Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery

There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & clinical cancer research Vol. 42; no. 1; pp. 117 - 20
Main Authors Long, Li, Xiong, Wei, Lin, Fenwang, Hou, Jiazhen, Chen, Guihua, Peng, Taoxing, He, Yihao, Wang, Rui, Xu, Qin, Huang, Yongzhuo
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 10.05.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8 T cells was increased while the immunosuppressive MDSCs decreased. The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.
AbstractList BackgroundThere are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.MethodsA therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.ResultsSHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased.ConclusionThe work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity.Graphic abstractAn immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.
There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGF[beta] signaling; the amount of cytotoxic effector CD8.sup.+ T cells was increased while the immunosuppressive MDSCs decreased. The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity.
There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8 T cells was increased while the immunosuppressive MDSCs decreased. The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.
There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.BACKGROUNDThere are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.METHODSA therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased.RESULTSSHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased.The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.CONCLUSIONThe work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.
Abstract Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. Methods A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. Results SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased. Conclusion The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. Graphic abstract An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.
Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. Methods A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. Results SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGF[beta] signaling; the amount of cytotoxic effector CD8.sup.+ T cells was increased while the immunosuppressive MDSCs decreased. Conclusion The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. Graphic abstract An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. Keywords: Shikonin, Colorectal cancer liver metastasis, Glycolysis, Pyruvate kinase M2 (PKM2), Epithelial-mesenchymal transition (EMT), Immune microenvironment
ArticleNumber 117
Audience Academic
Author Peng, Taoxing
Xu, Qin
Hou, Jiazhen
Chen, Guihua
Lin, Fenwang
Huang, Yongzhuo
Long, Li
Xiong, Wei
He, Yihao
Wang, Rui
Author_xml – sequence: 1
  givenname: Li
  surname: Long
  fullname: Long, Li
– sequence: 2
  givenname: Wei
  surname: Xiong
  fullname: Xiong, Wei
– sequence: 3
  givenname: Fenwang
  surname: Lin
  fullname: Lin, Fenwang
– sequence: 4
  givenname: Jiazhen
  surname: Hou
  fullname: Hou, Jiazhen
– sequence: 5
  givenname: Guihua
  surname: Chen
  fullname: Chen, Guihua
– sequence: 6
  givenname: Taoxing
  surname: Peng
  fullname: Peng, Taoxing
– sequence: 7
  givenname: Yihao
  surname: He
  fullname: He, Yihao
– sequence: 8
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
– sequence: 9
  givenname: Qin
  surname: Xu
  fullname: Xu, Qin
– sequence: 10
  givenname: Yongzhuo
  orcidid: 0000-0001-7067-8915
  surname: Huang
  fullname: Huang, Yongzhuo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37161591$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2A_9A17IgFC8mTqZmXxdSSlVCxVB6nXIZk52UzNJTWYK7bU_3DO7re4WkUzIcPK8b5LDe1jshRigKF6T-oQQwd5n0tYdq-qmxcmEqO6fFQeEU1ZJydje1v9-cZjzdV0zIol8Uey3nDBCJTkofn2D5eT16MKy9NqMeoQqARagL90wTCEOMOpF9C4PpQ59ef7lqkxwCylrX9qYShN9TIBKXxodDKTSO9wuZ13GD3I55dk-r9yPGFwoR52WMB_Qwxq9e1k8t9pnePWwHhXfP55fnX2uLr9-ujg7vawMlXSsFlL3RFLWCSNNw8EQRqlteM1ryoBxZsWia2wHWjQ1FQsrG9pzLSzXxhrQ7VFxsfHto75WN8kNOt2pqJ1aF2JaKp1GZzwo2lspZLvouKZdw7TuAETXQ8OFpTVp0OvDxutmWgzQGwhj0n7HdHcnuJVaxltFaoI3li06vHtwSPHnBHlUg8sGvNcB4pRVIwiRXd1QjujbJ-h1nFLAXs0UdgTfS_5SS40vcMFGPNjMpuqUd4LXHW0ZUif_oHD0MDiDCbMO6zuC4y3BCrQfVzn6aXQx5F3wzXZL_vTiMW0IiA1gUsw5gVXGYeLQB6_gPLZGzcFWm2ArDLZaB1vdo7R5In10_4_oNx8s_DM
CitedBy_id crossref_primary_10_1007_s00018_023_05099_7
crossref_primary_10_3389_fphar_2023_1271252
crossref_primary_10_1186_s12935_024_03429_8
crossref_primary_10_4103_jcrt_jcrt_933_24
crossref_primary_10_3892_or_2024_8839
crossref_primary_10_1097_HM9_0000000000000135
crossref_primary_10_1016_j_jconrel_2023_12_052
crossref_primary_10_3892_ijo_2024_5673
crossref_primary_10_1016_j_cytogfr_2024_10_007
crossref_primary_10_1016_j_biopha_2024_117192
crossref_primary_10_4251_wjgo_v16_i11_4354
crossref_primary_10_1016_j_apsb_2024_07_008
crossref_primary_10_1016_j_heliyon_2024_e41246
crossref_primary_10_1038_s41401_023_01205_4
crossref_primary_10_3389_fphar_2024_1416781
crossref_primary_10_1186_s12943_024_02179_5
crossref_primary_10_1016_j_jpha_2024_101150
crossref_primary_10_1002_slct_202403504
crossref_primary_10_1016_j_bbamcr_2024_119788
crossref_primary_10_1016_j_tcb_2024_08_006
crossref_primary_10_2147_IJN_S479212
crossref_primary_10_1002_cbin_70018
crossref_primary_10_1016_j_phymed_2024_155608
crossref_primary_10_1016_j_yexcr_2025_114474
crossref_primary_10_1016_j_jma_2025_02_010
crossref_primary_10_1111_1759_7714_70028
Cites_doi 10.1126/science.123.3191.309
10.1021/jacs.6b06558
10.15252/emmm.202012798
10.1016/j.apsb.2021.09.022
10.1038/s41388-019-0974-4
10.1126/science.7513443
10.1101/pdb.prot103283
10.1097/00000478-198406000-00004
10.1053/j.gastro.2018.12.003
10.1038/nature11540
10.1074/jbc.RA120.015800
10.1038/s41586-020-03045-2
10.1126/sciadv.abi8602
10.4149/neo_2010_03_234
10.1371/journal.pbio.1001162
10.1186/s12964-020-00667-x
10.1002/iub.1066
10.3389/fonc.2019.00309
10.1164/rccm.201201-0084OC
10.1016/j.ccell.2022.04.018
10.1016/j.molcel.2014.02.015
10.1038/tpj.2016.13
10.1038/nature06734
10.1016/j.cell.2012.07.018
10.4049/jimmunol.1202702
10.1159/000147748
10.1016/j.cell.2011.03.054
10.1021/acsami.0c14909
10.1038/nrclinonc.2013.26
10.1186/1471-2407-14-810
10.1186/s12943-015-0435-9
10.3389/fimmu.2020.00980
10.1016/j.ab.2008.04.040
10.18632/oncotarget.9760
10.1038/nature16140
10.1016/j.cell.2014.07.032
10.1158/1078-0432.CCR-21-3202
10.1016/j.molcel.2012.01.001
10.1182/blood-2006-07-035972
10.1186/s12885-017-3925-x
10.1073/pnas.1407717111
10.1016/S1470-2045(15)00122-9
10.1016/S1535-6108(03)00304-0
10.1097/01.sla.0000217629.94941.cf
10.3389/fphys.2021.688485
10.1038/nature16064
10.1016/j.ccr.2013.01.022
10.1016/j.ccr.2013.10.009
10.1016/j.ccr.2009.06.017
10.1002/smll.202007522
10.1016/j.isci.2021.103067
10.1111/j.1743-6109.2006.00127.x
10.1007/s00262-012-1258-9
10.1038/s41590-018-0229-5
10.1021/acs.nanolett.9b00021
10.1002/1878-0261.12162
10.1021/jacs.9b02091
10.1038/nature10598
10.3322/caac.21660
10.1016/j.cmet.2016.08.011
10.1002/1878-0261.12879
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13046-023-02688-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (ProQuest)
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-9966
EndPage 20
ExternalDocumentID oai_doaj_org_article_5df9893b47a5426aa4ee84de278f5012
PMC10170793
A748704536
37161591
10_1186_s13046_023_02688_z
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
  grantid: 81925035
– fundername: ;
  grantid: 81925035
GroupedDBID ---
0R~
29K
2WC
4.4
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c595t-b9ad195648c9c27ec1655f2707056e676f8b42f4ea82058bf925d7a8f7acfcea3
IEDL.DBID M48
ISSN 1756-9966
0392-9078
IngestDate Wed Aug 27 01:31:11 EDT 2025
Thu Aug 21 18:36:57 EDT 2025
Fri Jul 11 02:27:24 EDT 2025
Fri Jul 25 04:55:57 EDT 2025
Tue Jun 17 21:14:24 EDT 2025
Tue Jun 10 20:27:04 EDT 2025
Thu May 22 21:20:06 EDT 2025
Mon Jul 21 06:03:33 EDT 2025
Thu Apr 24 23:10:22 EDT 2025
Tue Jul 01 02:26:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Immune microenvironment
Glycolysis
Epithelial-mesenchymal transition (EMT)
Pyruvate kinase M2 (PKM2)
Shikonin
Colorectal cancer liver metastasis
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-b9ad195648c9c27ec1655f2707056e676f8b42f4ea82058bf925d7a8f7acfcea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7067-8915
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13046-023-02688-z
PMID 37161591
PQID 2815642051
PQPubID 105475
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_5df9893b47a5426aa4ee84de278f5012
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10170793
proquest_miscellaneous_2811940257
proquest_journals_2815642051
gale_infotracmisc_A748704536
gale_infotracacademiconefile_A748704536
gale_healthsolutions_A748704536
pubmed_primary_37161591
crossref_citationtrail_10_1186_s13046_023_02688_z
crossref_primary_10_1186_s13046_023_02688_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-10
PublicationDateYYYYMMDD 2023-05-10
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of experimental & clinical cancer research
PublicationTitleAlternate J Exp Clin Cancer Res
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References J Qian (2688_CR52) 2021; 19
B Son (2688_CR18) 2020; 39
W Lu (2688_CR45) 2021; 13
HR Christofk (2688_CR7) 2008; 452
W Li (2688_CR56) 2010; 57
X Gao (2688_CR8) 2012; 45
S Manfredi (2688_CR2) 2006; 244
Z Wang (2688_CR29) 2019; 9
J Engstrand (2688_CR4) 2018; 18
D Kobelt (2688_CR44) 2020; 11
W Zhang (2688_CR49) 2021; 15
S Nandi (2688_CR32) 2020; 295
H Long (2688_CR42) 2022; 40
D Triner (2688_CR59) 2019; 156
KE Keller (2688_CR51) 2014; 53
H Kanemaru (2688_CR15) 2021; 24
F Innocenti (2688_CR47) 2022; 28
BY Guan (2688_CR27) 2016; 138
H-M Chen (2688_CR34) 2012; 61
S Beckert (2688_CR30) 2006; 14
ED Hay (2688_CR20) 1995; 154
A Brand (2688_CR16) 2016; 24
V Marchesi (2688_CR36) 2013; 10
B Chaneton (2688_CR50) 2012; 491
2688_CR62
Z Yuan (2688_CR43) 2021; 17
MJ Watson (2688_CR13) 2021; 591
H Sung (2688_CR1) 2021; 71
F Graziano (2688_CR6) 2017; 17
CF Zhou (2688_CR9) 2012; 64
YD Shaul (2688_CR21) 2014; 158
O Warburg (2688_CR5) 1956; 123
Z Husain (2688_CR31) 2013; 191
W Yang (2688_CR10) 2011; 480
B Toh (2688_CR60) 2011; 9
RM Kottmann (2688_CR38) 2012; 186
X Zheng (2688_CR37) 2015; 527
JM Kozlowski (2688_CR61) 1984; 44
M Anderson (2688_CR57) 2017; 8
W Yang (2688_CR24) 2012; 150
2688_CR54
2688_CR14
S Patel (2688_CR39) 2018; 19
C Cremolini (2688_CR46) 2015; 16
K Fischer (2688_CR22) 2007; 109
Y Zhao (2688_CR23) 2018; 12
H Wang (2688_CR53) 2019; 19
HL Caslin (2688_CR12) 2021; 12
H Katoh (2688_CR41) 2013; 24
W Luo (2688_CR11) 2011; 145
TJ Lin (2688_CR33) 2015; 14
MA Nieto (2688_CR35) 1994; 264
C Hackl (2688_CR3) 2014; 14
LS Zhang (2688_CR28) 2008; 379
ZG Fridlender (2688_CR40) 2009; 16
SK Wculek (2688_CR58) 2015; 528
Z Lu (2688_CR55) 2003; 4
DR Chase (2688_CR19) 1984; 8
A Hamabe (2688_CR25) 2014; 111
J Li (2688_CR48) 2020; 12
C Dong (2688_CR17) 2013; 23
L Peng (2688_CR26) 2019; 141
References_xml – volume: 123
  start-page: 309
  issue: 3191
  year: 1956
  ident: 2688_CR5
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 138
  start-page: 11306
  issue: 35
  year: 2016
  ident: 2688_CR27
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b06558
– volume: 13
  start-page: e12798
  issue: 1
  year: 2021
  ident: 2688_CR45
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.202012798
– ident: 2688_CR54
  doi: 10.1016/j.apsb.2021.09.022
– volume: 39
  start-page: 36
  issue: 1
  year: 2020
  ident: 2688_CR18
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0974-4
– volume: 264
  start-page: 835
  issue: 5160
  year: 1994
  ident: 2688_CR35
  publication-title: Science
  doi: 10.1126/science.7513443
– ident: 2688_CR62
  doi: 10.1101/pdb.prot103283
– volume: 8
  start-page: 435
  issue: 6
  year: 1984
  ident: 2688_CR19
  publication-title: Am J Surg Pathol
  doi: 10.1097/00000478-198406000-00004
– volume: 156
  start-page: 1467
  issue: 5
  year: 2019
  ident: 2688_CR59
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.12.003
– volume: 491
  start-page: 458
  issue: 7424
  year: 2012
  ident: 2688_CR50
  publication-title: Nature
  doi: 10.1038/nature11540
– volume: 295
  start-page: 17425
  issue: 51
  year: 2020
  ident: 2688_CR32
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.015800
– volume: 591
  start-page: 645
  issue: 7851
  year: 2021
  ident: 2688_CR13
  publication-title: Nature
  doi: 10.1038/s41586-020-03045-2
– ident: 2688_CR14
  doi: 10.1126/sciadv.abi8602
– volume: 57
  start-page: 234
  issue: 3
  year: 2010
  ident: 2688_CR56
  publication-title: Neoplasma
  doi: 10.4149/neo_2010_03_234
– volume: 9
  start-page: e1001162
  issue: 9
  year: 2011
  ident: 2688_CR60
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001162
– volume: 19
  start-page: 9
  issue: 1
  year: 2021
  ident: 2688_CR52
  publication-title: Cell Commun Signal
  doi: 10.1186/s12964-020-00667-x
– volume: 64
  start-page: 775
  issue: 9
  year: 2012
  ident: 2688_CR9
  publication-title: IUBMB Life
  doi: 10.1002/iub.1066
– volume: 9
  start-page: 309
  year: 2019
  ident: 2688_CR29
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00309
– volume: 186
  start-page: 740
  issue: 8
  year: 2012
  ident: 2688_CR38
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201201-0084OC
– volume: 40
  start-page: 674
  issue: 6
  year: 2022
  ident: 2688_CR42
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.04.018
– volume: 53
  start-page: 700
  issue: 5
  year: 2014
  ident: 2688_CR51
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.02.015
– volume: 17
  start-page: 258
  issue: 3
  year: 2017
  ident: 2688_CR6
  publication-title: Pharmacogenomics J
  doi: 10.1038/tpj.2016.13
– volume: 452
  start-page: 230
  issue: 7184
  year: 2008
  ident: 2688_CR7
  publication-title: Nature
  doi: 10.1038/nature06734
– volume: 44
  start-page: 3522
  issue: 8
  year: 1984
  ident: 2688_CR61
  publication-title: Cancer Res
– volume: 150
  start-page: 685
  issue: 4
  year: 2012
  ident: 2688_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.018
– volume: 191
  start-page: 1486
  issue: 3
  year: 2013
  ident: 2688_CR31
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1202702
– volume: 154
  start-page: 8
  issue: 1
  year: 1995
  ident: 2688_CR20
  publication-title: Acta Anat (Basel)
  doi: 10.1159/000147748
– volume: 145
  start-page: 732
  issue: 5
  year: 2011
  ident: 2688_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.054
– volume: 12
  start-page: 50734
  issue: 45
  year: 2020
  ident: 2688_CR48
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c14909
– volume: 10
  start-page: 184
  issue: 4
  year: 2013
  ident: 2688_CR36
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2013.26
– volume: 14
  start-page: 810
  year: 2014
  ident: 2688_CR3
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-14-810
– volume: 14
  start-page: 174
  year: 2015
  ident: 2688_CR33
  publication-title: Mol Cancer
  doi: 10.1186/s12943-015-0435-9
– volume: 11
  start-page: 980
  year: 2020
  ident: 2688_CR44
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.00980
– volume: 379
  start-page: 80
  issue: 1
  year: 2008
  ident: 2688_CR28
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2008.04.040
– volume: 8
  start-page: 56081
  issue: 34
  year: 2017
  ident: 2688_CR57
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9760
– volume: 528
  start-page: 413
  issue: 7582
  year: 2015
  ident: 2688_CR58
  publication-title: Nature
  doi: 10.1038/nature16140
– volume: 158
  start-page: 1094
  issue: 5
  year: 2014
  ident: 2688_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2014.07.032
– volume: 28
  start-page: 1690
  issue: 8
  year: 2022
  ident: 2688_CR47
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-21-3202
– volume: 45
  start-page: 598
  issue: 5
  year: 2012
  ident: 2688_CR8
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.01.001
– volume: 109
  start-page: 3812
  issue: 9
  year: 2007
  ident: 2688_CR22
  publication-title: Blood
  doi: 10.1182/blood-2006-07-035972
– volume: 18
  start-page: 78
  issue: 1
  year: 2018
  ident: 2688_CR4
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3925-x
– volume: 111
  start-page: 15526
  issue: 43
  year: 2014
  ident: 2688_CR25
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1407717111
– volume: 16
  start-page: 1306
  issue: 13
  year: 2015
  ident: 2688_CR46
  publication-title: The Lancet Oncology
  doi: 10.1016/S1470-2045(15)00122-9
– volume: 4
  start-page: 499
  issue: 6
  year: 2003
  ident: 2688_CR55
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00304-0
– volume: 244
  start-page: 254
  issue: 2
  year: 2006
  ident: 2688_CR2
  publication-title: Ann Surg
  doi: 10.1097/01.sla.0000217629.94941.cf
– volume: 12
  start-page: 688485
  year: 2021
  ident: 2688_CR12
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.688485
– volume: 527
  start-page: 525
  issue: 7579
  year: 2015
  ident: 2688_CR37
  publication-title: Nature
  doi: 10.1038/nature16064
– volume: 23
  start-page: 316
  issue: 3
  year: 2013
  ident: 2688_CR17
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.01.022
– volume: 24
  start-page: 631
  issue: 5
  year: 2013
  ident: 2688_CR41
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.10.009
– volume: 16
  start-page: 183
  issue: 3
  year: 2009
  ident: 2688_CR40
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.06.017
– volume: 17
  start-page: e2007522
  issue: 13
  year: 2021
  ident: 2688_CR43
  publication-title: Small
  doi: 10.1002/smll.202007522
– volume: 24
  start-page: 103067
  issue: 9
  year: 2021
  ident: 2688_CR15
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103067
– volume: 14
  start-page: 321
  issue: 3
  year: 2006
  ident: 2688_CR30
  publication-title: Wound Repair Regen
  doi: 10.1111/j.1743-6109.2006.00127.x
– volume: 61
  start-page: 1989
  issue: 11
  year: 2012
  ident: 2688_CR34
  publication-title: Cancer Immunology, Immunotherapy: CII
  doi: 10.1007/s00262-012-1258-9
– volume: 19
  start-page: 1236
  issue: 11
  year: 2018
  ident: 2688_CR39
  publication-title: Nat Immunol
  doi: 10.1038/s41590-018-0229-5
– volume: 19
  start-page: 2935
  issue: 5
  year: 2019
  ident: 2688_CR53
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b00021
– volume: 12
  start-page: 305
  issue: 3
  year: 2018
  ident: 2688_CR23
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.12162
– volume: 141
  start-page: 7073
  issue: 17
  year: 2019
  ident: 2688_CR26
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.9b02091
– volume: 480
  start-page: 118
  issue: 7375
  year: 2011
  ident: 2688_CR10
  publication-title: Nature
  doi: 10.1038/nature10598
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 2688_CR1
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 24
  start-page: 657
  issue: 5
  year: 2016
  ident: 2688_CR16
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.011
– volume: 15
  start-page: 1466
  issue: 5
  year: 2021
  ident: 2688_CR49
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.12879
SSID ssj0061919
Score 2.5116005
Snippet There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal...
Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis,...
BackgroundThere are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis,...
Abstract Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 117
SubjectTerms Analysis
Animals
Cancer
Care and treatment
CD8-Positive T-Lymphocytes
Colorectal cancer
Colorectal cancer liver metastasis
Colorectal Neoplasms - drug therapy
Cytotoxicity
Dendritic cells
Efficiency
Enzymes
Epithelial-Mesenchymal Transition
Epithelial-mesenchymal transition (EMT)
Gastrointestinal diseases
Glycolysis
Health aspects
Humans
Hyaluronic Acid
Immune microenvironment
Kinases
Lactates
Lactic Acid
Liver Neoplasms - drug therapy
Lymphocytes
Metabolism
Metastasis
Mice
Nanoparticles
Proteins
Pyruvate kinase M2 (PKM2)
Shikonin
Stem cells
T cells
Transforming growth factors
Tumor Microenvironment
Tumors
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgpZHoKVGQuKAouLErxwLalUhLQfUSr1Zjh90xTZbbbYHeu4P74ydjTZCgguHPWQ9TjYz43msZz4T8oF5BVG89aWXtSx53t-VouTSi8iZ1jz1V8y-y7ML_u1SXG4d9YU1YRkeODPuSPjYgE9tubICvIm1PATNfaiUjuJzOl-4Ap-3SaayDYasgDWbFhktj3qGG4Al-Cf4SNCNu4kbSmj9f9rkLac0LZjc8kCnz8jTIXSkx_knPyePQrdLHs-GzfE9cv8jnysPzogurMMoskytKsHTObaBLK_DGmS-mPfX1HaenszOKSI4rXq4LQSvFBGs0QLCpUNtWNEFlm1QnAdRZB96inXyP2l_Nf-F_-PSXEgOD_Ahkf5-QS5OT86_npXDIQulE41Yly0ICnsGuXaNq1RwICkRKwWmQMgglYy65VXkwUKsIHQbm0p4ZXVU1kUXbP2S7HTLLrwm1LoaaZRmtuZWeg3WQwnHmIxgStq2IGzDc-MGBHI8CGNhUiaipclyMiAnk-Rk7gryaZxzk_E3_kr9BUU5UiJ2dvoCNMoMGmX-pVEFOURFMLkRdbQA5lhBcgcRcC0L8jFRoA2AF3B2aGUANiCa1oRyf0IJa9dNhzfKZgbb0ZsqAfgAI1lB3o_DOBPr4bqwvE00rIHUX6iCvMq6Ob50rTCKb2C2nmjthCvTkW5-lZDF0T4jYuKb_8HHt-RJlVYcQt3uk5316jYcQAS3bt-lxfoA55FC3g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagSIgL4s2WAkZC4oCsanf92hMqqFWFFA6olXKzvH60EemmZNNDe-aHM-N1lq6Qesgh8TjJesYznx_zDSEfS68AxVvPvKwl48P5rhSMSy8iL7XmKb9i9kMen_LvczHPG259vla59YnJUfuVwz3y_SrRmlRgQ18ufzOsGoWnq7mExn3yAKnL0KrVfFxwwdogFfaACCkZ4vpt0oyW-32JR4IMIha8JFjLzSQwJf7-_730rTA1vUJ5KyYdPSGPM5ikB4P2n5J7oXtGHs7ycflz8ufnUGkewhNdWoe4kqXkleDpAhNDVhdhA1awXPQX1HaeHs5OKHI6rXv4WoCzFDmt0SfCW4f2saZLvMhBsR_gyj70FG_On9H-fPELd3bpcLUcfsCHJHr9gpweHZ58O2a57AJzohEb1oLqMIuQa9e4SgUHuhOxUuAchAxSyahbXkUeLKAHodvYVMIrq6OyLrpg65dkp1t14TWh1tUoo3Rpa26l1-BPlHBlKSM4l7YtSLkdc-MyJzmWxliatDbR0gx6MqAnk_RkbgryeexzOTBy3Cn9FVU5SiKbdvpgtT4zeXIa4WMDuK3lygpALNbyEDT3oVI6CojgBXmPhmCG1NTRJ5gDBcs9wMS1LMinJIFeAR7A2ZzcAMOA_FoTyb2JJMxmN23eGpvJ3qQ3_2y_IB_GZuyJN-S6sLpKMmXDAcGqgrwabHN86Fohrm-gt55Y7WRUpi3d4jxxjaPHRg7F3bv_1xvyqEpzCWlt98jOZn0V3gJa27Tv0pT8CxEbPG0
  priority: 102
  providerName: ProQuest
Title Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery
URI https://www.ncbi.nlm.nih.gov/pubmed/37161591
https://www.proquest.com/docview/2815642051
https://www.proquest.com/docview/2811940257
https://pubmed.ncbi.nlm.nih.gov/PMC10170793
https://doaj.org/article/5df9893b47a5426aa4ee84de278f5012
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9NAFB_2A8SL-G10rSMIHiRKkvnKQWQrXRahi5QtFC_DZGayW8ym2nTB3bN_uO9N0rDBxZOHFNJ505L3-ZvMvPcIeZM4CSjeuNiJTMSs3d8VPGbC8ZIlSrGQXzE9Ecdz9mXBFztk2-6oY2Bz69IO-0nN19X7Xz-vPoHBfwwGr8SHJsHtvRiiD1wCJH-9S_YhMknsaDBl_a4CrBWSfJs4c-u8QXAKNfz_9tQ3QtXwGOWNuHR0n9zrACU9bDXgAdnx9UNyZ9ptmT8iv2dtt3kIUbQyFrFlHBJYvKNLTA5ZXfgNaEK1bC6oqR2dTE8p1nVaN_CzAGkp1rVGvwi3FnVkTSs8zEFxHmDLxjcUT8-f0eZ8-R3f7tL2eDn8gfOB9OoxmR9NTj8fx13rhdjynG_iAsSHmYRM2dym0luQHy9TCQ6CCy-kKFXB0pJ5AwiCq6LMU-6kUaU0trTeZE_IXr2q_TNCjc2QRqrEZMwIp8CnSG6TRJTgYIoiIsmW59p2dcmxPUalw_pECd3KSYOcdJCTvo7Iu37Oj7Yqxz-pxyjKnhIraocvVusz3Rmo5q7MAbsVTBoOqMUY5r1izqdSlRyieEReoSLoNj219wv6UMKSD3BxJiLyNlCgrsIDWNMlOAAbsMbWgPJgQAkWbYfDW2XTW4PQaSjrA4xMIvK6H8aZeEqu9qvLQJPkDFCsjMjTVjf7h84kYvscZquB1g64Mhypl-eh3jh6bayj-Px_8PEFuZsGi8MCuAdkb7O-9C8B122KEdmVCzki--PJydfZKLwdGQUDhs_Z-NsfgLpPbw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2gUCOBOKCoJPErB4QKtNrSbg9oK_VmHNtpV2yzZbMVas_8Hn4jM86DRki99bCHXY-zjmfyzUw8D0JeJ06CFW9c7EQmYtac7woeM-F4yRKlWMivGO-L0QH7esgPV8ifLhcGwyo7TAxA7eYW35FvpKGsSQoy9PH0Z4xdo_B0tWuh0YjFrj__BS5b_WHnC_D3TZpub00-j-K2q0Bsec6XcQErwyQ5pmxuU-ktLI2XqQTZ58ILKUpVsLRk3oBy5Koo85Q7aVQpjS2tNxlc9wa5CYr3PTp78rB38MAXCY1EQCOLGP2ILklHiY06wSPIGDQkfARI58VAEYZ-Af9rhUtqcRiyeUkHbt8jd1vjlW420nafrPjqAbk1bo_nH5Lf35rO9qAO6cxYtGPjkCzjHZ1iIsr8xC9B6mbT-oSaytGt8YRiDalFDZcF85liDW3EYPhqUR4XdIaBIxTngR1b-5pipP4RrY-nP_BNMm1C2eEPnA-k54_IwbUw5DFZreaVf0qosRnSSJWYjBnhFOCX5DZJRAlgVhQRSbo917atgY6tOGY6-EJK6IZPGvikA5_0RUTe9XNOmwogV1J_Qlb2lFi9O_wwXxzpFgw0d2UOdmLBpOFgIRnDvFfM-VSqkoPFEJF1FATdpML2GKQ3JbiXYINnIiJvAwWiENyANW0yBWwD1vMaUK4NKAE97HC4Ezbdolet_z1rEXnVD-NMjMir_Pws0CQ5A4tZRuRJI5v9TWcS_YgcZquB1A52ZThSTY9DbXPUEFiz8dnV61ont0eT8Z7e29nffU7upOG5wpK6a2R1uTjzL8BSXBYvw-NJyffrxoO_yh15uA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+lactate-related+immunometabolism+and+EMT+reversal+for+colorectal+cancer+liver+metastases+using+shikonin+targeted+delivery&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Li+Long&rft.au=Wei+Xiong&rft.au=Fenwang+Lin&rft.au=Jiazhen+Hou&rft.date=2023-05-10&rft.pub=BMC&rft.eissn=1756-9966&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs13046-023-02688-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5df9893b47a5426aa4ee84de278f5012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon