Fasting Enhances p-Cresol Production in the Rat Intestinal Tract

p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal...

Full description

Saved in:
Bibliographic Details
Published inExperimental Animals Vol. 56; no. 4; pp. 301 - 307
Main Authors MAKINO, Ikuyo, KATO, Ikuo, ONOUE, Masaharu, KAWAKAMI, Koji, KOJIMA, Kenji
Format Journal Article
LanguageEnglish
Published Japan Japanese Association for Laboratory Animal Science 01.07.2007
Subjects
Online AccessGet full text
ISSN1341-1357
1881-7122
DOI10.1538/expanim.56.301

Cover

Abstract p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal p-cresol levels were determined in non-fasted rats and in rats fasting for either 12 or 18 h. Serum p-cresol increased significantly with 12-h fasting (3.44 ± 2.15 nmol/ml; P<0.05) and 18-h fasting (5.40 ± 2.20; P<0.001) as compared to the level in the non-fasted rats (1.02 ± 0.50). Cecal p-cresol levels of the 12-h fasted (272.6 ± 313.2 nmol/cecum) and 18-h fasted rats (436.6 ± 190.8; P<0.01) were higher than those in non-fasted rats (27.1 ± 21.9). The total cecal protein in content did not change with 18-h fasting. However, the cecal protein concentration increased significantly with fasting (P<0.001), and correlated closely with total cecal p-cresol contents (P<0.001). These results indicate that fasting enhances p-cresol production in the rat cecum, resulting in accumulation of serum p-cresol. We presume that the increase in p-cresol produced by fasting is related to the enhancement of bacterial nitrogen metabolism via an increased concentration of endogenous protein in the cecum.
AbstractList p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal p-cresol levels were determined in non-fasted rats and in rats fasting for either 12 or 18 h. Serum p-cresol increased significantly with 12-h fasting (3.44 +/- 2.15 nmol/ml; P<0.05) and 18-h fasting (5.40 +/- 2.20; P<0.001) as compared to the level in the non-fasted rats (1.02 +/- 0.50). Cecal p-cresol levels of the 12-h fasted (272.6 +/- 313.2 nmol/cecum) and 18-h fasted rats (436.6 +/- 190.8; P<0.01) were higher than those in non-fasted rats (27.1 +/- 21.9). The total cecal protein in content did not change with 18-h fasting. However, the cecal protein concentration increased significantly with fasting (P<0.001), and correlated closely with total cecal p-cresol contents (P<0.001). These results indicate that fasting enhances p-cresol production in the rat cecum, resulting in accumulation of serum p-cresol. We presume that the increase in p-cresol produced by fasting is related to the enhancement of bacterial nitrogen metabolism via an increased concentration of endogenous protein in the cecum.p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal p-cresol levels were determined in non-fasted rats and in rats fasting for either 12 or 18 h. Serum p-cresol increased significantly with 12-h fasting (3.44 +/- 2.15 nmol/ml; P<0.05) and 18-h fasting (5.40 +/- 2.20; P<0.001) as compared to the level in the non-fasted rats (1.02 +/- 0.50). Cecal p-cresol levels of the 12-h fasted (272.6 +/- 313.2 nmol/cecum) and 18-h fasted rats (436.6 +/- 190.8; P<0.01) were higher than those in non-fasted rats (27.1 +/- 21.9). The total cecal protein in content did not change with 18-h fasting. However, the cecal protein concentration increased significantly with fasting (P<0.001), and correlated closely with total cecal p-cresol contents (P<0.001). These results indicate that fasting enhances p-cresol production in the rat cecum, resulting in accumulation of serum p-cresol. We presume that the increase in p-cresol produced by fasting is related to the enhancement of bacterial nitrogen metabolism via an increased concentration of endogenous protein in the cecum.
p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal p-cresol levels were determined in non-fasted rats and in rats fasting for either 12 or 18 h. Serum p-cresol increased significantly with 12-h fasting (3.44 +/- 2.15 nmol/ml; P<0.05) and 18-h fasting (5.40 +/- 2.20; P<0.001) as compared to the level in the non-fasted rats (1.02 +/- 0.50). Cecal p-cresol levels of the 12-h fasted (272.6 +/- 313.2 nmol/cecum) and 18-h fasted rats (436.6 +/- 190.8; P<0.01) were higher than those in non-fasted rats (27.1 +/- 21.9). The total cecal protein in content did not change with 18-h fasting. However, the cecal protein concentration increased significantly with fasting (P<0.001), and correlated closely with total cecal p-cresol contents (P<0.001). These results indicate that fasting enhances p-cresol production in the rat cecum, resulting in accumulation of serum p-cresol. We presume that the increase in p-cresol produced by fasting is related to the enhancement of bacterial nitrogen metabolism via an increased concentration of endogenous protein in the cecum.
p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting drastically changes intestinal conditions. However, the effect of fasting on p-cresol production is unclear. In this study, serum and cecal p-cresol levels were determined in non-fasted rats and in rats fasting for either 12 or 18 h. Serum p-cresol increased significantly with 12-h fasting (3.44 ± 2.15 nmol/ml; P<0.05) and 18-h fasting (5.40 ± 2.20; P<0.001) as compared to the level in the non-fasted rats (1.02 ± 0.50). Cecal p-cresol levels of the 12-h fasted (272.6 ± 313.2 nmol/cecum) and 18-h fasted rats (436.6 ± 190.8; P<0.01) were higher than those in non-fasted rats (27.1 ± 21.9). The total cecal protein in content did not change with 18-h fasting. However, the cecal protein concentration increased significantly with fasting (P<0.001), and correlated closely with total cecal p-cresol contents (P<0.001). These results indicate that fasting enhances p-cresol production in the rat cecum, resulting in accumulation of serum p-cresol. We presume that the increase in p-cresol produced by fasting is related to the enhancement of bacterial nitrogen metabolism via an increased concentration of endogenous protein in the cecum.
Author KAWAKAMI, Koji
KOJIMA, Kenji
MAKINO, Ikuyo
ONOUE, Masaharu
KATO, Ikuo
Author_xml – sequence: 1
  fullname: MAKINO, Ikuyo
  organization: Yakult Central Institute for Microbiological Research
– sequence: 1
  fullname: KATO, Ikuo
  organization: Yakult Central Institute for Microbiological Research
– sequence: 1
  fullname: ONOUE, Masaharu
  organization: Yakult Central Institute for Microbiological Research
– sequence: 1
  fullname: KAWAKAMI, Koji
  organization: Yakult Central Institute for Microbiological Research
– sequence: 1
  fullname: KOJIMA, Kenji
  organization: Yakult Central Institute for Microbiological Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17660685$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUQIMo1tfWpczK3dQ8JsnMTim-oKCIrsNt5k6bMs3UJAX9e6e0PhDETRK45yThHJJd33kk5JTRIZOivMC3JXi3GEo1FJTtkANWlizXjPPd_iwKljMh9YAcxjinlGvNq30yYFopqkp5QC5vICbnp9m1n4G3GLNlPgoYuzZ7DF29ssl1PnM-SzPMniBl9z7h2oA2ew5g0zHZa6CNeLLdj8jLzfXz6C4fP9zej67GuZWVSjkHaamgmqNiHOqa1aUFsFVTaUkbqSeMq7JQTd0AAuvHFjRUUou6xBqbiTgi55t7l6F7XfVfMAsXLbYteOxW0aiSUc4U-xfktKoKLWgPnm3B1WSBtVkGt4Dwbj7j9MBwA9jQxRiw-UaoWdc32_pGKtPX74Xil2BdgnXBFMC1f2ujjTaPCab49QqE5GyLP_Fis_TW19TOIBj04gPF-aPK
CitedBy_id crossref_primary_10_3109_1354750X_2010_548010
crossref_primary_10_1002_aur_1571
crossref_primary_10_1111_j_1600_0684_2010_00444_x
crossref_primary_10_3390_toxins12040245
crossref_primary_10_2217_fmb_09_132
crossref_primary_10_1016_j_legalmed_2018_08_003
crossref_primary_10_1073_pnas_0904489106
crossref_primary_10_1002_aur_2639
crossref_primary_10_1002_pmic_201800419
crossref_primary_10_1016_j_ntt_2012_09_002
crossref_primary_10_1021_pr100862t
Cites_doi 10.1016/S0021-9673(01)84102-9
10.1046/j.1365-2036.1998.00377.x
10.1093/jn/98.2.217
10.1016/0278-6915(91)90141-S
10.1093/ajcn/29.12.1448
10.1111/j.1365-2672.1996.tb04331.x
10.1113/jphysiol.1978.sp012156
10.1016/0003-2697(85)90442-7
10.1093/ajcn/32.10.2094
10.1046/j.1523-1755.2002.t01-1-00651.x
10.1016/B978-0-12-545680-7.50007-4
10.1136/gut.29.6.809
10.12938/bifidus.25.39
10.1038/ki.1995.64
10.1016/0009-8981(81)90299-0
10.1093/ndt/14.12.2813
10.1053/gast.1996.v111.pm8698202
10.1093/jn/116.9.1694
ContentType Journal Article
Copyright 2007 Japanese Association for Laboratory Animal Science
Copyright_xml – notice: 2007 Japanese Association for Laboratory Animal Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
DOI 10.1538/expanim.56.301
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Bacteriology Abstracts (Microbiology B)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1881-7122
EndPage 307
ExternalDocumentID 17660685
10_1538_expanim_56_301
article_expanim_56_4_56_4_301_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29G
2WC
3O-
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EMOBN
GX1
HYE
JSF
JSH
KQ8
M48
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
X7M
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
FRP
M~E
NPM
7QL
C1K
7X8
ID FETCH-LOGICAL-c596t-2a5c03072e612add1d8caac9f9750f57b126846fdfaea1d1dca7a9573d8edefb3
ISSN 1341-1357
IngestDate Fri Jul 11 15:12:34 EDT 2025
Thu Jul 10 17:16:56 EDT 2025
Sat Sep 28 08:36:43 EDT 2024
Tue Jul 01 01:20:58 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Wed Sep 03 06:11:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596t-2a5c03072e612add1d8caac9f9750f57b126846fdfaea1d1dca7a9573d8edefb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/expanim/56/4/56_4_301/_article/-char/en
PMID 17660685
PQID 20994730
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_68102161
proquest_miscellaneous_20994730
pubmed_primary_17660685
crossref_primary_10_1538_expanim_56_301
crossref_citationtrail_10_1538_expanim_56_301
jstage_primary_article_expanim_56_4_56_4_301_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Experimental Animals
PublicationTitleAlternate Exp Anim
PublicationYear 2007
Publisher Japanese Association for Laboratory Animal Science
Publisher_xml – name: Japanese Association for Laboratory Animal Science
References 4. Chacko, A. and Cummings, J.H. 1988. Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29: 809-815.
7. Curtius, H.C., Mettler, M., and Ettlinger, L. 1976. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography-mass spectrometry. J. Chromatogra. 126: 569-580.
19. Tohyama, K. and Kobayashi, Y. 1993. Suppression of intestinal putrefactive fermentation by Bifidobacterium breve. Bifidus (J. Intest. Microbiol.) 6: 151-160 (in Japanese).
3. Boutwell, R.K. and Bosch, D.K. 1959. The tumor-promoting action of phenol and related compounds for mouse skin. Cancer Res. 19: 413-424.
9. Evenepoel, P., Claus, D., Geypens, B., Maes, B., Hiele, M., Rutgeerts, P., and Ghoos, Y. 1998. Evidence for impaired assimilation and increased colonic fermentation of protein, related to gastric acid suppression therapy. Aliment. Pharmacol. Ther. 12: 1011-1019.
14. Niwa, T., Maeda, K., Ohki, T., Saito, A., and Kobayashi, K. 1981. A gas chromatographic-mass spectrometric analysis for phenols in uremic serum. Clin. Chim. Acta 110: 51-57.
23. Ward, F.W. and Coates, M.E. 1987. Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and fasting. Lab. Anim. 21: 216-222.
22. Visek, W.J. 1972. Effects of urea hydrolysis on cell life-span and metabolism. Fed. Proc. 31: 1178-1193.
2. Bone, E., Tamm, A., and Hill, M. 1976. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am. J. Clin. Nutr. 29: 1448-1454.
13. Matsumoto, K., Takada, T., Shimizu, K., Kado, Y., Kawakami, K., Makino, I., Yamaoka, Y., Hirano, K., Nishimura, A., Kajimoto, O., and Nomoto, K. 2006. The effects of a probiotic milk product containing Lactobacillus casei strain Shirota on the defecation frequency and the intestinal microflora of sub-optimal health state volunteers: a randomized placebo-controlled cross-over study. Biosci. Microflora 25: 39-48.
16. Smith, E.A. and Macfarlane, G.T. 1996. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81: 288-302.
5. Cummings, J.H., Hill, M.J., Bone, E.S., Branch, W.J., and Jenkins, D.J. 1979. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am. J. Clin. Nutr. 32: 2094-2101.
6. Curtis, K.J., Kim, Y.S., Perdomo, J.M., Silk, D.B., and Whitehead, J.S. 1978. Protein digestion and absorption in the rat. J. Physiol. 274: 409-419.
10. Fujiwara, S., Hirota, T., Nakazato, H., Mizutani, T., and Mitsuoka, T. 1991. Effect of Konjac mannan on intestinal microbial metabolism in mice bearing human flora and in conventional F344 rats. Food Chem. Toxicol. 29: 601-606.
17. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.
21. Vanholder, R., De Smet, R., Waterloos, M.A., Van Landschoot, N., Vogeleere, P., Hoste, E., and Ringoir, S. 1995. Mechanisms of uremic inhibition of phagocyte reactive species production: characterization of the role of p-cresol. Kidney Int. 47: 510-517.
8. Dou, L., Cerini, C., Brunet, P., Guilianelli, C., Moal, V., Grau, G., De Smet, R., Vanholder, R., Sampol, J., and Berland, Y. 2002. p-Cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines. Kidney Int. 62:1999-2009.
12. Kotal, P., Vitek, L., and Fevery, J. 1996. Fasting-related hyperbilirubinemia in rats: the effect of decreased intestinal motility. Gastroenterology 111: 217-223.
1. Bakke, O.M. 1969. Urinary simple phenols in rats fed diets containing different amounts of casein and 10% tyrosine. J. Nutr. 98: 217-221.
15. Niwa, T. 1993. Phenol and p-cresol accumulated in uremic serum measured by HPLC with fluorescence detection. Clin. Chem. 39: 108-111.
18. Tanimoto, Y. 1988. Biochemistry of Blood and Urine in Experimental Animals, Soft Science Inc., Tokyo (in Japanese).
20. Vanholder, R., De Smet, R., and Lesaffer, G. 1999. p-Cresol: a toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrol. Dial. Transplant. 14: 2813-2815.
11. Illman, R.J., Topping, D.L., and Trimble, R.P. 1986. Effects of food restriction and starvation-refeeding on volatile fatty acid concentrations in the rat. J. Nutr. 116: 1694-1700.
22
12
23
14
15
MATSUMOTO KAZUMASA (13) 2006; 25
17
18
19
1
2
3
4
(11) 1986; 116
5
6
7
8
9
(16) 1996; 81
20
10
21
References_xml – reference: 16. Smith, E.A. and Macfarlane, G.T. 1996. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J. Appl. Bacteriol. 81: 288-302.
– reference: 23. Ward, F.W. and Coates, M.E. 1987. Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and fasting. Lab. Anim. 21: 216-222.
– reference: 6. Curtis, K.J., Kim, Y.S., Perdomo, J.M., Silk, D.B., and Whitehead, J.S. 1978. Protein digestion and absorption in the rat. J. Physiol. 274: 409-419.
– reference: 14. Niwa, T., Maeda, K., Ohki, T., Saito, A., and Kobayashi, K. 1981. A gas chromatographic-mass spectrometric analysis for phenols in uremic serum. Clin. Chim. Acta 110: 51-57.
– reference: 18. Tanimoto, Y. 1988. Biochemistry of Blood and Urine in Experimental Animals, Soft Science Inc., Tokyo (in Japanese).
– reference: 1. Bakke, O.M. 1969. Urinary simple phenols in rats fed diets containing different amounts of casein and 10% tyrosine. J. Nutr. 98: 217-221.
– reference: 3. Boutwell, R.K. and Bosch, D.K. 1959. The tumor-promoting action of phenol and related compounds for mouse skin. Cancer Res. 19: 413-424.
– reference: 10. Fujiwara, S., Hirota, T., Nakazato, H., Mizutani, T., and Mitsuoka, T. 1991. Effect of Konjac mannan on intestinal microbial metabolism in mice bearing human flora and in conventional F344 rats. Food Chem. Toxicol. 29: 601-606.
– reference: 20. Vanholder, R., De Smet, R., and Lesaffer, G. 1999. p-Cresol: a toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrol. Dial. Transplant. 14: 2813-2815.
– reference: 7. Curtius, H.C., Mettler, M., and Ettlinger, L. 1976. Study of the intestinal tyrosine metabolism using stable isotopes and gas chromatography-mass spectrometry. J. Chromatogra. 126: 569-580.
– reference: 9. Evenepoel, P., Claus, D., Geypens, B., Maes, B., Hiele, M., Rutgeerts, P., and Ghoos, Y. 1998. Evidence for impaired assimilation and increased colonic fermentation of protein, related to gastric acid suppression therapy. Aliment. Pharmacol. Ther. 12: 1011-1019.
– reference: 22. Visek, W.J. 1972. Effects of urea hydrolysis on cell life-span and metabolism. Fed. Proc. 31: 1178-1193.
– reference: 2. Bone, E., Tamm, A., and Hill, M. 1976. The production of urinary phenols by gut bacteria and their possible role in the causation of large bowel cancer. Am. J. Clin. Nutr. 29: 1448-1454.
– reference: 19. Tohyama, K. and Kobayashi, Y. 1993. Suppression of intestinal putrefactive fermentation by Bifidobacterium breve. Bifidus (J. Intest. Microbiol.) 6: 151-160 (in Japanese).
– reference: 8. Dou, L., Cerini, C., Brunet, P., Guilianelli, C., Moal, V., Grau, G., De Smet, R., Vanholder, R., Sampol, J., and Berland, Y. 2002. p-Cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines. Kidney Int. 62:1999-2009.
– reference: 12. Kotal, P., Vitek, L., and Fevery, J. 1996. Fasting-related hyperbilirubinemia in rats: the effect of decreased intestinal motility. Gastroenterology 111: 217-223.
– reference: 5. Cummings, J.H., Hill, M.J., Bone, E.S., Branch, W.J., and Jenkins, D.J. 1979. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am. J. Clin. Nutr. 32: 2094-2101.
– reference: 13. Matsumoto, K., Takada, T., Shimizu, K., Kado, Y., Kawakami, K., Makino, I., Yamaoka, Y., Hirano, K., Nishimura, A., Kajimoto, O., and Nomoto, K. 2006. The effects of a probiotic milk product containing Lactobacillus casei strain Shirota on the defecation frequency and the intestinal microflora of sub-optimal health state volunteers: a randomized placebo-controlled cross-over study. Biosci. Microflora 25: 39-48.
– reference: 21. Vanholder, R., De Smet, R., Waterloos, M.A., Van Landschoot, N., Vogeleere, P., Hoste, E., and Ringoir, S. 1995. Mechanisms of uremic inhibition of phagocyte reactive species production: characterization of the role of p-cresol. Kidney Int. 47: 510-517.
– reference: 17. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.
– reference: 4. Chacko, A. and Cummings, J.H. 1988. Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut 29: 809-815.
– reference: 11. Illman, R.J., Topping, D.L., and Trimble, R.P. 1986. Effects of food restriction and starvation-refeeding on volatile fatty acid concentrations in the rat. J. Nutr. 116: 1694-1700.
– reference: 15. Niwa, T. 1993. Phenol and p-cresol accumulated in uremic serum measured by HPLC with fluorescence detection. Clin. Chem. 39: 108-111.
– ident: 7
  doi: 10.1016/S0021-9673(01)84102-9
– ident: 3
– ident: 9
  doi: 10.1046/j.1365-2036.1998.00377.x
– ident: 18
– ident: 1
  doi: 10.1093/jn/98.2.217
– ident: 10
  doi: 10.1016/0278-6915(91)90141-S
– ident: 2
  doi: 10.1093/ajcn/29.12.1448
– volume: 81
  start-page: 288
  issn: 0021-8847
  issue: 3
  year: 1996
  ident: 16
  doi: 10.1111/j.1365-2672.1996.tb04331.x
– ident: 6
  doi: 10.1113/jphysiol.1978.sp012156
– ident: 17
  doi: 10.1016/0003-2697(85)90442-7
– ident: 19
– ident: 5
  doi: 10.1093/ajcn/32.10.2094
– ident: 8
  doi: 10.1046/j.1523-1755.2002.t01-1-00651.x
– ident: 15
  doi: 10.1016/B978-0-12-545680-7.50007-4
– ident: 4
  doi: 10.1136/gut.29.6.809
– volume: 25
  start-page: 39
  issn: 1342-1441
  issue: 2
  year: 2006
  ident: 13
  doi: 10.12938/bifidus.25.39
– ident: 21
  doi: 10.1038/ki.1995.64
– ident: 14
  doi: 10.1016/0009-8981(81)90299-0
– ident: 20
  doi: 10.1093/ndt/14.12.2813
– ident: 12
  doi: 10.1053/gast.1996.v111.pm8698202
– volume: 116
  start-page: 1694
  issn: 0022-3166
  issue: 9
  year: 1986
  ident: 11
  doi: 10.1093/jn/116.9.1694
– ident: 22
– ident: 23
SSID ssj0027729
Score 1.7777025
Snippet p-Cresol is a metabolite of aromatic amino acid metabolism produced by intestinal microflora, and its formation is influenced by intestinal conditions. Fasting...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 301
SubjectTerms Ammonia - metabolism
Animals
Bacteria - metabolism
Body Weight
Cecum - metabolism
Cecum - microbiology
Cresols - metabolism
Eating
fasting
Food Deprivation
Hematologic Tests
Indoles - metabolism
Male
microflora metabolite
p-cresol
rat
Rats
Rats, Wistar
Specific Pathogen-Free Organisms
Time Factors
Title Fasting Enhances p-Cresol Production in the Rat Intestinal Tract
URI https://www.jstage.jst.go.jp/article/expanim/56/4/56_4_301/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/17660685
https://www.proquest.com/docview/20994730
https://www.proquest.com/docview/68102161
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Experimental Animals, 2007, Vol.56(4), pp.301-307
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgAYkL4k15-oDEAaU0D8eJtIdFqy0LWpZLK1VcLMexobttUtFUwP76HT8SN4KKx8WKnLGV-IsnM_bMZ4RexkleZpES4JsoGSQhHwWZKkQgQjHKwBlLI2UCZE_T42nyYUZm_vQ2k13SFENx8du8kv9BFeoAV50l-w_Idp1CBVwDvlACwlD-FcZjvjZRy7L6qsFbv14Fh-A-1wsddlVaXtg2kBGQNtwQuoUJMOeivyy_TfXPq_mSL_w-D__Oz_nSbvzXZ_OuHq6X3KX3-OqP-oQrswT7_nzzs_a9NG1l3VtsoF1gaqsf4acXhLHllG4VqGUGdx9KsqUNY9v0Fy1NDCe7_LHSbzMk6dAJ9umwTz-x8fTkhE2OZpOr6FpEqdmHfzcLvUdNzTF03VM5Vk7o_02_957Vcf0MDO8vcrdPYWyLyW10yzkF-K1F-A66Iqu76Mbn2mx53EMHDmfc4oxbnLHHGc8rDDhjwBl7nLHB-T6ajo8mh8eBO_kiECRPmyDiRGjtG0kwQOEPFJaZ4FzkKgcDTxFahJqkJ1Wl4pKHcFtwynNC4zKTpVRF_ADtVXUlHyEM5ltZkEymSmljLedxKRMqKclHYhSKcoCCdmSYcLTw-nSSBdPuIYwkcyPJSMpgJAfoVSe_soQoOyX37UB3cm6ibMsltgDx7q5ON4TZPUAvWngYqDy9j8UrWW_WTGd7J_Bn2i2hSfYi8GUG6KHF1T8qTcFlz8jjP7Z9gm76GfAU7TXfNvIZGKBN8dx8hJe3Bo1F
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fasting+enhances+p-Cresol+production+in+the+rat+intestinal+tract&rft.jtitle=Experimental+animals&rft.au=Kawakami%2C+Koji&rft.au=Kojima%2C+Kenji&rft.au=Makino%2C+Ikuyo&rft.au=Kato%2C+Ikuo&rft.date=2007-07-01&rft.issn=1341-1357&rft.volume=56&rft.issue=4&rft.spage=301&rft_id=info:doi/10.1538%2Fexpanim.56.301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1357&client=summon