Fine Functional Organization of Auditory Cortex Revealed by Fourier Optical Imaging
We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long record...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 37; pp. 13325 - 13330 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
13.09.2005
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. |
---|---|
AbstractList | We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. [PUBLICATION ABSTRACT] We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. optical imaging of intrinsic signals rat tonotopy cortical maps We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena.We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring intrinsic signal optical maps, Fourier imaging, in the rat auditory cortex. These highly detailed maps, derived in a several-minute-long recording procedure, delineate multiple auditory cortical areas and demonstrate their shapes, sizes, and tonotopic order. Beyond the primary auditory cortex, there are at least three distinct areas with fine-scale tonotopic organization, as well as at least one additional high-frequency field. The arrangement of all of these cortical areas is consistent across subjects. The accuracy of these optical maps was confirmed by microelectrode mapping in the same subjects. This imaging method allows fast mapping of the auditory cortex at high spatial resolution comparable to that provided by conventional microelectrode technique. Although spiking activity is largely responsible for the evoked intrinsic signals, certain features of the optical signal cannot be explained by spiking activity only, and should probably be attributed to other mechanisms inducing metabolic activity, such as subthreshold membrane phenomena. |
Author | Polley, Daniel B. Merzenich, Michael M. Schreiner, Christoph E. Stryker, Michael P. Kalatsky, Valery A. |
AuthorAffiliation | W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, CA 94143 |
AuthorAffiliation_xml | – name: W. M. Keck Foundation Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, CA 94143 |
Author_xml | – sequence: 1 givenname: Valery A. surname: Kalatsky fullname: Kalatsky, Valery A. – sequence: 2 givenname: Daniel B. surname: Polley fullname: Polley, Daniel B. – sequence: 3 givenname: Michael M. surname: Merzenich fullname: Merzenich, Michael M. – sequence: 4 givenname: Christoph E. surname: Schreiner fullname: Schreiner, Christoph E. – sequence: 5 givenname: Michael P. surname: Stryker fullname: Stryker, Michael P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16141342$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNPAmg1CFotKLKb1Y2yPN5WqqIFKlSLxWFsexw6OJnawZyrCr8dDQgNd0JV1db9zX8dn4CTEYAF4jdEFRoJeboPOF4ghxiTBiDwDE4wkrngt0QmYIERE1dSkPgVnOa8RQpI16AU4xRzXmNZkAj7PfbBwPgTT-xh0BxdppYP_qccQRgevh6XvY9rBWUy9_QE_2XurO7uE7Q7O45C8TXCx7b0p2tuNXvmwegmeO91l--rwTsHX-c2X2cfqbvHhdnZ9VxkmWV85LjRpOBWG0baRNeWicc5waevGOOkYo9gYIjHSum0ttZwQIRhl3DErDKZTcLWvux3ajV0aG_qkO7VNfqPTTkXt1b-Z4L-pVbxXmCDM0Vjg_FAgxe-Dzb3a-Gxs1-lg45AVb8q5WEOfBLGoEeeoLuC7R-C63KjcNavSk3LZlAWm4O3fcz8M_MeVAlzuAZNizsm6I4LU6LsafVdH34uCPVIY3__2sCzuu__o3h9GGRPHLkRRoTClhCk3dF0xvi8sfIItyJs9ss7lzzwwlArOOKa_ACHS01s |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2006_04_037 crossref_primary_10_1111_ejn_13611 crossref_primary_10_1117_1_NPh_4_3_031220 crossref_primary_10_3389_fncir_2017_00014 crossref_primary_10_1007_s11682_012_9212_1 crossref_primary_10_1016_j_cub_2022_09_064 crossref_primary_10_1097_WNR_0b013e32800fef9d crossref_primary_10_33549_physiolres_933835 crossref_primary_10_1111_j_1460_9568_2007_05519_x crossref_primary_10_1016_j_neuron_2019_09_043 crossref_primary_10_1093_cercor_bhz190 crossref_primary_10_1142_S0219635210002524 crossref_primary_10_1016_j_heares_2016_06_012 crossref_primary_10_1152_jn_00932_2014 crossref_primary_10_1016_j_neucom_2009_01_011 crossref_primary_10_1038_s41593_022_01168_5 crossref_primary_10_1093_ilar_49_1_116 crossref_primary_10_1016_j_neuroscience_2015_12_060 crossref_primary_10_1152_jn_01298_2006 crossref_primary_10_3389_fnana_2014_00093 crossref_primary_10_1016_j_neuroimage_2013_12_014 crossref_primary_10_1111_ejn_13944 crossref_primary_10_1002_cne_22345 crossref_primary_10_1002_cne_22466 crossref_primary_10_1016_j_heares_2016_11_018 crossref_primary_10_1016_j_heares_2020_108138 crossref_primary_10_1016_j_neuroscience_2007_07_054 crossref_primary_10_1038_s41598_021_96188_9 crossref_primary_10_1093_cercor_bhp082 crossref_primary_10_1002_cne_22501 crossref_primary_10_1016_j_tins_2014_06_003 crossref_primary_10_1016_j_neulet_2017_08_001 crossref_primary_10_1152_jn_00784_2015 crossref_primary_10_1371_journal_pone_0063655 crossref_primary_10_1038_srep22315 crossref_primary_10_1118_1_4828789 crossref_primary_10_1152_jn_00179_2013 crossref_primary_10_1523_JNEUROSCI_3771_05_2006 crossref_primary_10_1016_j_heares_2012_11_021 crossref_primary_10_1152_jn_00469_2007 crossref_primary_10_1016_j_brainres_2010_01_012 crossref_primary_10_1016_j_neuroimage_2010_07_015 crossref_primary_10_1093_cercor_bhac275 crossref_primary_10_1364_BOE_7_000841 crossref_primary_10_1016_j_celrep_2018_02_056 crossref_primary_10_1016_j_jneumeth_2017_08_028 crossref_primary_10_1523_ENEURO_0046_23_2023 crossref_primary_10_1016_j_neuron_2012_07_008 crossref_primary_10_1016_j_neuron_2014_07_009 crossref_primary_10_1073_pnas_1816653116 crossref_primary_10_3389_fncel_2017_00392 crossref_primary_10_1016_j_neuroscience_2020_11_042 crossref_primary_10_1093_cercor_bhv014 crossref_primary_10_1016_j_neuroimage_2012_09_069 crossref_primary_10_1523_JNEUROSCI_2561_10_2010 crossref_primary_10_1016_j_neulet_2016_11_062 crossref_primary_10_1016_j_heares_2010_11_010 crossref_primary_10_1038_s41467_022_34018_w crossref_primary_10_1016_j_isci_2021_103176 crossref_primary_10_1016_j_jneumeth_2015_07_028 crossref_primary_10_1523_JNEUROSCI_2061_09_2009 crossref_primary_10_1371_journal_pone_0017832 crossref_primary_10_1523_JNEUROSCI_1310_12_2012 crossref_primary_10_1152_jn_00982_2010 crossref_primary_10_1038_nn_2490 crossref_primary_10_1177_0003489419837687 crossref_primary_10_1016_j_neuroscience_2008_01_073 crossref_primary_10_1093_cercor_bhy234 crossref_primary_10_1111_ejn_13007 crossref_primary_10_1038_jcbfm_2011_195 crossref_primary_10_1038_srep34421 crossref_primary_10_1016_j_jneumeth_2011_09_018 crossref_primary_10_3389_fncir_2017_00002 crossref_primary_10_1016_j_jneumeth_2010_03_010 crossref_primary_10_1016_j_neuroimage_2017_03_053 crossref_primary_10_1038_s41467_022_29864_7 crossref_primary_10_1093_cercor_bhq073 crossref_primary_10_1016_j_jneumeth_2010_03_013 crossref_primary_10_1016_j_neuroimage_2013_05_045 crossref_primary_10_1038_s41598_017_17711_5 crossref_primary_10_1523_JNEUROSCI_2156_07_2007 crossref_primary_10_1016_j_neuroimage_2006_09_030 crossref_primary_10_1093_cercor_bhl177 crossref_primary_10_1016_j_neuroimage_2008_10_007 crossref_primary_10_1016_j_neuron_2006_10_009 crossref_primary_10_1073_pnas_1008604107 crossref_primary_10_1016_j_neuroimage_2010_06_022 crossref_primary_10_1016_j_neuroscience_2007_01_019 |
Cites_doi | 10.1046/j.1460-9568.2002.01935.x 10.1523/JNEUROSCI.21-06-02113.2001 10.1016/S0896-6273(03)00286-1 10.1016/0006-8993(77)90108-1 10.1073/pnas.90.21.9998 10.1006/nimg.1996.0069 10.1038/79857 10.1038/353429a0 10.1093/cercor/4.2.195 10.1016/S0896-6273(03)00669-X 10.2183/pjab.64.260 10.1126/science.1087846 10.1152/jn.1988.59.5.1627 10.1007/s003590050140 10.1016/S0378-5955(03)00182-5 10.1523/JNEUROSCI.23-34-10765.2003 10.1038/16056 10.1038/324361a0 10.1152/jn.1984.51.1.147 10.1038/321579a0 10.1152/jn.1984.51.6.1284 10.1002/cne.901920207 10.1002/cne.901710108 10.1073/pnas.87.16.6082 10.1073/pnas.93.18.9869 10.1152/jn.1992.68.5.1613 10.1152/jn.2002.88.3.1545 10.1016/0006-8993(73)90731-2 10.1097/00001756-200109170-00027 10.1073/pnas.261707398 10.1093/cercor/6.2.120 10.1097/00001756-200209160-00019 10.1152/jn.00276.2004 10.1016/S0896-6273(00)80803-X 10.1038/nn745 10.1523/JNEUROSCI.21-04-01351.2001 10.1002/cne.10412 10.1097/00001756-199512290-00005 |
ContentType | Journal Article |
Copyright | Copyright 1993/2005 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Sep 13, 2005 Copyright © 2005, The National Academy of Sciences 2005 |
Copyright_xml | – notice: Copyright 1993/2005 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Sep 13, 2005 – notice: Copyright © 2005, The National Academy of Sciences 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0505592102 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Virology and AIDS Abstracts Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 13330 |
ExternalDocumentID | PMC1201601 898816511 16141342 10_1073_pnas_0505592102 102_37_13325 3376561 |
Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: R37 EY002874 – fundername: NIDCD NIH HHS grantid: R01 DC002260 – fundername: NEI NIH HHS grantid: EY 02874 – fundername: NINDS NIH HHS grantid: NS 16033 – fundername: NINDS NIH HHS grantid: P01 NS016033 – fundername: NEI NIH HHS grantid: R01 EY002874 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c595t-f67a28637c53b8943678ffc69e48cf9f5531cc2910aabbe3e622775356f5e7c13 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:20:54 EDT 2025 Fri Jul 11 01:09:35 EDT 2025 Fri Jul 11 05:03:13 EDT 2025 Mon Jun 30 08:29:40 EDT 2025 Fri May 30 11:01:28 EDT 2025 Thu Apr 24 23:04:51 EDT 2025 Tue Jul 01 04:00:15 EDT 2025 Wed Nov 11 00:29:21 EST 2020 Thu May 30 08:49:43 EDT 2019 Thu May 29 08:42:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c595t-f67a28637c53b8943678ffc69e48cf9f5531cc2910aabbe3e622775356f5e7c13 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 Abbreviations: SPL, sound pressure level; CF, characteristic frequency; RF, receptive field; A1, primary auditory cortex; AAF, anterior auditory field; VAF, ventral auditory field; VAAF, ventral anterior auditory field; BF, best frequency. To whom correspondence may be addressed. E-mail: vkalatsky@uh.edu or merz@phy.ucsf.edu. Present address: Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Building 1, Room N308, Houston, TX 77204-4005. Author contributions: V.A.K., M.M.M., C.E.S., and M.P.S. designed research; V.A.K. and D.B.P. performed research; V.A.K. analyzed data; and V.A.K., D.B.P., M.M.M., C.E.S., and M.P.S. wrote the paper. Contributed by Michael M. Merzenich, July 11, 2005 A preliminary report of this work was presented in Kalatsky, V. A. & Stryker M. P. (2002) Soc. Neurosci. Abstr. 354.15 (abstr.). |
OpenAccessLink | http://doi.org/10.1073/pnas.0505592102 |
PMID | 16141342 |
PQID | 201369875 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_3376561 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1201601 pubmed_primary_16141342 pnas_primary_102_37_13325 pnas_primary_102_37_13325_fulltext proquest_miscellaneous_68580583 crossref_primary_10_1073_pnas_0505592102 proquest_miscellaneous_17406604 proquest_journals_201369875 crossref_citationtrail_10_1073_pnas_0505592102 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-09-13 |
PublicationDateYYYYMMDD | 2005-09-13 |
PublicationDate_xml | – month: 09 year: 2005 text: 2005-09-13 day: 13 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2005 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 (e_1_3_2_5_2) 1975; 28 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_31_2 doi: 10.1046/j.1460-9568.2002.01935.x – ident: e_1_3_2_27_2 doi: 10.1523/JNEUROSCI.21-06-02113.2001 – ident: e_1_3_2_34_2 doi: 10.1016/S0896-6273(03)00286-1 – ident: e_1_3_2_6_2 doi: 10.1016/0006-8993(77)90108-1 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.90.21.9998 – ident: e_1_3_2_29_2 doi: 10.1006/nimg.1996.0069 – ident: e_1_3_2_25_2 doi: 10.1038/79857 – ident: e_1_3_2_19_2 doi: 10.1038/353429a0 – ident: e_1_3_2_21_2 doi: 10.1093/cercor/4.2.195 – ident: e_1_3_2_12_2 doi: 10.1016/S0896-6273(03)00669-X – ident: e_1_3_2_2_2 doi: 10.2183/pjab.64.260 – ident: e_1_3_2_23_2 doi: 10.1126/science.1087846 – ident: e_1_3_2_15_2 doi: 10.1152/jn.1988.59.5.1627 – ident: e_1_3_2_1_2 doi: 10.1007/s003590050140 – ident: e_1_3_2_4_2 doi: 10.1016/S0378-5955(03)00182-5 – ident: e_1_3_2_38_2 doi: 10.1523/JNEUROSCI.23-34-10765.2003 – ident: e_1_3_2_14_2 doi: 10.1038/16056 – ident: e_1_3_2_18_2 doi: 10.1038/324361a0 – ident: e_1_3_2_8_2 doi: 10.1152/jn.1984.51.1.147 – ident: e_1_3_2_17_2 doi: 10.1038/321579a0 – ident: e_1_3_2_9_2 doi: 10.1152/jn.1984.51.6.1284 – ident: e_1_3_2_7_2 doi: 10.1002/cne.901920207 – ident: e_1_3_2_10_2 doi: 10.1002/cne.901710108 – ident: e_1_3_2_28_2 doi: 10.1073/pnas.87.16.6082 – ident: e_1_3_2_39_2 doi: 10.1073/pnas.93.18.9869 – ident: e_1_3_2_13_2 doi: 10.1152/jn.1992.68.5.1613 – ident: e_1_3_2_32_2 doi: 10.1152/jn.2002.88.3.1545 – ident: e_1_3_2_11_2 doi: 10.1016/0006-8993(73)90731-2 – ident: e_1_3_2_40_2 doi: 10.1097/00001756-200109170-00027 – ident: e_1_3_2_37_2 doi: 10.1073/pnas.261707398 – ident: e_1_3_2_30_2 doi: 10.1093/cercor/6.2.120 – ident: e_1_3_2_33_2 doi: 10.1097/00001756-200209160-00019 – ident: e_1_3_2_35_2 doi: 10.1152/jn.00276.2004 – volume: 28 start-page: 231 year: 1975 ident: e_1_3_2_5_2 publication-title: J. Neurophysiol. – ident: e_1_3_2_24_2 doi: 10.1016/S0896-6273(00)80803-X – ident: e_1_3_2_36_2 doi: 10.1038/nn745 – ident: e_1_3_2_26_2 doi: 10.1523/JNEUROSCI.21-04-01351.2001 – ident: e_1_3_2_16_2 – ident: e_1_3_2_3_2 doi: 10.1002/cne.10412 – ident: e_1_3_2_22_2 doi: 10.1097/00001756-199512290-00005 |
SSID | ssj0009580 |
Score | 2.18304 |
Snippet | We provide an overall view of the functional tonotopic organization of the auditory cortex in the rat. We apply a recently developed technique for acquiring... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13325 |
SubjectTerms | Animals Auditory cortex Auditory Cortex - anatomy & histology Biological Sciences Brain Brain Mapping - methods Diagnostic Imaging - methods Diagnostic Imaging - standards Document imaging Ears & hearing Electrophysiology Female Fourier Analysis Hemodynamics Imaging Male Medical imaging Methods Neurology Neurons Neuroscience Octaves Rats Rats, Sprague-Dawley Rodents Ultrasonography |
Title | Fine Functional Organization of Auditory Cortex Revealed by Fourier Optical Imaging |
URI | https://www.jstor.org/stable/3376561 http://www.pnas.org/content/102/37/13325.abstract https://www.ncbi.nlm.nih.gov/pubmed/16141342 https://www.proquest.com/docview/201369875 https://www.proquest.com/docview/17406604 https://www.proquest.com/docview/68580583 https://pubmed.ncbi.nlm.nih.gov/PMC1201601 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMRgQxoeFeBiKEpI4iZPHglZVoFaT2NDeosQ4WsWWVv2QYH8nfxB3tuOkZUPAS1QlTuL4fr0723e_I-QNY1GQSx55JTj4HnjEwgM3RHoilEEg0zINv-LSwGSajs_ij-fJ-WDwsxe1tFlXvri-Ma_kf6QK50CumCX7D5K1D4UT8BvkC0eQMBz_SsYjdBHRMpkFvXkvsVJt8GPKBW6iCwyp_Y55KugXKp9zZIrVzRd6NXt2peoV9Z3VE2vcVm0owbRdOxx2mShGPaxczz2ZdnWNv8Cb4NVD3_1UXpbr1Te7eK_T2t33PkbftRvLKi9RhfC7E9-dyOW1bGbCLlZbEgT32Efq0KXErMWtNYsEAyx0ymmf8lv31fayr6YjMJ2xTq72pdbM4Nh4aaxri1rVHUQ9jGr2GKOJYe6tM6p_sxGg1LCwcVOufCzjl-SReUwPMYsrBRlwh8HIa_qvba7uHRtqIxvhUQXjhXr7HXI3gsmLCjcd96mgM50YZT6yJZzi7N1Op5DR1vRgy23SkbNIxwvtb5oa7Ub49lym0wfkvpnr0KEG7j4ZyOYh2W8FQY8M5fnbR-QzIpl2SKZ9JNN5TVskU41k2iKZVj-oQTI1SKYGyQfkbHR8-mHsmXIfnkjyZO3VKS-jLGVcJKzCsgDgR9W1SHMZZ6LO6wTMhRAR-LdlWVWSyTSC4U1YktaJ5CJkj8leM2_kU0KR6DPPeVYlFY_BTFVxzGQZ1bzKqkyGtUP8djQLYbjwsSTLZaFiMjgrcGSLThIOObI3LDQNzO1ND5R4bDsGNhxmKQ5xVMvu9g4pDnl967WiNlFgDjlsBV0YJbQqIuRczDMOj3hlr4KFwG2_spHzzaoIYQjSNIhvb4E1KIIkYw55omHTdcTAzyF8C1C2AbLTb19pZheKpT6MkLwyfPaHzz4k9zrt8JzsrZcb-QJ8_HX1Uv1lfgFO9Pr1 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fine+functional+organization+of+auditory+cortex+revealed+by+Fourier+optical+imaging&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Valery+A.+Kalatsky&rft.au=Daniel+B.+Polley&rft.au=Michael+M.+Merzenich&rft.au=Christoph+E.+Schreiner&rft.date=2005-09-13&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=102&rft.issue=37&rft.spage=13325&rft_id=info:doi/10.1073%2Fpnas.0505592102&rft_id=info%3Apmid%2F16141342&rft.externalDBID=n%2Fa&rft.externalDocID=102_37_13325 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F37.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F37.cover.gif |