Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts

Background and purpose:  Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer‐related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies ha...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 159; no. 8; pp. 1681 - 1692
Main Authors Verron, Elise, Masson, Martial, Khoshniat, Solmaz, Duplomb, Laurence, Wittrant, Yohann, Baud'huin, Marc, Badran, Zahi, Bujoli, Bruno, Janvier, Pascal, Scimeca, Jean‐Claude, Bouler, Jean‐Michel, Guicheux, Jérôme
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2010
Nature Publishing Group
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and purpose:  Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer‐related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach:  In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14‐positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real‐time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3‐E1) and primary mouse osteoblasts. Key results:  Gallium dose‐dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP‐positive multinucleated cells. Ga down‐regulated in a dose‐dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3‐E1 osteoblasts. Conclusions and implications:  Gallium exhibits a dose‐dependent anti‐osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down‐regulation of NFATc1 expression, a master regulator of RANK‐induced osteoclastic differentiation.
AbstractList BACKGROUND AND PURPOSEGallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. EXPERIMENTAL APPROACHIn different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. KEY RESULTSGallium dose-dependently (0-100 microM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. CONCLUSIONS AND IMPLICATIONSGallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation.
Background and purpose:  Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer‐related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach:  In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14‐positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real‐time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3‐E1) and primary mouse osteoblasts. Key results:  Gallium dose‐dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP‐positive multinucleated cells. Ga down‐regulated in a dose‐dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3‐E1 osteoblasts. Conclusions and implications:  Gallium exhibits a dose‐dependent anti‐osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down‐regulation of NFATc1 expression, a master regulator of RANK‐induced osteoclastic differentiation.
Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Gallium dose-dependently (0-100 microM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation.
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0--100 ?M) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. Received 20 July 2009; revised 6 November 2009; accepted 7 December 2009.
Background and purpose:  Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer‐related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro . Experimental approach:  In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14‐positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real‐time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3‐E1) and primary mouse osteoblasts. Key results:  Gallium dose‐dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP‐positive multinucleated cells. Ga down‐regulated in a dose‐dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3‐E1 osteoblasts. Conclusions and implications:  Gallium exhibits a dose‐dependent anti‐osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down‐regulation of NFATc1 expression, a master regulator of RANK‐induced osteoclastic differentiation.
Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro.
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0-100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. [PUBLICATION ABSTRACT]
Author Duplomb, Laurence
Wittrant, Yohann
Verron, Elise
Masson, Martial
Guicheux, Jérôme
Khoshniat, Solmaz
Badran, Zahi
Janvier, Pascal
Scimeca, Jean‐Claude
Bujoli, Bruno
Baud'huin, Marc
Bouler, Jean‐Michel
Author_xml – sequence: 1
  givenname: Elise
  surname: Verron
  fullname: Verron, Elise
– sequence: 2
  givenname: Martial
  surname: Masson
  fullname: Masson, Martial
– sequence: 3
  givenname: Solmaz
  surname: Khoshniat
  fullname: Khoshniat, Solmaz
– sequence: 4
  givenname: Laurence
  surname: Duplomb
  fullname: Duplomb, Laurence
– sequence: 5
  givenname: Yohann
  surname: Wittrant
  fullname: Wittrant, Yohann
– sequence: 6
  givenname: Marc
  surname: Baud'huin
  fullname: Baud'huin, Marc
– sequence: 7
  givenname: Zahi
  surname: Badran
  fullname: Badran, Zahi
– sequence: 8
  givenname: Bruno
  surname: Bujoli
  fullname: Bujoli, Bruno
– sequence: 9
  givenname: Pascal
  surname: Janvier
  fullname: Janvier, Pascal
– sequence: 10
  givenname: Jean‐Claude
  surname: Scimeca
  fullname: Scimeca, Jean‐Claude
– sequence: 11
  givenname: Jean‐Michel
  surname: Bouler
  fullname: Bouler, Jean‐Michel
– sequence: 12
  givenname: Jérôme
  surname: Guicheux
  fullname: Guicheux, Jérôme
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22554914$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20397300$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02109579$$DView record in HAL
BookMark eNqNkk1v1DAQhi1URLeFv4AiIYQ4ZBkn8UckVKlU0EVaCQ70bDmO0_XKsRc72bb_HocsC_QCvtiaed6Z8cycoRPnnUYow7DE6bzbLnHFaE5KjpcFJCsApWR5_wQtjo4TtAAAlmPM-Sk6i3ELkJyMPEOnBZQ1KwEW6OZaWmvGPut9O1o56Jj5OGivrIyDUVmTEmdBRx92g_EuMy7bmyH47M4MGz8Omew6rQbjbmddM-nic_S0kzbqF4f7HN18-vjtapWvv1x_vrpc54rUlORasVJVssVNpwnDtGPpL1pK2nIFrVJdhSUoTiXmFWW8rVTDgGjCO4o5pbg8Rxdz3N3Y9LpV2g1BWrELppfhQXhpxN8eZzbi1u9FURekqqcAb-cAm0ey1eVaTDYoMNSE1fuJfXNIFvz3UcdB9CYqba102o9RsIrUUGEC_ybLktcwk68ekVs_Bpd6JjCpCCt4QUii-Eyp4GMMujuWikFMCyG2Ypq7mOYupoUQPxdC3Cfpyz87dBT-2oAEvD4AMippuyCdMvE3l_KnRlWJez9zd8bqh_8uQHz4ukqP8gesT9Nd
CODEN BJPCBM
CitedBy_id crossref_primary_10_1016_j_jmrt_2022_08_111
crossref_primary_10_1016_j_matpr_2018_08_074
crossref_primary_10_3390_ijms24108762
crossref_primary_10_1007_s12540_023_01481_z
crossref_primary_10_1016_j_actbio_2012_06_022
crossref_primary_10_1111_jvp_12022
crossref_primary_10_3389_fphar_2022_829862
crossref_primary_10_3390_nano7080229
crossref_primary_10_1111_j_1365_2885_2011_01336_x
crossref_primary_10_1002_term_2396
crossref_primary_10_1016_j_rechem_2023_101162
crossref_primary_10_1557_opl_2012_277
crossref_primary_10_3390_molecules28217379
crossref_primary_10_3390_ijms19030826
crossref_primary_10_1016_j_addr_2023_114900
crossref_primary_10_1016_j_ejphar_2020_173613
crossref_primary_10_3390_ma11030367
crossref_primary_10_1016_j_bioactmat_2022_07_015
crossref_primary_10_1016_j_bioadv_2022_212975
crossref_primary_10_1016_j_drudis_2012_06_007
crossref_primary_10_1016_j_ceramint_2015_09_016
crossref_primary_10_1016_j_ceramint_2019_07_240
crossref_primary_10_1016_j_jma_2020_02_009
crossref_primary_10_1007_s12011_013_9634_7
crossref_primary_10_1016_j_actbio_2018_06_036
crossref_primary_10_3389_fonc_2023_1205788
crossref_primary_10_1097_MED_0b013e328341311d
crossref_primary_10_1517_17425247_2013_785518
crossref_primary_10_54133_ajms_v5i_280
crossref_primary_10_1007_s10856_015_5661_6
crossref_primary_10_1016_j_mtadv_2022_100297
crossref_primary_10_1021_acsinfecdis_1c00280
crossref_primary_10_1007_s11999_017_5250_8
crossref_primary_10_1016_j_carbpol_2017_03_009
crossref_primary_10_1186_s40824_022_00326_x
crossref_primary_10_1016_j_actbio_2015_05_027
crossref_primary_10_1016_j_matdes_2016_07_096
crossref_primary_10_1007_s10853_014_8782_2
crossref_primary_10_3390_ma15196849
crossref_primary_10_1016_j_triboint_2023_108325
crossref_primary_10_1098_rsif_2011_0611
crossref_primary_10_1016_j_jddst_2022_104011
crossref_primary_10_1016_j_colcom_2023_100735
crossref_primary_10_1134_S0036029523100142
crossref_primary_10_1016_j_bcp_2016_06_020
crossref_primary_10_1016_j_cej_2021_128709
crossref_primary_10_1088_1748_605X_ad5ba5
crossref_primary_10_1002_jbm_b_33856
crossref_primary_10_1016_j_biomaterials_2023_122268
crossref_primary_10_1021_acsabm_2c00940
crossref_primary_10_1007_s13346_023_01336_5
crossref_primary_10_4028_www_scientific_net_KEM_493_494_195
crossref_primary_10_1111_j_1600_9657_2012_01138_x
crossref_primary_10_1016_j_actbio_2022_07_063
crossref_primary_10_1371_journal_pone_0113426
crossref_primary_10_1007_s10856_015_5620_2
crossref_primary_10_1007_s10856_010_4219_x
crossref_primary_10_1007_s12011_017_1123_y
crossref_primary_10_1021_ic2007777
crossref_primary_10_3390_ijms23137102
crossref_primary_10_1016_j_ceramint_2023_04_121
crossref_primary_10_1016_j_bcp_2011_12_015
crossref_primary_10_3892_mmr_2015_4588
crossref_primary_10_1016_j_compositesb_2022_110384
crossref_primary_10_1039_D2NJ01672A
crossref_primary_10_1002_jbm_a_36644
Cites_doi 10.1007/s00198-004-1725-z
10.1002/1097-0142(20000615)88:12 <2961::AID-CNCR12>3.0.CO;2-L
10.1002/jemt.20326
10.1001/jama.285.3.320
10.1016/0002-9343(93)90218-E
10.1074/jbc.274.49.34967
10.1172/JCI111353
10.4065/81.8.1013
10.1016/j.biomaterials.2005.04.057
10.1016/j.bone.2005.10.022
10.1097/00003086-200109000-00027
10.1016/S8756-3282(99)00070-8
10.1016/S0016-7037(97)00012-4
10.1002/jbmr.5650070902
10.1016/j.yexcr.2003.10.016
10.7326/0003-4819-108-5-669
10.1021/cr0002386
10.1359/jbmr.080510
10.1016/S0093-7754(03)00172-6
10.1016/0169-6009(91)90030-4
10.1359/jbmr.2000.15.4.721
10.1016/S1534-5807(02)00369-6
10.1083/jcb.96.1.191
10.1210/en.2007-1719
10.1002/jcb.240520404
10.1002/jcb.240520309
10.1002/jbmr.5650101008
10.1016/j.amjmed.2005.12.019
10.1056/NEJMoa030897
10.1016/S8756-3282(97)00224-X
10.1210/endo.141.12.7921
10.1002/jcb.240480409
10.1016/j.jbspin.2005.09.002
10.1016/0169-6009(90)90106-P
10.1007/s00198-007-0506-x
10.1111/j.1532-5415.2000.tb02641.x
10.1517/14656566.1.2.225
10.1002/jbmr.5650080113
10.1007/s00198-006-0322-8
10.1359/jbmr.2003.18.11.2060
10.7326/0003-4819-113-11-847
10.1002/(SICI)1521-1878(199810)20:10<837::AID-BIES9>3.0.CO;2-D
10.1016/j.bone.2006.09.023
10.1016/0140-6736(90)90540-L
10.1359/jbmr.2003.18.8.1430
10.1359/jbmr.020603
ContentType Journal Article
Copyright 2010 The Authors. Journal compilation © 2010 The British Pharmacological Society
2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Journal compilation © 2010 The British Pharmacological Society
Copyright_xml – notice: 2010 The Authors. Journal compilation © 2010 The British Pharmacological Society
– notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Journal compilation © 2010 The British Pharmacological Society
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
NAPCQ
7X8
1XC
5PM
DOI 10.1111/j.1476-5381.2010.00665.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Calcium & Calcified Tissue Abstracts
CrossRef

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1476-5381
EndPage 1692
ExternalDocumentID oai_HAL_hal_02109579v1
3376134471
10_1111_j_1476_5381_2010_00665_x
20397300
22554914
BPH665
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
08R
AAJUZ
AAPBV
AAUGY
AAVGM
ABCVL
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
7X8
1XC
5PM
ID FETCH-LOGICAL-c5965-ec73c4ad1bfe5716f7010eaa6d8c0dccf41a0c86a184678d4cb705e58f6186613
IEDL.DBID RPM
ISSN 0007-1188
IngestDate Tue Sep 17 21:10:43 EDT 2024
Fri Sep 06 13:26:30 EDT 2024
Fri Aug 16 20:43:01 EDT 2024
Sat Aug 17 02:57:34 EDT 2024
Fri Sep 13 04:17:03 EDT 2024
Fri Aug 23 00:36:27 EDT 2024
Sat Sep 28 08:34:29 EDT 2024
Sun Oct 22 16:08:26 EDT 2023
Sat Aug 24 00:58:49 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Osteoarticular system
Osteoporosis
Gallium
Diseases of the osteoarticular system
bone resorption
Osteoblast
Resorption
Osteoclast
Bone
In vitro
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5965-ec73c4ad1bfe5716f7010eaa6d8c0dccf41a0c86a184678d4cb705e58f6186613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3811-8859
0000-0002-2256-0792
0000-0003-4276-5127
0000-0003-2754-3024
OpenAccessLink https://europepmc.org/articles/pmc2925491?pdf=render
PMID 20397300
PQID 1545728255
PQPubID 42104
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2925491
hal_primary_oai_HAL_hal_02109579v1
proquest_miscellaneous_745904150
proquest_miscellaneous_733890150
proquest_journals_1545728255
crossref_primary_10_1111_j_1476_5381_2010_00665_x
pubmed_primary_20397300
pascalfrancis_primary_22554914
wiley_primary_10_1111_j_1476_5381_2010_00665_x_BPH665
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Basingstoke
– name: England
– name: London
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Nature Publishing Group
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group
– name: Wiley
References 2007; 18
1993; 8
2001; 101
1997; 61
2006; 119
2001; 285
1991; 12
2008; A
2000; 48
2006; 38
2008; 19
2000; 88
1995; 10
2009
1999; 24
2002; 3
1983; 96
2008; 149
2003; 18
2000; 1
2005; 26
1998; 20
2003; 30
1988; 108
1998; 22
2006; 81
1992; 7
1984; 73
1990; 335
1993; 94
2000; 15
2006; 21
2001; 390
2004; 350
1986; 46
2006; 69
2004; 293
1993; 52
1999; 274
2008; 23
2000; 141
2007; 40
1992; 48
2005; 72
2005; 16
1990; 113
1990; 8
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Warrell RP (e_1_2_8_47_1) 1986; 46
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Faucheux C (e_1_2_8_15_1) 2008
Ma Z (e_1_2_8_28_1) 2009
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 10
  start-page: 1478
  year: 1995
  end-page: 1487
  article-title: Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo
  publication-title: J Bone Miner Res
– volume: 7
  start-page: 1005
  year: 1992
  end-page: 1010
  article-title: Perspective. How many women have osteoporosis?
  publication-title: J Bone Miner Res
– volume: 20
  start-page: 837
  year: 1998
  end-page: 846
  article-title: How the osteoclast degrades bone
  publication-title: Bioessays
– volume: 3
  start-page: 889
  year: 2002
  end-page: 901
  article-title: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts
  publication-title: Dev Cell
– volume: 52
  start-page: 396
  year: 1993
  end-page: 403
  article-title: Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells
  publication-title: J Cell Biochem
– volume: 40
  start-page: 251
  year: 2007
  end-page: 264
  article-title: The molecular understanding of osteoclast differentiation
  publication-title: Bone
– volume: 1
  start-page: 225
  year: 2000
  end-page: 238
  article-title: Bisphosphonates in osteoporosis: recent clinical experience
  publication-title: Expert Opin Pharmacother
– volume: 293
  start-page: 292
  year: 2004
  end-page: 301
  article-title: Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF‐kB ligand and osteoprotegerin biological activities
  publication-title: Exp Cell Res
– volume: 390
  start-page: 232
  year: 2001
  end-page: 243
  article-title: Hip fracture in elderly patients: outcomes for function, quality of life, and type of residence
  publication-title: Clin Orthop Relat Res
– volume: 69
  start-page: 606
  year: 2006
  end-page: 612
  article-title: Quantitative and reliable in vitro method combining scanning electron microscopy and image analysis for the screening of osteotropic modulators
  publication-title: Microsc Res Tech
– volume: 52
  start-page: 330
  year: 1993
  end-page: 336
  article-title: Effect of gallium nitrate in vitro and in normal rats
  publication-title: J Cell Biochem
– volume: 30
  start-page: 20
  year: 2003
  end-page: 24
  article-title: Gallium nitrate in multiple myeloma: prolonged survival in a cohort of patients with advanced‐stage disease
  publication-title: Semin Oncol
– volume: 108
  start-page: 669
  year: 1988
  end-page: 674
  article-title: Gallium nitrate for acute treatment of cancer‐related hypercalcemia. A randomized, double‐blind comparison with calcitonin
  publication-title: Ann Intern Med
– volume: 12
  start-page: 167
  year: 1991
  end-page: 179
  article-title: Bone particles from gallium‐treated rats are resistant to resorption in vivo
  publication-title: Bone Miner
– volume: A
  start-page: 46
  year: 2008
  end-page: 56
  article-title: Controlled release of bisphosphonate from a calcium phosphate biomaterial inhibits osteoclastic resorption in vitro
  publication-title: J Biomed Mater Res
– volume: 274
  start-page: 34967
  year: 1999
  end-page: 34973
  article-title: Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis. A link between inhibition of the mevalonate pathway and regulation of an apoptosis‐promoting kinase
  publication-title: J Biol Chem
– volume: 335
  start-page: 72
  year: 1990
  end-page: 75
  article-title: Use of gallium to treat Paget's disease of bone: a pilot study
  publication-title: Lancet
– volume: 72
  start-page: 461
  year: 2005
  end-page: 465
  article-title: Prevention and treatment of glucocorticoid‐induced osteoporosis in 2005
  publication-title: Joint Bone Spine
– volume: 18
  start-page: 2060
  year: 2003
  end-page: 2068
  article-title: Activation of p38 mitogen‐activated protein kinase and c‐Jun NH2‐terminal kinase by BMP‐2 and their implication in the stimulation of osteoblastic cell differentiation
  publication-title: J Bone Miner Res
– volume: 113
  start-page: 847
  year: 1990
  end-page: 851
  article-title: Gallium nitrate for advanced Paget disease of bone: effectiveness and dose‐response analysis
  publication-title: Ann Intern Med
– volume: 8
  start-page: 211
  year: 1990
  end-page: 216
  article-title: Gallium inhibits bone resorption by a direct effect on osteoclasts
  publication-title: Bone Miner
– volume: 149
  start-page: 3688
  year: 2008
  end-page: 3697
  article-title: Interleukin‐6 inhibits receptor activator of nuclear factor kappaB ligand‐induced osteoclastogenesis by diverting cells into the macrophage lineage: key role of Serine727 phosphorylation of signal transducer and activator of transcription 3
  publication-title: Endocrinology
– volume: 285
  start-page: 320
  year: 2001
  end-page: 323
  article-title: Risk of new vertebral fracture in the year following a fracture
  publication-title: JAMA
– volume: 48
  start-page: 241
  year: 2000
  end-page: 249
  article-title: Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group
  publication-title: J Am Geriatr Soc
– volume: 141
  start-page: 4793
  year: 2000
  end-page: 4796
  article-title: In vivo effects of bisphosphonates on the osteoclast mevalonate pathway
  publication-title: Endocrinology
– volume: 48
  start-page: 401
  year: 1992
  end-page: 410
  article-title: Reversible inhibition of osteoclastic activity by bone‐bound gallium (III)
  publication-title: J Cell Biochem
– volume: 8
  start-page: 103
  year: 1993
  end-page: 112
  article-title: Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels
  publication-title: J Bone Miner Res
– volume: 46
  start-page: 4208
  year: 1986
  end-page: 4212
  article-title: Gallium nitrate for acute treatment of cancer‐related hypercalcemia: clinicopharmacological and dose‐response analysis
  publication-title: Cancer Res
– volume: 15
  start-page: 721
  year: 2000
  end-page: 739
  article-title: Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis
  publication-title: J Bone Miner Res
– volume: 19
  start-page: 811
  year: 2008
  end-page: 818
  article-title: Adherence to bisphosphonates therapy and hip fracture risk in osteoporotic women
  publication-title: Osteoporos Int
– volume: 21
  start-page: 674
  year: 2006
  end-page: 683
  article-title: Enhanced expression of the inorganic phosphate transporter Pit‐1 is involved in BMP‐2‐induced matrix mineralization in osteoblast‐like cells
  publication-title: J Bone Miner Res
– volume: 61
  start-page: 1345
  year: 1997
  end-page: 1357
  article-title: Gallium speciation in aqueous solution. Experimental study and modelling.2. Solubility of alpha‐GaOOH in acidic solutions from 150 to 250 degrees C and hydrolysis constants of gallium (III) to 300 degrees C
  publication-title: Geochimica Et Cosmochimica Acta
– volume: 23
  start-page: 1569
  year: 2008
  end-page: 1575
  article-title: Fracture outcomes related to persistence and compliance with oral bisphosphonates
  publication-title: J Bone Miner Res
– volume: 73
  start-page: 1487
  year: 1984
  end-page: 1490
  article-title: Gallium nitrate inhibits calcium resorption from bone and is effective treatment for cancer‐related hypercalcemia
  publication-title: J Clin Invest
– volume: 18
  start-page: 1023
  year: 2007
  end-page: 1031
  article-title: A systematic review of persistence and compliance with bisphosphonates for osteoporosis
  publication-title: Osteoporos Int
– volume: 96
  start-page: 191
  year: 1983
  end-page: 198
  article-title: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria
  publication-title: J Cell Biol
– volume: 350
  start-page: 1189
  year: 2004
  end-page: 1199
  article-title: Ten years' experience with alendronate for osteoporosis in postmenopausal women
  publication-title: N Engl J Med
– volume: 81
  start-page: 1013
  year: 2006
  end-page: 1022
  article-title: Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases
  publication-title: Mayo Clin Proc
– volume: 119
  start-page: S18
  year: 2006
  end-page: S24
  article-title: Improving compliance and persistence with bisphosphonate therapy for osteoporosis
  publication-title: Am J Med
– volume: 38
  start-page: 922
  year: 2006
  end-page: 928
  article-title: Assessment of compliance with osteoporosis treatment and its consequences in a managed care population
  publication-title: Bone
– volume: 101
  start-page: 2341
  year: 2001
  end-page: 2352
  article-title: Structure and regulation of calcium/calmodulin‐dependent protein kinases
  publication-title: Chem Rev
– volume: 94
  start-page: 646
  year: 1993
  end-page: 650
  article-title: Diagnosis, prophylaxis, and treatment of osteoporosis
  publication-title: Am J Med
– volume: 22
  start-page: 25
  year: 1998
  end-page: 31
  article-title: Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin‐like growth factor I: an in vitro study
  publication-title: Bone
– year: 2009
  article-title: Therapeutic effect of organic gallium on ovariectomized osteopenic rats by decreased serum minerals and increased bone mineral content
  publication-title: Biol Trace Elem Res
– volume: 18
  start-page: 1430
  year: 2003
  end-page: 1442
  article-title: Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis‐associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification
  publication-title: J Bone Miner Res
– volume: 88
  start-page: 2961
  year: 2000
  end-page: 2978
  article-title: Cellular and molecular mechanisms of action of bisphosphonates
  publication-title: Cancer
– volume: 26
  start-page: 6643
  year: 2005
  end-page: 6651
  article-title: A silanized hydroxypropyl methylcellulose hydrogel for the three‐dimensional culture of chondrocytes
  publication-title: Biomaterials
– volume: 16
  start-page: 468
  year: 2005
  end-page: 474
  article-title: Meta‐analysis of the efficacy of alendronate for the prevention of hip fractures in postmenopausal women
  publication-title: Osteoporos Int
– volume: 24
  start-page: 73S
  year: 1999
  end-page: 79S
  article-title: Molecular mechanisms of action of bisphosphonates
  publication-title: Bone
– ident: e_1_2_8_35_1
  doi: 10.1007/s00198-004-1725-z
– ident: e_1_2_8_39_1
  doi: 10.1002/1097-0142(20000615)88:12 <2961::AID-CNCR12>3.0.CO;2-L
– ident: e_1_2_8_18_1
  doi: 10.1002/jemt.20326
– ident: e_1_2_8_27_1
  doi: 10.1001/jama.285.3.320
– ident: e_1_2_8_9_1
  doi: 10.1016/0002-9343(93)90218-E
– ident: e_1_2_8_37_1
  doi: 10.1074/jbc.274.49.34967
– volume: 46
  start-page: 4208
  year: 1986
  ident: e_1_2_8_47_1
  article-title: Gallium nitrate for acute treatment of cancer‐related hypercalcemia: clinicopharmacological and dose‐response analysis
  publication-title: Cancer Res
  contributor:
    fullname: Warrell RP
– ident: e_1_2_8_46_1
  doi: 10.1172/JCI111353
– ident: e_1_2_8_40_1
  doi: 10.4065/81.8.1013
– ident: e_1_2_8_45_1
  doi: 10.1016/j.biomaterials.2005.04.057
– ident: e_1_2_8_24_1
  doi: 10.1016/j.bone.2005.10.022
– ident: e_1_2_8_3_1
  doi: 10.1097/00003086-200109000-00027
– ident: e_1_2_8_38_1
  doi: 10.1016/S8756-3282(99)00070-8
– year: 2009
  ident: e_1_2_8_28_1
  article-title: Therapeutic effect of organic gallium on ovariectomized osteopenic rats by decreased serum minerals and increased bone mineral content
  publication-title: Biol Trace Elem Res
  contributor:
    fullname: Ma Z
– ident: e_1_2_8_4_1
  doi: 10.1016/S0016-7037(97)00012-4
– ident: e_1_2_8_32_1
  doi: 10.1002/jbmr.5650070902
– ident: e_1_2_8_50_1
  doi: 10.1016/j.yexcr.2003.10.016
– ident: e_1_2_8_48_1
  doi: 10.7326/0003-4819-108-5-669
– ident: e_1_2_8_41_1
  doi: 10.1021/cr0002386
– ident: e_1_2_8_17_1
  doi: 10.1359/jbmr.080510
– ident: e_1_2_8_33_1
  doi: 10.1016/S0093-7754(03)00172-6
– ident: e_1_2_8_11_1
  doi: 10.1016/0169-6009(91)90030-4
– ident: e_1_2_8_26_1
  doi: 10.1359/jbmr.2000.15.4.721
– ident: e_1_2_8_44_1
  doi: 10.1016/S1534-5807(02)00369-6
– ident: e_1_2_8_42_1
  doi: 10.1083/jcb.96.1.191
– ident: e_1_2_8_12_1
  doi: 10.1210/en.2007-1719
– ident: e_1_2_8_7_1
  doi: 10.1002/jcb.240520404
– ident: e_1_2_8_25_1
  doi: 10.1002/jcb.240520309
– ident: e_1_2_8_23_1
  doi: 10.1002/jbmr.5650101008
– ident: e_1_2_8_13_1
  doi: 10.1016/j.amjmed.2005.12.019
– ident: e_1_2_8_8_1
  doi: 10.1056/NEJMoa030897
– start-page: 46
  year: 2008
  ident: e_1_2_8_15_1
  article-title: Controlled release of bisphosphonate from a calcium phosphate biomaterial inhibits osteoclastic resorption in vitro
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Faucheux C
– ident: e_1_2_8_19_1
  doi: 10.1016/S8756-3282(97)00224-X
– ident: e_1_2_8_16_1
  doi: 10.1210/endo.141.12.7921
– ident: e_1_2_8_6_1
  doi: 10.1002/jcb.240480409
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jbspin.2005.09.002
– ident: e_1_2_8_22_1
  doi: 10.1016/0169-6009(90)90106-P
– ident: e_1_2_8_36_1
  doi: 10.1007/s00198-007-0506-x
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1532-5415.2000.tb02641.x
– ident: e_1_2_8_29_1
  doi: 10.1517/14656566.1.2.225
– ident: e_1_2_8_21_1
  doi: 10.1002/jbmr.5650080113
– ident: e_1_2_8_10_1
  doi: 10.1007/s00198-006-0322-8
– ident: e_1_2_8_20_1
  doi: 10.1359/jbmr.2003.18.11.2060
– ident: e_1_2_8_49_1
  doi: 10.7326/0003-4819-113-11-847
– ident: e_1_2_8_5_1
  doi: 10.1002/(SICI)1521-1878(199810)20:10<837::AID-BIES9>3.0.CO;2-D
– ident: e_1_2_8_2_1
  doi: 10.1016/j.bone.2006.09.023
– ident: e_1_2_8_31_1
  doi: 10.1016/0140-6736(90)90540-L
– ident: e_1_2_8_30_1
  doi: 10.1359/jbmr.2003.18.8.1430
– ident: e_1_2_8_43_1
  doi: 10.1359/jbmr.020603
SSID ssj0014775
Score 2.2902596
Snippet Background and purpose:  Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including...
Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and...
Background and purpose:  Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including...
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including...
BACKGROUND AND PURPOSEGallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1681
SubjectTerms Acid Phosphatase
Acid Phosphatase - metabolism
Alkaline Phosphatase
Alkaline Phosphatase - metabolism
Animals
Base Sequence
Biochemistry
Biochemistry, Molecular Biology
Bioengineering
Biological and medical sciences
Biomaterials
Bone Resorption
Cancer
Cell Behavior
Cell Differentiation
Cells, Cultured
Cellular Biology
Diseases of the osteoarticular system
DNA Primers
Gallium
Gallium - pharmacology
Genomics
Human health and pathology
Humans
In Vitro Techniques
Isoenzymes
Isoenzymes - metabolism
Life Sciences
Medical sciences
Mice
Molecular biology
osteoblast
Osteoblasts
Osteoblasts - cytology
Osteoblasts - drug effects
osteoclast
osteoporosis
Osteoporosis. Osteomalacia. Paget disease
Pharmacology. Drug treatments
Rabbits
Research Papers
Reverse Transcriptase Polymerase Chain Reaction
Rhumatology and musculoskeletal system
Tartrate-Resistant Acid Phosphatase
Title Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1476-5381.2010.00665.x
https://www.ncbi.nlm.nih.gov/pubmed/20397300
https://www.proquest.com/docview/1545728255/abstract/
https://search.proquest.com/docview/733890150
https://search.proquest.com/docview/745904150
https://hal.science/hal-02109579
https://pubmed.ncbi.nlm.nih.gov/PMC2925491
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-aPg3G2PfcdUGM0ae6iWPJch67si776MhDA30TsixTQ2KHOCntf9872U5iNsbYm7Elf-jupPtZv7sD-JQmJsNpP_Sp8LvPhRn7YyGNj66DjdNwZEJDwclXv6LJjH-_ETcHINpYGEfaN0l-VswXZ0V-67iVy4UZtDyxwfTqYjQmWBMMetCTYdhC9GbrgEtZly2g7IdBHHfpO1xGPtp4sCV1RcLloh4NcWEOKc5tb3nq3RI58ulSVzheWV3o4k-e6O-Eyn1H161Ul8_hWeNisvP6U17AgS1ewsm0zlH9cMqudyFX1Sk7YdNd9uqHVzD7qufzfLNgizKl0l62YhQHUhp0s7EHS8rCMsTo5cpNNiwv2F2-XpWM_uiWmzXTjiGCK2LdL6F-1WuYXX65vpj4Te0F34hxJHxrZGi4ToMkswIxVSZxvKzWURqbYWpMxgM9NHGkA3Jg4pSbRA6FFXFGCfhR-G_gsMAXegfMIqgSoZUJej6ctCHCXpmWZhQieOWBB0E75GpZp9hQ-9BERookpkhiyklM3XvwEWWzbU45sifnPxWdIxBLe493eON-R3Tb5jiHkf5wD45bWarGdCtFPqWkiF7hAdteRqOjnRRd2HJTKdS62P0r-ksTLsaU_gCbvK2VY_f4Rtc8kB216XxO9wpagkv93Wi-B8Ip2D-Pl_o8neDB0X8_8T08qXkTxFk6hsP1amM_oDu2TvoIRL796DsjfARjSjDB
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7axgNIiPslMIaF0J6WtknsOHkcE6NAO_WhRXuzEsfRItqkatqJ8es5J5deACHgLap9ksb-bH8n_s4xwNsk1ilO-55NB7_bXOjQDoXUNlIHEySeqz1NwcnDC78_4Z8uxeUeiDYWphLt6zjr5NNZJ8-uKm3lfKa7rU6sOxqeuSG5NU53H27heHVl66Q3mwdcyvrgAsp_6ATBroCHS99GK2ct6_JFlY3a7eHS7FGk29YCtX9F8si786jEFkvroy5-x0V_lVRuU91qrTq_D1_at6wlKl87q2Xc0d9_SgD5z83wAO417JWd1sUPYc_kj-B4VKe_vjlh4000V3nCjtlokxj75jFMPkTTabaasVmR0KlhpmQUYlJoZPBoweIiNwzd_2JRzWMsy9l1tlwUjD4WF6sliyrxCS62tV1MduUTmJy_H5_17eZYB1uL0Be20dLTPEqcODUC3bVUYkeYKPKTQPcSrVPuRD0d-JFD3ChIuI5lTxgRpJTbH3H1FA5y_EPPgRn014RnZIykihPQfLRKI6ldD_1i7ljgtH2p5nX2DrXt9UhfERQUQUFVUFDfLHiDnb6uTum3-6cDRb-Rf0zbmtd446MdTKyr4_RIfcItOGxBoppZoVREVyUFCwsL2LoYxzNt0kS5KValkh5SSPoM9YcqXISUWQGrPKtRt3l8A2IL5A4ed15ntwTRVWUVb9BkgaiQ-9ftpd6N-njx4r-f-Bpu98fDgRp8vPj8Eu7U8gySRh3CwXKxMq-Q9S3jo2qM_wDXGFHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbYkBAS4n4JjGEhtKelbRI7Th7HoBTYpj6s0sSL5TiOFtEmVZNMjF_PObm0DSCE9lY15zSN_dn-Tvz5HELexZFOYNr3bCz8bjOuQzvkQttAHUwQe672NB5OPj3zJzP25YJfbJX6qkX7OkoH2XwxyNLLWlu5XOhhpxMbTk-P3RDDGme4jJPhDrkNY9YNu0C93UBgQjTFCzAHohMEfREPE74NXs5a2uXzOiO1O4Ll2cPTbluL1M4lSiTvLVUBrZY05S7-xkf_lFVu0916vRo_IN-6J21kKt8HVRkN9M_fkkDeqCkekvsti6VHjckjcstkj8nBtEmDfX1IzzenuopDekCnmwTZ10_I7JOaz9NqQRd5jNXDTEHxqEmugcmDB43yzNCVKfJVPZ_RNKNXabnKKb40zquSqlqEAotu4xehX_GUzMYfz48ndlvewdY89LlttPA0U7ETJYZD2JYI6AyjlB8HehRrnTBHjXTgKwc5UhAzHYkRNzxIMMc_4OsZ2c3gD70g1EDcxj0jIiBXDAHng1eihHY9iI-ZYxGn60-5bLJ4yO3oR_gS4SARDrKGg_xhkbfQ8WtzTMM9OTqR-B3Gybi9eQU_vN_DxdocpknsF2aRvQ4osp0dCom0VeChYW4Rur4M4xo3a1Rm8qqQwgMqia-j_mHCeIgZFsDkeYO8ze1bIFtE9DDZe5z-FUBYnV28RZRFeI3e_24v-X46gQ8vb3zHN-TO9MNYnnw--_qK3G1UGqiQ2iO75aoyr4H8ldF-Pcx_AW1hVEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gallium+modulates+osteoclastic+bone+resorption+in+vitro+without+affecting+osteoblasts&rft.jtitle=British+journal+of+pharmacology&rft.au=Verron%2C+Elise&rft.au=Masson%2C+Martial&rft.au=Khoshniat%2C+Solmaz&rft.au=Duplomb%2C+Laurence&rft.date=2010-04-01&rft.eissn=1476-5381&rft.volume=159&rft.issue=8&rft.spage=1681&rft_id=info:doi/10.1111%2Fj.1476-5381.2010.00665.x&rft_id=info%3Apmid%2F20397300&rft.externalDocID=20397300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon