Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery
There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly...
Saved in:
Published in | Journal of experimental & clinical cancer research Vol. 42; no. 1; pp. 117 - 20 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
10.05.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.
A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.
SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8
T cells was increased while the immunosuppressive MDSCs decreased.
The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. |
---|---|
AbstractList | BackgroundThere are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.MethodsA therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.ResultsSHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased.ConclusionThe work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity.Graphic abstractAn immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGF[beta] signaling; the amount of cytotoxic effector CD8.sup.+ T cells was increased while the immunosuppressive MDSCs decreased. The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8 T cells was increased while the immunosuppressive MDSCs decreased. The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.BACKGROUNDThere are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target.A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.METHODSA therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor.SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased.RESULTSSHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased.The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.CONCLUSIONThe work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. Abstract Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. Methods A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. Results SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFβ signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased. Conclusion The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. Graphic abstract An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. Methods A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. Results SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGF[beta] signaling; the amount of cytotoxic effector CD8.sup.+ T cells was increased while the immunosuppressive MDSCs decreased. Conclusion The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. Graphic abstract An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT. Keywords: Shikonin, Colorectal cancer liver metastasis, Glycolysis, Pyruvate kinase M2 (PKM2), Epithelial-mesenchymal transition (EMT), Immune microenvironment |
ArticleNumber | 117 |
Audience | Academic |
Author | Peng, Taoxing Xu, Qin Hou, Jiazhen Chen, Guihua Lin, Fenwang Huang, Yongzhuo Long, Li Xiong, Wei He, Yihao Wang, Rui |
Author_xml | – sequence: 1 givenname: Li surname: Long fullname: Long, Li – sequence: 2 givenname: Wei surname: Xiong fullname: Xiong, Wei – sequence: 3 givenname: Fenwang surname: Lin fullname: Lin, Fenwang – sequence: 4 givenname: Jiazhen surname: Hou fullname: Hou, Jiazhen – sequence: 5 givenname: Guihua surname: Chen fullname: Chen, Guihua – sequence: 6 givenname: Taoxing surname: Peng fullname: Peng, Taoxing – sequence: 7 givenname: Yihao surname: He fullname: He, Yihao – sequence: 8 givenname: Rui surname: Wang fullname: Wang, Rui – sequence: 9 givenname: Qin surname: Xu fullname: Xu, Qin – sequence: 10 givenname: Yongzhuo orcidid: 0000-0001-7067-8915 surname: Huang fullname: Huang, Yongzhuo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37161591$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1rFDEUhgep2A_9A17IgFC8mTqZmXxdSSlVCxVB6nXIZk52UzNJTWYK7bU_3DO7re4WkUzIcPK8b5LDe1jshRigKF6T-oQQwd5n0tYdq-qmxcmEqO6fFQeEU1ZJydje1v9-cZjzdV0zIol8Uey3nDBCJTkofn2D5eT16MKy9NqMeoQqARagL90wTCEOMOpF9C4PpQ59ef7lqkxwCylrX9qYShN9TIBKXxodDKTSO9wuZ13GD3I55dk-r9yPGFwoR52WMB_Qwxq9e1k8t9pnePWwHhXfP55fnX2uLr9-ujg7vawMlXSsFlL3RFLWCSNNw8EQRqlteM1ryoBxZsWia2wHWjQ1FQsrG9pzLSzXxhrQ7VFxsfHto75WN8kNOt2pqJ1aF2JaKp1GZzwo2lspZLvouKZdw7TuAETXQ8OFpTVp0OvDxutmWgzQGwhj0n7HdHcnuJVaxltFaoI3li06vHtwSPHnBHlUg8sGvNcB4pRVIwiRXd1QjujbJ-h1nFLAXs0UdgTfS_5SS40vcMFGPNjMpuqUd4LXHW0ZUif_oHD0MDiDCbMO6zuC4y3BCrQfVzn6aXQx5F3wzXZL_vTiMW0IiA1gUsw5gVXGYeLQB6_gPLZGzcFWm2ArDLZaB1vdo7R5In10_4_oNx8s_DM |
CitedBy_id | crossref_primary_10_1007_s00018_023_05099_7 crossref_primary_10_3389_fphar_2023_1271252 crossref_primary_10_1186_s12935_024_03429_8 crossref_primary_10_4103_jcrt_jcrt_933_24 crossref_primary_10_3892_or_2024_8839 crossref_primary_10_1097_HM9_0000000000000135 crossref_primary_10_1016_j_jconrel_2023_12_052 crossref_primary_10_3892_ijo_2024_5673 crossref_primary_10_1016_j_cytogfr_2024_10_007 crossref_primary_10_1016_j_biopha_2024_117192 crossref_primary_10_4251_wjgo_v16_i11_4354 crossref_primary_10_1016_j_apsb_2024_07_008 crossref_primary_10_1016_j_heliyon_2024_e41246 crossref_primary_10_1038_s41401_023_01205_4 crossref_primary_10_3389_fphar_2024_1416781 crossref_primary_10_1186_s12943_024_02179_5 crossref_primary_10_1016_j_jpha_2024_101150 crossref_primary_10_1002_slct_202403504 crossref_primary_10_1016_j_bbamcr_2024_119788 crossref_primary_10_1016_j_tcb_2024_08_006 crossref_primary_10_2147_IJN_S479212 crossref_primary_10_1002_cbin_70018 crossref_primary_10_1016_j_phymed_2024_155608 crossref_primary_10_1016_j_yexcr_2025_114474 crossref_primary_10_1016_j_jma_2025_02_010 crossref_primary_10_1111_1759_7714_70028 |
Cites_doi | 10.1126/science.123.3191.309 10.1021/jacs.6b06558 10.15252/emmm.202012798 10.1016/j.apsb.2021.09.022 10.1038/s41388-019-0974-4 10.1126/science.7513443 10.1101/pdb.prot103283 10.1097/00000478-198406000-00004 10.1053/j.gastro.2018.12.003 10.1038/nature11540 10.1074/jbc.RA120.015800 10.1038/s41586-020-03045-2 10.1126/sciadv.abi8602 10.4149/neo_2010_03_234 10.1371/journal.pbio.1001162 10.1186/s12964-020-00667-x 10.1002/iub.1066 10.3389/fonc.2019.00309 10.1164/rccm.201201-0084OC 10.1016/j.ccell.2022.04.018 10.1016/j.molcel.2014.02.015 10.1038/tpj.2016.13 10.1038/nature06734 10.1016/j.cell.2012.07.018 10.4049/jimmunol.1202702 10.1159/000147748 10.1016/j.cell.2011.03.054 10.1021/acsami.0c14909 10.1038/nrclinonc.2013.26 10.1186/1471-2407-14-810 10.1186/s12943-015-0435-9 10.3389/fimmu.2020.00980 10.1016/j.ab.2008.04.040 10.18632/oncotarget.9760 10.1038/nature16140 10.1016/j.cell.2014.07.032 10.1158/1078-0432.CCR-21-3202 10.1016/j.molcel.2012.01.001 10.1182/blood-2006-07-035972 10.1186/s12885-017-3925-x 10.1073/pnas.1407717111 10.1016/S1470-2045(15)00122-9 10.1016/S1535-6108(03)00304-0 10.1097/01.sla.0000217629.94941.cf 10.3389/fphys.2021.688485 10.1038/nature16064 10.1016/j.ccr.2013.01.022 10.1016/j.ccr.2013.10.009 10.1016/j.ccr.2009.06.017 10.1002/smll.202007522 10.1016/j.isci.2021.103067 10.1111/j.1743-6109.2006.00127.x 10.1007/s00262-012-1258-9 10.1038/s41590-018-0229-5 10.1021/acs.nanolett.9b00021 10.1002/1878-0261.12162 10.1021/jacs.9b02091 10.1038/nature10598 10.3322/caac.21660 10.1016/j.cmet.2016.08.011 10.1002/1878-0261.12879 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13046-023-02688-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (ProQuest) ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1756-9966 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_5df9893b47a5426aa4ee84de278f5012 PMC10170793 A748704536 37161591 10_1186_s13046_023_02688_z |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China grantid: 81925035 – fundername: ; grantid: 81925035 |
GroupedDBID | --- 0R~ 29K 2WC 4.4 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D-I DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ HMCUK HYE IAO IEA IHR IHW INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c595t-b9ad195648c9c27ec1655f2707056e676f8b42f4ea82058bf925d7a8f7acfcea3 |
IEDL.DBID | M48 |
ISSN | 1756-9966 0392-9078 |
IngestDate | Wed Aug 27 01:31:11 EDT 2025 Thu Aug 21 18:36:57 EDT 2025 Fri Jul 11 02:27:24 EDT 2025 Fri Jul 25 04:55:57 EDT 2025 Tue Jun 17 21:14:24 EDT 2025 Tue Jun 10 20:27:04 EDT 2025 Thu May 22 21:20:06 EDT 2025 Mon Jul 21 06:03:33 EDT 2025 Thu Apr 24 23:10:22 EDT 2025 Tue Jul 01 02:26:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Immune microenvironment Glycolysis Epithelial-mesenchymal transition (EMT) Pyruvate kinase M2 (PKM2) Shikonin Colorectal cancer liver metastasis |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-b9ad195648c9c27ec1655f2707056e676f8b42f4ea82058bf925d7a8f7acfcea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7067-8915 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13046-023-02688-z |
PMID | 37161591 |
PQID | 2815642051 |
PQPubID | 105475 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5df9893b47a5426aa4ee84de278f5012 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10170793 proquest_miscellaneous_2811940257 proquest_journals_2815642051 gale_infotracmisc_A748704536 gale_infotracacademiconefile_A748704536 gale_healthsolutions_A748704536 pubmed_primary_37161591 crossref_citationtrail_10_1186_s13046_023_02688_z crossref_primary_10_1186_s13046_023_02688_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-10 |
PublicationDateYYYYMMDD | 2023-05-10 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of experimental & clinical cancer research |
PublicationTitleAlternate | J Exp Clin Cancer Res |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | J Qian (2688_CR52) 2021; 19 B Son (2688_CR18) 2020; 39 W Lu (2688_CR45) 2021; 13 HR Christofk (2688_CR7) 2008; 452 W Li (2688_CR56) 2010; 57 X Gao (2688_CR8) 2012; 45 S Manfredi (2688_CR2) 2006; 244 Z Wang (2688_CR29) 2019; 9 J Engstrand (2688_CR4) 2018; 18 D Kobelt (2688_CR44) 2020; 11 W Zhang (2688_CR49) 2021; 15 S Nandi (2688_CR32) 2020; 295 H Long (2688_CR42) 2022; 40 D Triner (2688_CR59) 2019; 156 KE Keller (2688_CR51) 2014; 53 H Kanemaru (2688_CR15) 2021; 24 F Innocenti (2688_CR47) 2022; 28 BY Guan (2688_CR27) 2016; 138 H-M Chen (2688_CR34) 2012; 61 S Beckert (2688_CR30) 2006; 14 ED Hay (2688_CR20) 1995; 154 A Brand (2688_CR16) 2016; 24 V Marchesi (2688_CR36) 2013; 10 B Chaneton (2688_CR50) 2012; 491 2688_CR62 Z Yuan (2688_CR43) 2021; 17 MJ Watson (2688_CR13) 2021; 591 H Sung (2688_CR1) 2021; 71 F Graziano (2688_CR6) 2017; 17 CF Zhou (2688_CR9) 2012; 64 YD Shaul (2688_CR21) 2014; 158 O Warburg (2688_CR5) 1956; 123 Z Husain (2688_CR31) 2013; 191 W Yang (2688_CR10) 2011; 480 B Toh (2688_CR60) 2011; 9 RM Kottmann (2688_CR38) 2012; 186 X Zheng (2688_CR37) 2015; 527 JM Kozlowski (2688_CR61) 1984; 44 M Anderson (2688_CR57) 2017; 8 W Yang (2688_CR24) 2012; 150 2688_CR54 2688_CR14 S Patel (2688_CR39) 2018; 19 C Cremolini (2688_CR46) 2015; 16 K Fischer (2688_CR22) 2007; 109 Y Zhao (2688_CR23) 2018; 12 H Wang (2688_CR53) 2019; 19 HL Caslin (2688_CR12) 2021; 12 H Katoh (2688_CR41) 2013; 24 W Luo (2688_CR11) 2011; 145 TJ Lin (2688_CR33) 2015; 14 MA Nieto (2688_CR35) 1994; 264 C Hackl (2688_CR3) 2014; 14 LS Zhang (2688_CR28) 2008; 379 ZG Fridlender (2688_CR40) 2009; 16 SK Wculek (2688_CR58) 2015; 528 Z Lu (2688_CR55) 2003; 4 DR Chase (2688_CR19) 1984; 8 A Hamabe (2688_CR25) 2014; 111 J Li (2688_CR48) 2020; 12 C Dong (2688_CR17) 2013; 23 L Peng (2688_CR26) 2019; 141 |
References_xml | – volume: 123 start-page: 309 issue: 3191 year: 1956 ident: 2688_CR5 publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 138 start-page: 11306 issue: 35 year: 2016 ident: 2688_CR27 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b06558 – volume: 13 start-page: e12798 issue: 1 year: 2021 ident: 2688_CR45 publication-title: EMBO Mol Med doi: 10.15252/emmm.202012798 – ident: 2688_CR54 doi: 10.1016/j.apsb.2021.09.022 – volume: 39 start-page: 36 issue: 1 year: 2020 ident: 2688_CR18 publication-title: Oncogene doi: 10.1038/s41388-019-0974-4 – volume: 264 start-page: 835 issue: 5160 year: 1994 ident: 2688_CR35 publication-title: Science doi: 10.1126/science.7513443 – ident: 2688_CR62 doi: 10.1101/pdb.prot103283 – volume: 8 start-page: 435 issue: 6 year: 1984 ident: 2688_CR19 publication-title: Am J Surg Pathol doi: 10.1097/00000478-198406000-00004 – volume: 156 start-page: 1467 issue: 5 year: 2019 ident: 2688_CR59 publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.12.003 – volume: 491 start-page: 458 issue: 7424 year: 2012 ident: 2688_CR50 publication-title: Nature doi: 10.1038/nature11540 – volume: 295 start-page: 17425 issue: 51 year: 2020 ident: 2688_CR32 publication-title: J Biol Chem doi: 10.1074/jbc.RA120.015800 – volume: 591 start-page: 645 issue: 7851 year: 2021 ident: 2688_CR13 publication-title: Nature doi: 10.1038/s41586-020-03045-2 – ident: 2688_CR14 doi: 10.1126/sciadv.abi8602 – volume: 57 start-page: 234 issue: 3 year: 2010 ident: 2688_CR56 publication-title: Neoplasma doi: 10.4149/neo_2010_03_234 – volume: 9 start-page: e1001162 issue: 9 year: 2011 ident: 2688_CR60 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001162 – volume: 19 start-page: 9 issue: 1 year: 2021 ident: 2688_CR52 publication-title: Cell Commun Signal doi: 10.1186/s12964-020-00667-x – volume: 64 start-page: 775 issue: 9 year: 2012 ident: 2688_CR9 publication-title: IUBMB Life doi: 10.1002/iub.1066 – volume: 9 start-page: 309 year: 2019 ident: 2688_CR29 publication-title: Front Oncol doi: 10.3389/fonc.2019.00309 – volume: 186 start-page: 740 issue: 8 year: 2012 ident: 2688_CR38 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201201-0084OC – volume: 40 start-page: 674 issue: 6 year: 2022 ident: 2688_CR42 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.04.018 – volume: 53 start-page: 700 issue: 5 year: 2014 ident: 2688_CR51 publication-title: Mol Cell doi: 10.1016/j.molcel.2014.02.015 – volume: 17 start-page: 258 issue: 3 year: 2017 ident: 2688_CR6 publication-title: Pharmacogenomics J doi: 10.1038/tpj.2016.13 – volume: 452 start-page: 230 issue: 7184 year: 2008 ident: 2688_CR7 publication-title: Nature doi: 10.1038/nature06734 – volume: 44 start-page: 3522 issue: 8 year: 1984 ident: 2688_CR61 publication-title: Cancer Res – volume: 150 start-page: 685 issue: 4 year: 2012 ident: 2688_CR24 publication-title: Cell doi: 10.1016/j.cell.2012.07.018 – volume: 191 start-page: 1486 issue: 3 year: 2013 ident: 2688_CR31 publication-title: J Immunol doi: 10.4049/jimmunol.1202702 – volume: 154 start-page: 8 issue: 1 year: 1995 ident: 2688_CR20 publication-title: Acta Anat (Basel) doi: 10.1159/000147748 – volume: 145 start-page: 732 issue: 5 year: 2011 ident: 2688_CR11 publication-title: Cell doi: 10.1016/j.cell.2011.03.054 – volume: 12 start-page: 50734 issue: 45 year: 2020 ident: 2688_CR48 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c14909 – volume: 10 start-page: 184 issue: 4 year: 2013 ident: 2688_CR36 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2013.26 – volume: 14 start-page: 810 year: 2014 ident: 2688_CR3 publication-title: BMC Cancer doi: 10.1186/1471-2407-14-810 – volume: 14 start-page: 174 year: 2015 ident: 2688_CR33 publication-title: Mol Cancer doi: 10.1186/s12943-015-0435-9 – volume: 11 start-page: 980 year: 2020 ident: 2688_CR44 publication-title: Front Immunol doi: 10.3389/fimmu.2020.00980 – volume: 379 start-page: 80 issue: 1 year: 2008 ident: 2688_CR28 publication-title: Anal Biochem doi: 10.1016/j.ab.2008.04.040 – volume: 8 start-page: 56081 issue: 34 year: 2017 ident: 2688_CR57 publication-title: Oncotarget doi: 10.18632/oncotarget.9760 – volume: 528 start-page: 413 issue: 7582 year: 2015 ident: 2688_CR58 publication-title: Nature doi: 10.1038/nature16140 – volume: 158 start-page: 1094 issue: 5 year: 2014 ident: 2688_CR21 publication-title: Cell doi: 10.1016/j.cell.2014.07.032 – volume: 28 start-page: 1690 issue: 8 year: 2022 ident: 2688_CR47 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-21-3202 – volume: 45 start-page: 598 issue: 5 year: 2012 ident: 2688_CR8 publication-title: Mol Cell doi: 10.1016/j.molcel.2012.01.001 – volume: 109 start-page: 3812 issue: 9 year: 2007 ident: 2688_CR22 publication-title: Blood doi: 10.1182/blood-2006-07-035972 – volume: 18 start-page: 78 issue: 1 year: 2018 ident: 2688_CR4 publication-title: BMC Cancer doi: 10.1186/s12885-017-3925-x – volume: 111 start-page: 15526 issue: 43 year: 2014 ident: 2688_CR25 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1407717111 – volume: 16 start-page: 1306 issue: 13 year: 2015 ident: 2688_CR46 publication-title: The Lancet Oncology doi: 10.1016/S1470-2045(15)00122-9 – volume: 4 start-page: 499 issue: 6 year: 2003 ident: 2688_CR55 publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00304-0 – volume: 244 start-page: 254 issue: 2 year: 2006 ident: 2688_CR2 publication-title: Ann Surg doi: 10.1097/01.sla.0000217629.94941.cf – volume: 12 start-page: 688485 year: 2021 ident: 2688_CR12 publication-title: Front Physiol doi: 10.3389/fphys.2021.688485 – volume: 527 start-page: 525 issue: 7579 year: 2015 ident: 2688_CR37 publication-title: Nature doi: 10.1038/nature16064 – volume: 23 start-page: 316 issue: 3 year: 2013 ident: 2688_CR17 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.01.022 – volume: 24 start-page: 631 issue: 5 year: 2013 ident: 2688_CR41 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.10.009 – volume: 16 start-page: 183 issue: 3 year: 2009 ident: 2688_CR40 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.017 – volume: 17 start-page: e2007522 issue: 13 year: 2021 ident: 2688_CR43 publication-title: Small doi: 10.1002/smll.202007522 – volume: 24 start-page: 103067 issue: 9 year: 2021 ident: 2688_CR15 publication-title: iScience doi: 10.1016/j.isci.2021.103067 – volume: 14 start-page: 321 issue: 3 year: 2006 ident: 2688_CR30 publication-title: Wound Repair Regen doi: 10.1111/j.1743-6109.2006.00127.x – volume: 61 start-page: 1989 issue: 11 year: 2012 ident: 2688_CR34 publication-title: Cancer Immunology, Immunotherapy: CII doi: 10.1007/s00262-012-1258-9 – volume: 19 start-page: 1236 issue: 11 year: 2018 ident: 2688_CR39 publication-title: Nat Immunol doi: 10.1038/s41590-018-0229-5 – volume: 19 start-page: 2935 issue: 5 year: 2019 ident: 2688_CR53 publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b00021 – volume: 12 start-page: 305 issue: 3 year: 2018 ident: 2688_CR23 publication-title: Mol Oncol doi: 10.1002/1878-0261.12162 – volume: 141 start-page: 7073 issue: 17 year: 2019 ident: 2688_CR26 publication-title: J Am Chem Soc doi: 10.1021/jacs.9b02091 – volume: 480 start-page: 118 issue: 7375 year: 2011 ident: 2688_CR10 publication-title: Nature doi: 10.1038/nature10598 – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 2688_CR1 publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 24 start-page: 657 issue: 5 year: 2016 ident: 2688_CR16 publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.011 – volume: 15 start-page: 1466 issue: 5 year: 2021 ident: 2688_CR49 publication-title: Mol Oncol doi: 10.1002/1878-0261.12879 |
SSID | ssj0061919 |
Score | 2.5116005 |
Snippet | There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal... Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis,... BackgroundThere are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis,... Abstract Background There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis,... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 117 |
SubjectTerms | Analysis Animals Cancer Care and treatment CD8-Positive T-Lymphocytes Colorectal cancer Colorectal cancer liver metastasis Colorectal Neoplasms - drug therapy Cytotoxicity Dendritic cells Efficiency Enzymes Epithelial-Mesenchymal Transition Epithelial-mesenchymal transition (EMT) Gastrointestinal diseases Glycolysis Health aspects Humans Hyaluronic Acid Immune microenvironment Kinases Lactates Lactic Acid Liver Neoplasms - drug therapy Lymphocytes Metabolism Metastasis Mice Nanoparticles Proteins Pyruvate kinase M2 (PKM2) Shikonin Stem cells T cells Transforming growth factors Tumor Microenvironment Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgpZHoKVGQuKAouLErxwLalUhLQfUSr1Zjh90xTZbbbYHeu4P74ydjTZCgguHPWQ9TjYz43msZz4T8oF5BVG89aWXtSx53t-VouTSi8iZ1jz1V8y-y7ML_u1SXG4d9YU1YRkeODPuSPjYgE9tubICvIm1PATNfaiUjuJzOl-4Ap-3SaayDYasgDWbFhktj3qGG4Al-Cf4SNCNu4kbSmj9f9rkLac0LZjc8kCnz8jTIXSkx_knPyePQrdLHs-GzfE9cv8jnysPzogurMMoskytKsHTObaBLK_DGmS-mPfX1HaenszOKSI4rXq4LQSvFBGs0QLCpUNtWNEFlm1QnAdRZB96inXyP2l_Nf-F_-PSXEgOD_Ahkf5-QS5OT86_npXDIQulE41Yly0ICnsGuXaNq1RwICkRKwWmQMgglYy65VXkwUKsIHQbm0p4ZXVU1kUXbP2S7HTLLrwm1LoaaZRmtuZWeg3WQwnHmIxgStq2IGzDc-MGBHI8CGNhUiaipclyMiAnk-Rk7gryaZxzk_E3_kr9BUU5UiJ2dvoCNMoMGmX-pVEFOURFMLkRdbQA5lhBcgcRcC0L8jFRoA2AF3B2aGUANiCa1oRyf0IJa9dNhzfKZgbb0ZsqAfgAI1lB3o_DOBPr4bqwvE00rIHUX6iCvMq6Ob50rTCKb2C2nmjthCvTkW5-lZDF0T4jYuKb_8HHt-RJlVYcQt3uk5316jYcQAS3bt-lxfoA55FC3g priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagSIgL4s2WAkZC4oCsanf92hMqqFWFFA6olXKzvH60EemmZNNDe-aHM-N1lq6Qesgh8TjJesYznx_zDSEfS68AxVvPvKwl48P5rhSMSy8iL7XmKb9i9kMen_LvczHPG259vla59YnJUfuVwz3y_SrRmlRgQ18ufzOsGoWnq7mExn3yAKnL0KrVfFxwwdogFfaACCkZ4vpt0oyW-32JR4IMIha8JFjLzSQwJf7-_730rTA1vUJ5KyYdPSGPM5ikB4P2n5J7oXtGHs7ycflz8ufnUGkewhNdWoe4kqXkleDpAhNDVhdhA1awXPQX1HaeHs5OKHI6rXv4WoCzFDmt0SfCW4f2saZLvMhBsR_gyj70FG_On9H-fPELd3bpcLUcfsCHJHr9gpweHZ58O2a57AJzohEb1oLqMIuQa9e4SgUHuhOxUuAchAxSyahbXkUeLKAHodvYVMIrq6OyLrpg65dkp1t14TWh1tUoo3Rpa26l1-BPlHBlKSM4l7YtSLkdc-MyJzmWxliatDbR0gx6MqAnk_RkbgryeexzOTBy3Cn9FVU5SiKbdvpgtT4zeXIa4WMDuK3lygpALNbyEDT3oVI6CojgBXmPhmCG1NTRJ5gDBcs9wMS1LMinJIFeAR7A2ZzcAMOA_FoTyb2JJMxmN23eGpvJ3qQ3_2y_IB_GZuyJN-S6sLpKMmXDAcGqgrwabHN86Fohrm-gt55Y7WRUpi3d4jxxjaPHRg7F3bv_1xvyqEpzCWlt98jOZn0V3gJa27Tv0pT8CxEbPG0 priority: 102 providerName: ProQuest |
Title | Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37161591 https://www.proquest.com/docview/2815642051 https://www.proquest.com/docview/2811940257 https://pubmed.ncbi.nlm.nih.gov/PMC10170793 https://doaj.org/article/5df9893b47a5426aa4ee84de278f5012 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9NAFB_2A8SL-G10rSMIHiRKkvnKQWQrXRahi5QtFC_DZGayW8ym2nTB3bN_uO9N0rDBxZOHFNJ505L3-ZvMvPcIeZM4CSjeuNiJTMSs3d8VPGbC8ZIlSrGQXzE9Ecdz9mXBFztk2-6oY2Bz69IO-0nN19X7Xz-vPoHBfwwGr8SHJsHtvRiiD1wCJH-9S_YhMknsaDBl_a4CrBWSfJs4c-u8QXAKNfz_9tQ3QtXwGOWNuHR0n9zrACU9bDXgAdnx9UNyZ9ptmT8iv2dtt3kIUbQyFrFlHBJYvKNLTA5ZXfgNaEK1bC6oqR2dTE8p1nVaN_CzAGkp1rVGvwi3FnVkTSs8zEFxHmDLxjcUT8-f0eZ8-R3f7tL2eDn8gfOB9OoxmR9NTj8fx13rhdjynG_iAsSHmYRM2dym0luQHy9TCQ6CCy-kKFXB0pJ5AwiCq6LMU-6kUaU0trTeZE_IXr2q_TNCjc2QRqrEZMwIp8CnSG6TRJTgYIoiIsmW59p2dcmxPUalw_pECd3KSYOcdJCTvo7Iu37Oj7Yqxz-pxyjKnhIraocvVusz3Rmo5q7MAbsVTBoOqMUY5r1izqdSlRyieEReoSLoNj219wv6UMKSD3BxJiLyNlCgrsIDWNMlOAAbsMbWgPJgQAkWbYfDW2XTW4PQaSjrA4xMIvK6H8aZeEqu9qvLQJPkDFCsjMjTVjf7h84kYvscZquB1g64Mhypl-eh3jh6bayj-Px_8PEFuZsGi8MCuAdkb7O-9C8B122KEdmVCzki--PJydfZKLwdGQUDhs_Z-NsfgLpPbw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2gUCOBOKCoJPErB4QKtNrSbg9oK_VmHNtpV2yzZbMVas_8Hn4jM86DRki99bCHXY-zjmfyzUw8D0JeJ06CFW9c7EQmYtac7woeM-F4yRKlWMivGO-L0QH7esgPV8ifLhcGwyo7TAxA7eYW35FvpKGsSQoy9PH0Z4xdo_B0tWuh0YjFrj__BS5b_WHnC_D3TZpub00-j-K2q0Bsec6XcQErwyQ5pmxuU-ktLI2XqQTZ58ILKUpVsLRk3oBy5Koo85Q7aVQpjS2tNxlc9wa5CYr3PTp78rB38MAXCY1EQCOLGP2ILklHiY06wSPIGDQkfARI58VAEYZ-Af9rhUtqcRiyeUkHbt8jd1vjlW420nafrPjqAbk1bo_nH5Lf35rO9qAO6cxYtGPjkCzjHZ1iIsr8xC9B6mbT-oSaytGt8YRiDalFDZcF85liDW3EYPhqUR4XdIaBIxTngR1b-5pipP4RrY-nP_BNMm1C2eEPnA-k54_IwbUw5DFZreaVf0qosRnSSJWYjBnhFOCX5DZJRAlgVhQRSbo917atgY6tOGY6-EJK6IZPGvikA5_0RUTe9XNOmwogV1J_Qlb2lFi9O_wwXxzpFgw0d2UOdmLBpOFgIRnDvFfM-VSqkoPFEJF1FATdpML2GKQ3JbiXYINnIiJvAwWiENyANW0yBWwD1vMaUK4NKAE97HC4Ezbdolet_z1rEXnVD-NMjMir_Pws0CQ5A4tZRuRJI5v9TWcS_YgcZquB1A52ZThSTY9DbXPUEFiz8dnV61ont0eT8Z7e29nffU7upOG5wpK6a2R1uTjzL8BSXBYvw-NJyffrxoO_yh15uA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+lactate-related+immunometabolism+and+EMT+reversal+for+colorectal+cancer+liver+metastases+using+shikonin+targeted+delivery&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Li+Long&rft.au=Wei+Xiong&rft.au=Fenwang+Lin&rft.au=Jiazhen+Hou&rft.date=2023-05-10&rft.pub=BMC&rft.eissn=1756-9966&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1186%2Fs13046-023-02688-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5df9893b47a5426aa4ee84de278f5012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon |