Fine Functional Organization of Auditory Cortex Revealed by Fourier Optical Imaging

We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long record...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 102; no. 37; pp. 13325 - 13330
Main Authors Kalatsky, Valery A., Polley, Daniel B., Merzenich, Michael M., Schreiner, Christoph E., Stryker, Michael P.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 13.09.2005
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena.
AbstractList We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena.
We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. [PUBLICATION ABSTRACT]
We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. optical imaging of intrinsic signals rat tonotopy cortical maps
We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena.We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena.
Author Polley, Daniel B.
Merzenich, Michael M.
Schreiner, Christoph E.
Stryker, Michael P.
Kalatsky, Valery A.
AuthorAffiliation W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, CA 94143
AuthorAffiliation_xml – name: W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, CA 94143
Author_xml – sequence: 1
  givenname: Valery A.
  surname: Kalatsky
  fullname: Kalatsky, Valery A.
– sequence: 2
  givenname: Daniel B.
  surname: Polley
  fullname: Polley, Daniel B.
– sequence: 3
  givenname: Michael M.
  surname: Merzenich
  fullname: Merzenich, Michael M.
– sequence: 4
  givenname: Christoph E.
  surname: Schreiner
  fullname: Schreiner, Christoph E.
– sequence: 5
  givenname: Michael P.
  surname: Stryker
  fullname: Stryker, Michael P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16141342$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNPAmg1CFotKLKb1Y2yPN5WqqIFKlSLxWFsexw6OJnawZyrCr8dDQgNd0JV1db9zX8dn4CTEYAF4jdEFRoJeboPOF4ghxiTBiDwDE4wkrngt0QmYIERE1dSkPgVnOa8RQpI16AU4xRzXmNZkAj7PfbBwPgTT-xh0BxdppYP_qccQRgevh6XvY9rBWUy9_QE_2XurO7uE7Q7O45C8TXCx7b0p2tuNXvmwegmeO91l--rwTsHX-c2X2cfqbvHhdnZ9VxkmWV85LjRpOBWG0baRNeWicc5waevGOOkYo9gYIjHSum0ttZwQIRhl3DErDKZTcLWvux3ajV0aG_qkO7VNfqPTTkXt1b-Z4L-pVbxXmCDM0Vjg_FAgxe-Dzb3a-Gxs1-lg45AVb8q5WEOfBLGoEeeoLuC7R-C63KjcNavSk3LZlAWm4O3fcz8M_MeVAlzuAZNizsm6I4LU6LsafVdH34uCPVIY3__2sCzuu__o3h9GGRPHLkRRoTClhCk3dF0xvi8sfIItyJs9ss7lzzwwlArOOKa_ACHS01s
CitedBy_id crossref_primary_10_1016_j_neuroscience_2006_04_037
crossref_primary_10_1111_ejn_13611
crossref_primary_10_1117_1_NPh_4_3_031220
crossref_primary_10_3389_fncir_2017_00014
crossref_primary_10_1007_s11682_012_9212_1
crossref_primary_10_1016_j_cub_2022_09_064
crossref_primary_10_1097_WNR_0b013e32800fef9d
crossref_primary_10_33549_physiolres_933835
crossref_primary_10_1111_j_1460_9568_2007_05519_x
crossref_primary_10_1016_j_neuron_2019_09_043
crossref_primary_10_1093_cercor_bhz190
crossref_primary_10_1142_S0219635210002524
crossref_primary_10_1016_j_heares_2016_06_012
crossref_primary_10_1152_jn_00932_2014
crossref_primary_10_1016_j_neucom_2009_01_011
crossref_primary_10_1038_s41593_022_01168_5
crossref_primary_10_1093_ilar_49_1_116
crossref_primary_10_1016_j_neuroscience_2015_12_060
crossref_primary_10_1152_jn_01298_2006
crossref_primary_10_3389_fnana_2014_00093
crossref_primary_10_1016_j_neuroimage_2013_12_014
crossref_primary_10_1111_ejn_13944
crossref_primary_10_1002_cne_22345
crossref_primary_10_1002_cne_22466
crossref_primary_10_1016_j_heares_2016_11_018
crossref_primary_10_1016_j_heares_2020_108138
crossref_primary_10_1016_j_neuroscience_2007_07_054
crossref_primary_10_1038_s41598_021_96188_9
crossref_primary_10_1093_cercor_bhp082
crossref_primary_10_1002_cne_22501
crossref_primary_10_1016_j_tins_2014_06_003
crossref_primary_10_1016_j_neulet_2017_08_001
crossref_primary_10_1152_jn_00784_2015
crossref_primary_10_1371_journal_pone_0063655
crossref_primary_10_1038_srep22315
crossref_primary_10_1118_1_4828789
crossref_primary_10_1152_jn_00179_2013
crossref_primary_10_1523_JNEUROSCI_3771_05_2006
crossref_primary_10_1016_j_heares_2012_11_021
crossref_primary_10_1152_jn_00469_2007
crossref_primary_10_1016_j_brainres_2010_01_012
crossref_primary_10_1016_j_neuroimage_2010_07_015
crossref_primary_10_1093_cercor_bhac275
crossref_primary_10_1364_BOE_7_000841
crossref_primary_10_1016_j_celrep_2018_02_056
crossref_primary_10_1016_j_jneumeth_2017_08_028
crossref_primary_10_1523_ENEURO_0046_23_2023
crossref_primary_10_1016_j_neuron_2012_07_008
crossref_primary_10_1016_j_neuron_2014_07_009
crossref_primary_10_1073_pnas_1816653116
crossref_primary_10_3389_fncel_2017_00392
crossref_primary_10_1016_j_neuroscience_2020_11_042
crossref_primary_10_1093_cercor_bhv014
crossref_primary_10_1016_j_neuroimage_2012_09_069
crossref_primary_10_1523_JNEUROSCI_2561_10_2010
crossref_primary_10_1016_j_neulet_2016_11_062
crossref_primary_10_1016_j_heares_2010_11_010
crossref_primary_10_1038_s41467_022_34018_w
crossref_primary_10_1016_j_isci_2021_103176
crossref_primary_10_1016_j_jneumeth_2015_07_028
crossref_primary_10_1523_JNEUROSCI_2061_09_2009
crossref_primary_10_1371_journal_pone_0017832
crossref_primary_10_1523_JNEUROSCI_1310_12_2012
crossref_primary_10_1152_jn_00982_2010
crossref_primary_10_1038_nn_2490
crossref_primary_10_1177_0003489419837687
crossref_primary_10_1016_j_neuroscience_2008_01_073
crossref_primary_10_1093_cercor_bhy234
crossref_primary_10_1111_ejn_13007
crossref_primary_10_1038_jcbfm_2011_195
crossref_primary_10_1038_srep34421
crossref_primary_10_1016_j_jneumeth_2011_09_018
crossref_primary_10_3389_fncir_2017_00002
crossref_primary_10_1016_j_jneumeth_2010_03_010
crossref_primary_10_1016_j_neuroimage_2017_03_053
crossref_primary_10_1038_s41467_022_29864_7
crossref_primary_10_1093_cercor_bhq073
crossref_primary_10_1016_j_jneumeth_2010_03_013
crossref_primary_10_1016_j_neuroimage_2013_05_045
crossref_primary_10_1038_s41598_017_17711_5
crossref_primary_10_1523_JNEUROSCI_2156_07_2007
crossref_primary_10_1016_j_neuroimage_2006_09_030
crossref_primary_10_1093_cercor_bhl177
crossref_primary_10_1016_j_neuroimage_2008_10_007
crossref_primary_10_1016_j_neuron_2006_10_009
crossref_primary_10_1073_pnas_1008604107
crossref_primary_10_1016_j_neuroimage_2010_06_022
crossref_primary_10_1016_j_neuroscience_2007_01_019
Cites_doi 10.1046/j.1460-9568.2002.01935.x
10.1523/JNEUROSCI.21-06-02113.2001
10.1016/S0896-6273(03)00286-1
10.1016/0006-8993(77)90108-1
10.1073/pnas.90.21.9998
10.1006/nimg.1996.0069
10.1038/79857
10.1038/353429a0
10.1093/cercor/4.2.195
10.1016/S0896-6273(03)00669-X
10.2183/pjab.64.260
10.1126/science.1087846
10.1152/jn.1988.59.5.1627
10.1007/s003590050140
10.1016/S0378-5955(03)00182-5
10.1523/JNEUROSCI.23-34-10765.2003
10.1038/16056
10.1038/324361a0
10.1152/jn.1984.51.1.147
10.1038/321579a0
10.1152/jn.1984.51.6.1284
10.1002/cne.901920207
10.1002/cne.901710108
10.1073/pnas.87.16.6082
10.1073/pnas.93.18.9869
10.1152/jn.1992.68.5.1613
10.1152/jn.2002.88.3.1545
10.1016/0006-8993(73)90731-2
10.1097/00001756-200109170-00027
10.1073/pnas.261707398
10.1093/cercor/6.2.120
10.1097/00001756-200209160-00019
10.1152/jn.00276.2004
10.1016/S0896-6273(00)80803-X
10.1038/nn745
10.1523/JNEUROSCI.21-04-01351.2001
10.1002/cne.10412
10.1097/00001756-199512290-00005
ContentType Journal Article
Copyright Copyright 1993/2005 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Sep 13, 2005
Copyright © 2005, The National Academy of Sciences 2005
Copyright_xml – notice: Copyright 1993/2005 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Sep 13, 2005
– notice: Copyright © 2005, The National Academy of Sciences 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0505592102
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Virology and AIDS Abstracts
Neurosciences Abstracts



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 13330
ExternalDocumentID PMC1201601
898816511
16141342
10_1073_pnas_0505592102
102_37_13325
3376561
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R37 EY002874
– fundername: NIDCD NIH HHS
  grantid: R01 DC002260
– fundername: NEI NIH HHS
  grantid: EY 02874
– fundername: NINDS NIH HHS
  grantid: NS 16033
– fundername: NINDS NIH HHS
  grantid: P01 NS016033
– fundername: NEI NIH HHS
  grantid: R01 EY002874
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c595t-f67a28637c53b8943678ffc69e48cf9f5531cc2910aabbe3e622775356f5e7c13
ISSN 0027-8424
IngestDate Thu Aug 21 18:20:54 EDT 2025
Fri Jul 11 01:09:35 EDT 2025
Fri Jul 11 05:03:13 EDT 2025
Mon Jun 30 08:29:40 EDT 2025
Fri May 30 11:01:28 EDT 2025
Thu Apr 24 23:04:51 EDT 2025
Tue Jul 01 04:00:15 EDT 2025
Wed Nov 11 00:29:21 EST 2020
Thu May 30 08:49:43 EDT 2019
Thu May 29 08:42:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c595t-f67a28637c53b8943678ffc69e48cf9f5531cc2910aabbe3e622775356f5e7c13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Abbreviations: SPL, sound pressure level; CF, characteristic frequency; RF, receptive field; A1, primary auditory cortex; AAF, anterior auditory field; VAF, ventral auditory field; VAAF, ventral anterior auditory field; BF, best frequency.
To whom correspondence may be addressed. E-mail: vkalatsky@uh.edu or merz@phy.ucsf.edu.
Present address: Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Building 1, Room N308, Houston, TX 77204-4005.
Author contributions: V.A.K., M.M.M., C.E.S., and M.P.S. designed research; V.A.K. and D.B.P. performed research; V.A.K. analyzed data; and V.A.K., D.B.P., M.M.M., C.E.S., and M.P.S. wrote the paper.
Contributed by Michael M. Merzenich, July 11, 2005
A preliminary report of this work was presented in Kalatsky, V. A. & Stryker M. P. (2002) Soc. Neurosci. Abstr. 354.15 (abstr.).
OpenAccessLink http://doi.org/10.1073/pnas.0505592102
PMID 16141342
PQID 201369875
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_3376561
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1201601
pubmed_primary_16141342
pnas_primary_102_37_13325
pnas_primary_102_37_13325_fulltext
proquest_miscellaneous_68580583
crossref_primary_10_1073_pnas_0505592102
proquest_miscellaneous_17406604
proquest_journals_201369875
crossref_citationtrail_10_1073_pnas_0505592102
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-09-13
PublicationDateYYYYMMDD 2005-09-13
PublicationDate_xml – month: 09
  year: 2005
  text: 2005-09-13
  day: 13
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2005
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_5_2) 1975; 28
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_31_2
  doi: 10.1046/j.1460-9568.2002.01935.x
– ident: e_1_3_2_27_2
  doi: 10.1523/JNEUROSCI.21-06-02113.2001
– ident: e_1_3_2_34_2
  doi: 10.1016/S0896-6273(03)00286-1
– ident: e_1_3_2_6_2
  doi: 10.1016/0006-8993(77)90108-1
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.90.21.9998
– ident: e_1_3_2_29_2
  doi: 10.1006/nimg.1996.0069
– ident: e_1_3_2_25_2
  doi: 10.1038/79857
– ident: e_1_3_2_19_2
  doi: 10.1038/353429a0
– ident: e_1_3_2_21_2
  doi: 10.1093/cercor/4.2.195
– ident: e_1_3_2_12_2
  doi: 10.1016/S0896-6273(03)00669-X
– ident: e_1_3_2_2_2
  doi: 10.2183/pjab.64.260
– ident: e_1_3_2_23_2
  doi: 10.1126/science.1087846
– ident: e_1_3_2_15_2
  doi: 10.1152/jn.1988.59.5.1627
– ident: e_1_3_2_1_2
  doi: 10.1007/s003590050140
– ident: e_1_3_2_4_2
  doi: 10.1016/S0378-5955(03)00182-5
– ident: e_1_3_2_38_2
  doi: 10.1523/JNEUROSCI.23-34-10765.2003
– ident: e_1_3_2_14_2
  doi: 10.1038/16056
– ident: e_1_3_2_18_2
  doi: 10.1038/324361a0
– ident: e_1_3_2_8_2
  doi: 10.1152/jn.1984.51.1.147
– ident: e_1_3_2_17_2
  doi: 10.1038/321579a0
– ident: e_1_3_2_9_2
  doi: 10.1152/jn.1984.51.6.1284
– ident: e_1_3_2_7_2
  doi: 10.1002/cne.901920207
– ident: e_1_3_2_10_2
  doi: 10.1002/cne.901710108
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.87.16.6082
– ident: e_1_3_2_39_2
  doi: 10.1073/pnas.93.18.9869
– ident: e_1_3_2_13_2
  doi: 10.1152/jn.1992.68.5.1613
– ident: e_1_3_2_32_2
  doi: 10.1152/jn.2002.88.3.1545
– ident: e_1_3_2_11_2
  doi: 10.1016/0006-8993(73)90731-2
– ident: e_1_3_2_40_2
  doi: 10.1097/00001756-200109170-00027
– ident: e_1_3_2_37_2
  doi: 10.1073/pnas.261707398
– ident: e_1_3_2_30_2
  doi: 10.1093/cercor/6.2.120
– ident: e_1_3_2_33_2
  doi: 10.1097/00001756-200209160-00019
– ident: e_1_3_2_35_2
  doi: 10.1152/jn.00276.2004
– volume: 28
  start-page: 231
  year: 1975
  ident: e_1_3_2_5_2
  publication-title: J. Neurophysiol.
– ident: e_1_3_2_24_2
  doi: 10.1016/S0896-6273(00)80803-X
– ident: e_1_3_2_36_2
  doi: 10.1038/nn745
– ident: e_1_3_2_26_2
  doi: 10.1523/JNEUROSCI.21-04-01351.2001
– ident: e_1_3_2_16_2
– ident: e_1_3_2_3_2
  doi: 10.1002/cne.10412
– ident: e_1_3_2_22_2
  doi: 10.1097/00001756-199512290-00005
SSID ssj0009580
Score 2.18304
Snippet We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13325
SubjectTerms Animals
Auditory cortex
Auditory Cortex - anatomy & histology
Biological Sciences
Brain
Brain Mapping - methods
Diagnostic Imaging - methods
Diagnostic Imaging - standards
Document imaging
Ears & hearing
Electrophysiology
Female
Fourier Analysis
Hemodynamics
Imaging
Male
Medical imaging
Methods
Neurology
Neurons
Neuroscience
Octaves
Rats
Rats, Sprague-Dawley
Rodents
Ultrasonography
Title Fine Functional Organization of Auditory Cortex Revealed by Fourier Optical Imaging
URI https://www.jstor.org/stable/3376561
http://www.pnas.org/content/102/37/13325.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16141342
https://www.proquest.com/docview/201369875
https://www.proquest.com/docview/17406604
https://www.proquest.com/docview/68580583
https://pubmed.ncbi.nlm.nih.gov/PMC1201601
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMRgQxoeFeBiKEpI4iZPHglZVoFaT2NDeosQ4WsWWVv2QYH8nfxB3tuOkZUPAS1QlTuL4fr0723e_I-QNY1GQSx55JTj4HnjEwgM3RHoilEEg0zINv-LSwGSajs_ij-fJ-WDwsxe1tFlXvri-Ma_kf6QK50CumCX7D5K1D4UT8BvkC0eQMBz_SsYjdBHRMpkFvXkvsVJt8GPKBW6iCwyp_Y55KugXKp9zZIrVzRd6NXt2peoV9Z3VE2vcVm0owbRdOxx2mShGPaxczz2ZdnWNv8Cb4NVD3_1UXpbr1Te7eK_T2t33PkbftRvLKi9RhfC7E9-dyOW1bGbCLlZbEgT32Efq0KXErMWtNYsEAyx0ymmf8lv31fayr6YjMJ2xTq72pdbM4Nh4aaxri1rVHUQ9jGr2GKOJYe6tM6p_sxGg1LCwcVOufCzjl-SReUwPMYsrBRlwh8HIa_qvba7uHRtqIxvhUQXjhXr7HXI3gsmLCjcd96mgM50YZT6yJZzi7N1Op5DR1vRgy23SkbNIxwvtb5oa7Ub49lym0wfkvpnr0KEG7j4ZyOYh2W8FQY8M5fnbR-QzIpl2SKZ9JNN5TVskU41k2iKZVj-oQTI1SKYGyQfkbHR8-mHsmXIfnkjyZO3VKS-jLGVcJKzCsgDgR9W1SHMZZ6LO6wTMhRAR-LdlWVWSyTSC4U1YktaJ5CJkj8leM2_kU0KR6DPPeVYlFY_BTFVxzGQZ1bzKqkyGtUP8djQLYbjwsSTLZaFiMjgrcGSLThIOObI3LDQNzO1ND5R4bDsGNhxmKQ5xVMvu9g4pDnl967WiNlFgDjlsBV0YJbQqIuRczDMOj3hlr4KFwG2_spHzzaoIYQjSNIhvb4E1KIIkYw55omHTdcTAzyF8C1C2AbLTb19pZheKpT6MkLwyfPaHzz4k9zrt8JzsrZcb-QJ8_HX1Uv1lfgFO9Pr1
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+functional+organization+of+auditory+cortex+revealed+by+Fourier+optical+imaging&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Valery+A.+Kalatsky&rft.au=Daniel+B.+Polley&rft.au=Michael+M.+Merzenich&rft.au=Christoph+E.+Schreiner&rft.date=2005-09-13&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=102&rft.issue=37&rft.spage=13325&rft_id=info:doi/10.1073%2Fpnas.0505592102&rft_id=info%3Apmid%2F16141342&rft.externalDBID=n%2Fa&rft.externalDocID=102_37_13325
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F37.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F37.cover.gif