Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain

Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rh...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 29; no. 2; pp. 332 - 346.e5
Main Authors Wilson, Torri D., Valdivia, Spring, Khan, Aleisha, Ahn, Hye-Sook, Adke, Anisha P., Martinez Gonzalez, Santiago, Sugimura, Yae K., Carrasquillo, Yarimar
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.10.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. [Display omitted] •The CeA can both attenuate and exacerbate pain-related behaviors in mice•Injury induces cell-type-specific bidirectional changes in excitability in the CeA•Increased firing in CeA-PKCδ neurons drives amplification of pain-related responses•Activation of CeA-Som neurons attenuates injury-induced pain-related behaviors The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury.
AbstractList Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury.
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. [Display omitted] •The CeA can both attenuate and exacerbate pain-related behaviors in mice•Injury induces cell-type-specific bidirectional changes in excitability in the CeA•Increased firing in CeA-PKCδ neurons drives amplification of pain-related responses•Activation of CeA-Som neurons attenuates injury-induced pain-related behaviors The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury.
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. : The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury. Keywords: pain, central amygdala, intrinsic excitability, somatostatin, protein kinase C delta, parabrachial nucleus, amygdala circuit, pain pathways, chemogenetics
Author Khan, Aleisha
Sugimura, Yae K.
Wilson, Torri D.
Martinez Gonzalez, Santiago
Valdivia, Spring
Carrasquillo, Yarimar
Ahn, Hye-Sook
Adke, Anisha P.
AuthorAffiliation 3 Lead Contact
1 National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
2 These authors contributed equally
AuthorAffiliation_xml – name: 2 These authors contributed equally
– name: 3 Lead Contact
– name: 1 National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
Author_xml – sequence: 1
  givenname: Torri D.
  surname: Wilson
  fullname: Wilson, Torri D.
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 2
  givenname: Spring
  surname: Valdivia
  fullname: Valdivia, Spring
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 3
  givenname: Aleisha
  surname: Khan
  fullname: Khan, Aleisha
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 4
  givenname: Hye-Sook
  surname: Ahn
  fullname: Ahn, Hye-Sook
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 5
  givenname: Anisha P.
  surname: Adke
  fullname: Adke, Anisha P.
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 6
  givenname: Santiago
  surname: Martinez Gonzalez
  fullname: Martinez Gonzalez, Santiago
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 7
  givenname: Yae K.
  surname: Sugimura
  fullname: Sugimura, Yae K.
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
– sequence: 8
  givenname: Yarimar
  surname: Carrasquillo
  fullname: Carrasquillo, Yarimar
  email: yarimar.carrasquillo@nih.gov
  organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31597095$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhiNUREvpGyCUI5fdeuyMN-aAVC0UKrUqBzhbju1svcrawU4q9e1xNlvU9gDWSLbsf74Zz_-2OPLB26J4D2QJBPj5dqltF22_pATEkuQAeFWcUAqwAFqtjp6cj4uzlLYkL55VonpTHDNAsSICT4qbL6PqSuVNedv3ITm_KS9HrwcXfCpDWw53tlxbP8Ssutg9bIzqVOn8_v4mmLFTk3RS_lDOvytet6pL9uywnxa_Lr_-XH9fXN9-u1pfXC80ChwWpiErBFJRikoAp01tVIXM0oYZxKbFuq4tCm0MrXlTWUNbBkQ0SghL0dTstLiauSaoreyj26n4IINycn8R4kaqODjdWcmxBUTkioGptGA1guCKg9DIBWcqsz7PrH5sdtbo-bPPoM9fvLuTm3AveZ1bp1MzHw-AGH6PNg1y51K2p1PehjFJyghbIdaMZemHp7X-Fnn0Iws-zQIdQ0rRtlK7YT_iXNp1Eoic_JdbOfsvJ_8lyQGQk6sXyY_8_6QdBmCzY_fORpm0s15b46LVQx6p-zfgDxqEyhE
CitedBy_id crossref_primary_10_3389_fphar_2021_668337
crossref_primary_10_2174_1570159X19666210909150200
crossref_primary_10_1016_j_physbeh_2025_114867
crossref_primary_10_3390_biomedicines10020343
crossref_primary_10_1523_JNEUROSCI_1898_24_2024
crossref_primary_10_1002_ejp_1921
crossref_primary_10_1186_s12950_023_00373_8
crossref_primary_10_1016_j_neuropharm_2021_108456
crossref_primary_10_3390_cells13080705
crossref_primary_10_1016_j_neuroimage_2022_119408
crossref_primary_10_1016_j_jbc_2021_100277
crossref_primary_10_1002_jnr_24846
crossref_primary_10_1016_j_bbr_2023_114588
crossref_primary_10_1016_j_bbr_2021_113376
crossref_primary_10_1016_j_neuropharm_2022_109032
crossref_primary_10_1016_j_neuropharm_2022_109031
crossref_primary_10_1523_JNEUROSCI_0528_24_2024
crossref_primary_10_3389_fnmol_2022_928587
crossref_primary_10_1038_s41398_023_02414_5
crossref_primary_10_1097_SPC_0000000000000650
crossref_primary_10_3390_cells13121055
crossref_primary_10_1038_s41598_021_94633_3
crossref_primary_10_1016_j_celrep_2023_112017
crossref_primary_10_1126_scitranslmed_abj7360
crossref_primary_10_3390_ijms241511944
crossref_primary_10_1016_j_neuron_2023_06_008
crossref_primary_10_1186_s13041_020_00669_3
crossref_primary_10_1016_j_celrep_2024_114057
crossref_primary_10_3389_fpsyt_2021_764720
crossref_primary_10_1007_s11055_023_01460_2
crossref_primary_10_3389_fnmol_2022_1006125
crossref_primary_10_7554_eLife_68130
crossref_primary_10_1016_j_biopsych_2023_09_006
crossref_primary_10_1523_JNEUROSCI_1791_21_2022
crossref_primary_10_1016_j_celrep_2024_114669
crossref_primary_10_1002_jnr_24790
crossref_primary_10_1016_j_celrep_2021_109033
crossref_primary_10_1007_s12264_024_01270_7
crossref_primary_10_1097_WNR_0000000000001723
crossref_primary_10_3390_cells10102644
crossref_primary_10_1016_j_isci_2020_101033
crossref_primary_10_1038_s41598_024_73483_9
crossref_primary_10_1097_j_pain_0000000000002224
crossref_primary_10_1152_physiol_00034_2023
crossref_primary_10_1177_17448069241226960
crossref_primary_10_1016_j_biopsych_2022_09_010
crossref_primary_10_1523_ENEURO_0416_23_2024
crossref_primary_10_1126_sciadv_abg9045
crossref_primary_10_1016_j_jpain_2021_07_009
crossref_primary_10_1523_JNEUROSCI_0717_23_2023
crossref_primary_10_3389_fphar_2022_903978
crossref_primary_10_7554_eLife_68760
crossref_primary_10_1210_endocr_bqaf019
crossref_primary_10_1016_j_tins_2021_01_002
crossref_primary_10_3389_fpain_2022_918766
crossref_primary_10_3389_fncel_2022_999509
crossref_primary_10_1016_j_neuropharm_2020_108052
crossref_primary_10_1113_JP286392
crossref_primary_10_1515_revneuro_2023_0037
crossref_primary_10_1089_neu_2021_0190
crossref_primary_10_1111_ejn_16589
crossref_primary_10_1016_j_bbrc_2024_150625
crossref_primary_10_1038_s41593_022_01130_5
crossref_primary_10_1038_s41386_024_01830_5
crossref_primary_10_1016_j_brs_2024_08_007
crossref_primary_10_1152_ajpgi_00123_2021
crossref_primary_10_1111_cns_14328
crossref_primary_10_1038_s41467_023_35826_4
crossref_primary_10_1016_j_brainresbull_2021_07_002
crossref_primary_10_1016_j_ynpai_2021_100078
crossref_primary_10_1016_j_neuropharm_2023_109510
crossref_primary_10_1146_annurev_neuro_111020_103314
crossref_primary_10_1016_j_isci_2022_105497
crossref_primary_10_3389_fncel_2022_997360
crossref_primary_10_1038_s41586_024_07440_x
crossref_primary_10_1016_j_jchemneu_2022_102123
crossref_primary_10_1038_s41386_023_01673_6
crossref_primary_10_1155_2022_4217593
crossref_primary_10_1111_srt_13238
crossref_primary_10_1016_j_brainres_2025_149492
crossref_primary_10_2196_52764
crossref_primary_10_1016_j_neuropharm_2021_108885
crossref_primary_10_1016_j_jphs_2024_02_004
crossref_primary_10_1523_ENEURO_0260_22_2022
crossref_primary_10_1016_j_neuropharm_2023_109622
crossref_primary_10_1038_s41467_020_19767_w
crossref_primary_10_3389_fpain_2023_1298882
crossref_primary_10_1038_s41386_023_01569_5
crossref_primary_10_1016_j_celrep_2020_107729
crossref_primary_10_3389_fmed_2021_775344
crossref_primary_10_1186_s10194_022_01531_8
crossref_primary_10_7554_eLife_78610
crossref_primary_10_1523_JNEUROSCI_0726_23_2023
crossref_primary_10_1002_hbm_26104
crossref_primary_10_1038_s41467_020_16407_1
crossref_primary_10_1038_s41593_020_0632_8
crossref_primary_10_3389_fnsys_2022_963691
crossref_primary_10_1016_j_brainres_2022_148128
crossref_primary_10_1016_j_celrep_2024_114909
crossref_primary_10_1016_j_neuropharm_2021_108712
crossref_primary_10_1016_j_pneurobio_2020_101891
crossref_primary_10_1093_nsr_nwae195
crossref_primary_10_1097_j_pain_0000000000002307
crossref_primary_10_1038_s42003_021_02262_3
crossref_primary_10_1007_s12264_023_01086_x
crossref_primary_10_1097_j_pain_0000000000002389
crossref_primary_10_1016_j_chom_2024_11_013
crossref_primary_10_1016_j_ynpai_2023_100131
crossref_primary_10_1371_journal_pcbi_1009097
crossref_primary_10_1001_jamanetworkopen_2023_33846
crossref_primary_10_3390_ijms232012268
crossref_primary_10_1073_pnas_2001615117
crossref_primary_10_1126_sciadv_adf6521
crossref_primary_10_3344_kjp_2022_35_4_423
crossref_primary_10_1523_JNEUROSCI_1013_20_2020
crossref_primary_10_1002_jnr_24762
crossref_primary_10_1016_j_pbb_2023_173605
crossref_primary_10_1111_bph_17420
crossref_primary_10_3389_fpain_2023_1183553
crossref_primary_10_1085_jgp_202313488
crossref_primary_10_3389_fnins_2021_667708
crossref_primary_10_1176_appi_ajp_20240941
crossref_primary_10_4103_NRR_NRR_D_24_00429
crossref_primary_10_1259_bjr_20230338
crossref_primary_10_3390_cells10020296
crossref_primary_10_1016_j_ynpai_2023_100143
crossref_primary_10_1152_physrev_00040_2019
crossref_primary_10_1016_j_tins_2024_07_002
crossref_primary_10_1016_j_biopsych_2023_03_015
crossref_primary_10_1523_JNEUROSCI_0075_20_2020
crossref_primary_10_1016_j_brainresbull_2024_111092
crossref_primary_10_1016_j_jphs_2025_03_004
crossref_primary_10_1097_j_pain_0000000000003221
crossref_primary_10_1016_j_neuron_2021_12_015
Cites_doi 10.1016/0304-3940(89)90664-2
10.1097/j.pain.0000000000001167
10.1523/JNEUROSCI.03-12-02545.1983
10.1016/j.biopsych.2011.07.017
10.1097/j.pain.0000000000000830
10.1152/jn.00946.2015
10.1126/science.aan2475
10.1523/JNEUROSCI.5564-10.2011
10.1016/0304-3959(94)90023-X
10.1523/JNEUROSCI.4166-13.2014
10.1186/1744-8069-4-24
10.1523/JNEUROSCI.3536-06.2007
10.1523/JNEUROSCI.1473-12.2012
10.1038/s41593-017-0009-9
10.1152/jn.00211.2004
10.1152/jn.00264.2001
10.1152/jn.00799.2002
10.1523/JNEUROSCI.07-01-00271.1987
10.1523/JNEUROSCI.5387-10.2011
10.1007/978-3-662-46450-2_13
10.1523/JNEUROSCI.23-01-00052.2003
10.1038/nature21047
10.1177/0333102417702120
10.1016/S0074-7742(08)60305-0
10.1152/jn.1999.82.4.1843
10.1002/cne.20697
10.1523/JNEUROSCI.18-22-09453.1998
10.1152/jn.1990.63.3.473
10.1038/nrn3516
10.1038/nprot.2006.164
10.1016/S0306-4522(03)00356-7
10.1523/JNEUROSCI.4419-15.2016
10.1038/nature09559
10.1523/JNEUROSCI.17-10-03751.1997
10.1523/JNEUROSCI.21-20-08238.2001
10.1186/s13041-014-0072-z
10.1523/JNEUROSCI.15-12-08199.1995
10.1016/S0165-0173(02)00248-5
10.2174/1876386300902010011
10.1523/JNEUROSCI.1216-10.2010
10.1002/cne.21025
10.1038/s41598-018-22116-z
10.1172/JCI46229
10.1155/2017/8296501
10.1046/j.0953-816x.2001.01879.x
10.1016/j.cell.2015.05.057
10.1002/(SICI)1097-4547(19991201)58:5<663::AID-JNR7>3.0.CO;2-A
10.1002/cne.22487
10.1016/j.neuron.2016.11.034
10.4161/cib.15694
10.1016/j.conb.2018.08.012
10.1152/jn.00166.2009
10.1016/j.neulet.2003.12.027
10.1016/0304-3959(95)00027-P
10.1016/0304-3959(88)90026-7
10.1038/nature09553
10.1016/j.neuron.2007.04.017
10.1038/nature13978
10.1016/j.ejpain.2007.10.002
10.1016/0006-8993(89)90171-6
10.1177/1073858403261077
10.1152/jn.00514.2012
10.1038/sj.mp.4000812
10.1152/jn.1992.68.2.551
10.1038/nn.3322
10.1186/2049-9256-1-9
10.1523/ENEURO.0367-16.2017
10.3346/jkms.2010.25.11.1646
10.1038/nature14188
10.1016/j.neuron.2017.02.034
10.1186/1744-8069-4-26
10.1038/nmeth.1668
10.1016/0006-8993(94)91120-7
ContentType Journal Article
Copyright 2019
Published by Elsevier Inc.
Copyright_xml – notice: 2019
– notice: Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2019.09.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 346.e5
ExternalDocumentID oai_doaj_org_article_65f15556a31d4c9385196a619c56963a
PMC6816228
31597095
10_1016_j_celrep_2019_09_011
S221112471931188X
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA AT000029
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-db075104225a9162b8da453e2b3d55bf5888e59cdd286b4ed2f3109ba99e25d83
IEDL.DBID DOA
ISSN 2211-1247
IngestDate Wed Aug 27 01:29:10 EDT 2025
Thu Aug 21 13:56:11 EDT 2025
Fri Jul 11 03:05:18 EDT 2025
Mon Jul 21 05:42:51 EDT 2025
Tue Jul 01 02:59:04 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed May 17 00:10:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords pain
amygdala circuit
central amygdala
somatostatin
chemogenetics
intrinsic excitability
protein kinase C delta
pain pathways
parabrachial nucleus
Language English
License This is an open access article under the CC BY-NC-ND license.
Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-db075104225a9162b8da453e2b3d55bf5888e59cdd286b4ed2f3109ba99e25d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
Conceptualization, Y.C.; Methodology, Y.C., T.D.W., and S.V.; Investigation, T.D.W., S.V., A.K., H.-S.A., A.P.A., S.M.G., Y.K.S., and Y.C.; Writing – Original Draft, Y.C.; Writing – Review & Editing, T.D.W., S.V., A.K., H.-S.A., A.P.A., S.M.G., and Y.K.S.; Supervision, Y.C.; Funding Acquisition, Y.C.
OpenAccessLink https://doaj.org/article/65f15556a31d4c9385196a619c56963a
PMID 31597095
PQID 2303755833
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_65f15556a31d4c9385196a619c56963a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816228
proquest_miscellaneous_2303755833
pubmed_primary_31597095
crossref_citationtrail_10_1016_j_celrep_2019_09_011
crossref_primary_10_1016_j_celrep_2019_09_011
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-08
PublicationDateYYYYMMDD 2019-10-08
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Han, Soleiman, Soden, Zweifel, Palmiter (bib28) 2015; 162
Benbouzid, Pallage, Rajalu, Waltisperger, Doridot, Poisbeau, Freund-Mercier, Barrot (bib2) 2008; 12
Manning, Martin, Meng (bib50) 2003; 120
Manning (bib46) 1998; 18
Hunt, Sun, Kucukdereli, Klein, Sah (bib33) 2017; 4
Xie, De Felice, Kopruszinski, Eyde, LaVigne, Remeniuk, Hernandez, Yue, Goshima, Ossipov (bib73) 2017; 37
Dong, Fukazawa, Wang, Kamasawa, Shigemoto (bib19) 2010; 518
Martina, Royer, Paré (bib52) 1999; 82
Ressler, Maren (bib65) 2019; 54
Manning, Mayer (bib47) 1995; 63
Paxinos, Franklin (bib61) 2001
Davis, Whalen (bib18) 2001; 6
Neugebauer, Li (bib58) 2003; 89
Heinricher, Cheng, Fields (bib32) 1987; 7
Amano, Amir, Goswami, Paré (bib1) 2012; 108
Kim, Han, Hwang, Oh (bib38) 2010; 25
Bernard, Huang, Besson (bib5) 1992; 68
Nahin (bib54) 2015; 16
Fox, Sorenson (bib23) 1994; 648
Neugebauer, Li, Bird, Bhave, Gereau (bib59) 2003; 23
Penzo, Robert, Li (bib62) 2014; 34
Bushnell, Ceko, Low (bib7) 2013; 14
Colburn, Lubin, Stone, Wang, Lawrence, D’Andrea, Brandt, Liu, Flores, Qin (bib14) 2007; 54
Kolber, Montana, Carrasquillo, Xu, Heinemann, Muglia, Gereau (bib40) 2010; 30
Sugimura, Takahashi, Watabe, Kato (bib70) 2016; 115
Carrasquillo, Gereau (bib9) 2008; 4
Neugebauer (bib56) 2015; 227
Han, Neugebauer (bib27) 2004; 361
Manning, Merin, Meng, Amaral (bib49) 2001; 21
Janak, Tye (bib34) 2015; 517
Hargreaves, Dubner, Brown, Flores, Joris (bib29) 1988; 32
Gao, Ji (bib25) 2009; 2
Haws, Williamson, Fields (bib31) 1989; 483
Sanford, Soden, Baird, Miller, Schulkin, Palmiter, Clark, Zweifel (bib67) 2017; 93
Zald (bib77) 2003; 41
Jasmin, Burkey, Card, Basbaum (bib35) 1997; 17
Dumont, Martina, Samson, Drolet, Paré (bib20) 2002; 15
Min, Yang, Yen, Chen, Chen, Cheng (bib53) 2011; 4
Sarhan, Freund-Mercier, Veinante (bib68) 2005; 491
Chieng, Christie, Osborne (bib11) 2006; 497
Carrasquillo, Gereau (bib8) 2007; 27
Veinante, Yalcin, Barrot (bib72) 2013; 1
Neugebauer, Li (bib57) 2002; 87
Bernard, Peschanski, Besson (bib4) 1989; 100
Ciocchi, Herry, Grenier, Wolff, Letzkus, Vlachos, Ehrlich, Sprengel, Deisseroth, Stadler (bib13) 2010; 468
Sadler, McQuaid, Cox, Behun, Trouten, Kolber (bib66) 2017; 158
Choi, Yoon, Na, Kim, Chung (bib12) 1994; 59
Krashes, Koda, Ye, Rogan, Adams, Cusher, Maratos-Flier, Roth, Lowell (bib41) 2011; 121
Zhao, Ting, Atallah, Qiu, Tan, Gloss, Augustine, Deisseroth, Luo, Graybiel, Feng (bib78) 2011; 8
Nation, De Felice, Hernandez, Dodick, Neugebauer, Navratilova, Porreca (bib55) 2018; 159
Jiang, Fang, Kong, Jin, Cai, Kang, Wan, Xing (bib37) 2014; 7
Manning, Mayer (bib48) 1995; 15
Yu, Garcia da Silva, Albeanu, Li (bib75) 2016; 36
Fields, Bry, Hentall, Zorman (bib22) 1983; 3
Randall, Selitto (bib64) 1957; 111
Yalcin, Bohren, Waltisperger, Sage-Ciocca, Yin, Freund-Mercier, Barrot (bib74) 2011; 70
Li, Ji, Neugebauer (bib42) 2011; 31
Bourbia, Ansah, Pertovaara (bib6) 2010; 11
Gomez, Bonaventura, Lesniak, Mathews, Sysa-Shah, Rodriguez, Ellis, Richie, Harvey, Dannals (bib26) 2017; 357
Li, Yin, Chen, Li, Liu, Rambojan, Luo (bib44) 2017; 18
Penzo, Robert, Tucciarone, De Bundel, Wang, Van Aelst, Darvas, Parada, Palmiter, He (bib63) 2015; 519
Davis (bib17) 1994; 36
Neugebauer, Li, Bird, Han (bib60) 2004; 10
Yu, Ahrens, Zhang, Schiff, Ramakrishnan, Fenno, Deisseroth, Zhao, Luo, Gong (bib76) 2017; 20
Li, Penzo, Taniguchi, Kopec, Huang, Li (bib43) 2013; 16
Thompson, Neugebauer (bib71) 2017; 2017
Fu, Han, Ishola, Scerbo, Adwanikar, Ramsey, Neugebauer (bib24) 2008; 4
Ji, Neugebauer (bib36) 2009; 102
Schiess, Callahan, Zheng (bib69) 1999; 58
Cheng, Chen, Yang, Chang, Bai, Chen, Yen, Min (bib10) 2011; 31
Bernard, Besson (bib3) 1990; 63
Crock, Kolber, Morgan, Sadler, Vogt, Bruchas, Gereau (bib15) 2012; 32
Kim, Zhang, Muralidhar, LeBlanc, Tonegawa (bib39) 2017; 93
Davie, Kole, Letzkus, Rancz, Spruston, Stuart, Hausser (bib16) 2006; 1
Fadok, Krabbe, Markovic, Courtin, Xu, Massi, Botta, Bylund, Müller, Kovacevic (bib21) 2017; 542
Haubensak, Kunwar, Cai, Ciocchi, Wall, Ponnusamy, Biag, Dong, Deisseroth, Callaway (bib30) 2010; 468
Lopez de Armentia, Sah (bib45) 2004; 92
Manvich, Webster, Foster, Farrell, Ritchie, Porter, Weinshenker (bib51) 2018; 8
Fu (10.1016/j.celrep.2019.09.011_bib24) 2008; 4
Haws (10.1016/j.celrep.2019.09.011_bib31) 1989; 483
Chieng (10.1016/j.celrep.2019.09.011_bib11) 2006; 497
Fields (10.1016/j.celrep.2019.09.011_bib22) 1983; 3
Manning (10.1016/j.celrep.2019.09.011_bib47) 1995; 63
Manning (10.1016/j.celrep.2019.09.011_bib49) 2001; 21
Benbouzid (10.1016/j.celrep.2019.09.011_bib2) 2008; 12
Cheng (10.1016/j.celrep.2019.09.011_bib10) 2011; 31
Neugebauer (10.1016/j.celrep.2019.09.011_bib58) 2003; 89
Yalcin (10.1016/j.celrep.2019.09.011_bib74) 2011; 70
Heinricher (10.1016/j.celrep.2019.09.011_bib32) 1987; 7
Kolber (10.1016/j.celrep.2019.09.011_bib40) 2010; 30
Thompson (10.1016/j.celrep.2019.09.011_bib71) 2017; 2017
Bernard (10.1016/j.celrep.2019.09.011_bib4) 1989; 100
Lopez de Armentia (10.1016/j.celrep.2019.09.011_bib45) 2004; 92
Bernard (10.1016/j.celrep.2019.09.011_bib5) 1992; 68
Li (10.1016/j.celrep.2019.09.011_bib44) 2017; 18
Davis (10.1016/j.celrep.2019.09.011_bib18) 2001; 6
Hargreaves (10.1016/j.celrep.2019.09.011_bib29) 1988; 32
Penzo (10.1016/j.celrep.2019.09.011_bib63) 2015; 519
Davie (10.1016/j.celrep.2019.09.011_bib16) 2006; 1
Hunt (10.1016/j.celrep.2019.09.011_bib33) 2017; 4
Neugebauer (10.1016/j.celrep.2019.09.011_bib59) 2003; 23
Bushnell (10.1016/j.celrep.2019.09.011_bib7) 2013; 14
Jasmin (10.1016/j.celrep.2019.09.011_bib35) 1997; 17
Neugebauer (10.1016/j.celrep.2019.09.011_bib60) 2004; 10
Veinante (10.1016/j.celrep.2019.09.011_bib72) 2013; 1
Ciocchi (10.1016/j.celrep.2019.09.011_bib13) 2010; 468
Paxinos (10.1016/j.celrep.2019.09.011_bib61) 2001
Sanford (10.1016/j.celrep.2019.09.011_bib67) 2017; 93
Xie (10.1016/j.celrep.2019.09.011_bib73) 2017; 37
Carrasquillo (10.1016/j.celrep.2019.09.011_bib8) 2007; 27
Sadler (10.1016/j.celrep.2019.09.011_bib66) 2017; 158
Fox (10.1016/j.celrep.2019.09.011_bib23) 1994; 648
Haubensak (10.1016/j.celrep.2019.09.011_bib30) 2010; 468
Zhao (10.1016/j.celrep.2019.09.011_bib78) 2011; 8
Schiess (10.1016/j.celrep.2019.09.011_bib69) 1999; 58
Manning (10.1016/j.celrep.2019.09.011_bib48) 1995; 15
Manning (10.1016/j.celrep.2019.09.011_bib50) 2003; 120
Carrasquillo (10.1016/j.celrep.2019.09.011_bib9) 2008; 4
Colburn (10.1016/j.celrep.2019.09.011_bib14) 2007; 54
Davis (10.1016/j.celrep.2019.09.011_bib17) 1994; 36
Sarhan (10.1016/j.celrep.2019.09.011_bib68) 2005; 491
Crock (10.1016/j.celrep.2019.09.011_bib15) 2012; 32
Randall (10.1016/j.celrep.2019.09.011_bib64) 1957; 111
Sugimura (10.1016/j.celrep.2019.09.011_bib70) 2016; 115
Nahin (10.1016/j.celrep.2019.09.011_bib54) 2015; 16
Bernard (10.1016/j.celrep.2019.09.011_bib3) 1990; 63
Ji (10.1016/j.celrep.2019.09.011_bib36) 2009; 102
Janak (10.1016/j.celrep.2019.09.011_bib34) 2015; 517
Bourbia (10.1016/j.celrep.2019.09.011_bib6) 2010; 11
Li (10.1016/j.celrep.2019.09.011_bib43) 2013; 16
Neugebauer (10.1016/j.celrep.2019.09.011_bib57) 2002; 87
Fadok (10.1016/j.celrep.2019.09.011_bib21) 2017; 542
Choi (10.1016/j.celrep.2019.09.011_bib12) 1994; 59
Penzo (10.1016/j.celrep.2019.09.011_bib62) 2014; 34
Martina (10.1016/j.celrep.2019.09.011_bib52) 1999; 82
Zald (10.1016/j.celrep.2019.09.011_bib77) 2003; 41
Li (10.1016/j.celrep.2019.09.011_bib42) 2011; 31
Dumont (10.1016/j.celrep.2019.09.011_bib20) 2002; 15
Krashes (10.1016/j.celrep.2019.09.011_bib41) 2011; 121
Manvich (10.1016/j.celrep.2019.09.011_bib51) 2018; 8
Neugebauer (10.1016/j.celrep.2019.09.011_bib56) 2015; 227
Jiang (10.1016/j.celrep.2019.09.011_bib37) 2014; 7
Dong (10.1016/j.celrep.2019.09.011_bib19) 2010; 518
Manning (10.1016/j.celrep.2019.09.011_bib46) 1998; 18
Yu (10.1016/j.celrep.2019.09.011_bib76) 2017; 20
Han (10.1016/j.celrep.2019.09.011_bib28) 2015; 162
Kim (10.1016/j.celrep.2019.09.011_bib39) 2017; 93
Ressler (10.1016/j.celrep.2019.09.011_bib65) 2019; 54
Gao (10.1016/j.celrep.2019.09.011_bib25) 2009; 2
Gomez (10.1016/j.celrep.2019.09.011_bib26) 2017; 357
Kim (10.1016/j.celrep.2019.09.011_bib38) 2010; 25
Nation (10.1016/j.celrep.2019.09.011_bib55) 2018; 159
Min (10.1016/j.celrep.2019.09.011_bib53) 2011; 4
Yu (10.1016/j.celrep.2019.09.011_bib75) 2016; 36
Amano (10.1016/j.celrep.2019.09.011_bib1) 2012; 108
Han (10.1016/j.celrep.2019.09.011_bib27) 2004; 361
References_xml – volume: 4
  start-page: 24
  year: 2008
  ident: bib9
  article-title: Hemispheric lateralization of a molecular signal for pain modulation in the amygdala
  publication-title: Mol. Pain
– volume: 115
  start-page: 2721
  year: 2016
  end-page: 2739
  ident: bib70
  article-title: Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala
  publication-title: J. Neurophysiol.
– volume: 519
  start-page: 455
  year: 2015
  end-page: 459
  ident: bib63
  article-title: The paraventricular thalamus controls a central amygdala fear circuit
  publication-title: Nature
– volume: 491
  start-page: 418
  year: 2005
  end-page: 442
  ident: bib68
  article-title: Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions
  publication-title: J. Comp. Neurol.
– volume: 27
  start-page: 1543
  year: 2007
  end-page: 1551
  ident: bib8
  article-title: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception
  publication-title: J. Neurosci.
– volume: 20
  start-page: 1680
  year: 2017
  end-page: 1685
  ident: bib76
  article-title: The central amygdala controls learning in the lateral amygdala
  publication-title: Nat. Neurosci.
– volume: 158
  start-page: 747
  year: 2017
  end-page: 759
  ident: bib66
  article-title: Divergent functions of the left and right central amygdala in visceral nociception
  publication-title: Pain
– volume: 4
  year: 2017
  ident: bib33
  article-title: Intrinsic circuits in the lateral central amygdala
  publication-title: eNeuro
– volume: 92
  start-page: 1285
  year: 2004
  end-page: 1294
  ident: bib45
  article-title: Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala
  publication-title: J. Neurophysiol.
– volume: 37
  start-page: 780
  year: 2017
  end-page: 794
  ident: bib73
  article-title: Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention
  publication-title: Cephalalgia
– volume: 4
  start-page: 394
  year: 2011
  end-page: 396
  ident: bib53
  article-title: ERK, synaptic plasticity and acid-induced muscle pain
  publication-title: Commun. Integr. Biol.
– volume: 518
  start-page: 4771
  year: 2010
  end-page: 4791
  ident: bib19
  article-title: Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat
  publication-title: J. Comp. Neurol.
– volume: 16
  start-page: 332
  year: 2013
  end-page: 339
  ident: bib43
  article-title: Experience-dependent modification of a central amygdala fear circuit
  publication-title: Nat. Neurosci.
– volume: 30
  start-page: 8203
  year: 2010
  end-page: 8213
  ident: bib40
  article-title: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior
  publication-title: J. Neurosci.
– volume: 25
  start-page: 1646
  year: 2010
  end-page: 1651
  ident: bib38
  article-title: The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia
  publication-title: J. Korean Med. Sci.
– volume: 16
  start-page: 769
  year: 2015
  end-page: 780
  ident: bib54
  article-title: Estimates of pain prevalence and severity in adults: United States, 2012
  publication-title: J. Pain
– volume: 93
  start-page: 1464
  year: 2017
  end-page: 1479.e1465
  ident: bib39
  article-title: Basolateral to central amygdala neural circuits for appetitive behaviors
  publication-title: Neuron
– volume: 32
  start-page: 77
  year: 1988
  end-page: 88
  ident: bib29
  article-title: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia
  publication-title: Pain
– volume: 361
  start-page: 254
  year: 2004
  end-page: 257
  ident: bib27
  article-title: Synaptic plasticity in the amygdala in a visceral pain model in rats
  publication-title: Neurosci. Lett.
– volume: 497
  start-page: 910
  year: 2006
  end-page: 927
  ident: bib11
  article-title: Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity
  publication-title: J. Comp. Neurol.
– volume: 648
  start-page: 215
  year: 1994
  end-page: 221
  ident: bib23
  article-title: Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges
  publication-title: Brain Res.
– volume: 227
  start-page: 261
  year: 2015
  end-page: 284
  ident: bib56
  article-title: Amygdala pain mechanisms
  publication-title: Handb. Exp. Pharmacol.
– volume: 82
  start-page: 1843
  year: 1999
  end-page: 1854
  ident: bib52
  article-title: Physiological properties of central medial and central lateral amygdala neurons
  publication-title: J. Neurophysiol.
– volume: 63
  start-page: 473
  year: 1990
  end-page: 490
  ident: bib3
  article-title: The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes
  publication-title: J. Neurophysiol.
– volume: 6
  start-page: 13
  year: 2001
  end-page: 34
  ident: bib18
  article-title: The amygdala: vigilance and emotion
  publication-title: Mol. Psychiatry
– volume: 15
  start-page: 8199
  year: 1995
  end-page: 8213
  ident: bib48
  article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test
  publication-title: J. Neurosci.
– volume: 12
  start-page: 591
  year: 2008
  end-page: 599
  ident: bib2
  article-title: Sciatic nerve cuffing in mice: a model of sustained neuropathic pain
  publication-title: Eur. J. Pain
– volume: 68
  start-page: 551
  year: 1992
  end-page: 569
  ident: bib5
  article-title: Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes
  publication-title: J. Neurophysiol.
– volume: 36
  start-page: 6488
  year: 2016
  end-page: 6496
  ident: bib75
  article-title: Central amygdala somatostatin neurons gate passive and active defensive behaviors
  publication-title: J. Neurosci.
– volume: 23
  start-page: 52
  year: 2003
  end-page: 63
  ident: bib59
  article-title: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5
  publication-title: J. Neurosci.
– volume: 34
  start-page: 2432
  year: 2014
  end-page: 2437
  ident: bib62
  article-title: Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala
  publication-title: J. Neurosci.
– volume: 7
  start-page: 271
  year: 1987
  end-page: 278
  ident: bib32
  article-title: Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray
  publication-title: J. Neurosci.
– volume: 70
  start-page: 946
  year: 2011
  end-page: 953
  ident: bib74
  article-title: A time-dependent history of mood disorders in a murine model of neuropathic pain
  publication-title: Biol. Psychiatry
– volume: 542
  start-page: 96
  year: 2017
  end-page: 100
  ident: bib21
  article-title: A competitive inhibitory circuit for selection of active and passive fear responses
  publication-title: Nature
– volume: 41
  start-page: 88
  year: 2003
  end-page: 123
  ident: bib77
  article-title: The human amygdala and the emotional evaluation of sensory stimuli
  publication-title: Brain Res. Brain Res. Rev.
– volume: 159
  start-page: 919
  year: 2018
  end-page: 928
  ident: bib55
  article-title: Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain
  publication-title: Pain
– volume: 483
  start-page: 272
  year: 1989
  end-page: 282
  ident: bib31
  article-title: Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation
  publication-title: Brain Res.
– volume: 18
  start-page: 188
  year: 2017
  end-page: 199
  ident: bib44
  article-title: Activation of the extracellular signal-regulated kinase in the amygdale modulates fentanyl-induced hypersensitivity in rats
  publication-title: J. Pain
– volume: 108
  start-page: 3196
  year: 2012
  end-page: 3205
  ident: bib1
  article-title: Morphology, PKCδ expression, and synaptic responsiveness of different types of rat central lateral amygdala neurons
  publication-title: J. Neurophysiol.
– volume: 468
  start-page: 270
  year: 2010
  end-page: 276
  ident: bib30
  article-title: Genetic dissection of an amygdala microcircuit that gates conditioned fear
  publication-title: Nature
– volume: 8
  start-page: 3840
  year: 2018
  ident: bib51
  article-title: The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice
  publication-title: Sci. Rep.
– volume: 517
  start-page: 284
  year: 2015
  end-page: 292
  ident: bib34
  article-title: From circuits to behaviour in the amygdala
  publication-title: Nature
– volume: 93
  start-page: 164
  year: 2017
  end-page: 178
  ident: bib67
  article-title: A central amygdala CRF circuit facilitates learning about weak threats
  publication-title: Neuron
– volume: 54
  start-page: 379
  year: 2007
  end-page: 386
  ident: bib14
  article-title: Attenuated cold sensitivity in TRPM8 null mice
  publication-title: Neuron
– volume: 1
  start-page: 1235
  year: 2006
  end-page: 1247
  ident: bib16
  article-title: Dendritic patch-clamp recording
  publication-title: Nat. Protoc.
– year: 2001
  ident: bib61
  article-title: The Mouse Brain in Stereotaxic Coordinates
– volume: 111
  start-page: 409
  year: 1957
  end-page: 419
  ident: bib64
  article-title: A method for measurement of analgesic activity on inflamed tissue
  publication-title: Arch. Int. Pharmacodyn. Ther.
– volume: 31
  start-page: 2258
  year: 2011
  end-page: 2270
  ident: bib10
  article-title: Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice
  publication-title: J. Neurosci.
– volume: 3
  start-page: 2545
  year: 1983
  end-page: 2552
  ident: bib22
  article-title: The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat
  publication-title: J. Neurosci.
– volume: 18
  start-page: 9453
  year: 1998
  end-page: 9470
  ident: bib46
  article-title: A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala
  publication-title: J. Neurosci.
– volume: 100
  start-page: 83
  year: 1989
  end-page: 88
  ident: bib4
  article-title: A possible spino (trigemino)-ponto-amygdaloid pathway for pain
  publication-title: Neurosci. Lett.
– volume: 2
  start-page: 11
  year: 2009
  end-page: 17
  ident: bib25
  article-title: c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury?
  publication-title: Open Pain J.
– volume: 31
  start-page: 1114
  year: 2011
  end-page: 1127
  ident: bib42
  article-title: Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior
  publication-title: J. Neurosci.
– volume: 8
  start-page: 745
  year: 2011
  end-page: 752
  ident: bib78
  article-title: Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function
  publication-title: Nat. Methods
– volume: 2017
  start-page: 8296501
  year: 2017
  ident: bib71
  article-title: Amygdala plasticity and pain
  publication-title: Pain Res. Manag.
– volume: 4
  start-page: 26
  year: 2008
  ident: bib24
  article-title: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior
  publication-title: Mol. Pain
– volume: 1
  start-page: 9
  year: 2013
  ident: bib72
  article-title: The amygdala between sensation and affect: a role in pain
  publication-title: J. Mol. Psychiatry
– volume: 58
  start-page: 663
  year: 1999
  end-page: 673
  ident: bib69
  article-title: Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro
  publication-title: J. Neurosci. Res.
– volume: 120
  start-page: 1157
  year: 2003
  end-page: 1170
  ident: bib50
  article-title: The rodent amygdala contributes to the production of cannabinoid-induced antinociception
  publication-title: Neuroscience
– volume: 87
  start-page: 103
  year: 2002
  end-page: 112
  ident: bib57
  article-title: Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input
  publication-title: J. Neurophysiol.
– volume: 36
  start-page: 225
  year: 1994
  end-page: 266
  ident: bib17
  article-title: The role of the amygdala in emotional learning
  publication-title: Int. Rev. Neurobiol.
– volume: 15
  start-page: 545
  year: 2002
  end-page: 552
  ident: bib20
  article-title: Physiological properties of central amygdala neurons: species differences
  publication-title: Eur. J. Neurosci.
– volume: 121
  start-page: 1424
  year: 2011
  end-page: 1428
  ident: bib41
  article-title: Rapid, reversible activation of AgRP neurons drives feeding behavior in mice
  publication-title: J. Clin. Invest.
– volume: 14
  start-page: 502
  year: 2013
  end-page: 511
  ident: bib7
  article-title: Cognitive and emotional control of pain and its disruption in chronic pain
  publication-title: Nat. Rev. Neurosci.
– volume: 59
  start-page: 369
  year: 1994
  end-page: 376
  ident: bib12
  article-title: Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain
  publication-title: Pain
– volume: 21
  start-page: 8238
  year: 2001
  end-page: 8246
  ident: bib49
  article-title: Reduction in opioid- and cannabinoid-induced antinociception in rhesus monkeys after bilateral lesions of the amygdaloid complex
  publication-title: J. Neurosci.
– volume: 10
  start-page: 221
  year: 2004
  end-page: 234
  ident: bib60
  article-title: The amygdala and persistent pain
  publication-title: Neuroscientist
– volume: 89
  start-page: 716
  year: 2003
  end-page: 727
  ident: bib58
  article-title: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain
  publication-title: J. Neurophysiol.
– volume: 54
  start-page: 54
  year: 2019
  end-page: 59
  ident: bib65
  article-title: Synaptic encoding of fear memories in the amygdala
  publication-title: Curr. Opin. Neurobiol.
– volume: 32
  start-page: 14217
  year: 2012
  end-page: 14226
  ident: bib15
  article-title: Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain
  publication-title: J. Neurosci.
– volume: 17
  start-page: 3751
  year: 1997
  end-page: 3765
  ident: bib35
  article-title: Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat
  publication-title: J. Neurosci.
– volume: 7
  start-page: 72
  year: 2014
  ident: bib37
  article-title: Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats
  publication-title: Mol. Brain
– volume: 63
  start-page: 141
  year: 1995
  end-page: 152
  ident: bib47
  article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test
  publication-title: Pain
– volume: 162
  start-page: 363
  year: 2015
  end-page: 374
  ident: bib28
  article-title: Elucidating an affective pain circuit that creates a threat memory
  publication-title: Cell
– volume: 468
  start-page: 277
  year: 2010
  end-page: 282
  ident: bib13
  article-title: Encoding of conditioned fear in central amygdala inhibitory circuits
  publication-title: Nature
– volume: 11
  start-page: 1461
  year: 2010
  end-page: 1471
  ident: bib6
  article-title: Corticotropin-releasing factor in the rat amygdala differentially influences sensory-discriminative and emotional-like pain response in peripheral neuropathy
  publication-title: J. Pain
– volume: 357
  start-page: 503
  year: 2017
  end-page: 507
  ident: bib26
  article-title: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine
  publication-title: Science
– volume: 102
  start-page: 2253
  year: 2009
  end-page: 2264
  ident: bib36
  article-title: Hemispheric lateralization of pain processing by amygdala neurons
  publication-title: J. Neurophysiol.
– volume: 100
  start-page: 83
  year: 1989
  ident: 10.1016/j.celrep.2019.09.011_bib4
  article-title: A possible spino (trigemino)-ponto-amygdaloid pathway for pain
  publication-title: Neurosci. Lett.
  doi: 10.1016/0304-3940(89)90664-2
– volume: 159
  start-page: 919
  year: 2018
  ident: 10.1016/j.celrep.2019.09.011_bib55
  article-title: Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000001167
– volume: 3
  start-page: 2545
  year: 1983
  ident: 10.1016/j.celrep.2019.09.011_bib22
  article-title: The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-12-02545.1983
– volume: 70
  start-page: 946
  year: 2011
  ident: 10.1016/j.celrep.2019.09.011_bib74
  article-title: A time-dependent history of mood disorders in a murine model of neuropathic pain
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.07.017
– volume: 158
  start-page: 747
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib66
  article-title: Divergent functions of the left and right central amygdala in visceral nociception
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000000830
– volume: 115
  start-page: 2721
  year: 2016
  ident: 10.1016/j.celrep.2019.09.011_bib70
  article-title: Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00946.2015
– volume: 357
  start-page: 503
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib26
  article-title: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine
  publication-title: Science
  doi: 10.1126/science.aan2475
– volume: 31
  start-page: 2258
  year: 2011
  ident: 10.1016/j.celrep.2019.09.011_bib10
  article-title: Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5564-10.2011
– volume: 59
  start-page: 369
  year: 1994
  ident: 10.1016/j.celrep.2019.09.011_bib12
  article-title: Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain
  publication-title: Pain
  doi: 10.1016/0304-3959(94)90023-X
– volume: 16
  start-page: 769
  year: 2015
  ident: 10.1016/j.celrep.2019.09.011_bib54
  article-title: Estimates of pain prevalence and severity in adults: United States, 2012
  publication-title: J. Pain
– volume: 18
  start-page: 188
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib44
  article-title: Activation of the extracellular signal-regulated kinase in the amygdale modulates fentanyl-induced hypersensitivity in rats
  publication-title: J. Pain
– volume: 34
  start-page: 2432
  year: 2014
  ident: 10.1016/j.celrep.2019.09.011_bib62
  article-title: Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4166-13.2014
– volume: 4
  start-page: 24
  year: 2008
  ident: 10.1016/j.celrep.2019.09.011_bib9
  article-title: Hemispheric lateralization of a molecular signal for pain modulation in the amygdala
  publication-title: Mol. Pain
  doi: 10.1186/1744-8069-4-24
– volume: 27
  start-page: 1543
  year: 2007
  ident: 10.1016/j.celrep.2019.09.011_bib8
  article-title: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3536-06.2007
– volume: 32
  start-page: 14217
  year: 2012
  ident: 10.1016/j.celrep.2019.09.011_bib15
  article-title: Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1473-12.2012
– volume: 20
  start-page: 1680
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib76
  article-title: The central amygdala controls learning in the lateral amygdala
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0009-9
– volume: 92
  start-page: 1285
  year: 2004
  ident: 10.1016/j.celrep.2019.09.011_bib45
  article-title: Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00211.2004
– volume: 87
  start-page: 103
  year: 2002
  ident: 10.1016/j.celrep.2019.09.011_bib57
  article-title: Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00264.2001
– volume: 89
  start-page: 716
  year: 2003
  ident: 10.1016/j.celrep.2019.09.011_bib58
  article-title: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00799.2002
– volume: 7
  start-page: 271
  year: 1987
  ident: 10.1016/j.celrep.2019.09.011_bib32
  article-title: Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-01-00271.1987
– volume: 31
  start-page: 1114
  year: 2011
  ident: 10.1016/j.celrep.2019.09.011_bib42
  article-title: Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5387-10.2011
– volume: 227
  start-page: 261
  year: 2015
  ident: 10.1016/j.celrep.2019.09.011_bib56
  article-title: Amygdala pain mechanisms
  publication-title: Handb. Exp. Pharmacol.
  doi: 10.1007/978-3-662-46450-2_13
– volume: 23
  start-page: 52
  year: 2003
  ident: 10.1016/j.celrep.2019.09.011_bib59
  article-title: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-01-00052.2003
– volume: 542
  start-page: 96
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib21
  article-title: A competitive inhibitory circuit for selection of active and passive fear responses
  publication-title: Nature
  doi: 10.1038/nature21047
– volume: 37
  start-page: 780
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib73
  article-title: Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention
  publication-title: Cephalalgia
  doi: 10.1177/0333102417702120
– volume: 36
  start-page: 225
  year: 1994
  ident: 10.1016/j.celrep.2019.09.011_bib17
  article-title: The role of the amygdala in emotional learning
  publication-title: Int. Rev. Neurobiol.
  doi: 10.1016/S0074-7742(08)60305-0
– volume: 82
  start-page: 1843
  year: 1999
  ident: 10.1016/j.celrep.2019.09.011_bib52
  article-title: Physiological properties of central medial and central lateral amygdala neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.4.1843
– volume: 491
  start-page: 418
  year: 2005
  ident: 10.1016/j.celrep.2019.09.011_bib68
  article-title: Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20697
– volume: 18
  start-page: 9453
  year: 1998
  ident: 10.1016/j.celrep.2019.09.011_bib46
  article-title: A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.18-22-09453.1998
– volume: 63
  start-page: 473
  year: 1990
  ident: 10.1016/j.celrep.2019.09.011_bib3
  article-title: The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1990.63.3.473
– volume: 14
  start-page: 502
  year: 2013
  ident: 10.1016/j.celrep.2019.09.011_bib7
  article-title: Cognitive and emotional control of pain and its disruption in chronic pain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3516
– volume: 1
  start-page: 1235
  year: 2006
  ident: 10.1016/j.celrep.2019.09.011_bib16
  article-title: Dendritic patch-clamp recording
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.164
– volume: 120
  start-page: 1157
  year: 2003
  ident: 10.1016/j.celrep.2019.09.011_bib50
  article-title: The rodent amygdala contributes to the production of cannabinoid-induced antinociception
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(03)00356-7
– volume: 36
  start-page: 6488
  year: 2016
  ident: 10.1016/j.celrep.2019.09.011_bib75
  article-title: Central amygdala somatostatin neurons gate passive and active defensive behaviors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4419-15.2016
– volume: 468
  start-page: 277
  year: 2010
  ident: 10.1016/j.celrep.2019.09.011_bib13
  article-title: Encoding of conditioned fear in central amygdala inhibitory circuits
  publication-title: Nature
  doi: 10.1038/nature09559
– volume: 17
  start-page: 3751
  year: 1997
  ident: 10.1016/j.celrep.2019.09.011_bib35
  article-title: Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-10-03751.1997
– volume: 21
  start-page: 8238
  year: 2001
  ident: 10.1016/j.celrep.2019.09.011_bib49
  article-title: Reduction in opioid- and cannabinoid-induced antinociception in rhesus monkeys after bilateral lesions of the amygdaloid complex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-20-08238.2001
– volume: 7
  start-page: 72
  year: 2014
  ident: 10.1016/j.celrep.2019.09.011_bib37
  article-title: Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats
  publication-title: Mol. Brain
  doi: 10.1186/s13041-014-0072-z
– volume: 15
  start-page: 8199
  year: 1995
  ident: 10.1016/j.celrep.2019.09.011_bib48
  article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-12-08199.1995
– volume: 41
  start-page: 88
  year: 2003
  ident: 10.1016/j.celrep.2019.09.011_bib77
  article-title: The human amygdala and the emotional evaluation of sensory stimuli
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/S0165-0173(02)00248-5
– volume: 2
  start-page: 11
  year: 2009
  ident: 10.1016/j.celrep.2019.09.011_bib25
  article-title: c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury?
  publication-title: Open Pain J.
  doi: 10.2174/1876386300902010011
– volume: 30
  start-page: 8203
  year: 2010
  ident: 10.1016/j.celrep.2019.09.011_bib40
  article-title: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1216-10.2010
– volume: 497
  start-page: 910
  year: 2006
  ident: 10.1016/j.celrep.2019.09.011_bib11
  article-title: Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.21025
– volume: 8
  start-page: 3840
  year: 2018
  ident: 10.1016/j.celrep.2019.09.011_bib51
  article-title: The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22116-z
– volume: 121
  start-page: 1424
  year: 2011
  ident: 10.1016/j.celrep.2019.09.011_bib41
  article-title: Rapid, reversible activation of AgRP neurons drives feeding behavior in mice
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI46229
– volume: 2017
  start-page: 8296501
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib71
  article-title: Amygdala plasticity and pain
  publication-title: Pain Res. Manag.
  doi: 10.1155/2017/8296501
– volume: 15
  start-page: 545
  year: 2002
  ident: 10.1016/j.celrep.2019.09.011_bib20
  article-title: Physiological properties of central amygdala neurons: species differences
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.0953-816x.2001.01879.x
– volume: 162
  start-page: 363
  year: 2015
  ident: 10.1016/j.celrep.2019.09.011_bib28
  article-title: Elucidating an affective pain circuit that creates a threat memory
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.057
– volume: 58
  start-page: 663
  year: 1999
  ident: 10.1016/j.celrep.2019.09.011_bib69
  article-title: Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro
  publication-title: J. Neurosci. Res.
  doi: 10.1002/(SICI)1097-4547(19991201)58:5<663::AID-JNR7>3.0.CO;2-A
– volume: 518
  start-page: 4771
  year: 2010
  ident: 10.1016/j.celrep.2019.09.011_bib19
  article-title: Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.22487
– volume: 93
  start-page: 164
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib67
  article-title: A central amygdala CRF circuit facilitates learning about weak threats
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.11.034
– volume: 4
  start-page: 394
  year: 2011
  ident: 10.1016/j.celrep.2019.09.011_bib53
  article-title: ERK, synaptic plasticity and acid-induced muscle pain
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.15694
– volume: 54
  start-page: 54
  year: 2019
  ident: 10.1016/j.celrep.2019.09.011_bib65
  article-title: Synaptic encoding of fear memories in the amygdala
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.08.012
– volume: 102
  start-page: 2253
  year: 2009
  ident: 10.1016/j.celrep.2019.09.011_bib36
  article-title: Hemispheric lateralization of pain processing by amygdala neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00166.2009
– volume: 361
  start-page: 254
  year: 2004
  ident: 10.1016/j.celrep.2019.09.011_bib27
  article-title: Synaptic plasticity in the amygdala in a visceral pain model in rats
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2003.12.027
– volume: 63
  start-page: 141
  year: 1995
  ident: 10.1016/j.celrep.2019.09.011_bib47
  article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test
  publication-title: Pain
  doi: 10.1016/0304-3959(95)00027-P
– volume: 32
  start-page: 77
  year: 1988
  ident: 10.1016/j.celrep.2019.09.011_bib29
  article-title: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia
  publication-title: Pain
  doi: 10.1016/0304-3959(88)90026-7
– volume: 468
  start-page: 270
  year: 2010
  ident: 10.1016/j.celrep.2019.09.011_bib30
  article-title: Genetic dissection of an amygdala microcircuit that gates conditioned fear
  publication-title: Nature
  doi: 10.1038/nature09553
– volume: 54
  start-page: 379
  year: 2007
  ident: 10.1016/j.celrep.2019.09.011_bib14
  article-title: Attenuated cold sensitivity in TRPM8 null mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.04.017
– year: 2001
  ident: 10.1016/j.celrep.2019.09.011_bib61
– volume: 519
  start-page: 455
  year: 2015
  ident: 10.1016/j.celrep.2019.09.011_bib63
  article-title: The paraventricular thalamus controls a central amygdala fear circuit
  publication-title: Nature
  doi: 10.1038/nature13978
– volume: 12
  start-page: 591
  year: 2008
  ident: 10.1016/j.celrep.2019.09.011_bib2
  article-title: Sciatic nerve cuffing in mice: a model of sustained neuropathic pain
  publication-title: Eur. J. Pain
  doi: 10.1016/j.ejpain.2007.10.002
– volume: 483
  start-page: 272
  year: 1989
  ident: 10.1016/j.celrep.2019.09.011_bib31
  article-title: Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(89)90171-6
– volume: 10
  start-page: 221
  year: 2004
  ident: 10.1016/j.celrep.2019.09.011_bib60
  article-title: The amygdala and persistent pain
  publication-title: Neuroscientist
  doi: 10.1177/1073858403261077
– volume: 108
  start-page: 3196
  year: 2012
  ident: 10.1016/j.celrep.2019.09.011_bib1
  article-title: Morphology, PKCδ expression, and synaptic responsiveness of different types of rat central lateral amygdala neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00514.2012
– volume: 6
  start-page: 13
  year: 2001
  ident: 10.1016/j.celrep.2019.09.011_bib18
  article-title: The amygdala: vigilance and emotion
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4000812
– volume: 111
  start-page: 409
  year: 1957
  ident: 10.1016/j.celrep.2019.09.011_bib64
  article-title: A method for measurement of analgesic activity on inflamed tissue
  publication-title: Arch. Int. Pharmacodyn. Ther.
– volume: 68
  start-page: 551
  year: 1992
  ident: 10.1016/j.celrep.2019.09.011_bib5
  article-title: Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.68.2.551
– volume: 16
  start-page: 332
  year: 2013
  ident: 10.1016/j.celrep.2019.09.011_bib43
  article-title: Experience-dependent modification of a central amygdala fear circuit
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3322
– volume: 11
  start-page: 1461
  year: 2010
  ident: 10.1016/j.celrep.2019.09.011_bib6
  article-title: Corticotropin-releasing factor in the rat amygdala differentially influences sensory-discriminative and emotional-like pain response in peripheral neuropathy
  publication-title: J. Pain
– volume: 1
  start-page: 9
  year: 2013
  ident: 10.1016/j.celrep.2019.09.011_bib72
  article-title: The amygdala between sensation and affect: a role in pain
  publication-title: J. Mol. Psychiatry
  doi: 10.1186/2049-9256-1-9
– volume: 4
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib33
  article-title: Intrinsic circuits in the lateral central amygdala
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0367-16.2017
– volume: 25
  start-page: 1646
  year: 2010
  ident: 10.1016/j.celrep.2019.09.011_bib38
  article-title: The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia
  publication-title: J. Korean Med. Sci.
  doi: 10.3346/jkms.2010.25.11.1646
– volume: 517
  start-page: 284
  year: 2015
  ident: 10.1016/j.celrep.2019.09.011_bib34
  article-title: From circuits to behaviour in the amygdala
  publication-title: Nature
  doi: 10.1038/nature14188
– volume: 93
  start-page: 1464
  year: 2017
  ident: 10.1016/j.celrep.2019.09.011_bib39
  article-title: Basolateral to central amygdala neural circuits for appetitive behaviors
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.02.034
– volume: 4
  start-page: 26
  year: 2008
  ident: 10.1016/j.celrep.2019.09.011_bib24
  article-title: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior
  publication-title: Mol. Pain
  doi: 10.1186/1744-8069-4-26
– volume: 8
  start-page: 745
  year: 2011
  ident: 10.1016/j.celrep.2019.09.011_bib78
  article-title: Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1668
– volume: 648
  start-page: 215
  year: 1994
  ident: 10.1016/j.celrep.2019.09.011_bib23
  article-title: Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(94)91120-7
SSID ssj0000601194
Score 2.5882118
Snippet Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 332
SubjectTerms amygdala circuit
Animals
central amygdala
Central Amygdaloid Nucleus - physiopathology
chemogenetics
Enzyme Activation
Female
Hypersensitivity - complications
Hypersensitivity - physiopathology
intrinsic excitability
MAP Kinase Signaling System
Mice, Inbred C57BL
Models, Neurological
Nerve Tissue - injuries
Neuralgia - complications
Neuralgia - physiopathology
Neurons - metabolism
pain
pain pathways
parabrachial nucleus
protein kinase C delta
Protein Kinase C-delta - metabolism
Proto-Oncogene Proteins c-fos - metabolism
Sciatic Nerve - injuries
Sciatic Nerve - pathology
somatostatin
Temperature
Touch
SummonAdditionalLinks – databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nfTFyr0arJ62dJxd9uwFNIW2oXchJ6pS1YOaXLYf9-RbIe6PSwUfLEs2_JoPPONPfoGofdMhWCkaSDIOWMVD45U1thYNTIAuFY01KVm5PJzfXXNP63E6gRdjmthclrlYPt7m16s9dAyH6Q537bt_BuF2AW8UwMQBFCyXIEdZlyWRXyri-N3lsw3Qko9xNy_yieMK-hKmpcLm13IxJVEFcJTQiYeqhD5TxzVv0D073zKPxzU4iF6MCBLfN4P_hE6CekxutfXmrx9gpYfDnDUJI-_bHOmVlrjBfi0ona4ixiAIB4-9eLzm9u1NxuD21Tal50fqnzlnl9Nm56i68XH75dX1VBLoXJCiX3lLWADkgm_hAFESK30hgsWqGVeCBsFRMJBKOc9lbXlwdOYOUOtUSpQ4SV7hk5Tl8ILhCVzzgOMjMxazixTMkrqeIzcCNYIOkNslJ92A9F4rnex0WNG2U_dS11nqesz2AiZoep41rYn2rij_0WemmPfTJNdGrrdWg96omsRAS-J2jDiuVMM4KWqDcSMTtRgecwMNePE6onWwaXaO27_btQDDS9k_stiUugOvzTEdCCFvJhthp73enEcJAPw2ACohftONGbyFNMjqf1RSL9rCbNG5cv_HvErdD_v9fmLr9HpfncIbwBQ7e3b8sb8Bi9WHOQ
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELZWi5B4QctdLhmJ16CNj8R-QGg5qhVSgQcq7ZvlsxQVZ-m20vbfM5OjEA7tC1KeEseJxzOeb5LxN4Q85zpGq2wNQc4xL0T0ZeGsS0WtIoBrzWLV1oycfahO5-L9mTw7IEPN1l6AF38N7bCe1Hy9enH5ffcKDP7lz1wtH1friOyTpW5ZS3Gz7zXwTTWa6qwH_N3ajBxn-KuZMczlYqIe9tP9o6ORv2pp_Udu609Y-nt25S_uanpEbvY4k550inGLHMR8m1zvKk_u7pDZ2y1ctTnQj-eYt5UXdAoerlVC2iQKsJD2H37pybfdItiVpcvcnp81oa_5hS0_2WW-S-bTd5_fnBZ9ZYXCSy03RXCAFEqk_5IW8CFzKlgheWSOByldkhAXR6l9CExVTsTAEjKIOqt1ZDIofo8c5ibHB4Qq7n0AUJm4c4I7rlVSzIuUhJW8lmxC-CA_43vacax-sTJDftlX00ndoNTNMRxlOSHF_q7zjnbjivavcWr2bZE0uz3RrBemt0FTyQToSVaWl0F4zQFs6spCBOllBeuQnZB6mFjT448OV0BXyyse_2zQAwPmif9cbI7N9sJAhAdSwK1tE3K_04v9S3KAkjVAXHjuSGNGoxhfycsvLQV4pWDWmHr4P4b9iNzAoXSJjY_J4Wa9jU8AaW3c09Z4fgDH1yP2
  priority: 102
  providerName: Scholars Portal
Title Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain
URI https://dx.doi.org/10.1016/j.celrep.2019.09.011
https://www.ncbi.nlm.nih.gov/pubmed/31597095
https://www.proquest.com/docview/2303755833
https://pubmed.ncbi.nlm.nih.gov/PMC6816228
https://doaj.org/article/65f15556a31d4c9385196a619c56963a
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQ0iQuaGOMlcHkSVyjEX8k9hG2VWxSNw4g9Wb5k3UqLoL2wH_Ps51UzXboZVLkg-3E8fNz3s_x8-8hdEal91roFhY557Ri3taV0SZUrfAAriXxTY4ZOfnZXN2yH1M-3Qj1lXzCCj1wEdznhgcwebzRtHbMSgoIQTYaYL_lDShPhkZg8zYWU-UbnLjM0pYyIclni7C2PzeXnbusnz_6RFdZy0xzWtcDu5Tp-wfm6V_4-bcX5YZZGr9G-x2exBelH2_Qjo8H6FWJMPn8Fk2-rqBUR4d_PST_rHiHx2DJsrLhRcAA_3D3gxdf3D_fOT3XeBZz_mThutheqea1nsVDdDv-dvPlquoiKFSWS76snAFEUCeaL64BBxIjnGacemKo49wEDutfz6V1jojGMO9ISEyhRkvpCXeCvkO7cRH9e4QFtdYBeAzUGEYNlSIIYlkITHPacjJCtJefsh29eIpyMVe9H9kfVaSuktTVOVx1PULV-q6HQq-xpf5lGpp13USOnTNAZVSnMmqbyoxQ2w-s6nBGwQ_wqNmW5j_1eqBgGqa9FR39YvWkYCUHUkhH2EboqOjF-iUpQMYWoCy0O9CYQS-GJXH2O1N9NwJGjYjj_9HtD2gvdaU4MJ6g3eXjyp8Colqaj3nyQPp9egnphIkXlxsbvQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s0ChSBxjba248Q-toXVFroFiVbam-XnkmqbrJbdQ_89Y8dZEThUqpSTH4kznni-ccbfIPSJCucUVxU4OYc0L5zBuVba5xV3AK4FcWXMGTk7L6eXxdc5m--hk_4sTAirTGt_t6bH1TqVjJM0x6u6Hv8k4LuAdaoAggBK5vN76D6ggSrkbzidH-82WgLhCI4JEUOHPPToj9DFOC_jlmsXmCuxiIynGA9MVGTyH1iq_5HovwGVf1moyRP0OEHL7Kgb_VO055pn6EGXbPLmOZp93kKtamz2fRVCtZpFNgGjFvUua30GSDBLe73Z0fXNwqqlyuomls9am9J8hZY_VN28QJeTLxcn0zwlU8gNE2yTWw3gAAfGL6YAEhLNrSoYdURTy5j2DFxhx4SxlvBSF84SH0hDtRLCEWY5fYn2m7Zxr1HGqTEWcKSnWhdUU8E9J6bwvlCMVoyMEO3lJ01iGg8JL5ayDym7kp3UZZC6PIQL4xHKd71WHdPGLe2Pw9Ts2gae7FjQrhcyKYosmQfAxEpFsS2MoIAvRanAaTSshKVHjVDVT6wcqB3cqr7l8R97PZDwRYbfLKpx7fa3BKcOpBBOs43Qq04vdoOkgB4rQLXw3IHGDN5iWNPUvyLrd8lh1gh_c-cRf0APpxezM3l2ev7tLXoUarpgxndof7PeugNAVxv9Pn49fwB76iAD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+and+Opposing+Functions+of+the+Central+Amygdala+in+the+Modulation+of+Pain&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Torri+D.+Wilson&rft.au=Spring+Valdivia&rft.au=Aleisha+Khan&rft.au=Hye-Sook+Ahn&rft.date=2019-10-08&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=29&rft.issue=2&rft.spage=332&rft.epage=346.e5&rft_id=info:doi/10.1016%2Fj.celrep.2019.09.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65f15556a31d4c9385196a619c56963a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon