Anti-microbial Functions of Group 3 Innate Lymphoid Cells in Gut-Associated Lymphoid Tissues Are Regulated by G-Protein-Coupled Receptor 183

The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 23; no. 13; pp. 3750 - 3758
Main Authors Chu, Coco, Moriyama, Saya, Li, Zhi, Zhou, Lei, Flamar, Anne-Laure, Klose, Christoph S.N., Moeller, Jesper B., Putzel, Gregory G., Withers, David R., Sonnenberg, Gregory F., Artis, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.06.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. [Display omitted] •ILC3s from mouse mesenteric lymph nodes and mouse and human intestine express GPR183•GPR183 and its ligand 7α,25-OHC promote ILC3 migration in vitro•GPR183 and 7α,25-OHC regulate the accumulation and function of ILC3s in vivo•GPR183 is required for ILC3-mediated immunity against enteric bacterial infection Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection.
AbstractList The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. : Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection. Keywords: group 3 innate lymphoid cells, GPR183, mesenteric lymph node, intestine, accumulation, distribution, anti-microbial
The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. [Display omitted] •ILC3s from mouse mesenteric lymph nodes and mouse and human intestine express GPR183•GPR183 and its ligand 7α,25-OHC promote ILC3 migration in vitro•GPR183 and 7α,25-OHC regulate the accumulation and function of ILC3s in vivo•GPR183 is required for ILC3-mediated immunity against enteric bacterial infection Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection.
The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection.
The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro , and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, thes1e results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and antimicrobial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection.
The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection.The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection.
Author Moriyama, Saya
Sonnenberg, Gregory F.
Putzel, Gregory G.
Klose, Christoph S.N.
Withers, David R.
Zhou, Lei
Chu, Coco
Li, Zhi
Artis, David
Flamar, Anne-Laure
Moeller, Jesper B.
AuthorAffiliation 1 Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
6 Lead Contact
3 Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
4 Department of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark
2 Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
AuthorAffiliation_xml – name: 1 Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– name: 4 Department of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark
– name: 6 Lead Contact
– name: 2 Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
– name: 3 Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
Author_xml – sequence: 1
  givenname: Coco
  surname: Chu
  fullname: Chu, Coco
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 2
  givenname: Saya
  surname: Moriyama
  fullname: Moriyama, Saya
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 3
  givenname: Zhi
  surname: Li
  fullname: Li, Zhi
  organization: Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 4
  givenname: Lei
  surname: Zhou
  fullname: Zhou, Lei
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 5
  givenname: Anne-Laure
  surname: Flamar
  fullname: Flamar, Anne-Laure
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 6
  givenname: Christoph S.N.
  surname: Klose
  fullname: Klose, Christoph S.N.
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 7
  givenname: Jesper B.
  surname: Moeller
  fullname: Moeller, Jesper B.
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 8
  givenname: Gregory G.
  surname: Putzel
  fullname: Putzel, Gregory G.
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 9
  givenname: David R.
  surname: Withers
  fullname: Withers, David R.
  organization: Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
– sequence: 10
  givenname: Gregory F.
  surname: Sonnenberg
  fullname: Sonnenberg, Gregory F.
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
– sequence: 11
  givenname: David
  surname: Artis
  fullname: Artis, David
  email: dartis@med.cornell.edu
  organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29949760$$D View this record in MEDLINE/PubMed
BookMark eNqFksFuEzEQhleoiJbSN0DIRy4bbK_Xu-aAFEU0RIoEqsrZsr2zqaONvdjeSnkHHhqnCaXlAL7YmvnnG2vmf12cOe-gKN4SPCOY8A_bmYEhwDijmLQzXM-wEC-KC0oJKQllzdmT93lxFeMW58MxIYK9Ks6pEEw0HF8UP-cu2XJnTfDaqgFdT84k611EvkfL4KcRVWjlnEqA1vvdeOdthxYwDBFZh5ZTKucxemNzvvsjuLUxThDRPAC6gc00PKT1Hi3Lb8EnsK5cZPSQgzdgYEw-INJWb4qXvRoiXJ3uy-L79efbxZdy_XW5WszXpalFncqeV5T1La1bRoRQbWco1NAyw5VmQDnXGlPaiL6pNKGGaMMoa7XBmos8lba6LFZHbufVVo7B7lTYS6-sfAj4sJEqJGsGkKRRvK0Ep11NmG4zphK4rg3XfS860WXWpyNrnPQOOgMuBTU8gz7POHsnN_5ecooFwVUGvD8Bgv-Rh5bkzsa83UE58FOUFHPCSNVWTZa-e9rrscnvdWYBOwryOmMM0D9KCJYH48itPBpHHowjcS2zcXLZx7_KjE3qYIP8Yzv8r_g0AMgbu7cQZDQWnIHOBjApj9T-G_ALq2jg8A
CitedBy_id crossref_primary_10_1080_08830185_2021_1895145
crossref_primary_10_1111_lam_13629
crossref_primary_10_1038_s41575_024_00906_3
crossref_primary_10_1016_j_micpath_2020_104234
crossref_primary_10_1111_joim_12855
crossref_primary_10_1002_eji_202350501
crossref_primary_10_1016_j_str_2022_04_006
crossref_primary_10_3389_fimmu_2019_02010
crossref_primary_10_4049_jimmunol_2200273
crossref_primary_10_1038_s41423_021_00689_6
crossref_primary_10_1111_bph_15395
crossref_primary_10_1111_imr_12743
crossref_primary_10_3389_fimmu_2019_00676
crossref_primary_10_3389_fimmu_2020_580467
crossref_primary_10_1016_j_immuni_2021_09_004
crossref_primary_10_1161_CIRCRESAHA_124_324722
crossref_primary_10_3389_fimmu_2020_01062
crossref_primary_10_1038_s41422_020_0323_8
crossref_primary_10_3389_fimmu_2021_748851
crossref_primary_10_1016_j_bcdf_2020_100210
crossref_primary_10_1038_s41385_020_0265_y
crossref_primary_10_1016_j_celrep_2023_113425
crossref_primary_10_3389_fimmu_2023_1171680
crossref_primary_10_1016_j_immuni_2023_05_001
crossref_primary_10_3390_microorganisms8091342
crossref_primary_10_1039_D2FO02598A
crossref_primary_10_3389_fimmu_2020_00116
crossref_primary_10_1186_s12866_024_03195_7
crossref_primary_10_1007_s11655_022_3317_1
crossref_primary_10_1016_j_lfs_2020_118504
crossref_primary_10_1038_s41385_022_00538_3
crossref_primary_10_1016_j_ibneur_2024_09_004
crossref_primary_10_1016_j_it_2020_06_009
crossref_primary_10_3389_fendo_2022_855197
crossref_primary_10_4049_jimmunol_2100799
crossref_primary_10_1038_s41577_019_0194_8
crossref_primary_10_1016_j_celrep_2022_110530
crossref_primary_10_1111_imm_13640
crossref_primary_10_3389_fcimb_2021_733564
crossref_primary_10_1084_jem_20190835
crossref_primary_10_1016_j_mucimm_2025_01_012
crossref_primary_10_1016_j_bcp_2019_113672
crossref_primary_10_1002_ctd2_24
crossref_primary_10_3389_fimmu_2023_1271699
crossref_primary_10_1093_ecco_jcc_jjac020
crossref_primary_10_1210_jendso_bvae188
crossref_primary_10_1016_j_immuni_2020_01_005
crossref_primary_10_1016_j_immuni_2021_05_007
crossref_primary_10_3390_genes12050705
crossref_primary_10_1016_j_mucimm_2023_07_001
crossref_primary_10_12688_f1000research_15500_1
crossref_primary_10_1016_j_immuni_2024_04_001
crossref_primary_10_1016_j_fmre_2023_10_021
crossref_primary_10_1038_s41385_019_0140_x
crossref_primary_10_3390_ijms23042311
crossref_primary_10_1007_s00281_024_01000_1
crossref_primary_10_1093_infdis_jiac102
crossref_primary_10_1111_bph_15311
crossref_primary_10_1111_imr_13047
crossref_primary_10_3390_ijms20184522
crossref_primary_10_1016_j_mib_2021_06_005
crossref_primary_10_3389_fimmu_2022_1034648
crossref_primary_10_1084_jem_20180871
crossref_primary_10_12688_f1000research_25234_1
crossref_primary_10_3389_fimmu_2023_1134636
crossref_primary_10_3390_cells11020201
Cites_doi 10.1038/mi.2012.72
10.1038/ni.3482
10.1016/j.immuni.2012.06.015
10.2183/pjab.92.423
10.1038/nri2653
10.1016/j.immuni.2008.11.001
10.1038/ni.2002
10.1016/j.immuni.2014.10.007
10.1038/nri3365
10.1016/j.cell.2017.02.021
10.1038/ni.3332
10.7554/eLife.00757
10.1016/j.immuni.2009.06.016
10.1038/nature08226
10.1038/nature14189
10.1093/infdis/jiu126
10.1016/j.immuni.2010.12.009
10.1002/eji.201343782
10.1016/j.immuni.2015.06.009
10.1016/j.immuni.2014.09.005
10.1038/ni.3489
10.1126/science.aaa6566
10.1038/nature10226
10.1038/ni.2555
10.1016/j.ceb.2015.05.003
10.4049/jimmunol.1202924
10.1038/nature10280
10.1038/nm1720
10.1126/science.aaa4812
10.1038/nature17947
10.1038/ncomms6862
10.1016/j.immuni.2017.11.020
10.1038/nature12240
10.1084/jem.20151403
10.1038/nature11813
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2018.05.099
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 3758
ExternalDocumentID oai_doaj_org_article_17a683962d514b848b39055c6bff9d9d
PMC6209103
29949760
10_1016_j_celrep_2018_05_099
S2211124718308957
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK126871
– fundername: NIAID NIH HHS
  grantid: R01 AI097333
– fundername: NIAID NIH HHS
  grantid: R01 AI095466
– fundername: Wellcome Trust
  grantid: 110199/Z/15/Z
– fundername: NIDDK NIH HHS
  grantid: R21 DK110262
– fundername: NIH HHS
  grantid: DP5 OD012116
– fundername: NIAID NIH HHS
  grantid: R01 AI123368
– fundername: NIAID NIH HHS
  grantid: U01 AI095608
– fundername: NIAID NIH HHS
  grantid: R01 AI074878
– fundername: NIAID NIH HHS
  grantid: P01 AI106697
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-f6324f82584199a8dc2e5e84c6ab4e266bb02279f73b12c1bc4248bc0b6922183
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:27:33 EDT 2025
Thu Aug 21 18:15:58 EDT 2025
Fri Jul 11 04:55:25 EDT 2025
Mon Jul 21 06:03:20 EDT 2025
Tue Jul 01 02:58:56 EDT 2025
Thu Apr 24 23:09:34 EDT 2025
Tue May 16 22:30:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords mesenteric lymph node
intestine
accumulation
GPR183
group 3 innate lymphoid cells
distribution
anti-microbial
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-f6324f82584199a8dc2e5e84c6ab4e266bb02279f73b12c1bc4248bc0b6922183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2018.05.099
PMID 29949760
PQID 2061413837
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_17a683962d514b848b39055c6bff9d9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6209103
proquest_miscellaneous_2061413837
pubmed_primary_29949760
crossref_primary_10_1016_j_celrep_2018_05_099
crossref_citationtrail_10_1016_j_celrep_2018_05_099
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_05_099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-26
PublicationDateYYYYMMDD 2018-06-26
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2018
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Fernandes, Pires, Ferreira, Foxall, Rino, Santos, Correia, Poças, Veiga-Fernandes, Sousa (bib5) 2014; 210
Eberl, Colonna, Di Santo, McKenzie (bib3) 2015; 348
Yi, Wang, Kelly, An, Xu, Sailer, Gustafsson, Russell, Cyster (bib35) 2012; 37
Yi, Cyster (bib34) 2013; 2
Gatto, Paus, Basten, Mackay, Brink (bib6) 2009; 31
Kim, Taparowsky, Kim (bib14) 2015; 43
Li, Lu, Yi, Cyster (bib18) 2016; 533
Artis, Spits (bib1) 2015; 517
Klose, Kiss, Schwierzeck, Ebert, Hoyler, d’Hargues, Göppert, Croxford, Waisman, Tanriver, Diefenbach (bib16) 2013; 494
Okumura, Takeda (bib23) 2016; 92
Satoh-Takayama, Vosshenrich, Lesjean-Pottier, Sawa, Lochner, Rattis, Mention, Thiam, Cerf-Bensussan, Mandelboim (bib26) 2008; 29
Song, Lee, Gilfillan, Robinette, Newberry, Stappenbeck, Mack, Cella, Colonna (bib29) 2015; 212
Zheng, Valdez, Danilenko, Hu, Sa, Gong, Abbas, Modrusan, Ghilardi, de Sauvage, Ouyang (bib36) 2008; 14
Turner (bib33) 2009; 9
Pereira, Kelly, Xu, Cyster (bib24) 2009; 460
Sawa, Lochner, Satoh-Takayama, Dulauroy, Bérard, Kleinschek, Cua, Di Santo, Eberl (bib28) 2011; 12
Hepworth, Fung, Masur, Kelsen, McConnell, Dubrot, Withers, Hugues, Farrar, Reith (bib11) 2015; 348
Klose, Artis (bib15) 2016; 17
Kurashima, Goto, Kiyono (bib17) 2013; 43
Rankin, Girard-Madoux, Seillet, Mielke, Kerdiles, Fenis, Wieduwild, Putoczki, Mondot, Lantz (bib25) 2016; 17
Diefenbach, Colonna, Koyasu (bib2) 2014; 41
Satoh-Takayama, Serafini, Verrier, Rekiki, Renauld, Frankel, Di Santo (bib27) 2014; 41
Emgård, Kammoun, García-Cassani, Chesné, Parigi, Jacob, Cheng, Evren, Das, Czarnewski (bib4) 2018; 48
Lian, Luster (bib19) 2015; 36
Hannedouche, Zhang, Yi, Shen, Nguyen, Pereira, Guerini, Baumgarten, Roggo, Wen (bib9) 2011; 475
Lim, Li, Lopez-Lastra, Stadhouders, Paul, Casrouge, Serafini, Puel, Bustamante, Surace (bib20) 2017; 168
Ivanov, Diehl, Littman (bib12) 2006; 308
Sonnenberg, Monticelli, Elloso, Fouser, Artis (bib30) 2011; 34
Spits, Bernink, Lanier (bib32) 2016; 17
Liu, Yang, Wu, Kuei, Mani, Zhang, Yu, Sutton, Qin, Banie (bib21) 2011; 475
Hepworth, Monticelli, Fung, Ziegler, Grunberg, Sinha, Mantegazza, Ma, Crawford, Angelosanto (bib10) 2013; 498
Mackley, Houston, Marriott, Halford, Lucas, Cerovic, Filbey, Maizels, Hepworth, Sonnenberg (bib22) 2015; 6
Spits, Artis, Colonna, Diefenbach, Di Santo, Eberl, Koyasu, Locksley, McKenzie, Mebius (bib31) 2013; 13
Gladiator, Wangler, Trautwein-Weidner, LeibundGut-Landmann (bib8) 2013; 190
Kim, Nazli, Rojas, Chege, Alidina, Huibner, Mujib, Benko, Kovacs, Shin (bib13) 2012; 5
Gatto, Wood, Caminschi, Murphy-Durland, Schofield, Christ, Karupiah, Brink (bib7) 2013; 14
Zheng (10.1016/j.celrep.2018.05.099_bib36) 2008; 14
Klose (10.1016/j.celrep.2018.05.099_bib15) 2016; 17
Yi (10.1016/j.celrep.2018.05.099_bib34) 2013; 2
Song (10.1016/j.celrep.2018.05.099_bib29) 2015; 212
Spits (10.1016/j.celrep.2018.05.099_bib31) 2013; 13
Yi (10.1016/j.celrep.2018.05.099_bib35) 2012; 37
Hannedouche (10.1016/j.celrep.2018.05.099_bib9) 2011; 475
Lian (10.1016/j.celrep.2018.05.099_bib19) 2015; 36
Okumura (10.1016/j.celrep.2018.05.099_bib23) 2016; 92
Emgård (10.1016/j.celrep.2018.05.099_bib4) 2018; 48
Liu (10.1016/j.celrep.2018.05.099_bib21) 2011; 475
Lim (10.1016/j.celrep.2018.05.099_bib20) 2017; 168
Spits (10.1016/j.celrep.2018.05.099_bib32) 2016; 17
Fernandes (10.1016/j.celrep.2018.05.099_bib5) 2014; 210
Kim (10.1016/j.celrep.2018.05.099_bib14) 2015; 43
Eberl (10.1016/j.celrep.2018.05.099_bib3) 2015; 348
Ivanov (10.1016/j.celrep.2018.05.099_bib12) 2006; 308
Pereira (10.1016/j.celrep.2018.05.099_bib24) 2009; 460
Hepworth (10.1016/j.celrep.2018.05.099_bib10) 2013; 498
Rankin (10.1016/j.celrep.2018.05.099_bib25) 2016; 17
Artis (10.1016/j.celrep.2018.05.099_bib1) 2015; 517
Gatto (10.1016/j.celrep.2018.05.099_bib7) 2013; 14
Kim (10.1016/j.celrep.2018.05.099_bib13) 2012; 5
Satoh-Takayama (10.1016/j.celrep.2018.05.099_bib27) 2014; 41
Sonnenberg (10.1016/j.celrep.2018.05.099_bib30) 2011; 34
Sawa (10.1016/j.celrep.2018.05.099_bib28) 2011; 12
Li (10.1016/j.celrep.2018.05.099_bib18) 2016; 533
Diefenbach (10.1016/j.celrep.2018.05.099_bib2) 2014; 41
Gatto (10.1016/j.celrep.2018.05.099_bib6) 2009; 31
Mackley (10.1016/j.celrep.2018.05.099_bib22) 2015; 6
Hepworth (10.1016/j.celrep.2018.05.099_bib11) 2015; 348
Kurashima (10.1016/j.celrep.2018.05.099_bib17) 2013; 43
Turner (10.1016/j.celrep.2018.05.099_bib33) 2009; 9
Satoh-Takayama (10.1016/j.celrep.2018.05.099_bib26) 2008; 29
Gladiator (10.1016/j.celrep.2018.05.099_bib8) 2013; 190
Klose (10.1016/j.celrep.2018.05.099_bib16) 2013; 494
References_xml – volume: 48
  start-page: 120
  year: 2018
  end-page: 132.e8
  ident: bib4
  article-title: Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation
  publication-title: Immunity
– volume: 36
  start-page: 1
  year: 2015
  end-page: 6
  ident: bib19
  article-title: Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses
  publication-title: Curr. Opin. Cell Biol.
– volume: 2
  start-page: e00757
  year: 2013
  ident: bib34
  article-title: EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture
  publication-title: eLife
– volume: 533
  start-page: 110
  year: 2016
  end-page: 114
  ident: bib18
  article-title: EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells
  publication-title: Nature
– volume: 29
  start-page: 958
  year: 2008
  end-page: 970
  ident: bib26
  article-title: Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
  publication-title: Immunity
– volume: 17
  start-page: 758
  year: 2016
  end-page: 764
  ident: bib32
  article-title: NK cells and type 1 innate lymphoid cells: partners in host defense
  publication-title: Nat. Immunol.
– volume: 475
  start-page: 519
  year: 2011
  end-page: 523
  ident: bib21
  article-title: Oxysterols direct B-cell migration through EBI2
  publication-title: Nature
– volume: 308
  start-page: 59
  year: 2006
  end-page: 82
  ident: bib12
  article-title: Lymphoid tissue inducer cells in intestinal immunity
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 212
  start-page: 1869
  year: 2015
  end-page: 1882
  ident: bib29
  article-title: Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation
  publication-title: J. Exp. Med.
– volume: 37
  start-page: 535
  year: 2012
  end-page: 548
  ident: bib35
  article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses
  publication-title: Immunity
– volume: 475
  start-page: 524
  year: 2011
  end-page: 527
  ident: bib9
  article-title: Oxysterols direct immune cell migration via EBI2
  publication-title: Nature
– volume: 6
  start-page: 5862
  year: 2015
  ident: bib22
  article-title: CCR7-dependent trafficking of RORγ
  publication-title: Nat. Commun.
– volume: 498
  start-page: 113
  year: 2013
  end-page: 117
  ident: bib10
  article-title: Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
  publication-title: Nature
– volume: 517
  start-page: 293
  year: 2015
  end-page: 301
  ident: bib1
  article-title: The biology of innate lymphoid cells
  publication-title: Nature
– volume: 17
  start-page: 765
  year: 2016
  end-page: 774
  ident: bib15
  article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis
  publication-title: Nat. Immunol.
– volume: 190
  start-page: 521
  year: 2013
  end-page: 525
  ident: bib8
  article-title: Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
  publication-title: J. Immunol.
– volume: 9
  start-page: 799
  year: 2009
  end-page: 809
  ident: bib33
  article-title: Intestinal mucosal barrier function in health and disease
  publication-title: Nat. Rev. Immunol.
– volume: 494
  start-page: 261
  year: 2013
  end-page: 265
  ident: bib16
  article-title: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells
  publication-title: Nature
– volume: 43
  start-page: 3108
  year: 2013
  end-page: 3115
  ident: bib17
  article-title: Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation
  publication-title: Eur. J. Immunol.
– volume: 348
  start-page: 1031
  year: 2015
  end-page: 1035
  ident: bib11
  article-title: Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4
  publication-title: Science
– volume: 168
  start-page: 1086
  year: 2017
  end-page: 1100.e10
  ident: bib20
  article-title: ). Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation
  publication-title: Cell
– volume: 31
  start-page: 259
  year: 2009
  end-page: 269
  ident: bib6
  article-title: Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses
  publication-title: Immunity
– volume: 43
  start-page: 107
  year: 2015
  end-page: 119
  ident: bib14
  article-title: Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut
  publication-title: Immunity
– volume: 13
  start-page: 145
  year: 2013
  end-page: 149
  ident: bib31
  article-title: Innate lymphoid cells--a proposal for uniform nomenclature
  publication-title: Nat. Rev. Immunol.
– volume: 210
  start-page: 630
  year: 2014
  end-page: 640
  ident: bib5
  article-title: Enteric mucosa integrity in the presence of a preserved innate interleukin 22 compartment in HIV type 1-treated individuals
  publication-title: J. Infect. Dis.
– volume: 14
  start-page: 282
  year: 2008
  end-page: 289
  ident: bib36
  article-title: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
  publication-title: Nat. Med.
– volume: 41
  start-page: 776
  year: 2014
  end-page: 788
  ident: bib27
  article-title: The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells
  publication-title: Immunity
– volume: 460
  start-page: 1122
  year: 2009
  end-page: 1126
  ident: bib24
  article-title: EBI2 mediates B cell segregation between the outer and centre follicle
  publication-title: Nature
– volume: 348
  start-page: aaa6566
  year: 2015
  ident: bib3
  article-title: Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology
  publication-title: Science
– volume: 41
  start-page: 354
  year: 2014
  end-page: 365
  ident: bib2
  article-title: Development, differentiation, and diversity of innate lymphoid cells
  publication-title: Immunity
– volume: 34
  start-page: 122
  year: 2011
  end-page: 134
  ident: bib30
  article-title: CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
  publication-title: Immunity
– volume: 92
  start-page: 423
  year: 2016
  end-page: 435
  ident: bib23
  article-title: Maintenance of gut homeostasis by the mucosal immune system
  publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
– volume: 5
  start-page: 670
  year: 2012
  end-page: 680
  ident: bib13
  article-title: A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis
  publication-title: Mucosal Immunol.
– volume: 14
  start-page: 446
  year: 2013
  end-page: 453
  ident: bib7
  article-title: The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells
  publication-title: Nat. Immunol.
– volume: 17
  start-page: 179
  year: 2016
  end-page: 186
  ident: bib25
  article-title: Complementarity and redundancy of IL-22-producing innate lymphoid cells
  publication-title: Nat. Immunol.
– volume: 12
  start-page: 320
  year: 2011
  end-page: 326
  ident: bib28
  article-title: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
  publication-title: Nat. Immunol.
– volume: 5
  start-page: 670
  year: 2012
  ident: 10.1016/j.celrep.2018.05.099_bib13
  article-title: A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis
  publication-title: Mucosal Immunol.
  doi: 10.1038/mi.2012.72
– volume: 17
  start-page: 758
  year: 2016
  ident: 10.1016/j.celrep.2018.05.099_bib32
  article-title: NK cells and type 1 innate lymphoid cells: partners in host defense
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3482
– volume: 37
  start-page: 535
  year: 2012
  ident: 10.1016/j.celrep.2018.05.099_bib35
  article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.06.015
– volume: 92
  start-page: 423
  year: 2016
  ident: 10.1016/j.celrep.2018.05.099_bib23
  article-title: Maintenance of gut homeostasis by the mucosal immune system
  publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.
  doi: 10.2183/pjab.92.423
– volume: 9
  start-page: 799
  year: 2009
  ident: 10.1016/j.celrep.2018.05.099_bib33
  article-title: Intestinal mucosal barrier function in health and disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2653
– volume: 29
  start-page: 958
  year: 2008
  ident: 10.1016/j.celrep.2018.05.099_bib26
  article-title: Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.11.001
– volume: 12
  start-page: 320
  year: 2011
  ident: 10.1016/j.celrep.2018.05.099_bib28
  article-title: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2002
– volume: 41
  start-page: 776
  year: 2014
  ident: 10.1016/j.celrep.2018.05.099_bib27
  article-title: The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.10.007
– volume: 13
  start-page: 145
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib31
  article-title: Innate lymphoid cells--a proposal for uniform nomenclature
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3365
– volume: 168
  start-page: 1086
  year: 2017
  ident: 10.1016/j.celrep.2018.05.099_bib20
  article-title: ). Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.021
– volume: 17
  start-page: 179
  year: 2016
  ident: 10.1016/j.celrep.2018.05.099_bib25
  article-title: Complementarity and redundancy of IL-22-producing innate lymphoid cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3332
– volume: 2
  start-page: e00757
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib34
  article-title: EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture
  publication-title: eLife
  doi: 10.7554/eLife.00757
– volume: 31
  start-page: 259
  year: 2009
  ident: 10.1016/j.celrep.2018.05.099_bib6
  article-title: Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.06.016
– volume: 460
  start-page: 1122
  year: 2009
  ident: 10.1016/j.celrep.2018.05.099_bib24
  article-title: EBI2 mediates B cell segregation between the outer and centre follicle
  publication-title: Nature
  doi: 10.1038/nature08226
– volume: 517
  start-page: 293
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib1
  article-title: The biology of innate lymphoid cells
  publication-title: Nature
  doi: 10.1038/nature14189
– volume: 210
  start-page: 630
  year: 2014
  ident: 10.1016/j.celrep.2018.05.099_bib5
  article-title: Enteric mucosa integrity in the presence of a preserved innate interleukin 22 compartment in HIV type 1-treated individuals
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiu126
– volume: 34
  start-page: 122
  year: 2011
  ident: 10.1016/j.celrep.2018.05.099_bib30
  article-title: CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.12.009
– volume: 43
  start-page: 3108
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib17
  article-title: Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201343782
– volume: 43
  start-page: 107
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib14
  article-title: Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.06.009
– volume: 41
  start-page: 354
  year: 2014
  ident: 10.1016/j.celrep.2018.05.099_bib2
  article-title: Development, differentiation, and diversity of innate lymphoid cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.09.005
– volume: 17
  start-page: 765
  year: 2016
  ident: 10.1016/j.celrep.2018.05.099_bib15
  article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3489
– volume: 348
  start-page: aaa6566
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib3
  article-title: Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology
  publication-title: Science
  doi: 10.1126/science.aaa6566
– volume: 475
  start-page: 519
  year: 2011
  ident: 10.1016/j.celrep.2018.05.099_bib21
  article-title: Oxysterols direct B-cell migration through EBI2
  publication-title: Nature
  doi: 10.1038/nature10226
– volume: 14
  start-page: 446
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib7
  article-title: The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2555
– volume: 36
  start-page: 1
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib19
  article-title: Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2015.05.003
– volume: 190
  start-page: 521
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib8
  article-title: Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202924
– volume: 475
  start-page: 524
  year: 2011
  ident: 10.1016/j.celrep.2018.05.099_bib9
  article-title: Oxysterols direct immune cell migration via EBI2
  publication-title: Nature
  doi: 10.1038/nature10280
– volume: 14
  start-page: 282
  year: 2008
  ident: 10.1016/j.celrep.2018.05.099_bib36
  article-title: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens
  publication-title: Nat. Med.
  doi: 10.1038/nm1720
– volume: 348
  start-page: 1031
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib11
  article-title: Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells
  publication-title: Science
  doi: 10.1126/science.aaa4812
– volume: 533
  start-page: 110
  year: 2016
  ident: 10.1016/j.celrep.2018.05.099_bib18
  article-title: EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells
  publication-title: Nature
  doi: 10.1038/nature17947
– volume: 6
  start-page: 5862
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib22
  article-title: CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6862
– volume: 308
  start-page: 59
  year: 2006
  ident: 10.1016/j.celrep.2018.05.099_bib12
  article-title: Lymphoid tissue inducer cells in intestinal immunity
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 48
  start-page: 120
  year: 2018
  ident: 10.1016/j.celrep.2018.05.099_bib4
  article-title: Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.020
– volume: 498
  start-page: 113
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib10
  article-title: Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
  publication-title: Nature
  doi: 10.1038/nature12240
– volume: 212
  start-page: 1869
  year: 2015
  ident: 10.1016/j.celrep.2018.05.099_bib29
  article-title: Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151403
– volume: 494
  start-page: 261
  year: 2013
  ident: 10.1016/j.celrep.2018.05.099_bib16
  article-title: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells
  publication-title: Nature
  doi: 10.1038/nature11813
SSID ssj0000601194
Score 2.4679062
Snippet The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3750
SubjectTerms accumulation
Animals
anti-microbial
Cell Movement
Citrobacter rodentium - pathogenicity
Cytochrome P450 Family 7 - metabolism
distribution
Enterobacteriaceae Infections - pathology
Enterobacteriaceae Infections - prevention & control
Enterobacteriaceae Infections - veterinary
GPR183
group 3 innate lymphoid cells
Humans
Hydroxycholesterols - chemistry
Hydroxycholesterols - metabolism
Immunity, Innate
Intestinal Mucosa - cytology
Intestinal Mucosa - metabolism
intestine
Ligands
Lymphoid Tissue - cytology
Lymphoid Tissue - metabolism
mesenteric lymph node
Mice
Mice, Inbred C57BL
Mice, Knockout
Mucous Membrane - cytology
Mucous Membrane - metabolism
Receptors, G-Protein-Coupled - antagonists & inhibitors
Receptors, G-Protein-Coupled - genetics
Receptors, G-Protein-Coupled - metabolism
Steroid Hydroxylases - deficiency
Steroid Hydroxylases - genetics
Steroid Hydroxylases - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEG8WSmUkrhaxY3udY7vqtiBACLVSb1b8iAhKvVU3e9j_wI_u2E62u3DYC5cckrEde8aZb5LJNwh9FB68LleSWEYN4VTVpBYeDpaxwlfMF6lm5Lfv8uKKf7kW11ulvmJOWKYHzgv3iU5rCd1J5sC1G8WVgShdCCtN01SucvHpCz5vK5jKz-DIZRY_KTMWc7YYn47_zaXkLuu7Ox_pKqlKxJ2J-vXBLyX6_h339C_8_DuLcsstzZ-iJwOexCd5Hs_QIx-eo8NcYXL9Av05CX1LbtpEtwRyc3BjydLwosHpvRMu8ecQAHHir2vQ7KJ1eOa7bonbgM9XPRn1592DwGXS1hJG9fhnLmYPl80an5MfkfehDWQGXXdwEmCpv4W4HsOmfomu5meXswsyFGAgVlSiJ03kcm8ghlScVlWtnGUelMutrA334NqNSQyEzbQ0lFlqLGegIFsYWbGIvV6hg7AI_g3ChhdWloWzUimIeBx00EAbIRyVdWPLCSrH5dd2YCePRTI6Paah_dZZaToqTRdCg9ImiGxa3WZ2jj3yp1GzG9nIrZ1OgMXpweL0PouboOloF3qAKRl-QFftnuE_jGakYRfHTzN18IvVEoQAJtH4tmCCXmez2twkAAYOoLGAcXcMbmcWu1dC-ysxhcu4NYry7f-Y9jv0OE4lpskxeYQO-ruVfw-ArDfHae_dA_uxMbo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEJTXQouMxNXa2LG9zrFdsS0IEIJW2psVOw6kCs5qN3vY_9AfzdhJtk05VOISKc74Ec_E89mxv0Hog3DgdbmSxDJqCKcqJ7lwcLGMJS5jLokxI79-kxdX_PNSLA_QfDgLE7ZV9mN_N6bH0bpPmfa9OV1V1fQng7kLeCcYXNNEZSKcKE-5iof4lmf7dZbAN0JjPMQgT0KG4QRd3OZlXb12gbiSqkjhGUlgbz1UJPIfOap_gej9_ZR3HNTiKXrSI0t82jX-GTpw_gg96mJN7p6jm1PfVuRPFYmXQG4BDi3aHG5KHFegcIo_eQ_YE3_ZgY6bqsBzV9cbXHl8vm3JoElX3ApcRr1toFaHf3Rh7eGx2eFz8j0wQFSezKHoGhIBoLoVzPAx9OQLdLX4eDm_IH0oBmJFJlpSBlb3EmaTitMsy1VhmQM1cytzwx04eWMiF2E5Sw1llhrLGVfGJkZmLKCwl-jQN969RtjwxMo0KaxUCuY-BRRQQh4hCirz0qYTlA7dr23PUx7CZdR62JB2rTul6aA0nQgNSpsgss-16ng6HpA_C5rdywaW7ZjQrH_p3sw0neUSTFmyAmClUfBCaZYIYaUpy6zIigmaDXahR0YLRVUPVP9-MCMN33P4SZN712w3IASAiYZ1gwl61ZnVvpEAHTjAxwTqHRnc6C3GT3z1O3KGSxaAYfrmv1v8Fj0Od2GXHJPH6LBdb90J4LHWvIsf3F-uRjOA
  priority: 102
  providerName: Elsevier
Title Anti-microbial Functions of Group 3 Innate Lymphoid Cells in Gut-Associated Lymphoid Tissues Are Regulated by G-Protein-Coupled Receptor 183
URI https://dx.doi.org/10.1016/j.celrep.2018.05.099
https://www.ncbi.nlm.nih.gov/pubmed/29949760
https://www.proquest.com/docview/2061413837
https://pubmed.ncbi.nlm.nih.gov/PMC6209103
https://doaj.org/article/17a683962d514b848b39055c6bff9d9d
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXxLtLoTISV6PEsZ34gKp2xbZFFCHUlfZmxY4DqYJTdrMS-x_40YydZEt4qFxySCZ27JnJfHYm3yD0iluIuiwTxNBYExZnOcm5hYOhNLKS2ijUjDz_IE7n7N2CL3bQULO1n8DVX5d2vp7UfFm__v5tcwgO_-Y6V8vYemk9-2ScBR5OKW-h2xCbUl_T4LwH_N272XOc-U_NlPpcLsrS4X-6fzQ0ileB1n8Utv6Epb9nV_4Srmb30b0eZ-KjzjAeoB3rHqI7XeXJzSP048i1FflaBRomkJtBeAsWiJsSh_0onOAz5wCJ4vcb0HhTFXhq63qFK4dP1i0Z9GqLa4GLoMUV9Grxp67IPVzWG3xCPno-iMqRKTRdw0mAq_YK1vsYnP0xms_eXkxPSV-YgRgueUtKz_FewtoyY7GUeVYYakHpzIhcMwshX-vATFimiY6pibVhlGXaRFpI6jHZE7TrGmf3ENYsMiKJCiOyDFZCBTRQwj2cF7HIS5NMUDJMvzI9a7kvnlGrIT3tUnVKU15pKuIKlDZBZHvXVcfacYP8sdfsVtZzbocTzfKz6l1YxWkuwLAFLQBk6gwGlMiIcyN0WcpCFhOUDnahevjSwRJoqrqh-5eDGSnwbv_JJne2Wa9ACOBT7HcRJuhpZ1bbhwQgwQBMRtDvyOBGoxhfcdWXwCAuqIeJybP_6Hcf3fVP6rPjqHiOdtvl2r4AHNbqg7B_AcezxfFBcLOfsR4ygA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRQguiH_Kr5HgaDVxYsc5cNgtdFu2u0LQlXozseMsQSGp2lSo78Db8IKMnaRL4LAS0l56sB3b8YxnPruTbxB6zQx43VBwoqmvSOiLhCTMwI-m1DMxNZ7LGXlyyidn4YcFW-yhX923MDassrX9jU131rotGbarOVzm-fAzhbMLeCcwroEnYha1kZXHZvsDzm3rt9N3IOQ3lI7fz0cT0qYWIJrFrCaZZSnP4HQkQj-OE5FqamDaoeaJCg04LaUct14WBcqn2lc6pKFQ2lM8phZVQL_X0HVAH5G1BtPF4e5ixxKc-C4Bo50gsTPsPtlzcWXaFCtjmTJ94ThDHevshUt0mQN6nvFf5Pt3AOcfHnF8B91uoSw-aFbrLtoz5T10o0luub2Pfh6UdU6-547pCdqNwYM6JcdVht2VFw7wtCwB7OLZFpSqylM8MkWxxnmJjzY16VTHpBcN5k5R1jCqwZ_MuU0-BtVqi4_IR0s5kZdkBF0XUAiI2CzraoVhIR-gsysR0EO0X1aleYywCj3NAy_VXAg4bKXQQQbPMJb6PMl0MEBBt_xSt8ToNj9HIbsIuG-yEZq0QpMekyC0ASK7p5YNMcgl7Q-tZHdtLa23K6hW57LVa-lHCYe9w2kKOFYJeKEg9hjTXGVZnMbpAEWdXsjeLoGu8kuGf9WpkQQDYv8VSkpTbdbQCBCaby8qBuhRo1a7SQJWCQGvejBuT-F6b9GvKfOvjqScU4tEgyf_PeOX6OZkfjKTs-np8VN0y9bYED3Kn6H9erUxzwEM1uqF23wYfbnq3f4byq9vZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-microbial+Functions+of+Group+3+Innate+Lymphoid+Cells+in+Gut-Associated+Lymphoid+Tissues+Are+Regulated+by+G-Protein-Coupled+Receptor+183&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chu%2C+Coco&rft.au=Moriyama%2C+Saya&rft.au=Li%2C+Zhi&rft.au=Zhou%2C+Lei&rft.date=2018-06-26&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=13&rft.spage=3750&rft_id=info:doi/10.1016%2Fj.celrep.2018.05.099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon