Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain
Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rh...
Saved in:
Published in | Cell reports (Cambridge) Vol. 29; no. 2; pp. 332 - 346.e5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.10.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.
[Display omitted]
•The CeA can both attenuate and exacerbate pain-related behaviors in mice•Injury induces cell-type-specific bidirectional changes in excitability in the CeA•Increased firing in CeA-PKCδ neurons drives amplification of pain-related responses•Activation of CeA-Som neurons attenuates injury-induced pain-related behaviors
The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury. |
---|---|
AbstractList | Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain.Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury. Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. [Display omitted] •The CeA can both attenuate and exacerbate pain-related behaviors in mice•Injury induces cell-type-specific bidirectional changes in excitability in the CeA•Increased firing in CeA-PKCδ neurons drives amplification of pain-related responses•Activation of CeA-Som neurons attenuates injury-induced pain-related behaviors The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury. Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying bidirectional modulation of pain remain largely unknown. Here, we demonstrate that the central nucleus of the amygdala (CeA) functions as a pain rheostat, decreasing or increasing pain-related behaviors in mice. This dual and opposing function of the CeA is encoded by opposing changes in the excitability of two distinct subpopulations of GABAergic neurons that receive excitatory inputs from the parabrachial nucleus (PB). Thus, cells expressing protein kinase C-delta (CeA-PKCδ) are sensitized by nerve injury and increase pain-related responses. In contrast, cells expressing somatostatin (CeA-Som) are inhibited by nerve injury and their activity drives antinociception. Together, these results demonstrate that the CeA can amplify or suppress pain in a cell-type-specific manner, uncovering a previously unknown mechanism underlying bidirectional control of pain in the brain. : The brain can bidirectionally influence behavioral responses to painful stimuli. Wilson et al identify a cellular mechanism underlying a pain rheostat system within the forebrain, with activation of CeA-Som neurons attenuating pain-related responses and increases in the activity of CeA-PKCδ neurons promoting amplification of pain-related behaviors following injury. Keywords: pain, central amygdala, intrinsic excitability, somatostatin, protein kinase C delta, parabrachial nucleus, amygdala circuit, pain pathways, chemogenetics |
Author | Khan, Aleisha Sugimura, Yae K. Wilson, Torri D. Martinez Gonzalez, Santiago Valdivia, Spring Carrasquillo, Yarimar Ahn, Hye-Sook Adke, Anisha P. |
AuthorAffiliation | 3 Lead Contact 1 National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States 2 These authors contributed equally |
AuthorAffiliation_xml | – name: 2 These authors contributed equally – name: 3 Lead Contact – name: 1 National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States |
Author_xml | – sequence: 1 givenname: Torri D. surname: Wilson fullname: Wilson, Torri D. organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 2 givenname: Spring surname: Valdivia fullname: Valdivia, Spring organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 3 givenname: Aleisha surname: Khan fullname: Khan, Aleisha organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 4 givenname: Hye-Sook surname: Ahn fullname: Ahn, Hye-Sook organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 5 givenname: Anisha P. surname: Adke fullname: Adke, Anisha P. organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 6 givenname: Santiago surname: Martinez Gonzalez fullname: Martinez Gonzalez, Santiago organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 7 givenname: Yae K. surname: Sugimura fullname: Sugimura, Yae K. organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States – sequence: 8 givenname: Yarimar surname: Carrasquillo fullname: Carrasquillo, Yarimar email: yarimar.carrasquillo@nih.gov organization: National Center of Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31597095$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhiNUREvpGyCUI5fdeuyMN-aAVC0UKrUqBzhbju1svcrawU4q9e1xNlvU9gDWSLbsf74Zz_-2OPLB26J4D2QJBPj5dqltF22_pATEkuQAeFWcUAqwAFqtjp6cj4uzlLYkL55VonpTHDNAsSICT4qbL6PqSuVNedv3ITm_KS9HrwcXfCpDWw53tlxbP8Ssutg9bIzqVOn8_v4mmLFTk3RS_lDOvytet6pL9uywnxa_Lr_-XH9fXN9-u1pfXC80ChwWpiErBFJRikoAp01tVIXM0oYZxKbFuq4tCm0MrXlTWUNbBkQ0SghL0dTstLiauSaoreyj26n4IINycn8R4kaqODjdWcmxBUTkioGptGA1guCKg9DIBWcqsz7PrH5sdtbo-bPPoM9fvLuTm3AveZ1bp1MzHw-AGH6PNg1y51K2p1PehjFJyghbIdaMZemHp7X-Fnn0Iws-zQIdQ0rRtlK7YT_iXNp1Eoic_JdbOfsvJ_8lyQGQk6sXyY_8_6QdBmCzY_fORpm0s15b46LVQx6p-zfgDxqEyhE |
CitedBy_id | crossref_primary_10_3389_fphar_2021_668337 crossref_primary_10_2174_1570159X19666210909150200 crossref_primary_10_1016_j_physbeh_2025_114867 crossref_primary_10_3390_biomedicines10020343 crossref_primary_10_1523_JNEUROSCI_1898_24_2024 crossref_primary_10_1002_ejp_1921 crossref_primary_10_1186_s12950_023_00373_8 crossref_primary_10_1016_j_neuropharm_2021_108456 crossref_primary_10_3390_cells13080705 crossref_primary_10_1016_j_neuroimage_2022_119408 crossref_primary_10_1016_j_jbc_2021_100277 crossref_primary_10_1002_jnr_24846 crossref_primary_10_1016_j_bbr_2023_114588 crossref_primary_10_1016_j_bbr_2021_113376 crossref_primary_10_1016_j_neuropharm_2022_109032 crossref_primary_10_1016_j_neuropharm_2022_109031 crossref_primary_10_1523_JNEUROSCI_0528_24_2024 crossref_primary_10_3389_fnmol_2022_928587 crossref_primary_10_1038_s41398_023_02414_5 crossref_primary_10_1097_SPC_0000000000000650 crossref_primary_10_3390_cells13121055 crossref_primary_10_1038_s41598_021_94633_3 crossref_primary_10_1016_j_celrep_2023_112017 crossref_primary_10_1126_scitranslmed_abj7360 crossref_primary_10_3390_ijms241511944 crossref_primary_10_1016_j_neuron_2023_06_008 crossref_primary_10_1186_s13041_020_00669_3 crossref_primary_10_1016_j_celrep_2024_114057 crossref_primary_10_3389_fpsyt_2021_764720 crossref_primary_10_1007_s11055_023_01460_2 crossref_primary_10_3389_fnmol_2022_1006125 crossref_primary_10_7554_eLife_68130 crossref_primary_10_1016_j_biopsych_2023_09_006 crossref_primary_10_1523_JNEUROSCI_1791_21_2022 crossref_primary_10_1016_j_celrep_2024_114669 crossref_primary_10_1002_jnr_24790 crossref_primary_10_1016_j_celrep_2021_109033 crossref_primary_10_1007_s12264_024_01270_7 crossref_primary_10_1097_WNR_0000000000001723 crossref_primary_10_3390_cells10102644 crossref_primary_10_1016_j_isci_2020_101033 crossref_primary_10_1038_s41598_024_73483_9 crossref_primary_10_1097_j_pain_0000000000002224 crossref_primary_10_1152_physiol_00034_2023 crossref_primary_10_1177_17448069241226960 crossref_primary_10_1016_j_biopsych_2022_09_010 crossref_primary_10_1523_ENEURO_0416_23_2024 crossref_primary_10_1126_sciadv_abg9045 crossref_primary_10_1016_j_jpain_2021_07_009 crossref_primary_10_1523_JNEUROSCI_0717_23_2023 crossref_primary_10_3389_fphar_2022_903978 crossref_primary_10_7554_eLife_68760 crossref_primary_10_1210_endocr_bqaf019 crossref_primary_10_1016_j_tins_2021_01_002 crossref_primary_10_3389_fpain_2022_918766 crossref_primary_10_3389_fncel_2022_999509 crossref_primary_10_1016_j_neuropharm_2020_108052 crossref_primary_10_1113_JP286392 crossref_primary_10_1515_revneuro_2023_0037 crossref_primary_10_1089_neu_2021_0190 crossref_primary_10_1111_ejn_16589 crossref_primary_10_1016_j_bbrc_2024_150625 crossref_primary_10_1038_s41593_022_01130_5 crossref_primary_10_1038_s41386_024_01830_5 crossref_primary_10_1016_j_brs_2024_08_007 crossref_primary_10_1152_ajpgi_00123_2021 crossref_primary_10_1111_cns_14328 crossref_primary_10_1038_s41467_023_35826_4 crossref_primary_10_1016_j_brainresbull_2021_07_002 crossref_primary_10_1016_j_ynpai_2021_100078 crossref_primary_10_1016_j_neuropharm_2023_109510 crossref_primary_10_1146_annurev_neuro_111020_103314 crossref_primary_10_1016_j_isci_2022_105497 crossref_primary_10_3389_fncel_2022_997360 crossref_primary_10_1038_s41586_024_07440_x crossref_primary_10_1016_j_jchemneu_2022_102123 crossref_primary_10_1038_s41386_023_01673_6 crossref_primary_10_1155_2022_4217593 crossref_primary_10_1111_srt_13238 crossref_primary_10_1016_j_brainres_2025_149492 crossref_primary_10_2196_52764 crossref_primary_10_1016_j_neuropharm_2021_108885 crossref_primary_10_1016_j_jphs_2024_02_004 crossref_primary_10_1523_ENEURO_0260_22_2022 crossref_primary_10_1016_j_neuropharm_2023_109622 crossref_primary_10_1038_s41467_020_19767_w crossref_primary_10_3389_fpain_2023_1298882 crossref_primary_10_1038_s41386_023_01569_5 crossref_primary_10_1016_j_celrep_2020_107729 crossref_primary_10_3389_fmed_2021_775344 crossref_primary_10_1186_s10194_022_01531_8 crossref_primary_10_7554_eLife_78610 crossref_primary_10_1523_JNEUROSCI_0726_23_2023 crossref_primary_10_1002_hbm_26104 crossref_primary_10_1038_s41467_020_16407_1 crossref_primary_10_1038_s41593_020_0632_8 crossref_primary_10_3389_fnsys_2022_963691 crossref_primary_10_1016_j_brainres_2022_148128 crossref_primary_10_1016_j_celrep_2024_114909 crossref_primary_10_1016_j_neuropharm_2021_108712 crossref_primary_10_1016_j_pneurobio_2020_101891 crossref_primary_10_1093_nsr_nwae195 crossref_primary_10_1097_j_pain_0000000000002307 crossref_primary_10_1038_s42003_021_02262_3 crossref_primary_10_1007_s12264_023_01086_x crossref_primary_10_1097_j_pain_0000000000002389 crossref_primary_10_1016_j_chom_2024_11_013 crossref_primary_10_1016_j_ynpai_2023_100131 crossref_primary_10_1371_journal_pcbi_1009097 crossref_primary_10_1001_jamanetworkopen_2023_33846 crossref_primary_10_3390_ijms232012268 crossref_primary_10_1073_pnas_2001615117 crossref_primary_10_1126_sciadv_adf6521 crossref_primary_10_3344_kjp_2022_35_4_423 crossref_primary_10_1523_JNEUROSCI_1013_20_2020 crossref_primary_10_1002_jnr_24762 crossref_primary_10_1016_j_pbb_2023_173605 crossref_primary_10_1111_bph_17420 crossref_primary_10_3389_fpain_2023_1183553 crossref_primary_10_1085_jgp_202313488 crossref_primary_10_3389_fnins_2021_667708 crossref_primary_10_1176_appi_ajp_20240941 crossref_primary_10_4103_NRR_NRR_D_24_00429 crossref_primary_10_1259_bjr_20230338 crossref_primary_10_3390_cells10020296 crossref_primary_10_1016_j_ynpai_2023_100143 crossref_primary_10_1152_physrev_00040_2019 crossref_primary_10_1016_j_tins_2024_07_002 crossref_primary_10_1016_j_biopsych_2023_03_015 crossref_primary_10_1523_JNEUROSCI_0075_20_2020 crossref_primary_10_1016_j_brainresbull_2024_111092 crossref_primary_10_1016_j_jphs_2025_03_004 crossref_primary_10_1097_j_pain_0000000000003221 crossref_primary_10_1016_j_neuron_2021_12_015 |
Cites_doi | 10.1016/0304-3940(89)90664-2 10.1097/j.pain.0000000000001167 10.1523/JNEUROSCI.03-12-02545.1983 10.1016/j.biopsych.2011.07.017 10.1097/j.pain.0000000000000830 10.1152/jn.00946.2015 10.1126/science.aan2475 10.1523/JNEUROSCI.5564-10.2011 10.1016/0304-3959(94)90023-X 10.1523/JNEUROSCI.4166-13.2014 10.1186/1744-8069-4-24 10.1523/JNEUROSCI.3536-06.2007 10.1523/JNEUROSCI.1473-12.2012 10.1038/s41593-017-0009-9 10.1152/jn.00211.2004 10.1152/jn.00264.2001 10.1152/jn.00799.2002 10.1523/JNEUROSCI.07-01-00271.1987 10.1523/JNEUROSCI.5387-10.2011 10.1007/978-3-662-46450-2_13 10.1523/JNEUROSCI.23-01-00052.2003 10.1038/nature21047 10.1177/0333102417702120 10.1016/S0074-7742(08)60305-0 10.1152/jn.1999.82.4.1843 10.1002/cne.20697 10.1523/JNEUROSCI.18-22-09453.1998 10.1152/jn.1990.63.3.473 10.1038/nrn3516 10.1038/nprot.2006.164 10.1016/S0306-4522(03)00356-7 10.1523/JNEUROSCI.4419-15.2016 10.1038/nature09559 10.1523/JNEUROSCI.17-10-03751.1997 10.1523/JNEUROSCI.21-20-08238.2001 10.1186/s13041-014-0072-z 10.1523/JNEUROSCI.15-12-08199.1995 10.1016/S0165-0173(02)00248-5 10.2174/1876386300902010011 10.1523/JNEUROSCI.1216-10.2010 10.1002/cne.21025 10.1038/s41598-018-22116-z 10.1172/JCI46229 10.1155/2017/8296501 10.1046/j.0953-816x.2001.01879.x 10.1016/j.cell.2015.05.057 10.1002/(SICI)1097-4547(19991201)58:5<663::AID-JNR7>3.0.CO;2-A 10.1002/cne.22487 10.1016/j.neuron.2016.11.034 10.4161/cib.15694 10.1016/j.conb.2018.08.012 10.1152/jn.00166.2009 10.1016/j.neulet.2003.12.027 10.1016/0304-3959(95)00027-P 10.1016/0304-3959(88)90026-7 10.1038/nature09553 10.1016/j.neuron.2007.04.017 10.1038/nature13978 10.1016/j.ejpain.2007.10.002 10.1016/0006-8993(89)90171-6 10.1177/1073858403261077 10.1152/jn.00514.2012 10.1038/sj.mp.4000812 10.1152/jn.1992.68.2.551 10.1038/nn.3322 10.1186/2049-9256-1-9 10.1523/ENEURO.0367-16.2017 10.3346/jkms.2010.25.11.1646 10.1038/nature14188 10.1016/j.neuron.2017.02.034 10.1186/1744-8069-4-26 10.1038/nmeth.1668 10.1016/0006-8993(94)91120-7 |
ContentType | Journal Article |
Copyright | 2019 Published by Elsevier Inc. |
Copyright_xml | – notice: 2019 – notice: Published by Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2019.09.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 346.e5 |
ExternalDocumentID | oai_doaj_org_article_65f15556a31d4c9385196a619c56963a PMC6816228 31597095 10_1016_j_celrep_2019_09_011 S221112471931188X |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AT000029 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-db075104225a9162b8da453e2b3d55bf5888e59cdd286b4ed2f3109ba99e25d83 |
IEDL.DBID | DOA |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:29:10 EDT 2025 Thu Aug 21 13:56:11 EDT 2025 Fri Jul 11 03:05:18 EDT 2025 Mon Jul 21 05:42:51 EDT 2025 Tue Jul 01 02:59:04 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed May 17 00:10:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | pain amygdala circuit central amygdala somatostatin chemogenetics intrinsic excitability protein kinase C delta pain pathways parabrachial nucleus |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-db075104225a9162b8da453e2b3d55bf5888e59cdd286b4ed2f3109ba99e25d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS Conceptualization, Y.C.; Methodology, Y.C., T.D.W., and S.V.; Investigation, T.D.W., S.V., A.K., H.-S.A., A.P.A., S.M.G., Y.K.S., and Y.C.; Writing – Original Draft, Y.C.; Writing – Review & Editing, T.D.W., S.V., A.K., H.-S.A., A.P.A., S.M.G., and Y.K.S.; Supervision, Y.C.; Funding Acquisition, Y.C. |
OpenAccessLink | https://doaj.org/article/65f15556a31d4c9385196a619c56963a |
PMID | 31597095 |
PQID | 2303755833 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_65f15556a31d4c9385196a619c56963a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6816228 proquest_miscellaneous_2303755833 pubmed_primary_31597095 crossref_citationtrail_10_1016_j_celrep_2019_09_011 crossref_primary_10_1016_j_celrep_2019_09_011 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_09_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-08 |
PublicationDateYYYYMMDD | 2019-10-08 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Han, Soleiman, Soden, Zweifel, Palmiter (bib28) 2015; 162 Benbouzid, Pallage, Rajalu, Waltisperger, Doridot, Poisbeau, Freund-Mercier, Barrot (bib2) 2008; 12 Manning, Martin, Meng (bib50) 2003; 120 Manning (bib46) 1998; 18 Hunt, Sun, Kucukdereli, Klein, Sah (bib33) 2017; 4 Xie, De Felice, Kopruszinski, Eyde, LaVigne, Remeniuk, Hernandez, Yue, Goshima, Ossipov (bib73) 2017; 37 Dong, Fukazawa, Wang, Kamasawa, Shigemoto (bib19) 2010; 518 Martina, Royer, Paré (bib52) 1999; 82 Ressler, Maren (bib65) 2019; 54 Manning, Mayer (bib47) 1995; 63 Paxinos, Franklin (bib61) 2001 Davis, Whalen (bib18) 2001; 6 Neugebauer, Li (bib58) 2003; 89 Heinricher, Cheng, Fields (bib32) 1987; 7 Amano, Amir, Goswami, Paré (bib1) 2012; 108 Kim, Han, Hwang, Oh (bib38) 2010; 25 Bernard, Huang, Besson (bib5) 1992; 68 Nahin (bib54) 2015; 16 Fox, Sorenson (bib23) 1994; 648 Neugebauer, Li, Bird, Bhave, Gereau (bib59) 2003; 23 Penzo, Robert, Li (bib62) 2014; 34 Bushnell, Ceko, Low (bib7) 2013; 14 Colburn, Lubin, Stone, Wang, Lawrence, D’Andrea, Brandt, Liu, Flores, Qin (bib14) 2007; 54 Kolber, Montana, Carrasquillo, Xu, Heinemann, Muglia, Gereau (bib40) 2010; 30 Sugimura, Takahashi, Watabe, Kato (bib70) 2016; 115 Carrasquillo, Gereau (bib9) 2008; 4 Neugebauer (bib56) 2015; 227 Han, Neugebauer (bib27) 2004; 361 Manning, Merin, Meng, Amaral (bib49) 2001; 21 Janak, Tye (bib34) 2015; 517 Hargreaves, Dubner, Brown, Flores, Joris (bib29) 1988; 32 Gao, Ji (bib25) 2009; 2 Haws, Williamson, Fields (bib31) 1989; 483 Sanford, Soden, Baird, Miller, Schulkin, Palmiter, Clark, Zweifel (bib67) 2017; 93 Zald (bib77) 2003; 41 Jasmin, Burkey, Card, Basbaum (bib35) 1997; 17 Dumont, Martina, Samson, Drolet, Paré (bib20) 2002; 15 Min, Yang, Yen, Chen, Chen, Cheng (bib53) 2011; 4 Sarhan, Freund-Mercier, Veinante (bib68) 2005; 491 Chieng, Christie, Osborne (bib11) 2006; 497 Carrasquillo, Gereau (bib8) 2007; 27 Veinante, Yalcin, Barrot (bib72) 2013; 1 Neugebauer, Li (bib57) 2002; 87 Bernard, Peschanski, Besson (bib4) 1989; 100 Ciocchi, Herry, Grenier, Wolff, Letzkus, Vlachos, Ehrlich, Sprengel, Deisseroth, Stadler (bib13) 2010; 468 Sadler, McQuaid, Cox, Behun, Trouten, Kolber (bib66) 2017; 158 Choi, Yoon, Na, Kim, Chung (bib12) 1994; 59 Krashes, Koda, Ye, Rogan, Adams, Cusher, Maratos-Flier, Roth, Lowell (bib41) 2011; 121 Zhao, Ting, Atallah, Qiu, Tan, Gloss, Augustine, Deisseroth, Luo, Graybiel, Feng (bib78) 2011; 8 Nation, De Felice, Hernandez, Dodick, Neugebauer, Navratilova, Porreca (bib55) 2018; 159 Jiang, Fang, Kong, Jin, Cai, Kang, Wan, Xing (bib37) 2014; 7 Manning, Mayer (bib48) 1995; 15 Yu, Garcia da Silva, Albeanu, Li (bib75) 2016; 36 Fields, Bry, Hentall, Zorman (bib22) 1983; 3 Randall, Selitto (bib64) 1957; 111 Yalcin, Bohren, Waltisperger, Sage-Ciocca, Yin, Freund-Mercier, Barrot (bib74) 2011; 70 Li, Ji, Neugebauer (bib42) 2011; 31 Bourbia, Ansah, Pertovaara (bib6) 2010; 11 Gomez, Bonaventura, Lesniak, Mathews, Sysa-Shah, Rodriguez, Ellis, Richie, Harvey, Dannals (bib26) 2017; 357 Li, Yin, Chen, Li, Liu, Rambojan, Luo (bib44) 2017; 18 Penzo, Robert, Tucciarone, De Bundel, Wang, Van Aelst, Darvas, Parada, Palmiter, He (bib63) 2015; 519 Davis (bib17) 1994; 36 Neugebauer, Li, Bird, Han (bib60) 2004; 10 Yu, Ahrens, Zhang, Schiff, Ramakrishnan, Fenno, Deisseroth, Zhao, Luo, Gong (bib76) 2017; 20 Li, Penzo, Taniguchi, Kopec, Huang, Li (bib43) 2013; 16 Thompson, Neugebauer (bib71) 2017; 2017 Fu, Han, Ishola, Scerbo, Adwanikar, Ramsey, Neugebauer (bib24) 2008; 4 Ji, Neugebauer (bib36) 2009; 102 Schiess, Callahan, Zheng (bib69) 1999; 58 Cheng, Chen, Yang, Chang, Bai, Chen, Yen, Min (bib10) 2011; 31 Bernard, Besson (bib3) 1990; 63 Crock, Kolber, Morgan, Sadler, Vogt, Bruchas, Gereau (bib15) 2012; 32 Kim, Zhang, Muralidhar, LeBlanc, Tonegawa (bib39) 2017; 93 Davie, Kole, Letzkus, Rancz, Spruston, Stuart, Hausser (bib16) 2006; 1 Fadok, Krabbe, Markovic, Courtin, Xu, Massi, Botta, Bylund, Müller, Kovacevic (bib21) 2017; 542 Haubensak, Kunwar, Cai, Ciocchi, Wall, Ponnusamy, Biag, Dong, Deisseroth, Callaway (bib30) 2010; 468 Lopez de Armentia, Sah (bib45) 2004; 92 Manvich, Webster, Foster, Farrell, Ritchie, Porter, Weinshenker (bib51) 2018; 8 Fu (10.1016/j.celrep.2019.09.011_bib24) 2008; 4 Haws (10.1016/j.celrep.2019.09.011_bib31) 1989; 483 Chieng (10.1016/j.celrep.2019.09.011_bib11) 2006; 497 Fields (10.1016/j.celrep.2019.09.011_bib22) 1983; 3 Manning (10.1016/j.celrep.2019.09.011_bib47) 1995; 63 Manning (10.1016/j.celrep.2019.09.011_bib49) 2001; 21 Benbouzid (10.1016/j.celrep.2019.09.011_bib2) 2008; 12 Cheng (10.1016/j.celrep.2019.09.011_bib10) 2011; 31 Neugebauer (10.1016/j.celrep.2019.09.011_bib58) 2003; 89 Yalcin (10.1016/j.celrep.2019.09.011_bib74) 2011; 70 Heinricher (10.1016/j.celrep.2019.09.011_bib32) 1987; 7 Kolber (10.1016/j.celrep.2019.09.011_bib40) 2010; 30 Thompson (10.1016/j.celrep.2019.09.011_bib71) 2017; 2017 Bernard (10.1016/j.celrep.2019.09.011_bib4) 1989; 100 Lopez de Armentia (10.1016/j.celrep.2019.09.011_bib45) 2004; 92 Bernard (10.1016/j.celrep.2019.09.011_bib5) 1992; 68 Li (10.1016/j.celrep.2019.09.011_bib44) 2017; 18 Davis (10.1016/j.celrep.2019.09.011_bib18) 2001; 6 Hargreaves (10.1016/j.celrep.2019.09.011_bib29) 1988; 32 Penzo (10.1016/j.celrep.2019.09.011_bib63) 2015; 519 Davie (10.1016/j.celrep.2019.09.011_bib16) 2006; 1 Hunt (10.1016/j.celrep.2019.09.011_bib33) 2017; 4 Neugebauer (10.1016/j.celrep.2019.09.011_bib59) 2003; 23 Bushnell (10.1016/j.celrep.2019.09.011_bib7) 2013; 14 Jasmin (10.1016/j.celrep.2019.09.011_bib35) 1997; 17 Neugebauer (10.1016/j.celrep.2019.09.011_bib60) 2004; 10 Veinante (10.1016/j.celrep.2019.09.011_bib72) 2013; 1 Ciocchi (10.1016/j.celrep.2019.09.011_bib13) 2010; 468 Paxinos (10.1016/j.celrep.2019.09.011_bib61) 2001 Sanford (10.1016/j.celrep.2019.09.011_bib67) 2017; 93 Xie (10.1016/j.celrep.2019.09.011_bib73) 2017; 37 Carrasquillo (10.1016/j.celrep.2019.09.011_bib8) 2007; 27 Sadler (10.1016/j.celrep.2019.09.011_bib66) 2017; 158 Fox (10.1016/j.celrep.2019.09.011_bib23) 1994; 648 Haubensak (10.1016/j.celrep.2019.09.011_bib30) 2010; 468 Zhao (10.1016/j.celrep.2019.09.011_bib78) 2011; 8 Schiess (10.1016/j.celrep.2019.09.011_bib69) 1999; 58 Manning (10.1016/j.celrep.2019.09.011_bib48) 1995; 15 Manning (10.1016/j.celrep.2019.09.011_bib50) 2003; 120 Carrasquillo (10.1016/j.celrep.2019.09.011_bib9) 2008; 4 Colburn (10.1016/j.celrep.2019.09.011_bib14) 2007; 54 Davis (10.1016/j.celrep.2019.09.011_bib17) 1994; 36 Sarhan (10.1016/j.celrep.2019.09.011_bib68) 2005; 491 Crock (10.1016/j.celrep.2019.09.011_bib15) 2012; 32 Randall (10.1016/j.celrep.2019.09.011_bib64) 1957; 111 Sugimura (10.1016/j.celrep.2019.09.011_bib70) 2016; 115 Nahin (10.1016/j.celrep.2019.09.011_bib54) 2015; 16 Bernard (10.1016/j.celrep.2019.09.011_bib3) 1990; 63 Ji (10.1016/j.celrep.2019.09.011_bib36) 2009; 102 Janak (10.1016/j.celrep.2019.09.011_bib34) 2015; 517 Bourbia (10.1016/j.celrep.2019.09.011_bib6) 2010; 11 Li (10.1016/j.celrep.2019.09.011_bib43) 2013; 16 Neugebauer (10.1016/j.celrep.2019.09.011_bib57) 2002; 87 Fadok (10.1016/j.celrep.2019.09.011_bib21) 2017; 542 Choi (10.1016/j.celrep.2019.09.011_bib12) 1994; 59 Penzo (10.1016/j.celrep.2019.09.011_bib62) 2014; 34 Martina (10.1016/j.celrep.2019.09.011_bib52) 1999; 82 Zald (10.1016/j.celrep.2019.09.011_bib77) 2003; 41 Li (10.1016/j.celrep.2019.09.011_bib42) 2011; 31 Dumont (10.1016/j.celrep.2019.09.011_bib20) 2002; 15 Krashes (10.1016/j.celrep.2019.09.011_bib41) 2011; 121 Manvich (10.1016/j.celrep.2019.09.011_bib51) 2018; 8 Neugebauer (10.1016/j.celrep.2019.09.011_bib56) 2015; 227 Jiang (10.1016/j.celrep.2019.09.011_bib37) 2014; 7 Dong (10.1016/j.celrep.2019.09.011_bib19) 2010; 518 Manning (10.1016/j.celrep.2019.09.011_bib46) 1998; 18 Yu (10.1016/j.celrep.2019.09.011_bib76) 2017; 20 Han (10.1016/j.celrep.2019.09.011_bib28) 2015; 162 Kim (10.1016/j.celrep.2019.09.011_bib39) 2017; 93 Ressler (10.1016/j.celrep.2019.09.011_bib65) 2019; 54 Gao (10.1016/j.celrep.2019.09.011_bib25) 2009; 2 Gomez (10.1016/j.celrep.2019.09.011_bib26) 2017; 357 Kim (10.1016/j.celrep.2019.09.011_bib38) 2010; 25 Nation (10.1016/j.celrep.2019.09.011_bib55) 2018; 159 Min (10.1016/j.celrep.2019.09.011_bib53) 2011; 4 Yu (10.1016/j.celrep.2019.09.011_bib75) 2016; 36 Amano (10.1016/j.celrep.2019.09.011_bib1) 2012; 108 Han (10.1016/j.celrep.2019.09.011_bib27) 2004; 361 |
References_xml | – volume: 4 start-page: 24 year: 2008 ident: bib9 article-title: Hemispheric lateralization of a molecular signal for pain modulation in the amygdala publication-title: Mol. Pain – volume: 115 start-page: 2721 year: 2016 end-page: 2739 ident: bib70 article-title: Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala publication-title: J. Neurophysiol. – volume: 519 start-page: 455 year: 2015 end-page: 459 ident: bib63 article-title: The paraventricular thalamus controls a central amygdala fear circuit publication-title: Nature – volume: 491 start-page: 418 year: 2005 end-page: 442 ident: bib68 article-title: Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions publication-title: J. Comp. Neurol. – volume: 27 start-page: 1543 year: 2007 end-page: 1551 ident: bib8 article-title: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception publication-title: J. Neurosci. – volume: 20 start-page: 1680 year: 2017 end-page: 1685 ident: bib76 article-title: The central amygdala controls learning in the lateral amygdala publication-title: Nat. Neurosci. – volume: 158 start-page: 747 year: 2017 end-page: 759 ident: bib66 article-title: Divergent functions of the left and right central amygdala in visceral nociception publication-title: Pain – volume: 4 year: 2017 ident: bib33 article-title: Intrinsic circuits in the lateral central amygdala publication-title: eNeuro – volume: 92 start-page: 1285 year: 2004 end-page: 1294 ident: bib45 article-title: Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala publication-title: J. Neurophysiol. – volume: 37 start-page: 780 year: 2017 end-page: 794 ident: bib73 article-title: Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention publication-title: Cephalalgia – volume: 4 start-page: 394 year: 2011 end-page: 396 ident: bib53 article-title: ERK, synaptic plasticity and acid-induced muscle pain publication-title: Commun. Integr. Biol. – volume: 518 start-page: 4771 year: 2010 end-page: 4791 ident: bib19 article-title: Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat publication-title: J. Comp. Neurol. – volume: 16 start-page: 332 year: 2013 end-page: 339 ident: bib43 article-title: Experience-dependent modification of a central amygdala fear circuit publication-title: Nat. Neurosci. – volume: 30 start-page: 8203 year: 2010 end-page: 8213 ident: bib40 article-title: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior publication-title: J. Neurosci. – volume: 25 start-page: 1646 year: 2010 end-page: 1651 ident: bib38 article-title: The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia publication-title: J. Korean Med. Sci. – volume: 16 start-page: 769 year: 2015 end-page: 780 ident: bib54 article-title: Estimates of pain prevalence and severity in adults: United States, 2012 publication-title: J. Pain – volume: 93 start-page: 1464 year: 2017 end-page: 1479.e1465 ident: bib39 article-title: Basolateral to central amygdala neural circuits for appetitive behaviors publication-title: Neuron – volume: 32 start-page: 77 year: 1988 end-page: 88 ident: bib29 article-title: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia publication-title: Pain – volume: 361 start-page: 254 year: 2004 end-page: 257 ident: bib27 article-title: Synaptic plasticity in the amygdala in a visceral pain model in rats publication-title: Neurosci. Lett. – volume: 497 start-page: 910 year: 2006 end-page: 927 ident: bib11 article-title: Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity publication-title: J. Comp. Neurol. – volume: 648 start-page: 215 year: 1994 end-page: 221 ident: bib23 article-title: Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges publication-title: Brain Res. – volume: 227 start-page: 261 year: 2015 end-page: 284 ident: bib56 article-title: Amygdala pain mechanisms publication-title: Handb. Exp. Pharmacol. – volume: 82 start-page: 1843 year: 1999 end-page: 1854 ident: bib52 article-title: Physiological properties of central medial and central lateral amygdala neurons publication-title: J. Neurophysiol. – volume: 63 start-page: 473 year: 1990 end-page: 490 ident: bib3 article-title: The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes publication-title: J. Neurophysiol. – volume: 6 start-page: 13 year: 2001 end-page: 34 ident: bib18 article-title: The amygdala: vigilance and emotion publication-title: Mol. Psychiatry – volume: 15 start-page: 8199 year: 1995 end-page: 8213 ident: bib48 article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test publication-title: J. Neurosci. – volume: 12 start-page: 591 year: 2008 end-page: 599 ident: bib2 article-title: Sciatic nerve cuffing in mice: a model of sustained neuropathic pain publication-title: Eur. J. Pain – volume: 68 start-page: 551 year: 1992 end-page: 569 ident: bib5 article-title: Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes publication-title: J. Neurophysiol. – volume: 36 start-page: 6488 year: 2016 end-page: 6496 ident: bib75 article-title: Central amygdala somatostatin neurons gate passive and active defensive behaviors publication-title: J. Neurosci. – volume: 23 start-page: 52 year: 2003 end-page: 63 ident: bib59 article-title: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5 publication-title: J. Neurosci. – volume: 34 start-page: 2432 year: 2014 end-page: 2437 ident: bib62 article-title: Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala publication-title: J. Neurosci. – volume: 7 start-page: 271 year: 1987 end-page: 278 ident: bib32 article-title: Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray publication-title: J. Neurosci. – volume: 70 start-page: 946 year: 2011 end-page: 953 ident: bib74 article-title: A time-dependent history of mood disorders in a murine model of neuropathic pain publication-title: Biol. Psychiatry – volume: 542 start-page: 96 year: 2017 end-page: 100 ident: bib21 article-title: A competitive inhibitory circuit for selection of active and passive fear responses publication-title: Nature – volume: 41 start-page: 88 year: 2003 end-page: 123 ident: bib77 article-title: The human amygdala and the emotional evaluation of sensory stimuli publication-title: Brain Res. Brain Res. Rev. – volume: 159 start-page: 919 year: 2018 end-page: 928 ident: bib55 article-title: Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain publication-title: Pain – volume: 483 start-page: 272 year: 1989 end-page: 282 ident: bib31 article-title: Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation publication-title: Brain Res. – volume: 18 start-page: 188 year: 2017 end-page: 199 ident: bib44 article-title: Activation of the extracellular signal-regulated kinase in the amygdale modulates fentanyl-induced hypersensitivity in rats publication-title: J. Pain – volume: 108 start-page: 3196 year: 2012 end-page: 3205 ident: bib1 article-title: Morphology, PKCδ expression, and synaptic responsiveness of different types of rat central lateral amygdala neurons publication-title: J. Neurophysiol. – volume: 468 start-page: 270 year: 2010 end-page: 276 ident: bib30 article-title: Genetic dissection of an amygdala microcircuit that gates conditioned fear publication-title: Nature – volume: 8 start-page: 3840 year: 2018 ident: bib51 article-title: The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice publication-title: Sci. Rep. – volume: 517 start-page: 284 year: 2015 end-page: 292 ident: bib34 article-title: From circuits to behaviour in the amygdala publication-title: Nature – volume: 93 start-page: 164 year: 2017 end-page: 178 ident: bib67 article-title: A central amygdala CRF circuit facilitates learning about weak threats publication-title: Neuron – volume: 54 start-page: 379 year: 2007 end-page: 386 ident: bib14 article-title: Attenuated cold sensitivity in TRPM8 null mice publication-title: Neuron – volume: 1 start-page: 1235 year: 2006 end-page: 1247 ident: bib16 article-title: Dendritic patch-clamp recording publication-title: Nat. Protoc. – year: 2001 ident: bib61 article-title: The Mouse Brain in Stereotaxic Coordinates – volume: 111 start-page: 409 year: 1957 end-page: 419 ident: bib64 article-title: A method for measurement of analgesic activity on inflamed tissue publication-title: Arch. Int. Pharmacodyn. Ther. – volume: 31 start-page: 2258 year: 2011 end-page: 2270 ident: bib10 article-title: Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice publication-title: J. Neurosci. – volume: 3 start-page: 2545 year: 1983 end-page: 2552 ident: bib22 article-title: The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat publication-title: J. Neurosci. – volume: 18 start-page: 9453 year: 1998 end-page: 9470 ident: bib46 article-title: A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala publication-title: J. Neurosci. – volume: 100 start-page: 83 year: 1989 end-page: 88 ident: bib4 article-title: A possible spino (trigemino)-ponto-amygdaloid pathway for pain publication-title: Neurosci. Lett. – volume: 2 start-page: 11 year: 2009 end-page: 17 ident: bib25 article-title: c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? publication-title: Open Pain J. – volume: 31 start-page: 1114 year: 2011 end-page: 1127 ident: bib42 article-title: Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior publication-title: J. Neurosci. – volume: 8 start-page: 745 year: 2011 end-page: 752 ident: bib78 article-title: Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function publication-title: Nat. Methods – volume: 2017 start-page: 8296501 year: 2017 ident: bib71 article-title: Amygdala plasticity and pain publication-title: Pain Res. Manag. – volume: 4 start-page: 26 year: 2008 ident: bib24 article-title: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior publication-title: Mol. Pain – volume: 1 start-page: 9 year: 2013 ident: bib72 article-title: The amygdala between sensation and affect: a role in pain publication-title: J. Mol. Psychiatry – volume: 58 start-page: 663 year: 1999 end-page: 673 ident: bib69 article-title: Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro publication-title: J. Neurosci. Res. – volume: 120 start-page: 1157 year: 2003 end-page: 1170 ident: bib50 article-title: The rodent amygdala contributes to the production of cannabinoid-induced antinociception publication-title: Neuroscience – volume: 87 start-page: 103 year: 2002 end-page: 112 ident: bib57 article-title: Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input publication-title: J. Neurophysiol. – volume: 36 start-page: 225 year: 1994 end-page: 266 ident: bib17 article-title: The role of the amygdala in emotional learning publication-title: Int. Rev. Neurobiol. – volume: 15 start-page: 545 year: 2002 end-page: 552 ident: bib20 article-title: Physiological properties of central amygdala neurons: species differences publication-title: Eur. J. Neurosci. – volume: 121 start-page: 1424 year: 2011 end-page: 1428 ident: bib41 article-title: Rapid, reversible activation of AgRP neurons drives feeding behavior in mice publication-title: J. Clin. Invest. – volume: 14 start-page: 502 year: 2013 end-page: 511 ident: bib7 article-title: Cognitive and emotional control of pain and its disruption in chronic pain publication-title: Nat. Rev. Neurosci. – volume: 59 start-page: 369 year: 1994 end-page: 376 ident: bib12 article-title: Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain publication-title: Pain – volume: 21 start-page: 8238 year: 2001 end-page: 8246 ident: bib49 article-title: Reduction in opioid- and cannabinoid-induced antinociception in rhesus monkeys after bilateral lesions of the amygdaloid complex publication-title: J. Neurosci. – volume: 10 start-page: 221 year: 2004 end-page: 234 ident: bib60 article-title: The amygdala and persistent pain publication-title: Neuroscientist – volume: 89 start-page: 716 year: 2003 end-page: 727 ident: bib58 article-title: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain publication-title: J. Neurophysiol. – volume: 54 start-page: 54 year: 2019 end-page: 59 ident: bib65 article-title: Synaptic encoding of fear memories in the amygdala publication-title: Curr. Opin. Neurobiol. – volume: 32 start-page: 14217 year: 2012 end-page: 14226 ident: bib15 article-title: Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain publication-title: J. Neurosci. – volume: 17 start-page: 3751 year: 1997 end-page: 3765 ident: bib35 article-title: Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat publication-title: J. Neurosci. – volume: 7 start-page: 72 year: 2014 ident: bib37 article-title: Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats publication-title: Mol. Brain – volume: 63 start-page: 141 year: 1995 end-page: 152 ident: bib47 article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test publication-title: Pain – volume: 162 start-page: 363 year: 2015 end-page: 374 ident: bib28 article-title: Elucidating an affective pain circuit that creates a threat memory publication-title: Cell – volume: 468 start-page: 277 year: 2010 end-page: 282 ident: bib13 article-title: Encoding of conditioned fear in central amygdala inhibitory circuits publication-title: Nature – volume: 11 start-page: 1461 year: 2010 end-page: 1471 ident: bib6 article-title: Corticotropin-releasing factor in the rat amygdala differentially influences sensory-discriminative and emotional-like pain response in peripheral neuropathy publication-title: J. Pain – volume: 357 start-page: 503 year: 2017 end-page: 507 ident: bib26 article-title: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine publication-title: Science – volume: 102 start-page: 2253 year: 2009 end-page: 2264 ident: bib36 article-title: Hemispheric lateralization of pain processing by amygdala neurons publication-title: J. Neurophysiol. – volume: 100 start-page: 83 year: 1989 ident: 10.1016/j.celrep.2019.09.011_bib4 article-title: A possible spino (trigemino)-ponto-amygdaloid pathway for pain publication-title: Neurosci. Lett. doi: 10.1016/0304-3940(89)90664-2 – volume: 159 start-page: 919 year: 2018 ident: 10.1016/j.celrep.2019.09.011_bib55 article-title: Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain publication-title: Pain doi: 10.1097/j.pain.0000000000001167 – volume: 3 start-page: 2545 year: 1983 ident: 10.1016/j.celrep.2019.09.011_bib22 article-title: The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-12-02545.1983 – volume: 70 start-page: 946 year: 2011 ident: 10.1016/j.celrep.2019.09.011_bib74 article-title: A time-dependent history of mood disorders in a murine model of neuropathic pain publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.07.017 – volume: 158 start-page: 747 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib66 article-title: Divergent functions of the left and right central amygdala in visceral nociception publication-title: Pain doi: 10.1097/j.pain.0000000000000830 – volume: 115 start-page: 2721 year: 2016 ident: 10.1016/j.celrep.2019.09.011_bib70 article-title: Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala publication-title: J. Neurophysiol. doi: 10.1152/jn.00946.2015 – volume: 357 start-page: 503 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib26 article-title: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine publication-title: Science doi: 10.1126/science.aan2475 – volume: 31 start-page: 2258 year: 2011 ident: 10.1016/j.celrep.2019.09.011_bib10 article-title: Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5564-10.2011 – volume: 59 start-page: 369 year: 1994 ident: 10.1016/j.celrep.2019.09.011_bib12 article-title: Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain publication-title: Pain doi: 10.1016/0304-3959(94)90023-X – volume: 16 start-page: 769 year: 2015 ident: 10.1016/j.celrep.2019.09.011_bib54 article-title: Estimates of pain prevalence and severity in adults: United States, 2012 publication-title: J. Pain – volume: 18 start-page: 188 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib44 article-title: Activation of the extracellular signal-regulated kinase in the amygdale modulates fentanyl-induced hypersensitivity in rats publication-title: J. Pain – volume: 34 start-page: 2432 year: 2014 ident: 10.1016/j.celrep.2019.09.011_bib62 article-title: Fear conditioning potentiates synaptic transmission onto long-range projection neurons in the lateral subdivision of central amygdala publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4166-13.2014 – volume: 4 start-page: 24 year: 2008 ident: 10.1016/j.celrep.2019.09.011_bib9 article-title: Hemispheric lateralization of a molecular signal for pain modulation in the amygdala publication-title: Mol. Pain doi: 10.1186/1744-8069-4-24 – volume: 27 start-page: 1543 year: 2007 ident: 10.1016/j.celrep.2019.09.011_bib8 article-title: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3536-06.2007 – volume: 32 start-page: 14217 year: 2012 ident: 10.1016/j.celrep.2019.09.011_bib15 article-title: Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1473-12.2012 – volume: 20 start-page: 1680 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib76 article-title: The central amygdala controls learning in the lateral amygdala publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0009-9 – volume: 92 start-page: 1285 year: 2004 ident: 10.1016/j.celrep.2019.09.011_bib45 article-title: Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala publication-title: J. Neurophysiol. doi: 10.1152/jn.00211.2004 – volume: 87 start-page: 103 year: 2002 ident: 10.1016/j.celrep.2019.09.011_bib57 article-title: Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input publication-title: J. Neurophysiol. doi: 10.1152/jn.00264.2001 – volume: 89 start-page: 716 year: 2003 ident: 10.1016/j.celrep.2019.09.011_bib58 article-title: Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain publication-title: J. Neurophysiol. doi: 10.1152/jn.00799.2002 – volume: 7 start-page: 271 year: 1987 ident: 10.1016/j.celrep.2019.09.011_bib32 article-title: Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-01-00271.1987 – volume: 31 start-page: 1114 year: 2011 ident: 10.1016/j.celrep.2019.09.011_bib42 article-title: Mitochondrial reactive oxygen species are activated by mGluR5 through IP3 and activate ERK and PKA to increase excitability of amygdala neurons and pain behavior publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5387-10.2011 – volume: 227 start-page: 261 year: 2015 ident: 10.1016/j.celrep.2019.09.011_bib56 article-title: Amygdala pain mechanisms publication-title: Handb. Exp. Pharmacol. doi: 10.1007/978-3-662-46450-2_13 – volume: 23 start-page: 52 year: 2003 ident: 10.1016/j.celrep.2019.09.011_bib59 article-title: Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-01-00052.2003 – volume: 542 start-page: 96 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib21 article-title: A competitive inhibitory circuit for selection of active and passive fear responses publication-title: Nature doi: 10.1038/nature21047 – volume: 37 start-page: 780 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib73 article-title: Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention publication-title: Cephalalgia doi: 10.1177/0333102417702120 – volume: 36 start-page: 225 year: 1994 ident: 10.1016/j.celrep.2019.09.011_bib17 article-title: The role of the amygdala in emotional learning publication-title: Int. Rev. Neurobiol. doi: 10.1016/S0074-7742(08)60305-0 – volume: 82 start-page: 1843 year: 1999 ident: 10.1016/j.celrep.2019.09.011_bib52 article-title: Physiological properties of central medial and central lateral amygdala neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.4.1843 – volume: 491 start-page: 418 year: 2005 ident: 10.1016/j.celrep.2019.09.011_bib68 article-title: Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions publication-title: J. Comp. Neurol. doi: 10.1002/cne.20697 – volume: 18 start-page: 9453 year: 1998 ident: 10.1016/j.celrep.2019.09.011_bib46 article-title: A lateralized deficit in morphine antinociception after unilateral inactivation of the central amygdala publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.18-22-09453.1998 – volume: 63 start-page: 473 year: 1990 ident: 10.1016/j.celrep.2019.09.011_bib3 article-title: The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes publication-title: J. Neurophysiol. doi: 10.1152/jn.1990.63.3.473 – volume: 14 start-page: 502 year: 2013 ident: 10.1016/j.celrep.2019.09.011_bib7 article-title: Cognitive and emotional control of pain and its disruption in chronic pain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3516 – volume: 1 start-page: 1235 year: 2006 ident: 10.1016/j.celrep.2019.09.011_bib16 article-title: Dendritic patch-clamp recording publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.164 – volume: 120 start-page: 1157 year: 2003 ident: 10.1016/j.celrep.2019.09.011_bib50 article-title: The rodent amygdala contributes to the production of cannabinoid-induced antinociception publication-title: Neuroscience doi: 10.1016/S0306-4522(03)00356-7 – volume: 36 start-page: 6488 year: 2016 ident: 10.1016/j.celrep.2019.09.011_bib75 article-title: Central amygdala somatostatin neurons gate passive and active defensive behaviors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4419-15.2016 – volume: 468 start-page: 277 year: 2010 ident: 10.1016/j.celrep.2019.09.011_bib13 article-title: Encoding of conditioned fear in central amygdala inhibitory circuits publication-title: Nature doi: 10.1038/nature09559 – volume: 17 start-page: 3751 year: 1997 ident: 10.1016/j.celrep.2019.09.011_bib35 article-title: Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-10-03751.1997 – volume: 21 start-page: 8238 year: 2001 ident: 10.1016/j.celrep.2019.09.011_bib49 article-title: Reduction in opioid- and cannabinoid-induced antinociception in rhesus monkeys after bilateral lesions of the amygdaloid complex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-20-08238.2001 – volume: 7 start-page: 72 year: 2014 ident: 10.1016/j.celrep.2019.09.011_bib37 article-title: Sensitization of neurons in the central nucleus of the amygdala via the decreased GABAergic inhibition contributes to the development of neuropathic pain-related anxiety-like behaviors in rats publication-title: Mol. Brain doi: 10.1186/s13041-014-0072-z – volume: 15 start-page: 8199 year: 1995 ident: 10.1016/j.celrep.2019.09.011_bib48 article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-12-08199.1995 – volume: 41 start-page: 88 year: 2003 ident: 10.1016/j.celrep.2019.09.011_bib77 article-title: The human amygdala and the emotional evaluation of sensory stimuli publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/S0165-0173(02)00248-5 – volume: 2 start-page: 11 year: 2009 ident: 10.1016/j.celrep.2019.09.011_bib25 article-title: c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? publication-title: Open Pain J. doi: 10.2174/1876386300902010011 – volume: 30 start-page: 8203 year: 2010 ident: 10.1016/j.celrep.2019.09.011_bib40 article-title: Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1216-10.2010 – volume: 497 start-page: 910 year: 2006 ident: 10.1016/j.celrep.2019.09.011_bib11 article-title: Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity publication-title: J. Comp. Neurol. doi: 10.1002/cne.21025 – volume: 8 start-page: 3840 year: 2018 ident: 10.1016/j.celrep.2019.09.011_bib51 article-title: The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice publication-title: Sci. Rep. doi: 10.1038/s41598-018-22116-z – volume: 121 start-page: 1424 year: 2011 ident: 10.1016/j.celrep.2019.09.011_bib41 article-title: Rapid, reversible activation of AgRP neurons drives feeding behavior in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI46229 – volume: 2017 start-page: 8296501 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib71 article-title: Amygdala plasticity and pain publication-title: Pain Res. Manag. doi: 10.1155/2017/8296501 – volume: 15 start-page: 545 year: 2002 ident: 10.1016/j.celrep.2019.09.011_bib20 article-title: Physiological properties of central amygdala neurons: species differences publication-title: Eur. J. Neurosci. doi: 10.1046/j.0953-816x.2001.01879.x – volume: 162 start-page: 363 year: 2015 ident: 10.1016/j.celrep.2019.09.011_bib28 article-title: Elucidating an affective pain circuit that creates a threat memory publication-title: Cell doi: 10.1016/j.cell.2015.05.057 – volume: 58 start-page: 663 year: 1999 ident: 10.1016/j.celrep.2019.09.011_bib69 article-title: Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro publication-title: J. Neurosci. Res. doi: 10.1002/(SICI)1097-4547(19991201)58:5<663::AID-JNR7>3.0.CO;2-A – volume: 518 start-page: 4771 year: 2010 ident: 10.1016/j.celrep.2019.09.011_bib19 article-title: Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat publication-title: J. Comp. Neurol. doi: 10.1002/cne.22487 – volume: 93 start-page: 164 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib67 article-title: A central amygdala CRF circuit facilitates learning about weak threats publication-title: Neuron doi: 10.1016/j.neuron.2016.11.034 – volume: 4 start-page: 394 year: 2011 ident: 10.1016/j.celrep.2019.09.011_bib53 article-title: ERK, synaptic plasticity and acid-induced muscle pain publication-title: Commun. Integr. Biol. doi: 10.4161/cib.15694 – volume: 54 start-page: 54 year: 2019 ident: 10.1016/j.celrep.2019.09.011_bib65 article-title: Synaptic encoding of fear memories in the amygdala publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.08.012 – volume: 102 start-page: 2253 year: 2009 ident: 10.1016/j.celrep.2019.09.011_bib36 article-title: Hemispheric lateralization of pain processing by amygdala neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00166.2009 – volume: 361 start-page: 254 year: 2004 ident: 10.1016/j.celrep.2019.09.011_bib27 article-title: Synaptic plasticity in the amygdala in a visceral pain model in rats publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2003.12.027 – volume: 63 start-page: 141 year: 1995 ident: 10.1016/j.celrep.2019.09.011_bib47 article-title: The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test publication-title: Pain doi: 10.1016/0304-3959(95)00027-P – volume: 32 start-page: 77 year: 1988 ident: 10.1016/j.celrep.2019.09.011_bib29 article-title: A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia publication-title: Pain doi: 10.1016/0304-3959(88)90026-7 – volume: 468 start-page: 270 year: 2010 ident: 10.1016/j.celrep.2019.09.011_bib30 article-title: Genetic dissection of an amygdala microcircuit that gates conditioned fear publication-title: Nature doi: 10.1038/nature09553 – volume: 54 start-page: 379 year: 2007 ident: 10.1016/j.celrep.2019.09.011_bib14 article-title: Attenuated cold sensitivity in TRPM8 null mice publication-title: Neuron doi: 10.1016/j.neuron.2007.04.017 – year: 2001 ident: 10.1016/j.celrep.2019.09.011_bib61 – volume: 519 start-page: 455 year: 2015 ident: 10.1016/j.celrep.2019.09.011_bib63 article-title: The paraventricular thalamus controls a central amygdala fear circuit publication-title: Nature doi: 10.1038/nature13978 – volume: 12 start-page: 591 year: 2008 ident: 10.1016/j.celrep.2019.09.011_bib2 article-title: Sciatic nerve cuffing in mice: a model of sustained neuropathic pain publication-title: Eur. J. Pain doi: 10.1016/j.ejpain.2007.10.002 – volume: 483 start-page: 272 year: 1989 ident: 10.1016/j.celrep.2019.09.011_bib31 article-title: Putative nociceptive modulatory neurons in the dorsolateral pontomesencephalic reticular formation publication-title: Brain Res. doi: 10.1016/0006-8993(89)90171-6 – volume: 10 start-page: 221 year: 2004 ident: 10.1016/j.celrep.2019.09.011_bib60 article-title: The amygdala and persistent pain publication-title: Neuroscientist doi: 10.1177/1073858403261077 – volume: 108 start-page: 3196 year: 2012 ident: 10.1016/j.celrep.2019.09.011_bib1 article-title: Morphology, PKCδ expression, and synaptic responsiveness of different types of rat central lateral amygdala neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00514.2012 – volume: 6 start-page: 13 year: 2001 ident: 10.1016/j.celrep.2019.09.011_bib18 article-title: The amygdala: vigilance and emotion publication-title: Mol. Psychiatry doi: 10.1038/sj.mp.4000812 – volume: 111 start-page: 409 year: 1957 ident: 10.1016/j.celrep.2019.09.011_bib64 article-title: A method for measurement of analgesic activity on inflamed tissue publication-title: Arch. Int. Pharmacodyn. Ther. – volume: 68 start-page: 551 year: 1992 ident: 10.1016/j.celrep.2019.09.011_bib5 article-title: Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.68.2.551 – volume: 16 start-page: 332 year: 2013 ident: 10.1016/j.celrep.2019.09.011_bib43 article-title: Experience-dependent modification of a central amygdala fear circuit publication-title: Nat. Neurosci. doi: 10.1038/nn.3322 – volume: 11 start-page: 1461 year: 2010 ident: 10.1016/j.celrep.2019.09.011_bib6 article-title: Corticotropin-releasing factor in the rat amygdala differentially influences sensory-discriminative and emotional-like pain response in peripheral neuropathy publication-title: J. Pain – volume: 1 start-page: 9 year: 2013 ident: 10.1016/j.celrep.2019.09.011_bib72 article-title: The amygdala between sensation and affect: a role in pain publication-title: J. Mol. Psychiatry doi: 10.1186/2049-9256-1-9 – volume: 4 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib33 article-title: Intrinsic circuits in the lateral central amygdala publication-title: eNeuro doi: 10.1523/ENEURO.0367-16.2017 – volume: 25 start-page: 1646 year: 2010 ident: 10.1016/j.celrep.2019.09.011_bib38 article-title: The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia publication-title: J. Korean Med. Sci. doi: 10.3346/jkms.2010.25.11.1646 – volume: 517 start-page: 284 year: 2015 ident: 10.1016/j.celrep.2019.09.011_bib34 article-title: From circuits to behaviour in the amygdala publication-title: Nature doi: 10.1038/nature14188 – volume: 93 start-page: 1464 year: 2017 ident: 10.1016/j.celrep.2019.09.011_bib39 article-title: Basolateral to central amygdala neural circuits for appetitive behaviors publication-title: Neuron doi: 10.1016/j.neuron.2017.02.034 – volume: 4 start-page: 26 year: 2008 ident: 10.1016/j.celrep.2019.09.011_bib24 article-title: PKA and ERK, but not PKC, in the amygdala contribute to pain-related synaptic plasticity and behavior publication-title: Mol. Pain doi: 10.1186/1744-8069-4-26 – volume: 8 start-page: 745 year: 2011 ident: 10.1016/j.celrep.2019.09.011_bib78 article-title: Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function publication-title: Nat. Methods doi: 10.1038/nmeth.1668 – volume: 648 start-page: 215 year: 1994 ident: 10.1016/j.celrep.2019.09.011_bib23 article-title: Bilateral lesions of the amygdala attenuate analgesia induced by diverse environmental challenges publication-title: Brain Res. doi: 10.1016/0006-8993(94)91120-7 |
SSID | ssj0000601194 |
Score | 2.5882118 |
Snippet | Pain perception is essential for survival and can be amplified or suppressed by expectations, experiences, and context. The neural mechanisms underlying... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 332 |
SubjectTerms | amygdala circuit Animals central amygdala Central Amygdaloid Nucleus - physiopathology chemogenetics Enzyme Activation Female Hypersensitivity - complications Hypersensitivity - physiopathology intrinsic excitability MAP Kinase Signaling System Mice, Inbred C57BL Models, Neurological Nerve Tissue - injuries Neuralgia - complications Neuralgia - physiopathology Neurons - metabolism pain pain pathways parabrachial nucleus protein kinase C delta Protein Kinase C-delta - metabolism Proto-Oncogene Proteins c-fos - metabolism Sciatic Nerve - injuries Sciatic Nerve - pathology somatostatin Temperature Touch |
SummonAdditionalLinks | – databaseName: ScienceDirect Free & Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nfTFyr0arJ62dJxd9uwFNIW2oXchJ6pS1YOaXLYf9-RbIe6PSwUfLEs2_JoPPONPfoGofdMhWCkaSDIOWMVD45U1thYNTIAuFY01KVm5PJzfXXNP63E6gRdjmthclrlYPt7m16s9dAyH6Q537bt_BuF2AW8UwMQBFCyXIEdZlyWRXyri-N3lsw3Qko9xNy_yieMK-hKmpcLm13IxJVEFcJTQiYeqhD5TxzVv0D073zKPxzU4iF6MCBLfN4P_hE6CekxutfXmrx9gpYfDnDUJI-_bHOmVlrjBfi0ona4ixiAIB4-9eLzm9u1NxuD21Tal50fqnzlnl9Nm56i68XH75dX1VBLoXJCiX3lLWADkgm_hAFESK30hgsWqGVeCBsFRMJBKOc9lbXlwdOYOUOtUSpQ4SV7hk5Tl8ILhCVzzgOMjMxazixTMkrqeIzcCNYIOkNslJ92A9F4rnex0WNG2U_dS11nqesz2AiZoep41rYn2rij_0WemmPfTJNdGrrdWg96omsRAS-J2jDiuVMM4KWqDcSMTtRgecwMNePE6onWwaXaO27_btQDDS9k_stiUugOvzTEdCCFvJhthp73enEcJAPw2ACohftONGbyFNMjqf1RSL9rCbNG5cv_HvErdD_v9fmLr9HpfncIbwBQ7e3b8sb8Bi9WHOQ priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELZWi5B4QctdLhmJ16CNj8R-QGg5qhVSgQcq7ZvlsxQVZ-m20vbfM5OjEA7tC1KeEseJxzOeb5LxN4Q85zpGq2wNQc4xL0T0ZeGsS0WtIoBrzWLV1oycfahO5-L9mTw7IEPN1l6AF38N7bCe1Hy9enH5ffcKDP7lz1wtH1friOyTpW5ZS3Gz7zXwTTWa6qwH_N3ajBxn-KuZMczlYqIe9tP9o6ORv2pp_Udu609Y-nt25S_uanpEbvY4k550inGLHMR8m1zvKk_u7pDZ2y1ctTnQj-eYt5UXdAoerlVC2iQKsJD2H37pybfdItiVpcvcnp81oa_5hS0_2WW-S-bTd5_fnBZ9ZYXCSy03RXCAFEqk_5IW8CFzKlgheWSOByldkhAXR6l9CExVTsTAEjKIOqt1ZDIofo8c5ibHB4Qq7n0AUJm4c4I7rlVSzIuUhJW8lmxC-CA_43vacax-sTJDftlX00ndoNTNMRxlOSHF_q7zjnbjivavcWr2bZE0uz3RrBemt0FTyQToSVaWl0F4zQFs6spCBOllBeuQnZB6mFjT448OV0BXyyse_2zQAwPmif9cbI7N9sJAhAdSwK1tE3K_04v9S3KAkjVAXHjuSGNGoxhfycsvLQV4pWDWmHr4P4b9iNzAoXSJjY_J4Wa9jU8AaW3c09Z4fgDH1yP2 priority: 102 providerName: Scholars Portal |
Title | Dual and Opposing Functions of the Central Amygdala in the Modulation of Pain |
URI | https://dx.doi.org/10.1016/j.celrep.2019.09.011 https://www.ncbi.nlm.nih.gov/pubmed/31597095 https://www.proquest.com/docview/2303755833 https://pubmed.ncbi.nlm.nih.gov/PMC6816228 https://doaj.org/article/65f15556a31d4c9385196a619c56963a |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLcQ0iQuaGOMlcHkSVyjEX8k9hG2VWxSNw4g9Wb5k3UqLoL2wH_Ps51UzXboZVLkg-3E8fNz3s_x8-8hdEal91roFhY557Ri3taV0SZUrfAAriXxTY4ZOfnZXN2yH1M-3Qj1lXzCCj1wEdznhgcwebzRtHbMSgoIQTYaYL_lDShPhkZg8zYWU-UbnLjM0pYyIclni7C2PzeXnbusnz_6RFdZy0xzWtcDu5Tp-wfm6V_4-bcX5YZZGr9G-x2exBelH2_Qjo8H6FWJMPn8Fk2-rqBUR4d_PST_rHiHx2DJsrLhRcAA_3D3gxdf3D_fOT3XeBZz_mThutheqea1nsVDdDv-dvPlquoiKFSWS76snAFEUCeaL64BBxIjnGacemKo49wEDutfz6V1jojGMO9ISEyhRkvpCXeCvkO7cRH9e4QFtdYBeAzUGEYNlSIIYlkITHPacjJCtJefsh29eIpyMVe9H9kfVaSuktTVOVx1PULV-q6HQq-xpf5lGpp13USOnTNAZVSnMmqbyoxQ2w-s6nBGwQ_wqNmW5j_1eqBgGqa9FR39YvWkYCUHUkhH2EboqOjF-iUpQMYWoCy0O9CYQS-GJXH2O1N9NwJGjYjj_9HtD2gvdaU4MJ6g3eXjyp8Colqaj3nyQPp9egnphIkXlxsbvQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYIL4s0ChSBxjba248Q-toXVFroFiVbam-XnkmqbrJbdQ_89Y8dZEThUqpSTH4kznni-ccbfIPSJCucUVxU4OYc0L5zBuVba5xV3AK4FcWXMGTk7L6eXxdc5m--hk_4sTAirTGt_t6bH1TqVjJM0x6u6Hv8k4LuAdaoAggBK5vN76D6ggSrkbzidH-82WgLhCI4JEUOHPPToj9DFOC_jlmsXmCuxiIynGA9MVGTyH1iq_5HovwGVf1moyRP0OEHL7Kgb_VO055pn6EGXbPLmOZp93kKtamz2fRVCtZpFNgGjFvUua30GSDBLe73Z0fXNwqqlyuomls9am9J8hZY_VN28QJeTLxcn0zwlU8gNE2yTWw3gAAfGL6YAEhLNrSoYdURTy5j2DFxhx4SxlvBSF84SH0hDtRLCEWY5fYn2m7Zxr1HGqTEWcKSnWhdUU8E9J6bwvlCMVoyMEO3lJ01iGg8JL5ayDym7kp3UZZC6PIQL4xHKd71WHdPGLe2Pw9Ts2gae7FjQrhcyKYosmQfAxEpFsS2MoIAvRanAaTSshKVHjVDVT6wcqB3cqr7l8R97PZDwRYbfLKpx7fa3BKcOpBBOs43Qq04vdoOkgB4rQLXw3IHGDN5iWNPUvyLrd8lh1gh_c-cRf0APpxezM3l2ev7tLXoUarpgxndof7PeugNAVxv9Pn49fwB76iAD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+and+Opposing+Functions+of+the+Central+Amygdala+in+the+Modulation+of+Pain&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Torri+D.+Wilson&rft.au=Spring+Valdivia&rft.au=Aleisha+Khan&rft.au=Hye-Sook+Ahn&rft.date=2019-10-08&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=29&rft.issue=2&rft.spage=332&rft.epage=346.e5&rft_id=info:doi/10.1016%2Fj.celrep.2019.09.011&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_65f15556a31d4c9385196a619c56963a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |