Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients

Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with d...

Full description

Saved in:
Bibliographic Details
Published inStem cell reports Vol. 10; no. 4; pp. 1267 - 1281
Main Authors Deng, Wen-Li, Gao, Mei-Ling, Lei, Xin-Lan, Lv, Ji-Neng, Zhao, Huan, He, Kai-Wen, Xia, Xi-Xi, Li, Ling-Yun, Chen, Yu-Chen, Li, Yan-Ping, Pan, Deng, Xue, Tian, Jin, Zi-Bing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.04.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. [Display omitted] •HiPSC-derived 3D retinae with outer segments and electrophysiological properties•RPGR mutation results in diseased photoreceptor in patient iPSC-derived 3D retinae•Mutation correction rescues defects in photoreceptor morphology and electrophysiology•Ciliogenesis defects appear in RPGR patient-specific iPSCs, iPSC-RPE, and 3D retinae Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy.
AbstractList Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.
Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. • HiPSC-derived 3D retinae with outer segments and electrophysiological properties • RPGR mutation results in diseased photoreceptor in patient iPSC-derived 3D retinae • Mutation correction rescues defects in photoreceptor morphology and electrophysiology • Ciliogenesis defects appear in RPGR patient-specific iPSCs, iPSC-RPE, and 3D retinae Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy.
Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. : Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Keywords: RPGR, photoreceptor, electrophysiology, retinitis pigmentosa, patient-derived iPSCs, retinal organoid, RPE cells, cilium, ciliopathy, disease modeling
Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.
Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. [Display omitted] •HiPSC-derived 3D retinae with outer segments and electrophysiological properties•RPGR mutation results in diseased photoreceptor in patient iPSC-derived 3D retinae•Mutation correction rescues defects in photoreceptor morphology and electrophysiology•Ciliogenesis defects appear in RPGR patient-specific iPSCs, iPSC-RPE, and 3D retinae Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy.
Author Lv, Ji-Neng
Gao, Mei-Ling
Deng, Wen-Li
Chen, Yu-Chen
Jin, Zi-Bing
Lei, Xin-Lan
Xia, Xi-Xi
Pan, Deng
Zhao, Huan
Li, Ling-Yun
Xue, Tian
Li, Yan-Ping
He, Kai-Wen
AuthorAffiliation 1 Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
2 Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
AuthorAffiliation_xml – name: 1 Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– name: 2 Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
Author_xml – sequence: 1
  givenname: Wen-Li
  surname: Deng
  fullname: Deng, Wen-Li
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 2
  givenname: Mei-Ling
  surname: Gao
  fullname: Gao, Mei-Ling
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 3
  givenname: Xin-Lan
  surname: Lei
  fullname: Lei, Xin-Lan
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 4
  givenname: Ji-Neng
  surname: Lv
  fullname: Lv, Ji-Neng
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 5
  givenname: Huan
  surname: Zhao
  fullname: Zhao, Huan
  organization: Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
– sequence: 6
  givenname: Kai-Wen
  surname: He
  fullname: He, Kai-Wen
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 7
  givenname: Xi-Xi
  surname: Xia
  fullname: Xia, Xi-Xi
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 8
  givenname: Ling-Yun
  surname: Li
  fullname: Li, Ling-Yun
  organization: Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
– sequence: 9
  givenname: Yu-Chen
  surname: Chen
  fullname: Chen, Yu-Chen
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 10
  givenname: Yan-Ping
  surname: Li
  fullname: Li, Yan-Ping
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 11
  givenname: Deng
  surname: Pan
  fullname: Pan, Deng
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
– sequence: 12
  givenname: Tian
  surname: Xue
  fullname: Xue, Tian
  organization: Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
– sequence: 13
  givenname: Zi-Bing
  surname: Jin
  fullname: Jin, Zi-Bing
  email: jinzb@mail.eye.ac.cn
  organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29526738$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQXaEiWkr_AUI-cknwx3o_OCChBUqlSI34OFteezaZaNcOthOpJ_46DglVywF8mdH4zRt73ntenDnvoCheMjpnlFVvNvOYYDJhzilr5pTPKRVPigvOmZhVNWNnD_Lz4irGDc2nbRkv2bPinLeSV7VoLoqf1-CAdD4EMAm9I19gDyFCJB2O6Lc6re-IdpYs1z75DIJtDmThYyToCC6_drMPEHAPNrcmdHokt2GlnUcbyRD8dCxjwkiWuJrAJR81WeqEOY0viqeDHiNcneJl8f3Tx2_d59ni9vqme7-YGdnKNBtACiOFYIaVPTWDFMAqIwZGpbSDrktKqxI016KitGGV0LnaW2lNy6yoK3FZ3Bx5rdcbtQ046XCnvEb1u-DDSumQ0IygqKy1aC0HVtdlxfqmr_tWmqEyth7oUGeud0eu7a6fwJr8j6DHR6SPbxyu1crvlWzbpilpJnh9Igj-xw5iUhNGA-OoHfhdVFlUwWhZ8TJDXz2cdT_kj4IZUB4BJmRNAgz3EEbVwStqo45eOdA2inKVvZLb3v7VZjDpgwPyi3H8X_NpAZAV2yMEFU1W04DFg43ySvHfBL8Apm_fJw
CitedBy_id crossref_primary_10_1186_s13287_020_01883_5
crossref_primary_10_1002_stem_3089
crossref_primary_10_1111_dgd_12704
crossref_primary_10_3389_fncel_2020_00179
crossref_primary_10_1007_s11427_021_2086_0
crossref_primary_10_1016_j_biopsych_2022_12_015
crossref_primary_10_32607_actanaturae_25454
crossref_primary_10_3389_fncel_2022_878351
crossref_primary_10_3390_ijms21072329
crossref_primary_10_1002_sctm_21_0080
crossref_primary_10_1186_s12951_022_01717_x
crossref_primary_10_1007_s10103_020_03031_0
crossref_primary_10_1016_j_crmeth_2023_100444
crossref_primary_10_1016_j_jtos_2020_11_004
crossref_primary_10_12688_f1000research_108829_1
crossref_primary_10_3389_fncel_2023_1106287
crossref_primary_10_3390_genes10040278
crossref_primary_10_1186_s13578_022_00775_w
crossref_primary_10_1038_s41392_019_0089_y
crossref_primary_10_1167_iovs_65_12_19
crossref_primary_10_1002_humu_23759
crossref_primary_10_1016_j_ebiom_2021_103360
crossref_primary_10_1002_adbi_202000024
crossref_primary_10_1360_SSV_2021_0092
crossref_primary_10_1186_s13619_021_00097_1
crossref_primary_10_3390_cells11071120
crossref_primary_10_1093_pnasnexus_pgac162
crossref_primary_10_1515_mr_2024_0077
crossref_primary_10_1089_nat_2021_0053
crossref_primary_10_3389_fcell_2021_645704
crossref_primary_10_3390_biom11081179
crossref_primary_10_3748_wjg_v27_i29_4784
crossref_primary_10_1016_j_preteyeres_2018_09_002
crossref_primary_10_3390_ijms222413180
crossref_primary_10_1002_stem_3239
crossref_primary_10_3390_ijms22052659
crossref_primary_10_1016_j_preteyeres_2018_11_003
crossref_primary_10_1089_hum_2020_321
crossref_primary_10_3389_fncel_2023_1166641
crossref_primary_10_3389_fcell_2020_00743
crossref_primary_10_1002_glia_24507
crossref_primary_10_1038_s12276_020_0466_1
crossref_primary_10_1016_j_omtm_2020_08_007
crossref_primary_10_1016_j_preteyeres_2018_11_001
crossref_primary_10_1016_j_semcdb_2020_07_013
crossref_primary_10_1016_j_devcel_2024_09_006
crossref_primary_10_1038_s41598_020_62047_2
crossref_primary_10_1186_s13287_021_02651_9
crossref_primary_10_1038_s41536_022_00235_6
crossref_primary_10_1007_s00018_019_03158_6
crossref_primary_10_3389_fimmu_2022_930963
crossref_primary_10_3390_ijms21228484
crossref_primary_10_1167_tvst_11_4_3
crossref_primary_10_2174_1574888X18666230307115326
crossref_primary_10_1016_j_mcn_2020_103523
crossref_primary_10_1016_j_stemcr_2019_09_010
crossref_primary_10_1186_s13287_023_03590_3
crossref_primary_10_3390_ijms22137081
crossref_primary_10_4252_wjsc_v12_i8_752
crossref_primary_10_3389_fgene_2019_01103
crossref_primary_10_1002_sctm_18_0267
crossref_primary_10_1016_j_exer_2024_109856
crossref_primary_10_3390_genes11050473
crossref_primary_10_3389_fbioe_2022_939774
crossref_primary_10_1016_j_stemcr_2020_05_007
crossref_primary_10_3389_fcell_2023_1252547
crossref_primary_10_1360_SSV_2021_0276
crossref_primary_10_3390_genes12010112
crossref_primary_10_1186_s13287_023_03564_5
crossref_primary_10_3389_fncel_2021_667880
crossref_primary_10_3389_fcell_2021_740574
crossref_primary_10_1016_j_preteyeres_2019_100824
crossref_primary_10_3390_ijms22147667
crossref_primary_10_3390_ijms25042124
crossref_primary_10_1016_j_stemcr_2022_02_019
crossref_primary_10_1016_j_xpro_2021_100438
crossref_primary_10_1038_s41536_024_00387_7
crossref_primary_10_3233_TRD_190034
crossref_primary_10_1186_s13287_022_03023_7
crossref_primary_10_3233_TRD_190033
crossref_primary_10_1007_s12015_023_10553_x
crossref_primary_10_1016_j_celrep_2020_01_007
crossref_primary_10_1155_2021_4536382
crossref_primary_10_3233_TRD_190038
crossref_primary_10_3389_fcell_2020_00128
crossref_primary_10_3389_fcell_2021_696668
crossref_primary_10_3390_genes10120987
crossref_primary_10_1016_j_trsl_2022_06_001
crossref_primary_10_1007_s00018_021_03917_4
crossref_primary_10_3389_fncel_2019_00361
crossref_primary_10_1016_j_xpro_2021_100444
crossref_primary_10_1242_dev_171686
crossref_primary_10_1091_mbc_E19_03_0135
crossref_primary_10_1126_sciadv_aay5247
crossref_primary_10_1186_s40164_018_0122_9
crossref_primary_10_1016_j_preteyeres_2024_101248
crossref_primary_10_3390_jdb9030038
crossref_primary_10_3390_biology10080740
crossref_primary_10_1016_j_preteyeres_2019_100779
crossref_primary_10_3390_ijms25158203
crossref_primary_10_1089_jop_2018_0140
crossref_primary_10_1167_iovs_61_11_44
crossref_primary_10_1016_j_neuron_2020_09_001
crossref_primary_10_1111_nyas_15045
crossref_primary_10_1016_j_survophthal_2023_09_003
crossref_primary_10_1146_annurev_vision_121219_081855
crossref_primary_10_1038_s41433_025_03693_6
crossref_primary_10_1186_s12967_023_04406_x
crossref_primary_10_1002_eer3_4
crossref_primary_10_1016_j_celrep_2024_114010
crossref_primary_10_1097_WNO_0000000000001375
crossref_primary_10_1007_s00417_024_06554_2
crossref_primary_10_1016_j_exer_2020_108330
crossref_primary_10_1038_s41578_021_00279_y
crossref_primary_10_3390_mi12020124
crossref_primary_10_4252_wjsc_v16_i5_512
crossref_primary_10_3390_ijms221910244
crossref_primary_10_1177_24725552211024547
crossref_primary_10_1186_s13287_022_03146_x
crossref_primary_10_1093_hmg_ddy187
crossref_primary_10_1093_hmg_ddy186
crossref_primary_10_1016_j_isci_2022_105757
crossref_primary_10_1016_j_addr_2023_114842
crossref_primary_10_3390_cancers15041253
crossref_primary_10_1111_jcmm_17670
crossref_primary_10_1007_s12015_023_10585_3
crossref_primary_10_1007_s12015_024_10802_7
crossref_primary_10_1016_j_cis_2024_103337
crossref_primary_10_3390_genes10121050
crossref_primary_10_3390_genes15060705
crossref_primary_10_3390_ijms25021014
crossref_primary_10_34133_2020_1658678
crossref_primary_10_1177_09636897231214321
crossref_primary_10_3390_ijms25031839
crossref_primary_10_1016_j_exer_2020_108283
crossref_primary_10_1101_cshperspect_a041275
crossref_primary_10_1051_medsci_2020098
crossref_primary_10_3390_cells11213429
crossref_primary_10_1016_j_isci_2022_103987
crossref_primary_10_1038_s41597_024_04124_z
crossref_primary_10_3389_fcell_2021_764725
crossref_primary_10_1073_pnas_2011780117
crossref_primary_10_1016_j_stem_2023_04_011
crossref_primary_10_1007_s42242_021_00150_7
crossref_primary_10_1016_j_addr_2024_115202
crossref_primary_10_1016_j_actbio_2024_05_001
crossref_primary_10_1136_jmedgenet_2021_108315
crossref_primary_10_3390_cells13201706
crossref_primary_10_1177_1535370220985808
crossref_primary_10_1016_j_xhgg_2023_100229
crossref_primary_10_1134_S1062360420010063
Cites_doi 10.1038/nature09941
10.1016/j.stem.2016.03.021
10.1016/j.ccr.2005.12.019
10.1113/jphysiol.2011.226878
10.1093/hmg/11.9.993
10.1038/nprot.2012.115
10.1007/0-387-32442-9_5
10.1016/j.exer.2015.06.007
10.1073/pnas.1523201113
10.5966/sctm.2015-0206
10.1038/78182
10.1371/journal.pone.0017084
10.1073/pnas.97.7.3649
10.1186/1756-6606-7-45
10.1016/j.cell.2007.11.019
10.1038/ncomms5047
10.1038/ncomms7286
10.1038/gim.2014.193
10.1086/379379
10.1016/j.cell.2015.10.065
10.1167/iovs.08-2742
10.1038/ng0596-35
10.1016/S0140-6736(06)69740-7
10.1002/embj.201387098
10.1038/gim.2014.138
10.1242/jcs.050393
10.1093/database/bau071
10.1093/hmg/5.7.1035
10.1016/j.mad.2006.02.010
10.1136/jmg.2005.034868
10.1016/j.stem.2012.05.009
10.1073/pnas.0500010102
10.1038/nprot.2009.51
10.1016/j.exer.2008.07.016
10.1093/hmg/ddv639
10.1016/j.preteyeres.2013.08.004
10.1016/j.celrep.2017.06.045
10.1002/stem.1372
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.stemcr.2018.02.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-6711
EndPage 1281
ExternalDocumentID oai_doaj_org_article_057a39d2e177461b8b7b95cf6cd7f0f7
PMC5998840
29526738
10_1016_j_stemcr_2018_02_003
S2213671118300948
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAVLU
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IXB
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RCE
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-fe53c5331c14b0cf53e16c3f1055dfa740064ea2a36008163adfabd5dc91d3763
IEDL.DBID M48
ISSN 2213-6711
IngestDate Wed Aug 27 01:21:52 EDT 2025
Thu Aug 21 18:45:39 EDT 2025
Fri Jul 11 16:30:14 EDT 2025
Thu Apr 03 07:02:23 EDT 2025
Tue Jul 01 02:44:14 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Wed May 17 01:21:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords cilium
electrophysiology
patient-derived iPSCs
photoreceptor
retinal organoid
disease modeling
retinitis pigmentosa
RPE cells
RPGR
ciliopathy
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-fe53c5331c14b0cf53e16c3f1055dfa740064ea2a36008163adfabd5dc91d3763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first author
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2018.02.003
PMID 29526738
PQID 2013104624
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_057a39d2e177461b8b7b95cf6cd7f0f7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5998840
proquest_miscellaneous_2013104624
pubmed_primary_29526738
crossref_primary_10_1016_j_stemcr_2018_02_003
crossref_citationtrail_10_1016_j_stemcr_2018_02_003
elsevier_sciencedirect_doi_10_1016_j_stemcr_2018_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-10
PublicationDateYYYYMMDD 2018-04-10
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cell reports
PublicationTitleAlternate Stem Cell Reports
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhong, Gutierrez, Xue, Hampton, Vergara, Cao, Peters, Park, Zambidis, Meyer (bib39) 2014; 5
Huang, Wu, Lv, Zhang, Jin (bib13) 2015; 17
Moore, Escudier, Roger, Tamalet, Pelosse, Marlin, Clément, Geremek, Delaisi, Bridoux (bib23) 2006; 43
Wang, Deretic (bib36) 2014; 38
Brunner, Skosyrski, Kirschner-Schwabe, Knobeloch, Neidhardt, Feil, Glaus, Luhmann, Rüther, Berger (bib1) 2010; 51
Parfitt, Lane, Ramsden, Carr, Munro, Jovanovic, Schwarz, Kanuga, Muthiah, Hull (bib27) 2016; 18
Cangiano, Asteriti, Cervetto, Gargini (bib2) 2012; 590
Hendrickson, Bumsted-O'Brien, Natoli, Ramamurthy, Possin, Provis (bib9) 2008; 87
Hong, Pawlyk, Shang, Sandberg, Berson, Li (bib11) 2000; 97
Ran, Cai, Huang, Liu, Lu, Qu, Wu, Jin (bib28) 2014; 2014
Jin, Hayakawa, Murakami, Nao-i (bib17) 2006; 572
Vervoort, Lennon, Bird, Tulloch, Axton, Miano, Meindl, Meitinger, Ciccodicola, Wright (bib35) 2000; 25
Giacalone, Wiley, Burnight, Songstad, Mullins, Stone, Tucker (bib6) 2016; 5
Zhou, Benda, Dunzinger, Huang, Ho, Yang, Wang, Zhang, Zhuang, Li (bib40) 2012; 7
Homma, Okamoto, Mandai, Gotoh, Rajasimha, Chang, Chen, Li, Cogliati, Swaroop (bib10) 2013; 31
Hartong, Berson, Dryja (bib8) 2006; 368
Cheong, Sung, Lee, Choi, Song, Kee, Lee (bib3) 2006; 127
Megaw, Soares, Wright (bib21) 2015; 138
Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (bib34) 2007; 131
Ikeda, Osakada, Watanabe, Mizuseki, Haraguchi, Miyoshi, Kamiya, Honda, Sasai, Yoshimura (bib14) 2005; 102
Nakano, Ando, Takata, Kawada, Muguruma, Sekiguchi, Saito, Yonemura, Eiraku, Sasai (bib24) 2012; 10
Kuwahara, Ozone, Nakano, Saito, Eiraku, Sasai (bib19) 2015; 6
Daiger, S.P., Sullivan, L.S., and Rossiter, B.J.F. (2013). RetNet. The Retinal Information Network.
Landis, Pawlyk, Li, Sicinski, Hinds (bib20) 2006; 9
Osakada, Jin, Hirami, Ikeda, Danjyo, Watanabe, Sasai, Takahashi (bib26) 2009; 122
Eiraku, Takata, Ishibashi, Kawada, Sakakura, Okuda, Sekiguchi, Adachi, Sasai (bib5) 2011; 472
Meindl, Dry, Herrmann, Manson, Ciccodicola, Edgar, Carvalho, Achatz, Hellebrand, Lennon (bib22) 1996; 13
Sharon, Sandberg, Rabe, Stillberger, Dryja, Berson (bib31) 2003; 73
.
Jin, Liu, Hayakawa, Murakami, Nao-i (bib16) 2006; 12
Gupta, Coyaud, Goncalves, Mojarad, Liu, Wu, Gheiratmand, Comartin, Tkach, Cheung (bib7) 2015; 163
Huang, Huang, Wu, Wu, Chen, Pang, Lu, Qu, Jin (bib12) 2015; 17
Schon, Asteriti, Koch, Sothilingam, Garcia Garrido, Tanimoto, Herms, Seeliger, Cangiano, Biel (bib30) 2016; 25
Yoshida, Ozawa, Suzuki, Yuki, Ohyama, Akamatsu, Matsuzaki, Shimmura, Mitani, Tsubota (bib37) 2014; 7
Roepman, van Duijnhoven, Rosenberg, Pinckers, Bleeker-Wagemakers, Bergen, Post, Beck, Reinhardt, Ropers (bib29) 1996; 5
Zhang, Acland, Wu, Johnson, Pearce-Kelling, Tulloch, Vervoort, Wright, Aguirre (bib38) 2002; 11
Jin, Okamoto, Osakada, Homma, Assawachananont, Hirami, Iwata, Takahashi (bib18) 2011; 6
Osakada, Ikeda, Sasai, Takahashi (bib25) 2009; 4
Shimada, Lu, Insinna-Kettenhofen, Nagashima, English, Semler, Mahgerefteh, Cideciyan, Li, Brooks (bib32) 2017; 20
Sun, Park, Gumerson, Wu, Swaroop, Qian, Roll-Mecak, Li (bib33) 2016; 113
Inoue, Nagata, Kurokawa, Yamanaka (bib15) 2014; 33
Eiraku (10.1016/j.stemcr.2018.02.003_bib5) 2011; 472
Moore (10.1016/j.stemcr.2018.02.003_bib23) 2006; 43
Ikeda (10.1016/j.stemcr.2018.02.003_bib14) 2005; 102
Hendrickson (10.1016/j.stemcr.2018.02.003_bib9) 2008; 87
Huang (10.1016/j.stemcr.2018.02.003_bib12) 2015; 17
Landis (10.1016/j.stemcr.2018.02.003_bib20) 2006; 9
Jin (10.1016/j.stemcr.2018.02.003_bib18) 2011; 6
Zhang (10.1016/j.stemcr.2018.02.003_bib38) 2002; 11
Roepman (10.1016/j.stemcr.2018.02.003_bib29) 1996; 5
Jin (10.1016/j.stemcr.2018.02.003_bib16) 2006; 12
Megaw (10.1016/j.stemcr.2018.02.003_bib21) 2015; 138
Cheong (10.1016/j.stemcr.2018.02.003_bib3) 2006; 127
Ran (10.1016/j.stemcr.2018.02.003_bib28) 2014; 2014
Schon (10.1016/j.stemcr.2018.02.003_bib30) 2016; 25
Cangiano (10.1016/j.stemcr.2018.02.003_bib2) 2012; 590
Vervoort (10.1016/j.stemcr.2018.02.003_bib35) 2000; 25
Wang (10.1016/j.stemcr.2018.02.003_bib36) 2014; 38
Brunner (10.1016/j.stemcr.2018.02.003_bib1) 2010; 51
10.1016/j.stemcr.2018.02.003_bib4
Inoue (10.1016/j.stemcr.2018.02.003_bib15) 2014; 33
Osakada (10.1016/j.stemcr.2018.02.003_bib25) 2009; 4
Takahashi (10.1016/j.stemcr.2018.02.003_bib34) 2007; 131
Nakano (10.1016/j.stemcr.2018.02.003_bib24) 2012; 10
Huang (10.1016/j.stemcr.2018.02.003_bib13) 2015; 17
Zhou (10.1016/j.stemcr.2018.02.003_bib40) 2012; 7
Yoshida (10.1016/j.stemcr.2018.02.003_bib37) 2014; 7
Giacalone (10.1016/j.stemcr.2018.02.003_bib6) 2016; 5
Gupta (10.1016/j.stemcr.2018.02.003_bib7) 2015; 163
Osakada (10.1016/j.stemcr.2018.02.003_bib26) 2009; 122
Kuwahara (10.1016/j.stemcr.2018.02.003_bib19) 2015; 6
Zhong (10.1016/j.stemcr.2018.02.003_bib39) 2014; 5
Homma (10.1016/j.stemcr.2018.02.003_bib10) 2013; 31
Parfitt (10.1016/j.stemcr.2018.02.003_bib27) 2016; 18
Shimada (10.1016/j.stemcr.2018.02.003_bib32) 2017; 20
Jin (10.1016/j.stemcr.2018.02.003_bib17) 2006; 572
Meindl (10.1016/j.stemcr.2018.02.003_bib22) 1996; 13
Hartong (10.1016/j.stemcr.2018.02.003_bib8) 2006; 368
Sun (10.1016/j.stemcr.2018.02.003_bib33) 2016; 113
Hong (10.1016/j.stemcr.2018.02.003_bib11) 2000; 97
Sharon (10.1016/j.stemcr.2018.02.003_bib31) 2003; 73
29874627 - Stem Cell Reports. 2018 Jun 5;10 (6):2005
29784915 - Nat Cell Biol. 2018 Jun;20(6):634
References_xml – volume: 5
  start-page: 4047
  year: 2014
  ident: bib39
  article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs
  publication-title: Nat. Commun.
– volume: 138
  start-page: 32
  year: 2015
  end-page: 41
  ident: bib21
  article-title: RPGR: its role in photoreceptor physiology, human disease, and future therapies
  publication-title: Exp. Eye Res.
– volume: 472
  start-page: 51
  year: 2011
  end-page: 56
  ident: bib5
  article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture
  publication-title: Nature
– volume: 97
  start-page: 3649
  year: 2000
  end-page: 3654
  ident: bib11
  article-title: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3)
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 415
  year: 2008
  end-page: 426
  ident: bib9
  article-title: Rod photoreceptor differentiation in fetal and infant human retina
  publication-title: Exp. Eye Res.
– volume: 113
  start-page: E2925
  year: 2016
  end-page: E2934
  ident: bib33
  article-title: Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1167
  year: 2006
  end-page: 1174
  ident: bib16
  article-title: Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations
  publication-title: Mol. Vis.
– volume: 11
  start-page: 993
  year: 2002
  end-page: 1003
  ident: bib38
  article-title: Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration
  publication-title: Hum. Mol. Genet.
– volume: 25
  start-page: 1165
  year: 2016
  end-page: 1175
  ident: bib30
  article-title: Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia
  publication-title: Hum. Mol. Genet.
– volume: 33
  start-page: 409
  year: 2014
  end-page: 417
  ident: bib15
  article-title: iPS cells: a game changer for future medicine
  publication-title: EMBO J.
– volume: 572
  start-page: 29
  year: 2006
  end-page: 33
  ident: bib17
  article-title: RCC1-like domain and ORF15: essentials in RPGR gene
  publication-title: Adv. Exp. Med. Biol.
– volume: 10
  start-page: 771
  year: 2012
  end-page: 785
  ident: bib24
  article-title: Self-formation of optic cups and storable stratified neural retina from human ESCs
  publication-title: Cell Stem Cell
– volume: 18
  start-page: 769
  year: 2016
  end-page: 781
  ident: bib27
  article-title: Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups
  publication-title: Cell Stem Cell
– volume: 17
  start-page: 271
  year: 2015
  end-page: 278
  ident: bib12
  article-title: Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing
  publication-title: Genet. Med.
– volume: 25
  start-page: 462
  year: 2000
  end-page: 466
  ident: bib35
  article-title: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa
  publication-title: Nat. Genet.
– volume: 38
  start-page: 1
  year: 2014
  end-page: 19
  ident: bib36
  article-title: Molecular complexes that direct rhodopsin transport to primary cilia
  publication-title: Prog. Retin. Eye Res.
– volume: 6
  start-page: e17084
  year: 2011
  ident: bib18
  article-title: Modeling retinal degeneration using patient-specific induced pluripotent stem cells
  publication-title: PLoS One
– reference: Daiger, S.P., Sullivan, L.S., and Rossiter, B.J.F. (2013). RetNet. The Retinal Information Network.
– volume: 7
  start-page: 2080
  year: 2012
  end-page: 2089
  ident: bib40
  article-title: Generation of human induced pluripotent stem cells from urine samples
  publication-title: Nat. Protoc.
– volume: 6
  start-page: 6286
  year: 2015
  ident: bib19
  article-title: Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue
  publication-title: Nat. Commun.
– volume: 73
  start-page: 1131
  year: 2003
  end-page: 1146
  ident: bib31
  article-title: RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa
  publication-title: Am. J. Hum. Genet.
– volume: 17
  start-page: 307
  year: 2015
  end-page: 311
  ident: bib13
  article-title: Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing
  publication-title: Genet. Med.
– volume: 51
  start-page: 1106
  year: 2010
  end-page: 1115
  ident: bib1
  article-title: Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 590
  start-page: 3841
  year: 2012
  end-page: 3855
  ident: bib2
  article-title: The photovoltage of rods and cones in the dark-adapted mouse retina
  publication-title: J. Physiol.
– volume: 122
  start-page: 3169
  year: 2009
  end-page: 3179
  ident: bib26
  article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction
  publication-title: J. Cell Sci.
– volume: 5
  start-page: 1035
  year: 1996
  end-page: 1041
  ident: bib29
  article-title: Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1
  publication-title: Hum. Mol. Genet.
– reference: .
– volume: 4
  start-page: 811
  year: 2009
  end-page: 824
  ident: bib25
  article-title: Stepwise differentiation of pluripotent stem cells into retinal cells
  publication-title: Nat. Protoc.
– volume: 9
  start-page: 13
  year: 2006
  end-page: 22
  ident: bib20
  article-title: Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis
  publication-title: Cancer Cell
– volume: 20
  start-page: 384
  year: 2017
  end-page: 396
  ident: bib32
  article-title: In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations
  publication-title: Cell Rep.
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  ident: bib34
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
– volume: 13
  start-page: 35
  year: 1996
  end-page: 42
  ident: bib22
  article-title: A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3)
  publication-title: Nat. Genet.
– volume: 2014
  year: 2014
  ident: bib28
  article-title: 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration
  publication-title: Database (Oxford)
– volume: 7
  start-page: 45
  year: 2014
  ident: bib37
  article-title: The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa
  publication-title: Mol. Brain
– volume: 368
  start-page: 1795
  year: 2006
  end-page: 1809
  ident: bib8
  article-title: Retinitis pigmentosa
  publication-title: Lancet
– volume: 127
  start-page: 633
  year: 2006
  end-page: 638
  ident: bib3
  article-title: Role of INK4a locus in normal eye development and cataract genesis
  publication-title: Mech. Ageing Dev.
– volume: 5
  start-page: 132
  year: 2016
  end-page: 140
  ident: bib6
  article-title: Concise review: patient-specific stem cells to interrogate inherited eye disease
  publication-title: Stem Cells Transl. Med.
– volume: 31
  start-page: 1149
  year: 2013
  end-page: 1159
  ident: bib10
  article-title: Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors
  publication-title: Stem Cells
– volume: 43
  start-page: 326
  year: 2006
  end-page: 333
  ident: bib23
  article-title: RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa
  publication-title: J. Med. Genet.
– volume: 102
  start-page: 11331
  year: 2005
  end-page: 11336
  ident: bib14
  article-title: Generation of Rx(+)/Pax(6+) neural retinal precursors from embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 163
  start-page: 1484
  year: 2015
  end-page: 1499
  ident: bib7
  article-title: A dynamic protein interaction landscape of the human centrosome-cilium interface
  publication-title: Cell
– volume: 472
  start-page: 51
  year: 2011
  ident: 10.1016/j.stemcr.2018.02.003_bib5
  article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture
  publication-title: Nature
  doi: 10.1038/nature09941
– volume: 18
  start-page: 769
  year: 2016
  ident: 10.1016/j.stemcr.2018.02.003_bib27
  article-title: Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.03.021
– ident: 10.1016/j.stemcr.2018.02.003_bib4
– volume: 9
  start-page: 13
  year: 2006
  ident: 10.1016/j.stemcr.2018.02.003_bib20
  article-title: Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.12.019
– volume: 590
  start-page: 3841
  year: 2012
  ident: 10.1016/j.stemcr.2018.02.003_bib2
  article-title: The photovoltage of rods and cones in the dark-adapted mouse retina
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.226878
– volume: 11
  start-page: 993
  year: 2002
  ident: 10.1016/j.stemcr.2018.02.003_bib38
  article-title: Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/11.9.993
– volume: 7
  start-page: 2080
  year: 2012
  ident: 10.1016/j.stemcr.2018.02.003_bib40
  article-title: Generation of human induced pluripotent stem cells from urine samples
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.115
– volume: 572
  start-page: 29
  year: 2006
  ident: 10.1016/j.stemcr.2018.02.003_bib17
  article-title: RCC1-like domain and ORF15: essentials in RPGR gene
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/0-387-32442-9_5
– volume: 138
  start-page: 32
  year: 2015
  ident: 10.1016/j.stemcr.2018.02.003_bib21
  article-title: RPGR: its role in photoreceptor physiology, human disease, and future therapies
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2015.06.007
– volume: 113
  start-page: E2925
  year: 2016
  ident: 10.1016/j.stemcr.2018.02.003_bib33
  article-title: Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1523201113
– volume: 5
  start-page: 132
  year: 2016
  ident: 10.1016/j.stemcr.2018.02.003_bib6
  article-title: Concise review: patient-specific stem cells to interrogate inherited eye disease
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2015-0206
– volume: 25
  start-page: 462
  year: 2000
  ident: 10.1016/j.stemcr.2018.02.003_bib35
  article-title: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa
  publication-title: Nat. Genet.
  doi: 10.1038/78182
– volume: 6
  start-page: e17084
  year: 2011
  ident: 10.1016/j.stemcr.2018.02.003_bib18
  article-title: Modeling retinal degeneration using patient-specific induced pluripotent stem cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017084
– volume: 97
  start-page: 3649
  year: 2000
  ident: 10.1016/j.stemcr.2018.02.003_bib11
  article-title: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.7.3649
– volume: 12
  start-page: 1167
  year: 2006
  ident: 10.1016/j.stemcr.2018.02.003_bib16
  article-title: Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations
  publication-title: Mol. Vis.
– volume: 7
  start-page: 45
  year: 2014
  ident: 10.1016/j.stemcr.2018.02.003_bib37
  article-title: The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa
  publication-title: Mol. Brain
  doi: 10.1186/1756-6606-7-45
– volume: 131
  start-page: 861
  year: 2007
  ident: 10.1016/j.stemcr.2018.02.003_bib34
  article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 5
  start-page: 4047
  year: 2014
  ident: 10.1016/j.stemcr.2018.02.003_bib39
  article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5047
– volume: 6
  start-page: 6286
  year: 2015
  ident: 10.1016/j.stemcr.2018.02.003_bib19
  article-title: Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7286
– volume: 17
  start-page: 307
  year: 2015
  ident: 10.1016/j.stemcr.2018.02.003_bib13
  article-title: Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing
  publication-title: Genet. Med.
  doi: 10.1038/gim.2014.193
– volume: 73
  start-page: 1131
  year: 2003
  ident: 10.1016/j.stemcr.2018.02.003_bib31
  article-title: RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/379379
– volume: 163
  start-page: 1484
  year: 2015
  ident: 10.1016/j.stemcr.2018.02.003_bib7
  article-title: A dynamic protein interaction landscape of the human centrosome-cilium interface
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.065
– volume: 51
  start-page: 1106
  year: 2010
  ident: 10.1016/j.stemcr.2018.02.003_bib1
  article-title: Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.08-2742
– volume: 13
  start-page: 35
  year: 1996
  ident: 10.1016/j.stemcr.2018.02.003_bib22
  article-title: A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3)
  publication-title: Nat. Genet.
  doi: 10.1038/ng0596-35
– volume: 368
  start-page: 1795
  year: 2006
  ident: 10.1016/j.stemcr.2018.02.003_bib8
  article-title: Retinitis pigmentosa
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69740-7
– volume: 33
  start-page: 409
  year: 2014
  ident: 10.1016/j.stemcr.2018.02.003_bib15
  article-title: iPS cells: a game changer for future medicine
  publication-title: EMBO J.
  doi: 10.1002/embj.201387098
– volume: 17
  start-page: 271
  year: 2015
  ident: 10.1016/j.stemcr.2018.02.003_bib12
  article-title: Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing
  publication-title: Genet. Med.
  doi: 10.1038/gim.2014.138
– volume: 122
  start-page: 3169
  year: 2009
  ident: 10.1016/j.stemcr.2018.02.003_bib26
  article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.050393
– volume: 2014
  year: 2014
  ident: 10.1016/j.stemcr.2018.02.003_bib28
  article-title: 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration
  publication-title: Database (Oxford)
  doi: 10.1093/database/bau071
– volume: 5
  start-page: 1035
  year: 1996
  ident: 10.1016/j.stemcr.2018.02.003_bib29
  article-title: Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/5.7.1035
– volume: 127
  start-page: 633
  year: 2006
  ident: 10.1016/j.stemcr.2018.02.003_bib3
  article-title: Role of INK4a locus in normal eye development and cataract genesis
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2006.02.010
– volume: 43
  start-page: 326
  year: 2006
  ident: 10.1016/j.stemcr.2018.02.003_bib23
  article-title: RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2005.034868
– volume: 10
  start-page: 771
  year: 2012
  ident: 10.1016/j.stemcr.2018.02.003_bib24
  article-title: Self-formation of optic cups and storable stratified neural retina from human ESCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.05.009
– volume: 102
  start-page: 11331
  year: 2005
  ident: 10.1016/j.stemcr.2018.02.003_bib14
  article-title: Generation of Rx(+)/Pax(6+) neural retinal precursors from embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0500010102
– volume: 4
  start-page: 811
  year: 2009
  ident: 10.1016/j.stemcr.2018.02.003_bib25
  article-title: Stepwise differentiation of pluripotent stem cells into retinal cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.51
– volume: 87
  start-page: 415
  year: 2008
  ident: 10.1016/j.stemcr.2018.02.003_bib9
  article-title: Rod photoreceptor differentiation in fetal and infant human retina
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2008.07.016
– volume: 25
  start-page: 1165
  year: 2016
  ident: 10.1016/j.stemcr.2018.02.003_bib30
  article-title: Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv639
– volume: 38
  start-page: 1
  year: 2014
  ident: 10.1016/j.stemcr.2018.02.003_bib36
  article-title: Molecular complexes that direct rhodopsin transport to primary cilia
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2013.08.004
– volume: 20
  start-page: 384
  year: 2017
  ident: 10.1016/j.stemcr.2018.02.003_bib32
  article-title: In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.06.045
– volume: 31
  start-page: 1149
  year: 2013
  ident: 10.1016/j.stemcr.2018.02.003_bib10
  article-title: Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors
  publication-title: Stem Cells
  doi: 10.1002/stem.1372
– reference: 29784915 - Nat Cell Biol. 2018 Jun;20(6):634
– reference: 29874627 - Stem Cell Reports. 2018 Jun 5;10 (6):2005
SSID ssj0000991241
Score 2.5343883
Snippet Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1267
SubjectTerms Cell Differentiation
Ciliopathies - pathology
Ciliopathies - physiopathology
Ciliopathies - therapy
ciliopathy
cilium
disease modeling
electrophysiology
Eye Proteins - genetics
Genetic Therapy
Humans
Induced Pluripotent Stem Cells - metabolism
Induced Pluripotent Stem Cells - pathology
Mutation - genetics
Organoids - pathology
patient-derived iPSCs
photoreceptor
Photoreceptor Cells - metabolism
Photoreceptor Cells - pathology
Potassium Channels - metabolism
Retina - pathology
retinal organoid
retinitis pigmentosa
Retinitis Pigmentosa - pathology
Retinitis Pigmentosa - physiopathology
Retinitis Pigmentosa - therapy
RPE cells
RPGR
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCMrXQouMxNUitmMnOZYtVYUArYBKvUX-GNNUVVI1W6Se-tfxxMlqA4e9cHXsJI4nmTfxzHuEvBdGAQirmPNOspyDZxWAYzY6F5_5YMFiNfLXb_r0LP98rs63pL4wJyzRA6cH9yHiCSMrL4BHoKK5LW1hK-WCdr4IWRjqyKPP2wqmLhPuiY4Loy0huGS64HyqmxuSu5Ak2SEdKC8TZaec-aWBvn_mnv6Fn39nUW65pZMn5PGIJ-lRmsdT8gDaffIwKUzePSP3SCtNlyjBMRQw0O-AeRjQ02Vz1XSoR3xHTevp6qKL0Tdgkkt3Q7_EW6RNS5vVjyU7jkb6G3wcukYJLTqUb3aN7ynWpqRmZEaiq-YX_mvsekNXia61f07OTj79XJ6yUXOBOVWpNQugpIsQkDue28wFJYFrJwPqaPpgihwxDBhhpEY0oaWJrdYr7yru8WP1guy1XQuvCC2VrpQqQdu8yuOqV56XNthQCuO41WZB5PTEazcSkqMuxlU9ZZ5d1mmdalynOhNIZLogbDPqOhFy7Oj_ERdz0xfptIeGaGT1aGT1LiNbkGIyhXpEJglxxFM1Oy7_brKcOr64uBtjWuhue-wkcYNd5AvyMlnS5iZFpQTKscbrzmxsNov5kba5GMjBVYyfY9D--n9M-w15hFPBzTOeHZC99c0tHEYMtrZvh9ftD4uvMpI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOiltOlr0yao0KtYS7L8ODZuQyhtWZoG9mb0TFSCHdabQk79653xY4nbQ6BHy5IlSyPNJ2nmG0LeC628F0Yx66xkKfeOld5bZkC5uMQF4w16I3_9lp1dpJ_Xar1HqskXBs0qx7V_WNP71XpMWY69ubyJcXkuBNKNwVwtJNrHocOvTIveiW99sjtnAQQEKgz3XZifYYHJg64380K6ZIvEoLwYyDvlTEP1RP4zRfUvEP3bnvKegjp9Sp6MyJJ-GBr_jOz55oA8GmJN3j0nv5FgmlYYjKN3ZaDfPVpk-I5W8Tq2GJn4jurG0dVVC_twj-Yu7YZ-gSbS2NC4Oq_YRxDXX95B0S0G06K9I2cbXUfRS2VIRo4kuoqXeOrYdpquBuLW7gW5OP30ozpjY_QFZlWptix4JS2AQW55ahIblPQ8szJgRE0XdJ4imvFaaJkhrsikhlTjlLMld7hsvST7Tdv414QWKiuVKnxm0jKF8S8dL0wwoRDacpPpBZFTj9d2pCbHCBnX9WSD9rMexqnGcaoTgZSmC8J2pW4Gao4H8p_gYO7yIrF2n9BuLutRsmqAr1qWTngOuDjjpjC5KZUNmXV5SEK-IPkkCvVMTuFT8YHq302SU8MUxnsZ3fj2tsNMEq_aRbogrwZJ2jVSlEpgYFaodyZjs7-Yv2niVU8TrmAnDdv3w_9u8RvyGJ_w7ownb8n-dnPrjwCCbc1xP8f-AKvPM6I
  priority: 102
  providerName: Elsevier
Title Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients
URI https://dx.doi.org/10.1016/j.stemcr.2018.02.003
https://www.ncbi.nlm.nih.gov/pubmed/29526738
https://www.proquest.com/docview/2013104624
https://pubmed.ncbi.nlm.nih.gov/PMC5998840
https://doaj.org/article/057a39d2e177461b8b7b95cf6cd7f0f7
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGEBIviPs6YDISr0axHTvJA0KsMA3EUAVU6lvk65apSljTIfrEX8cnTgrhoomXSnWcS-1zej7H53wfQs-YEs4xLYixhpOUOksK5wzRIbjYxHrtNFQjn3yQx_P03UIsdtCg2doPYPvXpR3oSc1Xy-ffLjYvg8O_-JmrBZzHBtg9aR4ZOPk1dD3Epgxc9aQH_OcRD4WABqswxignMqN0qKf7x4VG8aqj9R-FrT9h6e_Zlb-Eq6Pb6FaPM_GraBh30I6r76IbUXlycw99B7ppPAVpjq6wAX90kJ_hWjytllUDOsUbrGqLZ2dNWJU7SH5pVvh9eERc1biafZqS18F4vzobTl2DtBbuyjqbyrYYalZiMzAm4Vl1Cu8gm1bhWaRxbe-j-dGbz9Nj0msxECMKsSbeCW4CNKSGpjoxXnBHpeEe9DWtV1kK2MYpprgElCG5Cq3aCmsKauFP7AHarZva7SGcC1kIkTup0yIN1lBYmmuvfc6UoVqqCeLDiJemJyoHvYxlOWSknZdxnkqYpzJhQHA6QWR71pdI1HFF_0OYzG1foNnuGprVadl7bRnArOKFZY4GlCypznWmC2G8NDbzic8mKBtMoewRS0Qi4VLVFbd_OlhOGRwadmlU7ZrLFjpx2Hhn6QQ9jJa0fUhWCAYyreG-Ixsb_Yrxkbo660jDRVhXh8X8_n8O0yN0E77B_hlNHqPd9erSPQkwbK0PutcX4fPt4vCg87IfSMo2Pg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEYILYmfKZiSu1oztOMuRBqopTKsRbaW5WV5boyqpJtNKPfHX8csyInCoxNWxEyd-9vscv_d9CH1iSjjHtCDGGk4S6iwpnDNER-diZ9ZrpyEb-eg4nZ8l31ZitYPKIRcGwir7tb9b09vVui-Z9l9zehXC9IQxoBuLczXnEB-X30P3IxrIQL_hcLW__dESIVD0YbDxggYEWgwpdG2cF_AlG2AGpXnH3slHLqpl8h95qn-R6N8BlX94qIMn6HEPLfHnrvdP0Y6rnqEHndjk7XP0CximcQlqHG0uA_7hICTDNbgMl6EGaeJbrCqLlxd13Ig7iHep13gRu4hDhcPypCRfor3eOBubbkBNC7eZnHWwDYY0la4YSJLwMpzDb8e6UXjZMbc2L9DZwdfTck56-QViRCE2xDvBTUSD1NBEz4wX3NHUcA-SmtarLAE44xRTPAVgkXIVS7UV1hTUwrr1Eu1WdeVeI5yLtBAid6lOiiQaQGFprr32OVOG6lRNEB--uDQ9NzlIZFzKIQjtp-zGScI4yRkDTtMJIttWVx03xx3192Ewt3WBWbstqNfnsjctGfGr4oVljkZgnFKd60wXwvjU2MzPfDZB2WAKcmSo8Vbhjsd_HCxHxjkMBzOqcvV1A5U4nLWzZIJedZa07SQrBANl1vjckY2N3mJ8pQoXLU-4iFvpuH_f--8ef0AP56dHC7k4PP7-Bj2CK3CQRmdv0e5mfe3eRTy20e_b-fYbFTk2wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+Correction+Reverses+Ciliopathy+and+Photoreceptor+Loss+in+iPSC-Derived+Retinal+Organoids+from+Retinitis+Pigmentosa+Patients&rft.jtitle=Stem+cell+reports&rft.au=Deng%2C+Wen-Li&rft.au=Gao%2C+Mei-Ling&rft.au=Lei%2C+Xin-Lan&rft.au=Lv%2C+Ji-Neng&rft.date=2018-04-10&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=10&rft.issue=4&rft.spage=1267&rft.epage=1281&rft_id=info:doi/10.1016%2Fj.stemcr.2018.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stemcr_2018_02_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon