD AIDAL AJUXI C2- IQODW J5H XOL CGR CUY CVF ECM EIF NPM VXZ 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 H8D L7M 7X8 |
ID | FETCH-LOGICAL-c596t-2acb60aee3b5521ce75f7df9a6db5043854c9e9d707ba26cc165b2b507f2585b3 |
ISSN | 8750-7587 |
IngestDate | Fri Sep 05 14:23:06 EDT 2025 Fri Sep 05 05:26:15 EDT 2025 Fri Sep 05 10:49:13 EDT 2025 Fri Sep 05 10:34:31 EDT 2025 Mon Jun 30 09:04:10 EDT 2025 Wed Feb 19 02:41:02 EST 2025 Mon Jul 21 09:15:58 EDT 2025 Thu Apr 24 23:01:06 EDT 2025 Tue Jul 01 02:43:25 EDT 2025 Tue Jan 05 18:11:15 EST 2021 Mon May 06 11:47:33 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Physical exercise Human Regional blood flow Temperature Body temperature Bicycle ergometer Environmental factor Fatigue Heat Skin Hemodynamics Hyperthermia Prolonged |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c596t-2acb60aee3b5521ce75f7df9a6db5043854c9e9d707ba26cc165b2b507f2585b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Undefined-3 |
PMID | 10066720 |
PQID | 222145569 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_10066720 proquest_miscellaneous_27029939 crossref_primary_10_1152_jappl_1999_86_3_1032 proquest_miscellaneous_69658917 proquest_miscellaneous_18155856 crossref_citationtrail_10_1152_jappl_1999_86_3_1032 pascalfrancis_primary_1730894 proquest_miscellaneous_18133577 proquest_journals_222145569 highwire_physiology_jap_86_3_1032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-03-01 |
PublicationDateYYYYMMDD | 1999-03-01 |
PublicationDate_xml | – month: 03 year: 1999 text: 1999-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 1999 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 Brooks G. A. (B4) 1971; 220 B30 B31 B10 B32 B11 B33 B12 B13 B35 B36 B15 B37 B16 B38 B39 B18 B19 Febbraio M. A. (B9) 1996; 271 B1 B3 B5 B6 B7 B8 B40 |
References_xml | – ident: B33 doi: 10.1152/jappl.1967.23.3.347 – ident: B8 doi: 10.1152/jappl.1956.9.1.25 – ident: B16 doi: 10.1152/jappl.1997.82.4.1229 – volume: 271 start-page: R1251 issue: 40 year: 1996 ident: B9 publication-title: Am. J. Physiol. – ident: B21 doi: 10.1152/jappl.1979.47.5.954 – volume: 220 start-page: 1053 year: 1971 ident: B4 publication-title: Am. J. Physiol. doi: 10.1152/ajplegacy.1971.220.4.1053 – ident: B36 doi: 10.1161/01.RES.24.5.711 – ident: B35 doi: 10.1172/JCI105484 – ident: B5 doi: 10.1139/y87-203 – ident: B18 doi: 10.1093/jn/15.5.461 – ident: B23 doi: 10.1152/jappl.1998.84.6.1858 – ident: B30 doi: 10.1007/s004240050361 – ident: B10 doi: 10.1152/jappl.1994.77.6.2827 – ident: B39 doi: 10.1152/jappl.1981.50.4.772 – ident: B29 doi: 10.1152/jappl.1990.69.3.1040 – ident: B3 doi: 10.1152/jappl.1977.43.5.790 – ident: B28 doi: 10.1113/jphysiol.1993.sp019482 – ident: B12 doi: 10.1097/00005768-199709000-00018 – ident: B15 doi: 10.1152/jappl.1995.79.5.1487 – ident: B40 doi: 10.1113/jphysiol.1953.sp004926 – ident: B38 doi: 10.1152/jappl.1992.73.1.368 – ident: B11 doi: 10.1152/jappl.1998.84.3.877 – ident: B6 doi: 10.1007/BF00586681 – ident: B19 doi: 10.1055/s-2007-971973 – ident: B1 doi: 10.1097/00005768-199707000-00014 – ident: B20 doi: 10.1152/jappl.1975.39.6.920 – ident: B32 doi: 10.1152/jappl.1988.64.2.803 – ident: B22 doi: 10.1007/BF02388622 – ident: B27 doi: 10.1152/jappl.1979.46.3.430 – ident: B24 doi: 10.1152/jappl.1974.36.5.538 – ident: B26 doi: 10.1152/jappl.1994.77.1.216 – ident: B13 doi: 10.1111/j.1469-7793.1998.895ba.x – ident: B25 doi: 10.1152/jappl.1992.73.3.903 – ident: B7 doi: 10.1152/jappl.1998.84.5.1731 – ident: B31 doi: 10.1007/BF00374769 – ident: B37 doi: 10.1152/jappl.1987.62.5.1997 |
SSID | ssj0014451 |
Score | 2.2201595 |
Snippet | Human Physiology Department, August Krogh Institute, University
of Copenhagen, DK-2100 Copenhagen, Denmark
We
investigated whether fatigue during prolonged... We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the... Gonzalez-Alonso et al investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1032 |
SubjectTerms | Adult Biological and medical sciences Body temperature Body Temperature - physiology Dehydration - physiopathology Exercise Exercise - physiology Exercise Test Fatigue Fever Fundamental and applied biological sciences. Psychology Heart Heat Hemodynamics - physiology Hot Temperature - adverse effects Humans Male Muscle Fatigue - physiology Muscle, Skeletal - physiology Oxygen Consumption - physiology Physical Endurance - physiology Physical Fitness - physiology Regional Blood Flow - physiology Skin - blood supply Temperature Thermoregulation. Hibernation. Estivation. Ecophysiology and environmental effects Vertebrates: anatomy and physiology, studies on body, several organs or systems |
Title | Influence of body temperature on the development of fatigue during prolonged exercise in the heat |
URI | http://jap.physiology.org/cgi/content/abstract/86/3/1032 https://www.ncbi.nlm.nih.gov/pubmed/10066720 https://www.proquest.com/docview/222145569 https://www.proquest.com/docview/18133577 https://www.proquest.com/docview/18155856 https://www.proquest.com/docview/27029939 https://www.proquest.com/docview/69658917 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuZQyMhHhBKU0cO8ljhRhjCASik_ZmObEzTeqSirYPVPx4jq9JoR2Xl6qNj2M357NzfK4IvSBjFSsZi4iwLIlSkdIoJ_CTxlJWMHNYfybb5yd2cpaentPzweBHP7pkWY6q9da4kv_hKlwDvuoo2X_gbLgpXIDvwF_4BA7D51_x-L2vMKJFvrKVIEkqEINtmmRnBvBhUd7oX0Pfi5Xy8Ymwgc7a5gLETl98yXs-6l16h-gqnOhq1CI2iZPO91TktKdYeNc2a2OGj2dqHU1glEW7YYeaqhCG2CkjtF-13Qm_vgp66VPVuIvHrkq0dIF7ReeoFVw5xxGcTrL-3uvSYF_2j-ZzWwvXqj1_3-FpYioLwB_VkZaACTYio1_JgU_zK8P12LjxJuPufRe8EH3TDXQzyTJj5P_wpbNB6dRtVjts5-0CL2ECr7cNr9PPuhtuyjg-77R2uxULWHm1LZmy-0xjZJvpXXTHcRZPLMLuoYFq9tHBpBHL9uo7fok_Bz7vo1sfnTfGARIBf7itscYf7uEPtw0GHOEe_jSZwx-2-MMBf9jjD1_afhp_99HZ8dvpm5PIleyIKlqwZZSIqmRjoRQpKQiGlcponcm6EEyWOldeTtOqUIXMxlkpElZVMaNlAk1ZncDBtSQP0F7TNuoRwqmEo0RVUyVBZicmjVFOVBzXRVLVUsRDRPxD5pXLZ6_Lqsy4OdfShBsucc0lnjNOuObSEEWh19zmc_kTvecf7xYV1_qhKaBJ9wm0fC7rIXq-jR7I-vc82gBCNxF43eZFOkSHHhjc7TYLDnK8rinAiiF6FlrhVaDte6JR7WrBQVgnhGbZtRQUHjPbTaHDU-HIcs0oTKeLKmIY5aHFbO85Wvg_3tlyiG53W8MTtLf8tlJHINQvy6dm7f0EH8n1Zg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+body+temperature+on+the+development+of+fatigue+during+prolonged+exercise+in+the+heat&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Gonz%C3%A1lez-Alonso%2C+J&rft.au=Teller%2C+C&rft.au=Andersen%2C+S+L&rft.au=Jensen%2C+F+B&rft.date=1999-03-01&rft.issn=8750-7587&rft.volume=86&rft.issue=3&rft.spage=1032&rft_id=info:doi/10.1152%2Fjappl.1999.86.3.1032&rft_id=info%3Apmid%2F10066720&rft.externalDocID=10066720 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |