Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients
Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with d...
Saved in:
Published in | Stem cell reports Vol. 10; no. 4; pp. 1267 - 1281 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.04.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.
[Display omitted]
•HiPSC-derived 3D retinae with outer segments and electrophysiological properties•RPGR mutation results in diseased photoreceptor in patient iPSC-derived 3D retinae•Mutation correction rescues defects in photoreceptor morphology and electrophysiology•Ciliogenesis defects appear in RPGR patient-specific iPSCs, iPSC-RPE, and 3D retinae
Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. |
---|---|
AbstractList | Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. • HiPSC-derived 3D retinae with outer segments and electrophysiological properties • RPGR mutation results in diseased photoreceptor in patient iPSC-derived 3D retinae • Mutation correction rescues defects in photoreceptor morphology and electrophysiology • Ciliogenesis defects appear in RPGR patient-specific iPSCs, iPSC-RPE, and 3D retinae Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. : Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Keywords: RPGR, photoreceptor, electrophysiology, retinitis pigmentosa, patient-derived iPSCs, retinal organoid, RPE cells, cilium, ciliopathy, disease modeling Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. [Display omitted] •HiPSC-derived 3D retinae with outer segments and electrophysiological properties•RPGR mutation results in diseased photoreceptor in patient iPSC-derived 3D retinae•Mutation correction rescues defects in photoreceptor morphology and electrophysiology•Ciliogenesis defects appear in RPGR patient-specific iPSCs, iPSC-RPE, and 3D retinae Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. |
Author | Lv, Ji-Neng Gao, Mei-Ling Deng, Wen-Li Chen, Yu-Chen Jin, Zi-Bing Lei, Xin-Lan Xia, Xi-Xi Pan, Deng Zhao, Huan Li, Ling-Yun Xue, Tian Li, Yan-Ping He, Kai-Wen |
AuthorAffiliation | 1 Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China 2 Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China |
AuthorAffiliation_xml | – name: 1 Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – name: 2 Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China |
Author_xml | – sequence: 1 givenname: Wen-Li surname: Deng fullname: Deng, Wen-Li organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 2 givenname: Mei-Ling surname: Gao fullname: Gao, Mei-Ling organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 3 givenname: Xin-Lan surname: Lei fullname: Lei, Xin-Lan organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 4 givenname: Ji-Neng surname: Lv fullname: Lv, Ji-Neng organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 5 givenname: Huan surname: Zhao fullname: Zhao, Huan organization: Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China – sequence: 6 givenname: Kai-Wen surname: He fullname: He, Kai-Wen organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 7 givenname: Xi-Xi surname: Xia fullname: Xia, Xi-Xi organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 8 givenname: Ling-Yun surname: Li fullname: Li, Ling-Yun organization: Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China – sequence: 9 givenname: Yu-Chen surname: Chen fullname: Chen, Yu-Chen organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 10 givenname: Yan-Ping surname: Li fullname: Li, Yan-Ping organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 11 givenname: Deng surname: Pan fullname: Pan, Deng organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China – sequence: 12 givenname: Tian surname: Xue fullname: Xue, Tian organization: Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China – sequence: 13 givenname: Zi-Bing surname: Jin fullname: Jin, Zi-Bing email: jinzb@mail.eye.ac.cn organization: Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou 325027, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29526738$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXaEiWkr_AUI-cknwx3o_OCChBUqlSI34OFteezaZaNcOthOpJ_46DglVywF8mdH4zRt73ntenDnvoCheMjpnlFVvNvOYYDJhzilr5pTPKRVPigvOmZhVNWNnD_Lz4irGDc2nbRkv2bPinLeSV7VoLoqf1-CAdD4EMAm9I19gDyFCJB2O6Lc6re-IdpYs1z75DIJtDmThYyToCC6_drMPEHAPNrcmdHokt2GlnUcbyRD8dCxjwkiWuJrAJR81WeqEOY0viqeDHiNcneJl8f3Tx2_d59ni9vqme7-YGdnKNBtACiOFYIaVPTWDFMAqIwZGpbSDrktKqxI016KitGGV0LnaW2lNy6yoK3FZ3Bx5rdcbtQ046XCnvEb1u-DDSumQ0IygqKy1aC0HVtdlxfqmr_tWmqEyth7oUGeud0eu7a6fwJr8j6DHR6SPbxyu1crvlWzbpilpJnh9Igj-xw5iUhNGA-OoHfhdVFlUwWhZ8TJDXz2cdT_kj4IZUB4BJmRNAgz3EEbVwStqo45eOdA2inKVvZLb3v7VZjDpgwPyi3H8X_NpAZAV2yMEFU1W04DFg43ySvHfBL8Apm_fJw |
CitedBy_id | crossref_primary_10_1186_s13287_020_01883_5 crossref_primary_10_1002_stem_3089 crossref_primary_10_1111_dgd_12704 crossref_primary_10_3389_fncel_2020_00179 crossref_primary_10_1007_s11427_021_2086_0 crossref_primary_10_1016_j_biopsych_2022_12_015 crossref_primary_10_32607_actanaturae_25454 crossref_primary_10_3389_fncel_2022_878351 crossref_primary_10_3390_ijms21072329 crossref_primary_10_1002_sctm_21_0080 crossref_primary_10_1186_s12951_022_01717_x crossref_primary_10_1007_s10103_020_03031_0 crossref_primary_10_1016_j_crmeth_2023_100444 crossref_primary_10_1016_j_jtos_2020_11_004 crossref_primary_10_12688_f1000research_108829_1 crossref_primary_10_3389_fncel_2023_1106287 crossref_primary_10_3390_genes10040278 crossref_primary_10_1186_s13578_022_00775_w crossref_primary_10_1038_s41392_019_0089_y crossref_primary_10_1167_iovs_65_12_19 crossref_primary_10_1002_humu_23759 crossref_primary_10_1016_j_ebiom_2021_103360 crossref_primary_10_1002_adbi_202000024 crossref_primary_10_1360_SSV_2021_0092 crossref_primary_10_1186_s13619_021_00097_1 crossref_primary_10_3390_cells11071120 crossref_primary_10_1093_pnasnexus_pgac162 crossref_primary_10_1515_mr_2024_0077 crossref_primary_10_1089_nat_2021_0053 crossref_primary_10_3389_fcell_2021_645704 crossref_primary_10_3390_biom11081179 crossref_primary_10_3748_wjg_v27_i29_4784 crossref_primary_10_1016_j_preteyeres_2018_09_002 crossref_primary_10_3390_ijms222413180 crossref_primary_10_1002_stem_3239 crossref_primary_10_3390_ijms22052659 crossref_primary_10_1016_j_preteyeres_2018_11_003 crossref_primary_10_1089_hum_2020_321 crossref_primary_10_3389_fncel_2023_1166641 crossref_primary_10_3389_fcell_2020_00743 crossref_primary_10_1002_glia_24507 crossref_primary_10_1038_s12276_020_0466_1 crossref_primary_10_1016_j_omtm_2020_08_007 crossref_primary_10_1016_j_preteyeres_2018_11_001 crossref_primary_10_1016_j_semcdb_2020_07_013 crossref_primary_10_1016_j_devcel_2024_09_006 crossref_primary_10_1038_s41598_020_62047_2 crossref_primary_10_1186_s13287_021_02651_9 crossref_primary_10_1038_s41536_022_00235_6 crossref_primary_10_1007_s00018_019_03158_6 crossref_primary_10_3389_fimmu_2022_930963 crossref_primary_10_3390_ijms21228484 crossref_primary_10_1167_tvst_11_4_3 crossref_primary_10_2174_1574888X18666230307115326 crossref_primary_10_1016_j_mcn_2020_103523 crossref_primary_10_1016_j_stemcr_2019_09_010 crossref_primary_10_1186_s13287_023_03590_3 crossref_primary_10_3390_ijms22137081 crossref_primary_10_4252_wjsc_v12_i8_752 crossref_primary_10_3389_fgene_2019_01103 crossref_primary_10_1002_sctm_18_0267 crossref_primary_10_1016_j_exer_2024_109856 crossref_primary_10_3390_genes11050473 crossref_primary_10_3389_fbioe_2022_939774 crossref_primary_10_1016_j_stemcr_2020_05_007 crossref_primary_10_3389_fcell_2023_1252547 crossref_primary_10_1360_SSV_2021_0276 crossref_primary_10_3390_genes12010112 crossref_primary_10_1186_s13287_023_03564_5 crossref_primary_10_3389_fncel_2021_667880 crossref_primary_10_3389_fcell_2021_740574 crossref_primary_10_1016_j_preteyeres_2019_100824 crossref_primary_10_3390_ijms22147667 crossref_primary_10_3390_ijms25042124 crossref_primary_10_1016_j_stemcr_2022_02_019 crossref_primary_10_1016_j_xpro_2021_100438 crossref_primary_10_1038_s41536_024_00387_7 crossref_primary_10_3233_TRD_190034 crossref_primary_10_1186_s13287_022_03023_7 crossref_primary_10_3233_TRD_190033 crossref_primary_10_1007_s12015_023_10553_x crossref_primary_10_1016_j_celrep_2020_01_007 crossref_primary_10_1155_2021_4536382 crossref_primary_10_3233_TRD_190038 crossref_primary_10_3389_fcell_2020_00128 crossref_primary_10_3389_fcell_2021_696668 crossref_primary_10_3390_genes10120987 crossref_primary_10_1016_j_trsl_2022_06_001 crossref_primary_10_1007_s00018_021_03917_4 crossref_primary_10_3389_fncel_2019_00361 crossref_primary_10_1016_j_xpro_2021_100444 crossref_primary_10_1242_dev_171686 crossref_primary_10_1091_mbc_E19_03_0135 crossref_primary_10_1126_sciadv_aay5247 crossref_primary_10_1186_s40164_018_0122_9 crossref_primary_10_1016_j_preteyeres_2024_101248 crossref_primary_10_3390_jdb9030038 crossref_primary_10_3390_biology10080740 crossref_primary_10_1016_j_preteyeres_2019_100779 crossref_primary_10_3390_ijms25158203 crossref_primary_10_1089_jop_2018_0140 crossref_primary_10_1167_iovs_61_11_44 crossref_primary_10_1016_j_neuron_2020_09_001 crossref_primary_10_1111_nyas_15045 crossref_primary_10_1016_j_survophthal_2023_09_003 crossref_primary_10_1146_annurev_vision_121219_081855 crossref_primary_10_1038_s41433_025_03693_6 crossref_primary_10_1186_s12967_023_04406_x crossref_primary_10_1002_eer3_4 crossref_primary_10_1016_j_celrep_2024_114010 crossref_primary_10_1097_WNO_0000000000001375 crossref_primary_10_1007_s00417_024_06554_2 crossref_primary_10_1016_j_exer_2020_108330 crossref_primary_10_1038_s41578_021_00279_y crossref_primary_10_3390_mi12020124 crossref_primary_10_4252_wjsc_v16_i5_512 crossref_primary_10_3390_ijms221910244 crossref_primary_10_1177_24725552211024547 crossref_primary_10_1186_s13287_022_03146_x crossref_primary_10_1093_hmg_ddy187 crossref_primary_10_1093_hmg_ddy186 crossref_primary_10_1016_j_isci_2022_105757 crossref_primary_10_1016_j_addr_2023_114842 crossref_primary_10_3390_cancers15041253 crossref_primary_10_1111_jcmm_17670 crossref_primary_10_1007_s12015_023_10585_3 crossref_primary_10_1007_s12015_024_10802_7 crossref_primary_10_1016_j_cis_2024_103337 crossref_primary_10_3390_genes10121050 crossref_primary_10_3390_genes15060705 crossref_primary_10_3390_ijms25021014 crossref_primary_10_34133_2020_1658678 crossref_primary_10_1177_09636897231214321 crossref_primary_10_3390_ijms25031839 crossref_primary_10_1016_j_exer_2020_108283 crossref_primary_10_1101_cshperspect_a041275 crossref_primary_10_1051_medsci_2020098 crossref_primary_10_3390_cells11213429 crossref_primary_10_1016_j_isci_2022_103987 crossref_primary_10_1038_s41597_024_04124_z crossref_primary_10_3389_fcell_2021_764725 crossref_primary_10_1073_pnas_2011780117 crossref_primary_10_1016_j_stem_2023_04_011 crossref_primary_10_1007_s42242_021_00150_7 crossref_primary_10_1016_j_addr_2024_115202 crossref_primary_10_1016_j_actbio_2024_05_001 crossref_primary_10_1136_jmedgenet_2021_108315 crossref_primary_10_3390_cells13201706 crossref_primary_10_1177_1535370220985808 crossref_primary_10_1016_j_xhgg_2023_100229 crossref_primary_10_1134_S1062360420010063 |
Cites_doi | 10.1038/nature09941 10.1016/j.stem.2016.03.021 10.1016/j.ccr.2005.12.019 10.1113/jphysiol.2011.226878 10.1093/hmg/11.9.993 10.1038/nprot.2012.115 10.1007/0-387-32442-9_5 10.1016/j.exer.2015.06.007 10.1073/pnas.1523201113 10.5966/sctm.2015-0206 10.1038/78182 10.1371/journal.pone.0017084 10.1073/pnas.97.7.3649 10.1186/1756-6606-7-45 10.1016/j.cell.2007.11.019 10.1038/ncomms5047 10.1038/ncomms7286 10.1038/gim.2014.193 10.1086/379379 10.1016/j.cell.2015.10.065 10.1167/iovs.08-2742 10.1038/ng0596-35 10.1016/S0140-6736(06)69740-7 10.1002/embj.201387098 10.1038/gim.2014.138 10.1242/jcs.050393 10.1093/database/bau071 10.1093/hmg/5.7.1035 10.1016/j.mad.2006.02.010 10.1136/jmg.2005.034868 10.1016/j.stem.2012.05.009 10.1073/pnas.0500010102 10.1038/nprot.2009.51 10.1016/j.exer.2008.07.016 10.1093/hmg/ddv639 10.1016/j.preteyeres.2013.08.004 10.1016/j.celrep.2017.06.045 10.1002/stem.1372 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. 2018 The Authors 2018 |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2018 The Authors 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.stemcr.2018.02.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-6711 |
EndPage | 1281 |
ExternalDocumentID | oai_doaj_org_article_057a39d2e177461b8b7b95cf6cd7f0f7 PMC5998840 29526738 10_1016_j_stemcr_2018_02_003 S2213671118300948 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAVLU AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IXB KQ8 M41 M48 M~E NCXOZ O9- OK1 RCE ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-fe53c5331c14b0cf53e16c3f1055dfa740064ea2a36008163adfabd5dc91d3763 |
IEDL.DBID | M48 |
ISSN | 2213-6711 |
IngestDate | Wed Aug 27 01:21:52 EDT 2025 Thu Aug 21 18:45:39 EDT 2025 Fri Jul 11 16:30:14 EDT 2025 Thu Apr 03 07:02:23 EDT 2025 Tue Jul 01 02:44:14 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Wed May 17 01:21:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | cilium electrophysiology patient-derived iPSCs photoreceptor retinal organoid disease modeling retinitis pigmentosa RPE cells RPGR ciliopathy |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-fe53c5331c14b0cf53e16c3f1055dfa740064ea2a36008163adfabd5dc91d3763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2018.02.003 |
PMID | 29526738 |
PQID | 2013104624 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_057a39d2e177461b8b7b95cf6cd7f0f7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5998840 proquest_miscellaneous_2013104624 pubmed_primary_29526738 crossref_primary_10_1016_j_stemcr_2018_02_003 crossref_citationtrail_10_1016_j_stemcr_2018_02_003 elsevier_sciencedirect_doi_10_1016_j_stemcr_2018_02_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-10 |
PublicationDateYYYYMMDD | 2018-04-10 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cell reports |
PublicationTitleAlternate | Stem Cell Reports |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Zhong, Gutierrez, Xue, Hampton, Vergara, Cao, Peters, Park, Zambidis, Meyer (bib39) 2014; 5 Huang, Wu, Lv, Zhang, Jin (bib13) 2015; 17 Moore, Escudier, Roger, Tamalet, Pelosse, Marlin, Clément, Geremek, Delaisi, Bridoux (bib23) 2006; 43 Wang, Deretic (bib36) 2014; 38 Brunner, Skosyrski, Kirschner-Schwabe, Knobeloch, Neidhardt, Feil, Glaus, Luhmann, Rüther, Berger (bib1) 2010; 51 Parfitt, Lane, Ramsden, Carr, Munro, Jovanovic, Schwarz, Kanuga, Muthiah, Hull (bib27) 2016; 18 Cangiano, Asteriti, Cervetto, Gargini (bib2) 2012; 590 Hendrickson, Bumsted-O'Brien, Natoli, Ramamurthy, Possin, Provis (bib9) 2008; 87 Hong, Pawlyk, Shang, Sandberg, Berson, Li (bib11) 2000; 97 Ran, Cai, Huang, Liu, Lu, Qu, Wu, Jin (bib28) 2014; 2014 Jin, Hayakawa, Murakami, Nao-i (bib17) 2006; 572 Vervoort, Lennon, Bird, Tulloch, Axton, Miano, Meindl, Meitinger, Ciccodicola, Wright (bib35) 2000; 25 Giacalone, Wiley, Burnight, Songstad, Mullins, Stone, Tucker (bib6) 2016; 5 Zhou, Benda, Dunzinger, Huang, Ho, Yang, Wang, Zhang, Zhuang, Li (bib40) 2012; 7 Homma, Okamoto, Mandai, Gotoh, Rajasimha, Chang, Chen, Li, Cogliati, Swaroop (bib10) 2013; 31 Hartong, Berson, Dryja (bib8) 2006; 368 Cheong, Sung, Lee, Choi, Song, Kee, Lee (bib3) 2006; 127 Megaw, Soares, Wright (bib21) 2015; 138 Takahashi, Tanabe, Ohnuki, Narita, Ichisaka, Tomoda, Yamanaka (bib34) 2007; 131 Ikeda, Osakada, Watanabe, Mizuseki, Haraguchi, Miyoshi, Kamiya, Honda, Sasai, Yoshimura (bib14) 2005; 102 Nakano, Ando, Takata, Kawada, Muguruma, Sekiguchi, Saito, Yonemura, Eiraku, Sasai (bib24) 2012; 10 Kuwahara, Ozone, Nakano, Saito, Eiraku, Sasai (bib19) 2015; 6 Daiger, S.P., Sullivan, L.S., and Rossiter, B.J.F. (2013). RetNet. The Retinal Information Network. Landis, Pawlyk, Li, Sicinski, Hinds (bib20) 2006; 9 Osakada, Jin, Hirami, Ikeda, Danjyo, Watanabe, Sasai, Takahashi (bib26) 2009; 122 Eiraku, Takata, Ishibashi, Kawada, Sakakura, Okuda, Sekiguchi, Adachi, Sasai (bib5) 2011; 472 Meindl, Dry, Herrmann, Manson, Ciccodicola, Edgar, Carvalho, Achatz, Hellebrand, Lennon (bib22) 1996; 13 Sharon, Sandberg, Rabe, Stillberger, Dryja, Berson (bib31) 2003; 73 . Jin, Liu, Hayakawa, Murakami, Nao-i (bib16) 2006; 12 Gupta, Coyaud, Goncalves, Mojarad, Liu, Wu, Gheiratmand, Comartin, Tkach, Cheung (bib7) 2015; 163 Huang, Huang, Wu, Wu, Chen, Pang, Lu, Qu, Jin (bib12) 2015; 17 Schon, Asteriti, Koch, Sothilingam, Garcia Garrido, Tanimoto, Herms, Seeliger, Cangiano, Biel (bib30) 2016; 25 Yoshida, Ozawa, Suzuki, Yuki, Ohyama, Akamatsu, Matsuzaki, Shimmura, Mitani, Tsubota (bib37) 2014; 7 Roepman, van Duijnhoven, Rosenberg, Pinckers, Bleeker-Wagemakers, Bergen, Post, Beck, Reinhardt, Ropers (bib29) 1996; 5 Zhang, Acland, Wu, Johnson, Pearce-Kelling, Tulloch, Vervoort, Wright, Aguirre (bib38) 2002; 11 Jin, Okamoto, Osakada, Homma, Assawachananont, Hirami, Iwata, Takahashi (bib18) 2011; 6 Osakada, Ikeda, Sasai, Takahashi (bib25) 2009; 4 Shimada, Lu, Insinna-Kettenhofen, Nagashima, English, Semler, Mahgerefteh, Cideciyan, Li, Brooks (bib32) 2017; 20 Sun, Park, Gumerson, Wu, Swaroop, Qian, Roll-Mecak, Li (bib33) 2016; 113 Inoue, Nagata, Kurokawa, Yamanaka (bib15) 2014; 33 Eiraku (10.1016/j.stemcr.2018.02.003_bib5) 2011; 472 Moore (10.1016/j.stemcr.2018.02.003_bib23) 2006; 43 Ikeda (10.1016/j.stemcr.2018.02.003_bib14) 2005; 102 Hendrickson (10.1016/j.stemcr.2018.02.003_bib9) 2008; 87 Huang (10.1016/j.stemcr.2018.02.003_bib12) 2015; 17 Landis (10.1016/j.stemcr.2018.02.003_bib20) 2006; 9 Jin (10.1016/j.stemcr.2018.02.003_bib18) 2011; 6 Zhang (10.1016/j.stemcr.2018.02.003_bib38) 2002; 11 Roepman (10.1016/j.stemcr.2018.02.003_bib29) 1996; 5 Jin (10.1016/j.stemcr.2018.02.003_bib16) 2006; 12 Megaw (10.1016/j.stemcr.2018.02.003_bib21) 2015; 138 Cheong (10.1016/j.stemcr.2018.02.003_bib3) 2006; 127 Ran (10.1016/j.stemcr.2018.02.003_bib28) 2014; 2014 Schon (10.1016/j.stemcr.2018.02.003_bib30) 2016; 25 Cangiano (10.1016/j.stemcr.2018.02.003_bib2) 2012; 590 Vervoort (10.1016/j.stemcr.2018.02.003_bib35) 2000; 25 Wang (10.1016/j.stemcr.2018.02.003_bib36) 2014; 38 Brunner (10.1016/j.stemcr.2018.02.003_bib1) 2010; 51 10.1016/j.stemcr.2018.02.003_bib4 Inoue (10.1016/j.stemcr.2018.02.003_bib15) 2014; 33 Osakada (10.1016/j.stemcr.2018.02.003_bib25) 2009; 4 Takahashi (10.1016/j.stemcr.2018.02.003_bib34) 2007; 131 Nakano (10.1016/j.stemcr.2018.02.003_bib24) 2012; 10 Huang (10.1016/j.stemcr.2018.02.003_bib13) 2015; 17 Zhou (10.1016/j.stemcr.2018.02.003_bib40) 2012; 7 Yoshida (10.1016/j.stemcr.2018.02.003_bib37) 2014; 7 Giacalone (10.1016/j.stemcr.2018.02.003_bib6) 2016; 5 Gupta (10.1016/j.stemcr.2018.02.003_bib7) 2015; 163 Osakada (10.1016/j.stemcr.2018.02.003_bib26) 2009; 122 Kuwahara (10.1016/j.stemcr.2018.02.003_bib19) 2015; 6 Zhong (10.1016/j.stemcr.2018.02.003_bib39) 2014; 5 Homma (10.1016/j.stemcr.2018.02.003_bib10) 2013; 31 Parfitt (10.1016/j.stemcr.2018.02.003_bib27) 2016; 18 Shimada (10.1016/j.stemcr.2018.02.003_bib32) 2017; 20 Jin (10.1016/j.stemcr.2018.02.003_bib17) 2006; 572 Meindl (10.1016/j.stemcr.2018.02.003_bib22) 1996; 13 Hartong (10.1016/j.stemcr.2018.02.003_bib8) 2006; 368 Sun (10.1016/j.stemcr.2018.02.003_bib33) 2016; 113 Hong (10.1016/j.stemcr.2018.02.003_bib11) 2000; 97 Sharon (10.1016/j.stemcr.2018.02.003_bib31) 2003; 73 29874627 - Stem Cell Reports. 2018 Jun 5;10 (6):2005 29784915 - Nat Cell Biol. 2018 Jun;20(6):634 |
References_xml | – volume: 5 start-page: 4047 year: 2014 ident: bib39 article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs publication-title: Nat. Commun. – volume: 138 start-page: 32 year: 2015 end-page: 41 ident: bib21 article-title: RPGR: its role in photoreceptor physiology, human disease, and future therapies publication-title: Exp. Eye Res. – volume: 472 start-page: 51 year: 2011 end-page: 56 ident: bib5 article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture publication-title: Nature – volume: 97 start-page: 3649 year: 2000 end-page: 3654 ident: bib11 article-title: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3) publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 415 year: 2008 end-page: 426 ident: bib9 article-title: Rod photoreceptor differentiation in fetal and infant human retina publication-title: Exp. Eye Res. – volume: 113 start-page: E2925 year: 2016 end-page: E2934 ident: bib33 article-title: Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1167 year: 2006 end-page: 1174 ident: bib16 article-title: Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations publication-title: Mol. Vis. – volume: 11 start-page: 993 year: 2002 end-page: 1003 ident: bib38 article-title: Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration publication-title: Hum. Mol. Genet. – volume: 25 start-page: 1165 year: 2016 end-page: 1175 ident: bib30 article-title: Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia publication-title: Hum. Mol. Genet. – volume: 33 start-page: 409 year: 2014 end-page: 417 ident: bib15 article-title: iPS cells: a game changer for future medicine publication-title: EMBO J. – volume: 572 start-page: 29 year: 2006 end-page: 33 ident: bib17 article-title: RCC1-like domain and ORF15: essentials in RPGR gene publication-title: Adv. Exp. Med. Biol. – volume: 10 start-page: 771 year: 2012 end-page: 785 ident: bib24 article-title: Self-formation of optic cups and storable stratified neural retina from human ESCs publication-title: Cell Stem Cell – volume: 18 start-page: 769 year: 2016 end-page: 781 ident: bib27 article-title: Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups publication-title: Cell Stem Cell – volume: 17 start-page: 271 year: 2015 end-page: 278 ident: bib12 article-title: Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing publication-title: Genet. Med. – volume: 25 start-page: 462 year: 2000 end-page: 466 ident: bib35 article-title: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa publication-title: Nat. Genet. – volume: 38 start-page: 1 year: 2014 end-page: 19 ident: bib36 article-title: Molecular complexes that direct rhodopsin transport to primary cilia publication-title: Prog. Retin. Eye Res. – volume: 6 start-page: e17084 year: 2011 ident: bib18 article-title: Modeling retinal degeneration using patient-specific induced pluripotent stem cells publication-title: PLoS One – reference: Daiger, S.P., Sullivan, L.S., and Rossiter, B.J.F. (2013). RetNet. The Retinal Information Network. – volume: 7 start-page: 2080 year: 2012 end-page: 2089 ident: bib40 article-title: Generation of human induced pluripotent stem cells from urine samples publication-title: Nat. Protoc. – volume: 6 start-page: 6286 year: 2015 ident: bib19 article-title: Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue publication-title: Nat. Commun. – volume: 73 start-page: 1131 year: 2003 end-page: 1146 ident: bib31 article-title: RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa publication-title: Am. J. Hum. Genet. – volume: 17 start-page: 307 year: 2015 end-page: 311 ident: bib13 article-title: Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing publication-title: Genet. Med. – volume: 51 start-page: 1106 year: 2010 end-page: 1115 ident: bib1 article-title: Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 590 start-page: 3841 year: 2012 end-page: 3855 ident: bib2 article-title: The photovoltage of rods and cones in the dark-adapted mouse retina publication-title: J. Physiol. – volume: 122 start-page: 3169 year: 2009 end-page: 3179 ident: bib26 article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction publication-title: J. Cell Sci. – volume: 5 start-page: 1035 year: 1996 end-page: 1041 ident: bib29 article-title: Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1 publication-title: Hum. Mol. Genet. – reference: . – volume: 4 start-page: 811 year: 2009 end-page: 824 ident: bib25 article-title: Stepwise differentiation of pluripotent stem cells into retinal cells publication-title: Nat. Protoc. – volume: 9 start-page: 13 year: 2006 end-page: 22 ident: bib20 article-title: Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis publication-title: Cancer Cell – volume: 20 start-page: 384 year: 2017 end-page: 396 ident: bib32 article-title: In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations publication-title: Cell Rep. – volume: 131 start-page: 861 year: 2007 end-page: 872 ident: bib34 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell – volume: 13 start-page: 35 year: 1996 end-page: 42 ident: bib22 article-title: A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3) publication-title: Nat. Genet. – volume: 2014 year: 2014 ident: bib28 article-title: 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration publication-title: Database (Oxford) – volume: 7 start-page: 45 year: 2014 ident: bib37 article-title: The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa publication-title: Mol. Brain – volume: 368 start-page: 1795 year: 2006 end-page: 1809 ident: bib8 article-title: Retinitis pigmentosa publication-title: Lancet – volume: 127 start-page: 633 year: 2006 end-page: 638 ident: bib3 article-title: Role of INK4a locus in normal eye development and cataract genesis publication-title: Mech. Ageing Dev. – volume: 5 start-page: 132 year: 2016 end-page: 140 ident: bib6 article-title: Concise review: patient-specific stem cells to interrogate inherited eye disease publication-title: Stem Cells Transl. Med. – volume: 31 start-page: 1149 year: 2013 end-page: 1159 ident: bib10 article-title: Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors publication-title: Stem Cells – volume: 43 start-page: 326 year: 2006 end-page: 333 ident: bib23 article-title: RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa publication-title: J. Med. Genet. – volume: 102 start-page: 11331 year: 2005 end-page: 11336 ident: bib14 article-title: Generation of Rx(+)/Pax(6+) neural retinal precursors from embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 163 start-page: 1484 year: 2015 end-page: 1499 ident: bib7 article-title: A dynamic protein interaction landscape of the human centrosome-cilium interface publication-title: Cell – volume: 472 start-page: 51 year: 2011 ident: 10.1016/j.stemcr.2018.02.003_bib5 article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture publication-title: Nature doi: 10.1038/nature09941 – volume: 18 start-page: 769 year: 2016 ident: 10.1016/j.stemcr.2018.02.003_bib27 article-title: Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.03.021 – ident: 10.1016/j.stemcr.2018.02.003_bib4 – volume: 9 start-page: 13 year: 2006 ident: 10.1016/j.stemcr.2018.02.003_bib20 article-title: Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.12.019 – volume: 590 start-page: 3841 year: 2012 ident: 10.1016/j.stemcr.2018.02.003_bib2 article-title: The photovoltage of rods and cones in the dark-adapted mouse retina publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.226878 – volume: 11 start-page: 993 year: 2002 ident: 10.1016/j.stemcr.2018.02.003_bib38 article-title: Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/11.9.993 – volume: 7 start-page: 2080 year: 2012 ident: 10.1016/j.stemcr.2018.02.003_bib40 article-title: Generation of human induced pluripotent stem cells from urine samples publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.115 – volume: 572 start-page: 29 year: 2006 ident: 10.1016/j.stemcr.2018.02.003_bib17 article-title: RCC1-like domain and ORF15: essentials in RPGR gene publication-title: Adv. Exp. Med. Biol. doi: 10.1007/0-387-32442-9_5 – volume: 138 start-page: 32 year: 2015 ident: 10.1016/j.stemcr.2018.02.003_bib21 article-title: RPGR: its role in photoreceptor physiology, human disease, and future therapies publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2015.06.007 – volume: 113 start-page: E2925 year: 2016 ident: 10.1016/j.stemcr.2018.02.003_bib33 article-title: Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1523201113 – volume: 5 start-page: 132 year: 2016 ident: 10.1016/j.stemcr.2018.02.003_bib6 article-title: Concise review: patient-specific stem cells to interrogate inherited eye disease publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0206 – volume: 25 start-page: 462 year: 2000 ident: 10.1016/j.stemcr.2018.02.003_bib35 article-title: Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa publication-title: Nat. Genet. doi: 10.1038/78182 – volume: 6 start-page: e17084 year: 2011 ident: 10.1016/j.stemcr.2018.02.003_bib18 article-title: Modeling retinal degeneration using patient-specific induced pluripotent stem cells publication-title: PLoS One doi: 10.1371/journal.pone.0017084 – volume: 97 start-page: 3649 year: 2000 ident: 10.1016/j.stemcr.2018.02.003_bib11 article-title: A retinitis pigmentosa GTPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.7.3649 – volume: 12 start-page: 1167 year: 2006 ident: 10.1016/j.stemcr.2018.02.003_bib16 article-title: Mutational analysis of RPGR and RP2 genes in Japanese patients with retinitis pigmentosa: identification of four mutations publication-title: Mol. Vis. – volume: 7 start-page: 45 year: 2014 ident: 10.1016/j.stemcr.2018.02.003_bib37 article-title: The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa publication-title: Mol. Brain doi: 10.1186/1756-6606-7-45 – volume: 131 start-page: 861 year: 2007 ident: 10.1016/j.stemcr.2018.02.003_bib34 article-title: Induction of pluripotent stem cells from adult human fibroblasts by defined factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 5 start-page: 4047 year: 2014 ident: 10.1016/j.stemcr.2018.02.003_bib39 article-title: Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs publication-title: Nat. Commun. doi: 10.1038/ncomms5047 – volume: 6 start-page: 6286 year: 2015 ident: 10.1016/j.stemcr.2018.02.003_bib19 article-title: Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue publication-title: Nat. Commun. doi: 10.1038/ncomms7286 – volume: 17 start-page: 307 year: 2015 ident: 10.1016/j.stemcr.2018.02.003_bib13 article-title: Identification of false-negative mutations missed by next-generation sequencing in retinitis pigmentosa patients: a complementary approach to clinical genetic diagnostic testing publication-title: Genet. Med. doi: 10.1038/gim.2014.193 – volume: 73 start-page: 1131 year: 2003 ident: 10.1016/j.stemcr.2018.02.003_bib31 article-title: RP2 and RPGR mutations and clinical correlations in patients with X-linked retinitis pigmentosa publication-title: Am. J. Hum. Genet. doi: 10.1086/379379 – volume: 163 start-page: 1484 year: 2015 ident: 10.1016/j.stemcr.2018.02.003_bib7 article-title: A dynamic protein interaction landscape of the human centrosome-cilium interface publication-title: Cell doi: 10.1016/j.cell.2015.10.065 – volume: 51 start-page: 1106 year: 2010 ident: 10.1016/j.stemcr.2018.02.003_bib1 article-title: Cone versus rod disease in a mutant Rpgr mouse caused by different genetic backgrounds publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.08-2742 – volume: 13 start-page: 35 year: 1996 ident: 10.1016/j.stemcr.2018.02.003_bib22 article-title: A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3) publication-title: Nat. Genet. doi: 10.1038/ng0596-35 – volume: 368 start-page: 1795 year: 2006 ident: 10.1016/j.stemcr.2018.02.003_bib8 article-title: Retinitis pigmentosa publication-title: Lancet doi: 10.1016/S0140-6736(06)69740-7 – volume: 33 start-page: 409 year: 2014 ident: 10.1016/j.stemcr.2018.02.003_bib15 article-title: iPS cells: a game changer for future medicine publication-title: EMBO J. doi: 10.1002/embj.201387098 – volume: 17 start-page: 271 year: 2015 ident: 10.1016/j.stemcr.2018.02.003_bib12 article-title: Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing publication-title: Genet. Med. doi: 10.1038/gim.2014.138 – volume: 122 start-page: 3169 year: 2009 ident: 10.1016/j.stemcr.2018.02.003_bib26 article-title: In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction publication-title: J. Cell Sci. doi: 10.1242/jcs.050393 – volume: 2014 year: 2014 ident: 10.1016/j.stemcr.2018.02.003_bib28 article-title: 'RetinoGenetics': a comprehensive mutation database for genes related to inherited retinal degeneration publication-title: Database (Oxford) doi: 10.1093/database/bau071 – volume: 5 start-page: 1035 year: 1996 ident: 10.1016/j.stemcr.2018.02.003_bib29 article-title: Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/5.7.1035 – volume: 127 start-page: 633 year: 2006 ident: 10.1016/j.stemcr.2018.02.003_bib3 article-title: Role of INK4a locus in normal eye development and cataract genesis publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2006.02.010 – volume: 43 start-page: 326 year: 2006 ident: 10.1016/j.stemcr.2018.02.003_bib23 article-title: RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa publication-title: J. Med. Genet. doi: 10.1136/jmg.2005.034868 – volume: 10 start-page: 771 year: 2012 ident: 10.1016/j.stemcr.2018.02.003_bib24 article-title: Self-formation of optic cups and storable stratified neural retina from human ESCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.05.009 – volume: 102 start-page: 11331 year: 2005 ident: 10.1016/j.stemcr.2018.02.003_bib14 article-title: Generation of Rx(+)/Pax(6+) neural retinal precursors from embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0500010102 – volume: 4 start-page: 811 year: 2009 ident: 10.1016/j.stemcr.2018.02.003_bib25 article-title: Stepwise differentiation of pluripotent stem cells into retinal cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.51 – volume: 87 start-page: 415 year: 2008 ident: 10.1016/j.stemcr.2018.02.003_bib9 article-title: Rod photoreceptor differentiation in fetal and infant human retina publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2008.07.016 – volume: 25 start-page: 1165 year: 2016 ident: 10.1016/j.stemcr.2018.02.003_bib30 article-title: Loss of HCN1 enhances disease progression in mouse models of CNG channel-linked retinitis pigmentosa and achromatopsia publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv639 – volume: 38 start-page: 1 year: 2014 ident: 10.1016/j.stemcr.2018.02.003_bib36 article-title: Molecular complexes that direct rhodopsin transport to primary cilia publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2013.08.004 – volume: 20 start-page: 384 year: 2017 ident: 10.1016/j.stemcr.2018.02.003_bib32 article-title: In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.06.045 – volume: 31 start-page: 1149 year: 2013 ident: 10.1016/j.stemcr.2018.02.003_bib10 article-title: Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors publication-title: Stem Cells doi: 10.1002/stem.1372 – reference: 29784915 - Nat Cell Biol. 2018 Jun;20(6):634 – reference: 29874627 - Stem Cell Reports. 2018 Jun 5;10 (6):2005 |
SSID | ssj0000991241 |
Score | 2.5343883 |
Snippet | Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1267 |
SubjectTerms | Cell Differentiation Ciliopathies - pathology Ciliopathies - physiopathology Ciliopathies - therapy ciliopathy cilium disease modeling electrophysiology Eye Proteins - genetics Genetic Therapy Humans Induced Pluripotent Stem Cells - metabolism Induced Pluripotent Stem Cells - pathology Mutation - genetics Organoids - pathology patient-derived iPSCs photoreceptor Photoreceptor Cells - metabolism Photoreceptor Cells - pathology Potassium Channels - metabolism Retina - pathology retinal organoid retinitis pigmentosa Retinitis Pigmentosa - pathology Retinitis Pigmentosa - physiopathology Retinitis Pigmentosa - therapy RPE cells RPGR |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuCMrXQouMxNUitmMnOZYtVYUArYBKvUX-GNNUVVI1W6Se-tfxxMlqA4e9cHXsJI4nmTfxzHuEvBdGAQirmPNOspyDZxWAYzY6F5_5YMFiNfLXb_r0LP98rs63pL4wJyzRA6cH9yHiCSMrL4BHoKK5LW1hK-WCdr4IWRjqyKPP2wqmLhPuiY4Loy0huGS64HyqmxuSu5Ak2SEdKC8TZaec-aWBvn_mnv6Fn39nUW65pZMn5PGIJ-lRmsdT8gDaffIwKUzePSP3SCtNlyjBMRQw0O-AeRjQ02Vz1XSoR3xHTevp6qKL0Tdgkkt3Q7_EW6RNS5vVjyU7jkb6G3wcukYJLTqUb3aN7ynWpqRmZEaiq-YX_mvsekNXia61f07OTj79XJ6yUXOBOVWpNQugpIsQkDue28wFJYFrJwPqaPpgihwxDBhhpEY0oaWJrdYr7yru8WP1guy1XQuvCC2VrpQqQdu8yuOqV56XNthQCuO41WZB5PTEazcSkqMuxlU9ZZ5d1mmdalynOhNIZLogbDPqOhFy7Oj_ERdz0xfptIeGaGT1aGT1LiNbkGIyhXpEJglxxFM1Oy7_brKcOr64uBtjWuhue-wkcYNd5AvyMlnS5iZFpQTKscbrzmxsNov5kba5GMjBVYyfY9D--n9M-w15hFPBzTOeHZC99c0tHEYMtrZvh9ftD4uvMpI priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOiltOlr0yao0KtYS7L8ODZuQyhtWZoG9mb0TFSCHdabQk79653xY4nbQ6BHy5IlSyPNJ2nmG0LeC628F0Yx66xkKfeOld5bZkC5uMQF4w16I3_9lp1dpJ_Xar1HqskXBs0qx7V_WNP71XpMWY69ubyJcXkuBNKNwVwtJNrHocOvTIveiW99sjtnAQQEKgz3XZifYYHJg64380K6ZIvEoLwYyDvlTEP1RP4zRfUvEP3bnvKegjp9Sp6MyJJ-GBr_jOz55oA8GmJN3j0nv5FgmlYYjKN3ZaDfPVpk-I5W8Tq2GJn4jurG0dVVC_twj-Yu7YZ-gSbS2NC4Oq_YRxDXX95B0S0G06K9I2cbXUfRS2VIRo4kuoqXeOrYdpquBuLW7gW5OP30ozpjY_QFZlWptix4JS2AQW55ahIblPQ8szJgRE0XdJ4imvFaaJkhrsikhlTjlLMld7hsvST7Tdv414QWKiuVKnxm0jKF8S8dL0wwoRDacpPpBZFTj9d2pCbHCBnX9WSD9rMexqnGcaoTgZSmC8J2pW4Gao4H8p_gYO7yIrF2n9BuLutRsmqAr1qWTngOuDjjpjC5KZUNmXV5SEK-IPkkCvVMTuFT8YHq302SU8MUxnsZ3fj2tsNMEq_aRbogrwZJ2jVSlEpgYFaodyZjs7-Yv2niVU8TrmAnDdv3w_9u8RvyGJ_w7ownb8n-dnPrjwCCbc1xP8f-AKvPM6I priority: 102 providerName: Elsevier |
Title | Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients |
URI | https://dx.doi.org/10.1016/j.stemcr.2018.02.003 https://www.ncbi.nlm.nih.gov/pubmed/29526738 https://www.proquest.com/docview/2013104624 https://pubmed.ncbi.nlm.nih.gov/PMC5998840 https://doaj.org/article/057a39d2e177461b8b7b95cf6cd7f0f7 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGEBIviPs6YDISr0axHTvJA0KsMA3EUAVU6lvk65apSljTIfrEX8cnTgrhoomXSnWcS-1zej7H53wfQs-YEs4xLYixhpOUOksK5wzRIbjYxHrtNFQjn3yQx_P03UIsdtCg2doPYPvXpR3oSc1Xy-ffLjYvg8O_-JmrBZzHBtg9aR4ZOPk1dD3Epgxc9aQH_OcRD4WABqswxignMqN0qKf7x4VG8aqj9R-FrT9h6e_Zlb-Eq6Pb6FaPM_GraBh30I6r76IbUXlycw99B7ppPAVpjq6wAX90kJ_hWjytllUDOsUbrGqLZ2dNWJU7SH5pVvh9eERc1biafZqS18F4vzobTl2DtBbuyjqbyrYYalZiMzAm4Vl1Cu8gm1bhWaRxbe-j-dGbz9Nj0msxECMKsSbeCW4CNKSGpjoxXnBHpeEe9DWtV1kK2MYpprgElCG5Cq3aCmsKauFP7AHarZva7SGcC1kIkTup0yIN1lBYmmuvfc6UoVqqCeLDiJemJyoHvYxlOWSknZdxnkqYpzJhQHA6QWR71pdI1HFF_0OYzG1foNnuGprVadl7bRnArOKFZY4GlCypznWmC2G8NDbzic8mKBtMoewRS0Qi4VLVFbd_OlhOGRwadmlU7ZrLFjpx2Hhn6QQ9jJa0fUhWCAYyreG-Ixsb_Yrxkbo660jDRVhXh8X8_n8O0yN0E77B_hlNHqPd9erSPQkwbK0PutcX4fPt4vCg87IfSMo2Pg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEYILYmfKZiSu1oztOMuRBqopTKsRbaW5WV5boyqpJtNKPfHX8csyInCoxNWxEyd-9vscv_d9CH1iSjjHtCDGGk4S6iwpnDNER-diZ9ZrpyEb-eg4nZ8l31ZitYPKIRcGwir7tb9b09vVui-Z9l9zehXC9IQxoBuLczXnEB-X30P3IxrIQL_hcLW__dESIVD0YbDxggYEWgwpdG2cF_AlG2AGpXnH3slHLqpl8h95qn-R6N8BlX94qIMn6HEPLfHnrvdP0Y6rnqEHndjk7XP0CximcQlqHG0uA_7hICTDNbgMl6EGaeJbrCqLlxd13Ig7iHep13gRu4hDhcPypCRfor3eOBubbkBNC7eZnHWwDYY0la4YSJLwMpzDb8e6UXjZMbc2L9DZwdfTck56-QViRCE2xDvBTUSD1NBEz4wX3NHUcA-SmtarLAE44xRTPAVgkXIVS7UV1hTUwrr1Eu1WdeVeI5yLtBAid6lOiiQaQGFprr32OVOG6lRNEB--uDQ9NzlIZFzKIQjtp-zGScI4yRkDTtMJIttWVx03xx3192Ewt3WBWbstqNfnsjctGfGr4oVljkZgnFKd60wXwvjU2MzPfDZB2WAKcmSo8Vbhjsd_HCxHxjkMBzOqcvV1A5U4nLWzZIJedZa07SQrBANl1vjckY2N3mJ8pQoXLU-4iFvpuH_f--8ef0AP56dHC7k4PP7-Bj2CK3CQRmdv0e5mfe3eRTy20e_b-fYbFTk2wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+Correction+Reverses+Ciliopathy+and+Photoreceptor+Loss+in+iPSC-Derived+Retinal+Organoids+from+Retinitis+Pigmentosa+Patients&rft.jtitle=Stem+cell+reports&rft.au=Deng%2C+Wen-Li&rft.au=Gao%2C+Mei-Ling&rft.au=Lei%2C+Xin-Lan&rft.au=Lv%2C+Ji-Neng&rft.date=2018-04-10&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=10&rft.issue=4&rft.spage=1267&rft.epage=1281&rft_id=info:doi/10.1016%2Fj.stemcr.2018.02.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stemcr_2018_02_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon |