Shaping the calcium signature
Summary 275 I. Introduction 276 II. Ca²⁺ signalling pathways 276 III. Shaping Ca²⁺ signatures 278 IV. Ca²⁺ influx channels 278 V. Ca²⁺ influx channels as modulators of Ca²⁺ signatures 281 VI. Ca²⁺ efflux transporters 282 VII. Ca²⁺ efflux transporters as modulators of Ca²⁺ signatures 284 VIII. The sh...
Saved in:
Published in | The New phytologist Vol. 181; no. 2; pp. 275 - 294 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.01.2009
Blackwell Publishing Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Summary 275 I. Introduction 276 II. Ca²⁺ signalling pathways 276 III. Shaping Ca²⁺ signatures 278 IV. Ca²⁺ influx channels 278 V. Ca²⁺ influx channels as modulators of Ca²⁺ signatures 281 VI. Ca²⁺ efflux transporters 282 VII. Ca²⁺ efflux transporters as modulators of Ca²⁺ signatures 284 VIII. The shaping of noncytosolic Ca²⁺ signatures 285 IX. Future insights into the role of Ca²⁺ oscillators from modelling studies 287 X. Conclusions and perspectives 288 Acknowledgements 288 References 288 In numerous plant signal transduction pathways, Ca²⁺ is a versatile second messenger which controls the activation of many downstream actions in response to various stimuli. There is strong evidence to indicate that information encoded within these stimulus-induced Ca²⁺ oscillations can provide signalling specificity. Such Ca²⁺ signals, or 'Ca²⁺ signatures', are generated in the cytosol, and in noncytosolic locations including the nucleus and chloroplast, through the coordinated action of Ca²⁺ influx and efflux pathways. An increased understanding of the functions and regulation of these various Ca²⁺ transporters has improved our appreciation of the role these transporters play in specifically shaping the Ca²⁺ signatures. Here we review the evidence which indicates that Ca²⁺ channel, Ca²⁺-ATPase and Ca²⁺ exchanger isoforms can indeed modulate specific Ca²⁺ signatures in response to an individual signal. |
---|---|
Bibliography: | http://dx.doi.org/10.1111/j.1469-8137.2008.02682.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-3 ObjectType-Review-1 |
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/j.1469-8137.2008.02682.x |