WSN中一种基于扩展卡尔曼滤波器的虚假数据注入检测算法

为了有效地检测传感器网络中被注入的虚假数据,提出一种基于扩展卡尔曼滤波器(EKF)的虚假数据注入检测算法。首先通过监控邻近节点行为,使用EKF预测邻近节点未来状态;然后给出了使用不同的融合函数(平均、求和、最大、最小)时理论阈值的确定方法;最后为了克服本地检测机制的缺陷,将本地检测方法与系统监控模块有效配合,从而准确地区分出恶性事件和紧急事件。仿真实验结果表明,无论是在合成数据还是实时数据下进行测试,该算法都能为无线传感器网络进行安全的数据融合提供有效的入侵检测功能。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 31; no. 5; pp. 1475 - 1480
Main Author 熊伟
Format Journal Article
LanguageChinese
Published School of Computer,Chongqing College of Electronic Engineering,Chongqing 401331,Chin 2014
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2014.05.046

Cover

Loading…
Abstract 为了有效地检测传感器网络中被注入的虚假数据,提出一种基于扩展卡尔曼滤波器(EKF)的虚假数据注入检测算法。首先通过监控邻近节点行为,使用EKF预测邻近节点未来状态;然后给出了使用不同的融合函数(平均、求和、最大、最小)时理论阈值的确定方法;最后为了克服本地检测机制的缺陷,将本地检测方法与系统监控模块有效配合,从而准确地区分出恶性事件和紧急事件。仿真实验结果表明,无论是在合成数据还是实时数据下进行测试,该算法都能为无线传感器网络进行安全的数据融合提供有效的入侵检测功能。
AbstractList TP391; 为了有效地检测传感器网络中被注入的虚假数据,提出一种基于扩展卡尔曼滤波器(EKF)的虚假数据注入检测算法。首先通过监控邻近节点行为,使用EKF预测邻近节点未来状态;然后给出了使用不同的融合函数(平均、求和、最大、最小)时理论阈值的确定方法;最后为了克服本地检测机制的缺陷,将本地检测方法与系统监控模块有效配合,从而准确地区分出恶性事件和紧急事件。仿真实验结果表明,无论是在合成数据还是实时数据下进行测试,该算法都能为无线传感器网络进行安全的数据融合提供有效的入侵检测功能。
为了有效地检测传感器网络中被注入的虚假数据,提出一种基于扩展卡尔曼滤波器(EKF)的虚假数据注入检测算法。首先通过监控邻近节点行为,使用EKF预测邻近节点未来状态;然后给出了使用不同的融合函数(平均、求和、最大、最小)时理论阈值的确定方法;最后为了克服本地检测机制的缺陷,将本地检测方法与系统监控模块有效配合,从而准确地区分出恶性事件和紧急事件。仿真实验结果表明,无论是在合成数据还是实时数据下进行测试,该算法都能为无线传感器网络进行安全的数据融合提供有效的入侵检测功能。
Abstract_FL In order to effectively detect the false injected data,this paper proposed a detection algorithm of false injected data based on an extended Kalman filter. Firstly, by monitoring the behaviors of its neighbors ,it used EKF to predict their future states.
Author 熊伟
AuthorAffiliation 重庆电子工程职业学院计算机学院,重庆401331
AuthorAffiliation_xml – name: School of Computer,Chongqing College of Electronic Engineering,Chongqing 401331,Chin
Author_FL XIONG Wei
Author_FL_xml – sequence: 1
  fullname: XIONG Wei
Author_xml – sequence: 1
  fullname: 熊伟
BookMark eNo9j01LAkEcxudgkFofIujQZbf_7OzM7hxDeiOpQ0JHWffFXGosl4i9GRQRYacktEP0RnZIDAnE-jjO2Mdow-j0wI8fz8OTQSlRFT5C8xh0whlfDPVKFAkdA2CNME51A7CpA9XBZCmU_ufTKBNFIYBpYA5ptLGzvTkavI0G9fFLQ94NR8MrdfEq35uycS971-r2S30-qf6DbHXG7dPvVluenKtmTzW6qt-RZ8_qsa4-LsfdG9VvzqCpwNmL_Nm_zKLCynIht6blt1bXc0t5zaWcadwnlmtZtk0Cyksu4QahHiMe-NQwCaMJdT1qgOeDxT3OGLeIEZRcCIDYdoBJFi1Mao8dETiiXAyrRzWRDBbDKIzjOPx9DjT5nahzE9XdrYryYSWRD2qVfacWF01OKLcwIT_Eg3b8
ClassificationCodes TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2014.05.046
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Detection algorithm of false injected data based on extended Kalman filter in wireless sensor networks
DocumentTitle_FL Detection algorithm of false injected data based on extended Kalman filter in wireless sensor networks
EndPage 1480
ExternalDocumentID jsjyyyj201405046
49359713
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c596-9e37c77883f59bc39235d63d0e524365f59cd520de079d9669732fbc0f0388f13
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:37:33 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords wireless sensor networks
aggregation function
阈值
extended Kalman filter
虚假数据
threshold
无线传感器网络
数据融合
扩展卡尔曼滤波器
data aggregation
融合函数
false data
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c596-9e37c77883f59bc39235d63d0e524365f59cd520de079d9669732fbc0f0388f13
Notes XIONG Wei (School of Computer, Chongqing College of Electronic Engineering, Chongqing 401331, China)
51-1196/TP
wireless sensor networks; data aggregation; false data; extended Kalman filter; aggregation function; threshold
In order to effectively detect the false injected data, this paper proposed a detection algorithm Of false injected data based on an extended Kalman filter. Firstly, by monitoring the behaviors of its neighbors , it used EKF to predict their future states. Secondly, using different aggregation functions (average, sum, max, and min), it presented how to obtain a theoretical threshold. Finally, to overcome the limitations of local detection mechanisms, it illustrated how the proposed local detection approaches worked together with the system monitoring module to differentiate between malicious events and emergency events. Simulation results show that this proposed algorithm is suitable to provide intrusion detection capabilities for secure in-network aggregation in wireless sensor networks, whe
PageCount 6
ParticipantIDs wanfang_journals_jsjyyyj201405046
chongqing_primary_49359713
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2014
Publisher School of Computer,Chongqing College of Electronic Engineering,Chongqing 401331,Chin
Publisher_xml – name: School of Computer,Chongqing College of Electronic Engineering,Chongqing 401331,Chin
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 1.9407604
Snippet ...
TP391;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 1475
SubjectTerms 扩展卡尔曼滤波器
数据融合
无线传感器网络
虚假数据
融合函数
阈值
Title WSN中一种基于扩展卡尔曼滤波器的虚假数据注入检测算法
URI http://lib.cqvip.com/qk/93231X/201405/49359713.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201405046
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NTxUxsCGQGC9-G8GPYEKPi_vVbXvsPpYQjVzEyO3l7Rf4Dg8VOMAJE40xBk8SAx6MXxEPEgwxIejPYRd_hjPdvsfGEKJemmamnc52-mamfe0MISOpm3otMEVWnomW5XtBaonMjy07DmKeOS07lfjA-fZkMHHXvznNpvv69mq3lhYX4tFk-ch3Jf8jVYCBXPGV7D9ItkcUAFAH-UIJEobyr2R8784kjXwaCqrGTEXYNOJUcSoAwqgcp6HSKEVFRKOACkmVRFToUMmwAi2VoyE2lT62kSENG1gJQ6o0JPSocjVB6C5wCAkEASUQAnWk41DBdXdNCscCylG3u9BtGFUMIcrTrAIKgKHmOaKSm8ZVRsyu04yjABaZrDWTDf1pDEtkm2NZ8aZsA4EvDXtHjwgQwFQ1Hw2Ym_qRR_XI1OhnvAHmBYYLo8CNGblf_4tca2PHr7KyGMsOOz_7KKvhyUBqq4FDjPaGwHt_vg7r6v8RrFubfx_fNHNMmDzgcu6ARh1Q4Vg4fuiMgu9WD07oYtyfw80fRu4PatoW0wmC-ehpW-Z4nOncBJVf4QOyiq1h-DtBRgzzN45jHYOGzM51Zh6CK6RfpnXyVmem5kRNnSGnzO5nWFVL-SzpW549R053M4sMG0NzntyClb2_-3V_d-Xg82rxdm9_72X5_Evxba1YfVdsvyrf_Cx_fCx33hfrmwcbT36tbxSPn5Vr2-XqVrmzWTz9VH5YKb-_ONh6Xe6sXSBT49FUY8IyaT-shMnAkpnHE86F8HIm4wT8d4-lgZfaGXNBlzCAJilz7TSzuUxht47xpvI4sXMMbJQ73kXS35nrZJfIcCYDDhsS6cSt3AfXWfK0lYENYqmTuWmSDZKh3tQ0H1TRXZpduQ6S62aumuYnP99sz7eXlpbaOLs2g7kdOo7AZXISG1bndVdI_8KjxewqeLAL8TWzVH4D8SqAPg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WSN%E4%B8%AD%E4%B8%80%E7%A7%8D%E5%9F%BA%E4%BA%8E%E6%89%A9%E5%B1%95%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2%E5%99%A8%E7%9A%84%E8%99%9A%E5%81%87%E6%95%B0%E6%8D%AE%E6%B3%A8%E5%85%A5%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E7%86%8A%E4%BC%9F&rft.date=2014&rft.issn=1001-3695&rft.volume=31&rft.issue=5&rft.spage=1475&rft.epage=1480&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2014.05.046&rft.externalDocID=49359713
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg