Anti-microbial Functions of Group 3 Innate Lymphoid Cells in Gut-Associated Lymphoid Tissues Are Regulated by G-Protein-Coupled Receptor 183
The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined...
Saved in:
Published in | Cell reports (Cambridge) Vol. 23; no. 13; pp. 3750 - 3758 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.06.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection.
[Display omitted]
•ILC3s from mouse mesenteric lymph nodes and mouse and human intestine express GPR183•GPR183 and its ligand 7α,25-OHC promote ILC3 migration in vitro•GPR183 and 7α,25-OHC regulate the accumulation and function of ILC3s in vivo•GPR183 is required for ILC3-mediated immunity against enteric bacterial infection
Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection. |
---|---|
AbstractList | The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. : Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection. Keywords: group 3 innate lymphoid cells, GPR183, mesenteric lymph node, intestine, accumulation, distribution, anti-microbial The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. [Display omitted] •ILC3s from mouse mesenteric lymph nodes and mouse and human intestine express GPR183•GPR183 and its ligand 7α,25-OHC promote ILC3 migration in vitro•GPR183 and 7α,25-OHC regulate the accumulation and function of ILC3s in vivo•GPR183 is required for ILC3-mediated immunity against enteric bacterial infection Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and anti-microbial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection. The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro , and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, thes1e results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. Chu et al. demonstrate that GPR183 and its ligand 7α,25-OHC regulate the accumulation, distribution, and antimicrobial and tissue-protective functions of group 3 innate lymphoid cells, thus revealing a critical role for this pathway in promoting innate immunity against enteric bacterial infection. The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection.The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection. |
Author | Moriyama, Saya Sonnenberg, Gregory F. Putzel, Gregory G. Klose, Christoph S.N. Withers, David R. Zhou, Lei Chu, Coco Li, Zhi Artis, David Flamar, Anne-Laure Moeller, Jesper B. |
AuthorAffiliation | 1 Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA 6 Lead Contact 3 Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA 4 Department of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark 2 Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK |
AuthorAffiliation_xml | – name: 1 Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – name: 4 Department of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark – name: 6 Lead Contact – name: 2 Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK – name: 3 Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA |
Author_xml | – sequence: 1 givenname: Coco surname: Chu fullname: Chu, Coco organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 2 givenname: Saya surname: Moriyama fullname: Moriyama, Saya organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 3 givenname: Zhi surname: Li fullname: Li, Zhi organization: Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK – sequence: 4 givenname: Lei surname: Zhou fullname: Zhou, Lei organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 5 givenname: Anne-Laure surname: Flamar fullname: Flamar, Anne-Laure organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 6 givenname: Christoph S.N. surname: Klose fullname: Klose, Christoph S.N. organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 7 givenname: Jesper B. surname: Moeller fullname: Moeller, Jesper B. organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 8 givenname: Gregory G. surname: Putzel fullname: Putzel, Gregory G. organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 9 givenname: David R. surname: Withers fullname: Withers, David R. organization: Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK – sequence: 10 givenname: Gregory F. surname: Sonnenberg fullname: Sonnenberg, Gregory F. organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA – sequence: 11 givenname: David surname: Artis fullname: Artis, David email: dartis@med.cornell.edu organization: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29949760$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFuEzEQhleoiJbSN0DIRy4bbK_Xu-aAFEU0RIoEqsrZsr2zqaONvdjeSnkHHhqnCaXlAL7YmvnnG2vmf12cOe-gKN4SPCOY8A_bmYEhwDijmLQzXM-wEC-KC0oJKQllzdmT93lxFeMW58MxIYK9Ks6pEEw0HF8UP-cu2XJnTfDaqgFdT84k611EvkfL4KcRVWjlnEqA1vvdeOdthxYwDBFZh5ZTKucxemNzvvsjuLUxThDRPAC6gc00PKT1Hi3Lb8EnsK5cZPSQgzdgYEw-INJWb4qXvRoiXJ3uy-L79efbxZdy_XW5WszXpalFncqeV5T1La1bRoRQbWco1NAyw5VmQDnXGlPaiL6pNKGGaMMoa7XBmos8lba6LFZHbufVVo7B7lTYS6-sfAj4sJEqJGsGkKRRvK0Ep11NmG4zphK4rg3XfS860WXWpyNrnPQOOgMuBTU8gz7POHsnN_5ecooFwVUGvD8Bgv-Rh5bkzsa83UE58FOUFHPCSNVWTZa-e9rrscnvdWYBOwryOmMM0D9KCJYH48itPBpHHowjcS2zcXLZx7_KjE3qYIP8Yzv8r_g0AMgbu7cQZDQWnIHOBjApj9T-G_ALq2jg8A |
CitedBy_id | crossref_primary_10_1080_08830185_2021_1895145 crossref_primary_10_1111_lam_13629 crossref_primary_10_1038_s41575_024_00906_3 crossref_primary_10_1016_j_micpath_2020_104234 crossref_primary_10_1111_joim_12855 crossref_primary_10_1002_eji_202350501 crossref_primary_10_1016_j_str_2022_04_006 crossref_primary_10_3389_fimmu_2019_02010 crossref_primary_10_4049_jimmunol_2200273 crossref_primary_10_1038_s41423_021_00689_6 crossref_primary_10_1111_bph_15395 crossref_primary_10_1111_imr_12743 crossref_primary_10_3389_fimmu_2019_00676 crossref_primary_10_3389_fimmu_2020_580467 crossref_primary_10_1016_j_immuni_2021_09_004 crossref_primary_10_1161_CIRCRESAHA_124_324722 crossref_primary_10_3389_fimmu_2020_01062 crossref_primary_10_1038_s41422_020_0323_8 crossref_primary_10_3389_fimmu_2021_748851 crossref_primary_10_1016_j_bcdf_2020_100210 crossref_primary_10_1038_s41385_020_0265_y crossref_primary_10_1016_j_celrep_2023_113425 crossref_primary_10_3389_fimmu_2023_1171680 crossref_primary_10_1016_j_immuni_2023_05_001 crossref_primary_10_3390_microorganisms8091342 crossref_primary_10_1039_D2FO02598A crossref_primary_10_3389_fimmu_2020_00116 crossref_primary_10_1186_s12866_024_03195_7 crossref_primary_10_1007_s11655_022_3317_1 crossref_primary_10_1016_j_lfs_2020_118504 crossref_primary_10_1038_s41385_022_00538_3 crossref_primary_10_1016_j_ibneur_2024_09_004 crossref_primary_10_1016_j_it_2020_06_009 crossref_primary_10_3389_fendo_2022_855197 crossref_primary_10_4049_jimmunol_2100799 crossref_primary_10_1038_s41577_019_0194_8 crossref_primary_10_1016_j_celrep_2022_110530 crossref_primary_10_1111_imm_13640 crossref_primary_10_3389_fcimb_2021_733564 crossref_primary_10_1084_jem_20190835 crossref_primary_10_1016_j_mucimm_2025_01_012 crossref_primary_10_1016_j_bcp_2019_113672 crossref_primary_10_1002_ctd2_24 crossref_primary_10_3389_fimmu_2023_1271699 crossref_primary_10_1093_ecco_jcc_jjac020 crossref_primary_10_1210_jendso_bvae188 crossref_primary_10_1016_j_immuni_2020_01_005 crossref_primary_10_1016_j_immuni_2021_05_007 crossref_primary_10_3390_genes12050705 crossref_primary_10_1016_j_mucimm_2023_07_001 crossref_primary_10_12688_f1000research_15500_1 crossref_primary_10_1016_j_immuni_2024_04_001 crossref_primary_10_1016_j_fmre_2023_10_021 crossref_primary_10_1038_s41385_019_0140_x crossref_primary_10_3390_ijms23042311 crossref_primary_10_1007_s00281_024_01000_1 crossref_primary_10_1093_infdis_jiac102 crossref_primary_10_1111_bph_15311 crossref_primary_10_1111_imr_13047 crossref_primary_10_3390_ijms20184522 crossref_primary_10_1016_j_mib_2021_06_005 crossref_primary_10_3389_fimmu_2022_1034648 crossref_primary_10_1084_jem_20180871 crossref_primary_10_12688_f1000research_25234_1 crossref_primary_10_3389_fimmu_2023_1134636 crossref_primary_10_3390_cells11020201 |
Cites_doi | 10.1038/mi.2012.72 10.1038/ni.3482 10.1016/j.immuni.2012.06.015 10.2183/pjab.92.423 10.1038/nri2653 10.1016/j.immuni.2008.11.001 10.1038/ni.2002 10.1016/j.immuni.2014.10.007 10.1038/nri3365 10.1016/j.cell.2017.02.021 10.1038/ni.3332 10.7554/eLife.00757 10.1016/j.immuni.2009.06.016 10.1038/nature08226 10.1038/nature14189 10.1093/infdis/jiu126 10.1016/j.immuni.2010.12.009 10.1002/eji.201343782 10.1016/j.immuni.2015.06.009 10.1016/j.immuni.2014.09.005 10.1038/ni.3489 10.1126/science.aaa6566 10.1038/nature10226 10.1038/ni.2555 10.1016/j.ceb.2015.05.003 10.4049/jimmunol.1202924 10.1038/nature10280 10.1038/nm1720 10.1126/science.aaa4812 10.1038/nature17947 10.1038/ncomms6862 10.1016/j.immuni.2017.11.020 10.1038/nature12240 10.1084/jem.20151403 10.1038/nature11813 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2018.05.099 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 3758 |
ExternalDocumentID | oai_doaj_org_article_17a683962d514b848b39055c6bff9d9d PMC6209103 29949760 10_1016_j_celrep_2018_05_099 S2211124718308957 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK126871 – fundername: NIAID NIH HHS grantid: R01 AI097333 – fundername: NIAID NIH HHS grantid: R01 AI095466 – fundername: Wellcome Trust grantid: 110199/Z/15/Z – fundername: NIDDK NIH HHS grantid: R21 DK110262 – fundername: NIH HHS grantid: DP5 OD012116 – fundername: NIAID NIH HHS grantid: R01 AI123368 – fundername: NIAID NIH HHS grantid: U01 AI095608 – fundername: NIAID NIH HHS grantid: R01 AI074878 – fundername: NIAID NIH HHS grantid: P01 AI106697 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-f6324f82584199a8dc2e5e84c6ab4e266bb02279f73b12c1bc4248bc0b6922183 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:27:33 EDT 2025 Thu Aug 21 18:15:58 EDT 2025 Fri Jul 11 04:55:25 EDT 2025 Mon Jul 21 06:03:20 EDT 2025 Tue Jul 01 02:58:56 EDT 2025 Thu Apr 24 23:09:34 EDT 2025 Tue May 16 22:30:58 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | mesenteric lymph node intestine accumulation GPR183 group 3 innate lymphoid cells distribution anti-microbial |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-f6324f82584199a8dc2e5e84c6ab4e266bb02279f73b12c1bc4248bc0b6922183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2018.05.099 |
PMID | 29949760 |
PQID | 2061413837 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17a683962d514b848b39055c6bff9d9d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6209103 proquest_miscellaneous_2061413837 pubmed_primary_29949760 crossref_primary_10_1016_j_celrep_2018_05_099 crossref_citationtrail_10_1016_j_celrep_2018_05_099 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_05_099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-26 |
PublicationDateYYYYMMDD | 2018-06-26 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Fernandes, Pires, Ferreira, Foxall, Rino, Santos, Correia, Poças, Veiga-Fernandes, Sousa (bib5) 2014; 210 Eberl, Colonna, Di Santo, McKenzie (bib3) 2015; 348 Yi, Wang, Kelly, An, Xu, Sailer, Gustafsson, Russell, Cyster (bib35) 2012; 37 Yi, Cyster (bib34) 2013; 2 Gatto, Paus, Basten, Mackay, Brink (bib6) 2009; 31 Kim, Taparowsky, Kim (bib14) 2015; 43 Li, Lu, Yi, Cyster (bib18) 2016; 533 Artis, Spits (bib1) 2015; 517 Klose, Kiss, Schwierzeck, Ebert, Hoyler, d’Hargues, Göppert, Croxford, Waisman, Tanriver, Diefenbach (bib16) 2013; 494 Okumura, Takeda (bib23) 2016; 92 Satoh-Takayama, Vosshenrich, Lesjean-Pottier, Sawa, Lochner, Rattis, Mention, Thiam, Cerf-Bensussan, Mandelboim (bib26) 2008; 29 Song, Lee, Gilfillan, Robinette, Newberry, Stappenbeck, Mack, Cella, Colonna (bib29) 2015; 212 Zheng, Valdez, Danilenko, Hu, Sa, Gong, Abbas, Modrusan, Ghilardi, de Sauvage, Ouyang (bib36) 2008; 14 Turner (bib33) 2009; 9 Pereira, Kelly, Xu, Cyster (bib24) 2009; 460 Sawa, Lochner, Satoh-Takayama, Dulauroy, Bérard, Kleinschek, Cua, Di Santo, Eberl (bib28) 2011; 12 Hepworth, Fung, Masur, Kelsen, McConnell, Dubrot, Withers, Hugues, Farrar, Reith (bib11) 2015; 348 Klose, Artis (bib15) 2016; 17 Kurashima, Goto, Kiyono (bib17) 2013; 43 Rankin, Girard-Madoux, Seillet, Mielke, Kerdiles, Fenis, Wieduwild, Putoczki, Mondot, Lantz (bib25) 2016; 17 Diefenbach, Colonna, Koyasu (bib2) 2014; 41 Satoh-Takayama, Serafini, Verrier, Rekiki, Renauld, Frankel, Di Santo (bib27) 2014; 41 Emgård, Kammoun, García-Cassani, Chesné, Parigi, Jacob, Cheng, Evren, Das, Czarnewski (bib4) 2018; 48 Lian, Luster (bib19) 2015; 36 Hannedouche, Zhang, Yi, Shen, Nguyen, Pereira, Guerini, Baumgarten, Roggo, Wen (bib9) 2011; 475 Lim, Li, Lopez-Lastra, Stadhouders, Paul, Casrouge, Serafini, Puel, Bustamante, Surace (bib20) 2017; 168 Ivanov, Diehl, Littman (bib12) 2006; 308 Sonnenberg, Monticelli, Elloso, Fouser, Artis (bib30) 2011; 34 Spits, Bernink, Lanier (bib32) 2016; 17 Liu, Yang, Wu, Kuei, Mani, Zhang, Yu, Sutton, Qin, Banie (bib21) 2011; 475 Hepworth, Monticelli, Fung, Ziegler, Grunberg, Sinha, Mantegazza, Ma, Crawford, Angelosanto (bib10) 2013; 498 Mackley, Houston, Marriott, Halford, Lucas, Cerovic, Filbey, Maizels, Hepworth, Sonnenberg (bib22) 2015; 6 Spits, Artis, Colonna, Diefenbach, Di Santo, Eberl, Koyasu, Locksley, McKenzie, Mebius (bib31) 2013; 13 Gladiator, Wangler, Trautwein-Weidner, LeibundGut-Landmann (bib8) 2013; 190 Kim, Nazli, Rojas, Chege, Alidina, Huibner, Mujib, Benko, Kovacs, Shin (bib13) 2012; 5 Gatto, Wood, Caminschi, Murphy-Durland, Schofield, Christ, Karupiah, Brink (bib7) 2013; 14 Zheng (10.1016/j.celrep.2018.05.099_bib36) 2008; 14 Klose (10.1016/j.celrep.2018.05.099_bib15) 2016; 17 Yi (10.1016/j.celrep.2018.05.099_bib34) 2013; 2 Song (10.1016/j.celrep.2018.05.099_bib29) 2015; 212 Spits (10.1016/j.celrep.2018.05.099_bib31) 2013; 13 Yi (10.1016/j.celrep.2018.05.099_bib35) 2012; 37 Hannedouche (10.1016/j.celrep.2018.05.099_bib9) 2011; 475 Lian (10.1016/j.celrep.2018.05.099_bib19) 2015; 36 Okumura (10.1016/j.celrep.2018.05.099_bib23) 2016; 92 Emgård (10.1016/j.celrep.2018.05.099_bib4) 2018; 48 Liu (10.1016/j.celrep.2018.05.099_bib21) 2011; 475 Lim (10.1016/j.celrep.2018.05.099_bib20) 2017; 168 Spits (10.1016/j.celrep.2018.05.099_bib32) 2016; 17 Fernandes (10.1016/j.celrep.2018.05.099_bib5) 2014; 210 Kim (10.1016/j.celrep.2018.05.099_bib14) 2015; 43 Eberl (10.1016/j.celrep.2018.05.099_bib3) 2015; 348 Ivanov (10.1016/j.celrep.2018.05.099_bib12) 2006; 308 Pereira (10.1016/j.celrep.2018.05.099_bib24) 2009; 460 Hepworth (10.1016/j.celrep.2018.05.099_bib10) 2013; 498 Rankin (10.1016/j.celrep.2018.05.099_bib25) 2016; 17 Artis (10.1016/j.celrep.2018.05.099_bib1) 2015; 517 Gatto (10.1016/j.celrep.2018.05.099_bib7) 2013; 14 Kim (10.1016/j.celrep.2018.05.099_bib13) 2012; 5 Satoh-Takayama (10.1016/j.celrep.2018.05.099_bib27) 2014; 41 Sonnenberg (10.1016/j.celrep.2018.05.099_bib30) 2011; 34 Sawa (10.1016/j.celrep.2018.05.099_bib28) 2011; 12 Li (10.1016/j.celrep.2018.05.099_bib18) 2016; 533 Diefenbach (10.1016/j.celrep.2018.05.099_bib2) 2014; 41 Gatto (10.1016/j.celrep.2018.05.099_bib6) 2009; 31 Mackley (10.1016/j.celrep.2018.05.099_bib22) 2015; 6 Hepworth (10.1016/j.celrep.2018.05.099_bib11) 2015; 348 Kurashima (10.1016/j.celrep.2018.05.099_bib17) 2013; 43 Turner (10.1016/j.celrep.2018.05.099_bib33) 2009; 9 Satoh-Takayama (10.1016/j.celrep.2018.05.099_bib26) 2008; 29 Gladiator (10.1016/j.celrep.2018.05.099_bib8) 2013; 190 Klose (10.1016/j.celrep.2018.05.099_bib16) 2013; 494 |
References_xml | – volume: 48 start-page: 120 year: 2018 end-page: 132.e8 ident: bib4 article-title: Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation publication-title: Immunity – volume: 36 start-page: 1 year: 2015 end-page: 6 ident: bib19 article-title: Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses publication-title: Curr. Opin. Cell Biol. – volume: 2 start-page: e00757 year: 2013 ident: bib34 article-title: EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture publication-title: eLife – volume: 533 start-page: 110 year: 2016 end-page: 114 ident: bib18 article-title: EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells publication-title: Nature – volume: 29 start-page: 958 year: 2008 end-page: 970 ident: bib26 article-title: Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense publication-title: Immunity – volume: 17 start-page: 758 year: 2016 end-page: 764 ident: bib32 article-title: NK cells and type 1 innate lymphoid cells: partners in host defense publication-title: Nat. Immunol. – volume: 475 start-page: 519 year: 2011 end-page: 523 ident: bib21 article-title: Oxysterols direct B-cell migration through EBI2 publication-title: Nature – volume: 308 start-page: 59 year: 2006 end-page: 82 ident: bib12 article-title: Lymphoid tissue inducer cells in intestinal immunity publication-title: Curr. Top. Microbiol. Immunol. – volume: 212 start-page: 1869 year: 2015 end-page: 1882 ident: bib29 article-title: Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation publication-title: J. Exp. Med. – volume: 37 start-page: 535 year: 2012 end-page: 548 ident: bib35 article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses publication-title: Immunity – volume: 475 start-page: 524 year: 2011 end-page: 527 ident: bib9 article-title: Oxysterols direct immune cell migration via EBI2 publication-title: Nature – volume: 6 start-page: 5862 year: 2015 ident: bib22 article-title: CCR7-dependent trafficking of RORγ publication-title: Nat. Commun. – volume: 498 start-page: 113 year: 2013 end-page: 117 ident: bib10 article-title: Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria publication-title: Nature – volume: 517 start-page: 293 year: 2015 end-page: 301 ident: bib1 article-title: The biology of innate lymphoid cells publication-title: Nature – volume: 17 start-page: 765 year: 2016 end-page: 774 ident: bib15 article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis publication-title: Nat. Immunol. – volume: 190 start-page: 521 year: 2013 end-page: 525 ident: bib8 article-title: Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection publication-title: J. Immunol. – volume: 9 start-page: 799 year: 2009 end-page: 809 ident: bib33 article-title: Intestinal mucosal barrier function in health and disease publication-title: Nat. Rev. Immunol. – volume: 494 start-page: 261 year: 2013 end-page: 265 ident: bib16 article-title: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells publication-title: Nature – volume: 43 start-page: 3108 year: 2013 end-page: 3115 ident: bib17 article-title: Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation publication-title: Eur. J. Immunol. – volume: 348 start-page: 1031 year: 2015 end-page: 1035 ident: bib11 article-title: Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4 publication-title: Science – volume: 168 start-page: 1086 year: 2017 end-page: 1100.e10 ident: bib20 article-title: ). Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation publication-title: Cell – volume: 31 start-page: 259 year: 2009 end-page: 269 ident: bib6 article-title: Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses publication-title: Immunity – volume: 43 start-page: 107 year: 2015 end-page: 119 ident: bib14 article-title: Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut publication-title: Immunity – volume: 13 start-page: 145 year: 2013 end-page: 149 ident: bib31 article-title: Innate lymphoid cells--a proposal for uniform nomenclature publication-title: Nat. Rev. Immunol. – volume: 210 start-page: 630 year: 2014 end-page: 640 ident: bib5 article-title: Enteric mucosa integrity in the presence of a preserved innate interleukin 22 compartment in HIV type 1-treated individuals publication-title: J. Infect. Dis. – volume: 14 start-page: 282 year: 2008 end-page: 289 ident: bib36 article-title: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens publication-title: Nat. Med. – volume: 41 start-page: 776 year: 2014 end-page: 788 ident: bib27 article-title: The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells publication-title: Immunity – volume: 460 start-page: 1122 year: 2009 end-page: 1126 ident: bib24 article-title: EBI2 mediates B cell segregation between the outer and centre follicle publication-title: Nature – volume: 348 start-page: aaa6566 year: 2015 ident: bib3 article-title: Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology publication-title: Science – volume: 41 start-page: 354 year: 2014 end-page: 365 ident: bib2 article-title: Development, differentiation, and diversity of innate lymphoid cells publication-title: Immunity – volume: 34 start-page: 122 year: 2011 end-page: 134 ident: bib30 article-title: CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut publication-title: Immunity – volume: 92 start-page: 423 year: 2016 end-page: 435 ident: bib23 article-title: Maintenance of gut homeostasis by the mucosal immune system publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. – volume: 5 start-page: 670 year: 2012 end-page: 680 ident: bib13 article-title: A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis publication-title: Mucosal Immunol. – volume: 14 start-page: 446 year: 2013 end-page: 453 ident: bib7 article-title: The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells publication-title: Nat. Immunol. – volume: 17 start-page: 179 year: 2016 end-page: 186 ident: bib25 article-title: Complementarity and redundancy of IL-22-producing innate lymphoid cells publication-title: Nat. Immunol. – volume: 12 start-page: 320 year: 2011 end-page: 326 ident: bib28 article-title: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota publication-title: Nat. Immunol. – volume: 5 start-page: 670 year: 2012 ident: 10.1016/j.celrep.2018.05.099_bib13 article-title: A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis publication-title: Mucosal Immunol. doi: 10.1038/mi.2012.72 – volume: 17 start-page: 758 year: 2016 ident: 10.1016/j.celrep.2018.05.099_bib32 article-title: NK cells and type 1 innate lymphoid cells: partners in host defense publication-title: Nat. Immunol. doi: 10.1038/ni.3482 – volume: 37 start-page: 535 year: 2012 ident: 10.1016/j.celrep.2018.05.099_bib35 article-title: Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses publication-title: Immunity doi: 10.1016/j.immuni.2012.06.015 – volume: 92 start-page: 423 year: 2016 ident: 10.1016/j.celrep.2018.05.099_bib23 article-title: Maintenance of gut homeostasis by the mucosal immune system publication-title: Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. doi: 10.2183/pjab.92.423 – volume: 9 start-page: 799 year: 2009 ident: 10.1016/j.celrep.2018.05.099_bib33 article-title: Intestinal mucosal barrier function in health and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2653 – volume: 29 start-page: 958 year: 2008 ident: 10.1016/j.celrep.2018.05.099_bib26 article-title: Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense publication-title: Immunity doi: 10.1016/j.immuni.2008.11.001 – volume: 12 start-page: 320 year: 2011 ident: 10.1016/j.celrep.2018.05.099_bib28 article-title: RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota publication-title: Nat. Immunol. doi: 10.1038/ni.2002 – volume: 41 start-page: 776 year: 2014 ident: 10.1016/j.celrep.2018.05.099_bib27 article-title: The chemokine receptor CXCR6 controls the functional topography of interleukin-22 producing intestinal innate lymphoid cells publication-title: Immunity doi: 10.1016/j.immuni.2014.10.007 – volume: 13 start-page: 145 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib31 article-title: Innate lymphoid cells--a proposal for uniform nomenclature publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3365 – volume: 168 start-page: 1086 year: 2017 ident: 10.1016/j.celrep.2018.05.099_bib20 article-title: ). Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation publication-title: Cell doi: 10.1016/j.cell.2017.02.021 – volume: 17 start-page: 179 year: 2016 ident: 10.1016/j.celrep.2018.05.099_bib25 article-title: Complementarity and redundancy of IL-22-producing innate lymphoid cells publication-title: Nat. Immunol. doi: 10.1038/ni.3332 – volume: 2 start-page: e00757 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib34 article-title: EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture publication-title: eLife doi: 10.7554/eLife.00757 – volume: 31 start-page: 259 year: 2009 ident: 10.1016/j.celrep.2018.05.099_bib6 article-title: Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses publication-title: Immunity doi: 10.1016/j.immuni.2009.06.016 – volume: 460 start-page: 1122 year: 2009 ident: 10.1016/j.celrep.2018.05.099_bib24 article-title: EBI2 mediates B cell segregation between the outer and centre follicle publication-title: Nature doi: 10.1038/nature08226 – volume: 517 start-page: 293 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib1 article-title: The biology of innate lymphoid cells publication-title: Nature doi: 10.1038/nature14189 – volume: 210 start-page: 630 year: 2014 ident: 10.1016/j.celrep.2018.05.099_bib5 article-title: Enteric mucosa integrity in the presence of a preserved innate interleukin 22 compartment in HIV type 1-treated individuals publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiu126 – volume: 34 start-page: 122 year: 2011 ident: 10.1016/j.celrep.2018.05.099_bib30 article-title: CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut publication-title: Immunity doi: 10.1016/j.immuni.2010.12.009 – volume: 43 start-page: 3108 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib17 article-title: Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation publication-title: Eur. J. Immunol. doi: 10.1002/eji.201343782 – volume: 43 start-page: 107 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib14 article-title: Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut publication-title: Immunity doi: 10.1016/j.immuni.2015.06.009 – volume: 41 start-page: 354 year: 2014 ident: 10.1016/j.celrep.2018.05.099_bib2 article-title: Development, differentiation, and diversity of innate lymphoid cells publication-title: Immunity doi: 10.1016/j.immuni.2014.09.005 – volume: 17 start-page: 765 year: 2016 ident: 10.1016/j.celrep.2018.05.099_bib15 article-title: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis publication-title: Nat. Immunol. doi: 10.1038/ni.3489 – volume: 348 start-page: aaa6566 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib3 article-title: Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology publication-title: Science doi: 10.1126/science.aaa6566 – volume: 475 start-page: 519 year: 2011 ident: 10.1016/j.celrep.2018.05.099_bib21 article-title: Oxysterols direct B-cell migration through EBI2 publication-title: Nature doi: 10.1038/nature10226 – volume: 14 start-page: 446 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib7 article-title: The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells publication-title: Nat. Immunol. doi: 10.1038/ni.2555 – volume: 36 start-page: 1 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib19 article-title: Chemokine-guided cell positioning in the lymph node orchestrates the generation of adaptive immune responses publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2015.05.003 – volume: 190 start-page: 521 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib8 article-title: Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1202924 – volume: 475 start-page: 524 year: 2011 ident: 10.1016/j.celrep.2018.05.099_bib9 article-title: Oxysterols direct immune cell migration via EBI2 publication-title: Nature doi: 10.1038/nature10280 – volume: 14 start-page: 282 year: 2008 ident: 10.1016/j.celrep.2018.05.099_bib36 article-title: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens publication-title: Nat. Med. doi: 10.1038/nm1720 – volume: 348 start-page: 1031 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib11 article-title: Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells publication-title: Science doi: 10.1126/science.aaa4812 – volume: 533 start-page: 110 year: 2016 ident: 10.1016/j.celrep.2018.05.099_bib18 article-title: EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells publication-title: Nature doi: 10.1038/nature17947 – volume: 6 start-page: 5862 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib22 article-title: CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes publication-title: Nat. Commun. doi: 10.1038/ncomms6862 – volume: 308 start-page: 59 year: 2006 ident: 10.1016/j.celrep.2018.05.099_bib12 article-title: Lymphoid tissue inducer cells in intestinal immunity publication-title: Curr. Top. Microbiol. Immunol. – volume: 48 start-page: 120 year: 2018 ident: 10.1016/j.celrep.2018.05.099_bib4 article-title: Oxysterol Sensing through the Receptor GPR183 Promotes the Lymphoid-Tissue-Inducing Function of Innate Lymphoid Cells and Colonic Inflammation publication-title: Immunity doi: 10.1016/j.immuni.2017.11.020 – volume: 498 start-page: 113 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib10 article-title: Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria publication-title: Nature doi: 10.1038/nature12240 – volume: 212 start-page: 1869 year: 2015 ident: 10.1016/j.celrep.2018.05.099_bib29 article-title: Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation publication-title: J. Exp. Med. doi: 10.1084/jem.20151403 – volume: 494 start-page: 261 year: 2013 ident: 10.1016/j.celrep.2018.05.099_bib16 article-title: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells publication-title: Nature doi: 10.1038/nature11813 |
SSID | ssj0000601194 |
Score | 2.4679062 |
Snippet | The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3750 |
SubjectTerms | accumulation Animals anti-microbial Cell Movement Citrobacter rodentium - pathogenicity Cytochrome P450 Family 7 - metabolism distribution Enterobacteriaceae Infections - pathology Enterobacteriaceae Infections - prevention & control Enterobacteriaceae Infections - veterinary GPR183 group 3 innate lymphoid cells Humans Hydroxycholesterols - chemistry Hydroxycholesterols - metabolism Immunity, Innate Intestinal Mucosa - cytology Intestinal Mucosa - metabolism intestine Ligands Lymphoid Tissue - cytology Lymphoid Tissue - metabolism mesenteric lymph node Mice Mice, Inbred C57BL Mice, Knockout Mucous Membrane - cytology Mucous Membrane - metabolism Receptors, G-Protein-Coupled - antagonists & inhibitors Receptors, G-Protein-Coupled - genetics Receptors, G-Protein-Coupled - metabolism Steroid Hydroxylases - deficiency Steroid Hydroxylases - genetics Steroid Hydroxylases - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEG8WSmUkrhaxY3udY7vqtiBACLVSb1b8iAhKvVU3e9j_wI_u2E62u3DYC5cckrEde8aZb5LJNwh9FB68LleSWEYN4VTVpBYeDpaxwlfMF6lm5Lfv8uKKf7kW11ulvmJOWKYHzgv3iU5rCd1J5sC1G8WVgShdCCtN01SucvHpCz5vK5jKz-DIZRY_KTMWc7YYn47_zaXkLuu7Ox_pKqlKxJ2J-vXBLyX6_h339C_8_DuLcsstzZ-iJwOexCd5Hs_QIx-eo8NcYXL9Av05CX1LbtpEtwRyc3BjydLwosHpvRMu8ecQAHHir2vQ7KJ1eOa7bonbgM9XPRn1592DwGXS1hJG9fhnLmYPl80an5MfkfehDWQGXXdwEmCpv4W4HsOmfomu5meXswsyFGAgVlSiJ03kcm8ghlScVlWtnGUelMutrA334NqNSQyEzbQ0lFlqLGegIFsYWbGIvV6hg7AI_g3ChhdWloWzUimIeBx00EAbIRyVdWPLCSrH5dd2YCePRTI6Paah_dZZaToqTRdCg9ImiGxa3WZ2jj3yp1GzG9nIrZ1OgMXpweL0PouboOloF3qAKRl-QFftnuE_jGakYRfHTzN18IvVEoQAJtH4tmCCXmez2twkAAYOoLGAcXcMbmcWu1dC-ysxhcu4NYry7f-Y9jv0OE4lpskxeYQO-ruVfw-ArDfHae_dA_uxMbo priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEJTXQouMxNXa2LG9zrFdsS0IEIJW2psVOw6kCs5qN3vY_9AfzdhJtk05VOISKc74Ec_E89mxv0Hog3DgdbmSxDJqCKcqJ7lwcLGMJS5jLokxI79-kxdX_PNSLA_QfDgLE7ZV9mN_N6bH0bpPmfa9OV1V1fQng7kLeCcYXNNEZSKcKE-5iof4lmf7dZbAN0JjPMQgT0KG4QRd3OZlXb12gbiSqkjhGUlgbz1UJPIfOap_gej9_ZR3HNTiKXrSI0t82jX-GTpw_gg96mJN7p6jm1PfVuRPFYmXQG4BDi3aHG5KHFegcIo_eQ_YE3_ZgY6bqsBzV9cbXHl8vm3JoElX3ApcRr1toFaHf3Rh7eGx2eFz8j0wQFSezKHoGhIBoLoVzPAx9OQLdLX4eDm_IH0oBmJFJlpSBlb3EmaTitMsy1VhmQM1cytzwx04eWMiF2E5Sw1llhrLGVfGJkZmLKCwl-jQN969RtjwxMo0KaxUCuY-BRRQQh4hCirz0qYTlA7dr23PUx7CZdR62JB2rTul6aA0nQgNSpsgss-16ng6HpA_C5rdywaW7ZjQrH_p3sw0neUSTFmyAmClUfBCaZYIYaUpy6zIigmaDXahR0YLRVUPVP9-MCMN33P4SZN712w3IASAiYZ1gwl61ZnVvpEAHTjAxwTqHRnc6C3GT3z1O3KGSxaAYfrmv1v8Fj0Od2GXHJPH6LBdb90J4LHWvIsf3F-uRjOA priority: 102 providerName: Elsevier |
Title | Anti-microbial Functions of Group 3 Innate Lymphoid Cells in Gut-Associated Lymphoid Tissues Are Regulated by G-Protein-Coupled Receptor 183 |
URI | https://dx.doi.org/10.1016/j.celrep.2018.05.099 https://www.ncbi.nlm.nih.gov/pubmed/29949760 https://www.proquest.com/docview/2061413837 https://pubmed.ncbi.nlm.nih.gov/PMC6209103 https://doaj.org/article/17a683962d514b848b39055c6bff9d9d |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKERIXxLtLoTISV6PEsZ34gKp2xbZFFCHUlfZmxY4DqYJTdrMS-x_40YydZEt4qFxySCZ27JnJfHYm3yD0iluIuiwTxNBYExZnOcm5hYOhNLKS2ijUjDz_IE7n7N2CL3bQULO1n8DVX5d2vp7UfFm__v5tcwgO_-Y6V8vYemk9-2ScBR5OKW-h2xCbUl_T4LwH_N272XOc-U_NlPpcLsrS4X-6fzQ0ileB1n8Utv6Epb9nV_4Srmb30b0eZ-KjzjAeoB3rHqI7XeXJzSP048i1FflaBRomkJtBeAsWiJsSh_0onOAz5wCJ4vcb0HhTFXhq63qFK4dP1i0Z9GqLa4GLoMUV9Grxp67IPVzWG3xCPno-iMqRKTRdw0mAq_YK1vsYnP0xms_eXkxPSV-YgRgueUtKz_FewtoyY7GUeVYYakHpzIhcMwshX-vATFimiY6pibVhlGXaRFpI6jHZE7TrGmf3ENYsMiKJCiOyDFZCBTRQwj2cF7HIS5NMUDJMvzI9a7kvnlGrIT3tUnVKU15pKuIKlDZBZHvXVcfacYP8sdfsVtZzbocTzfKz6l1YxWkuwLAFLQBk6gwGlMiIcyN0WcpCFhOUDnahevjSwRJoqrqh-5eDGSnwbv_JJne2Wa9ACOBT7HcRJuhpZ1bbhwQgwQBMRtDvyOBGoxhfcdWXwCAuqIeJybP_6Hcf3fVP6rPjqHiOdtvl2r4AHNbqg7B_AcezxfFBcLOfsR4ygA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELaWRQguiH_Kr5HgaDVxYsc5cNgtdFu2u0LQlXozseMsQSGp2lSo78Db8IKMnaRL4LAS0l56sB3b8YxnPruTbxB6zQx43VBwoqmvSOiLhCTMwI-m1DMxNZ7LGXlyyidn4YcFW-yhX923MDassrX9jU131rotGbarOVzm-fAzhbMLeCcwroEnYha1kZXHZvsDzm3rt9N3IOQ3lI7fz0cT0qYWIJrFrCaZZSnP4HQkQj-OE5FqamDaoeaJCg04LaUct14WBcqn2lc6pKFQ2lM8phZVQL_X0HVAH5G1BtPF4e5ixxKc-C4Bo50gsTPsPtlzcWXaFCtjmTJ94ThDHevshUt0mQN6nvFf5Pt3AOcfHnF8B91uoSw-aFbrLtoz5T10o0luub2Pfh6UdU6-547pCdqNwYM6JcdVht2VFw7wtCwB7OLZFpSqylM8MkWxxnmJjzY16VTHpBcN5k5R1jCqwZ_MuU0-BtVqi4_IR0s5kZdkBF0XUAiI2CzraoVhIR-gsysR0EO0X1aleYywCj3NAy_VXAg4bKXQQQbPMJb6PMl0MEBBt_xSt8ToNj9HIbsIuG-yEZq0QpMekyC0ASK7p5YNMcgl7Q-tZHdtLa23K6hW57LVa-lHCYe9w2kKOFYJeKEg9hjTXGVZnMbpAEWdXsjeLoGu8kuGf9WpkQQDYv8VSkpTbdbQCBCaby8qBuhRo1a7SQJWCQGvejBuT-F6b9GvKfOvjqScU4tEgyf_PeOX6OZkfjKTs-np8VN0y9bYED3Kn6H9erUxzwEM1uqF23wYfbnq3f4byq9vZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-microbial+Functions+of+Group+3+Innate+Lymphoid+Cells+in+Gut-Associated+Lymphoid+Tissues+Are+Regulated+by+G-Protein-Coupled+Receptor+183&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chu%2C+Coco&rft.au=Moriyama%2C+Saya&rft.au=Li%2C+Zhi&rft.au=Zhou%2C+Lei&rft.date=2018-06-26&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=23&rft.issue=13&rft.spage=3750&rft_id=info:doi/10.1016%2Fj.celrep.2018.05.099&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |