Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis
Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal rep...
Saved in:
Published in | Molecular cell Vol. 62; no. 6; pp. 834 - 847 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.06.2016
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation.
[Display omitted]
•Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis•Expression changes for NET-repositioned genes depend on cell differentiation state•Isolating position from differentiation reveals its contribution to gene expression•Three NETs together affect 37% of all genes normally changing in myogenesis
Muscle-specific nuclear envelope transmembrane proteins (NETs) optimize myogenic gene expression by physically recruiting genes to the periphery and enhancing their repression. Specifically manipulating the position of endogenous genes in myoblasts and myotubes indicates that peripheral localization enhances repression, but only in context of other changes in differentiation. |
---|---|
AbstractList | Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. • Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis • Expression changes for NET-repositioned genes depend on cell differentiation state • Isolating position from differentiation reveals its contribution to gene expression • Three NETs together affect 37% of all genes normally changing in myogenesis Muscle-specific nuclear envelope transmembrane proteins (NETs) optimize myogenic gene expression by physically recruiting genes to the periphery and enhancing their repression. Specifically manipulating the position of endogenous genes in myoblasts and myotubes indicates that peripheral localization enhances repression, but only in context of other changes in differentiation. Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. [Display omitted] •Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis•Expression changes for NET-repositioned genes depend on cell differentiation state•Isolating position from differentiation reveals its contribution to gene expression•Three NETs together affect 37% of all genes normally changing in myogenesis Muscle-specific nuclear envelope transmembrane proteins (NETs) optimize myogenic gene expression by physically recruiting genes to the periphery and enhancing their repression. Specifically manipulating the position of endogenous genes in myoblasts and myotubes indicates that peripheral localization enhances repression, but only in context of other changes in differentiation. Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes 1/3 to 2/3 of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. |
Author | Schirmer, Eric C. Robson, Michael I. Booth, Daniel G. de las Heras, Jose I. Webb, Shaun Kelly, David A. Czapiewski, Rafal Lê Thành, Phú Kerr, Alastair R.W. |
AuthorAffiliation | 1 The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK |
AuthorAffiliation_xml | – name: 1 The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK |
Author_xml | – sequence: 1 givenname: Michael I. surname: Robson fullname: Robson, Michael I. organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 2 givenname: Jose I. surname: de las Heras fullname: de las Heras, Jose I. organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 3 givenname: Rafal surname: Czapiewski fullname: Czapiewski, Rafal organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 4 givenname: Phú surname: Lê Thành fullname: Lê Thành, Phú organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 5 givenname: Daniel G. surname: Booth fullname: Booth, Daniel G. organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 6 givenname: David A. surname: Kelly fullname: Kelly, David A. organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 7 givenname: Shaun surname: Webb fullname: Webb, Shaun organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 8 givenname: Alastair R.W. surname: Kerr fullname: Kerr, Alastair R.W. organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK – sequence: 9 givenname: Eric C. surname: Schirmer fullname: Schirmer, Eric C. email: e.schirmer@ed.ac.uk organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27264872$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1DAUtVARfcAfIOQlmwTbseOYBRIaSkHqAIKythznZupREqd2MtL8Ax-No5kiYEHZ2L665xzfxzlHJ4MfAKHnlOSU0PLVNu99Z6HLWYpywnNSiEfojBIlM05LfnJ8M1mKU3Qe45YQykWlnqBTJlnJK8nO0I8bF-MM2bcRrGudxVcwAP4Ko49ucn5wwwbXe7yeo-0Af5rTaQJeQ18Hk4Bfgp_ADRFfDrdmsBAXaoAYExX7Fq9CUrGmw-9gB50feximFC2fRNzMYZFf7_1miV18ih63povw7HhfoO_vL29WH7Lrz1cfV2-vMyuUmDIDtKa1MbLipubMloVVSjV1WTAQTakKqFraWJGShayVoEzWhRG2FWAplEVxgd4cdMe57qGxqahgOj0G15uw1944_WdmcLd643eaK8orppLAy6NA8HczxEn3LqZddGkmfo6aVkxwluoj_wGlVBFVsephqFSyKisllwJe_N7Br9LvF5sArw8AG3yMAVpt3WSWjaaGXKcp0YuL9FYfXKQXF2nCdXJRIvO_yPf6D9COY4W0u52DoKN1kFzRuAB20o13_xb4Cd1Y5w0 |
CitedBy_id | crossref_primary_10_1080_19491034_2021_1874135 crossref_primary_10_1091_mbc_E22_09_0448 crossref_primary_10_1134_S0006297918040077 crossref_primary_10_1038_s41598_017_16746_y crossref_primary_10_1101_cshperspect_a041268 crossref_primary_10_3389_fgene_2019_00602 crossref_primary_10_1016_j_nmd_2016_12_003 crossref_primary_10_1080_19491034_2020_1868105 crossref_primary_10_1007_s00018_020_03731_4 crossref_primary_10_1186_s13059_022_02662_6 crossref_primary_10_3389_fgene_2018_00623 crossref_primary_10_1038_s41467_025_57758_x crossref_primary_10_1242_dev_174078 crossref_primary_10_1007_s10577_022_09686_5 crossref_primary_10_3233_JND_160169 crossref_primary_10_12688_f1000research_9260_1 crossref_primary_10_3389_fcell_2022_913458 crossref_primary_10_1016_j_ceb_2020_05_005 crossref_primary_10_1080_19491034_2018_1460044 crossref_primary_10_1016_j_tcb_2019_12_008 crossref_primary_10_3390_ijms23116002 crossref_primary_10_1016_j_molcel_2023_12_032 crossref_primary_10_1242_jcs_199216 crossref_primary_10_3389_fphys_2018_01533 crossref_primary_10_15252_embj_2022110600 crossref_primary_10_1016_j_molcel_2019_05_032 crossref_primary_10_3390_cells9040844 crossref_primary_10_1080_19491034_2018_1449498 crossref_primary_10_3389_fcell_2018_00172 crossref_primary_10_1016_j_livsci_2019_103861 crossref_primary_10_1186_s13059_023_02849_5 crossref_primary_10_1007_s00418_018_1726_1 crossref_primary_10_1146_annurev_genom_121219_083616 crossref_primary_10_1016_j_ceb_2020_11_006 crossref_primary_10_7554_eLife_70490 crossref_primary_10_1093_hmg_ddac065 crossref_primary_10_1016_j_jgg_2024_10_005 crossref_primary_10_1186_s12915_022_01269_4 crossref_primary_10_1016_j_ceb_2023_102313 crossref_primary_10_3390_ijms25010032 crossref_primary_10_3389_fcell_2019_00018 crossref_primary_10_1080_19491034_2022_2153564 crossref_primary_10_1080_19491034_2018_1469351 crossref_primary_10_1002_mco2_326 crossref_primary_10_7554_eLife_63476 crossref_primary_10_1038_s41576_021_00438_5 crossref_primary_10_1007_s00424_021_02513_6 crossref_primary_10_1016_j_cell_2022_09_006 crossref_primary_10_1038_s41556_023_01271_0 crossref_primary_10_1016_j_devcel_2017_05_007 crossref_primary_10_1080_19491034_2023_2202548 crossref_primary_10_3389_fphys_2018_01277 crossref_primary_10_1042_BST20210858 crossref_primary_10_1177_03009858211030541 crossref_primary_10_1007_s10522_018_9758_4 crossref_primary_10_1080_19491034_2023_2197693 crossref_primary_10_3389_fcell_2023_1240285 crossref_primary_10_3390_cells13201744 crossref_primary_10_1038_s41467_021_20987_x crossref_primary_10_1038_s41576_018_0063_5 crossref_primary_10_3390_biomedicines8070188 crossref_primary_10_1242_jcs_203430 crossref_primary_10_7554_eLife_49278 crossref_primary_10_1063_5_0087699 crossref_primary_10_1016_j_gde_2016_12_005 crossref_primary_10_1016_j_cell_2017_04_022 crossref_primary_10_3389_fcell_2022_1022723 crossref_primary_10_1080_19491034_2016_1261230 crossref_primary_10_1002_1873_3468_14771 crossref_primary_10_1016_j_gde_2019_04_008 crossref_primary_10_1016_j_ebiom_2019_11_048 crossref_primary_10_3390_cells6040038 crossref_primary_10_1186_s13395_016_0113_7 crossref_primary_10_3389_fcell_2020_592573 crossref_primary_10_1172_JCI163333 crossref_primary_10_1016_j_gendis_2021_03_004 crossref_primary_10_3389_fgene_2017_00076 crossref_primary_10_3390_cells11111846 crossref_primary_10_3390_epigenomes4010001 crossref_primary_10_3390_cells6020009 crossref_primary_10_1016_j_it_2019_07_003 crossref_primary_10_1101_gr_212308_116 crossref_primary_10_1126_sciadv_abd9371 crossref_primary_10_1016_j_celrep_2020_107964 crossref_primary_10_1080_19491034_2017_1285988 crossref_primary_10_1016_j_ydbio_2020_07_010 crossref_primary_10_1016_j_gde_2024_102234 crossref_primary_10_1111_pce_14761 crossref_primary_10_3389_fgene_2019_00917 crossref_primary_10_3390_cells10020318 crossref_primary_10_1016_j_gde_2021_02_003 crossref_primary_10_1093_nar_gkab392 crossref_primary_10_1242_jcs_235093 crossref_primary_10_1016_j_cell_2017_09_018 crossref_primary_10_1038_s41467_021_27869_2 crossref_primary_10_1038_s41598_020_79384_x crossref_primary_10_1038_s44318_024_00214_1 crossref_primary_10_1093_hmg_ddac264 crossref_primary_10_1038_s41593_021_00879_5 crossref_primary_10_1016_j_ymeth_2018_11_005 crossref_primary_10_3390_biom11101547 crossref_primary_10_3390_ijms242115771 crossref_primary_10_1152_physiolgenomics_00128_2017 crossref_primary_10_1016_j_jgg_2021_02_004 crossref_primary_10_1042_BST20170153 crossref_primary_10_1016_j_sbi_2024_102867 crossref_primary_10_3390_cells8030271 crossref_primary_10_1097_WCO_0000000000001297 crossref_primary_10_3390_genes14020334 crossref_primary_10_3389_fcell_2022_951875 crossref_primary_10_1007_s12551_018_0431_6 crossref_primary_10_1093_nar_gkae752 crossref_primary_10_3389_fcell_2021_761469 crossref_primary_10_1016_j_semcdb_2018_07_004 crossref_primary_10_1038_nrm_2016_153 crossref_primary_10_1016_j_psj_2020_09_027 crossref_primary_10_3390_cells8020136 crossref_primary_10_1080_19491034_2016_1243634 crossref_primary_10_1093_hmg_ddy055 crossref_primary_10_1186_s13072_021_00403_w crossref_primary_10_1038_s42003_024_06325_z crossref_primary_10_15252_embj_2019103159 crossref_primary_10_1038_nprot_2018_009 crossref_primary_10_1093_nar_gkz123 crossref_primary_10_1186_s13059_020_02003_5 crossref_primary_10_1007_s12038_019_9968_1 crossref_primary_10_1016_j_cell_2019_12_004 crossref_primary_10_3389_fcell_2022_1007331 crossref_primary_10_1016_j_isci_2024_110869 crossref_primary_10_2139_ssrn_3947354 crossref_primary_10_3389_fcell_2023_1293891 crossref_primary_10_1016_j_stem_2020_12_016 crossref_primary_10_1097_WCO_0000000000000359 |
Cites_doi | 10.1023/B:JURE.0000021387.92378.2e 10.1371/journal.pone.0003750 10.1002/mus.23481 10.1016/S0960-9822(02)00695-4 10.1016/j.cub.2011.08.030 10.1523/JNEUROSCI.15-04-03027.1995 10.1016/0092-8674(92)90633-N 10.1126/science.1259587 10.1016/j.molcel.2010.03.016 10.1083/jcb.140.5.1265 10.1038/270725a0 10.1073/pnas.1102223108 10.1128/MCB.00684-09 10.1126/science.1260419 10.1371/journal.pgen.1000039 10.1074/jbc.M113.458836 10.1016/j.devcel.2011.11.021 10.1038/nrm3965 10.1186/gb-2013-14-2-r14 10.1128/MCB.19.7.5083 10.1016/j.ceb.2014.04.005 10.1074/mcp.M110.003129 10.1038/nprot.2007.148 10.1074/jbc.M507426200 10.4161/nucl.2.5.17846 10.1523/JNEUROSCI.5398-05.2006 10.1152/ajpcell.00449.2009 10.1093/brain/awl023 10.1038/nn.3614 10.1083/jcb.200706060 10.1016/j.cell.2013.01.009 10.1093/hmg/10.5.477 10.1038/nature13992 10.1016/j.devcel.2009.11.006 10.1038/nature05928 10.1016/j.cell.2013.07.018 10.1186/1471-2164-14-591 10.1242/dev.126.8.1621 10.1111/j.1432-0436.2006.00100.x 10.1073/pnas.96.2.552 10.1016/j.cell.2013.02.001 10.1242/dev.068411 10.1016/j.cell.2012.04.035 10.1038/nature06727 |
ContentType | Journal Article |
Copyright | 2016 The Authors Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. 2016 The Authors 2016 |
Copyright_xml | – notice: 2016 The Authors – notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2016 The Authors 2016 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2016.04.035 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 847 |
ExternalDocumentID | PMC4914829 27264872 10_1016_j_molcel_2016_04_035 S109727651630137X |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 092076 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 095209 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 8FD EFKBS FR3 P64 RC3 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c595t-ae1b1baa784ab42c63c999db632e5d693e8f1dc5ab437b95127b3a5cf5ec1e633 |
IEDL.DBID | IXB |
ISSN | 1097-2765 |
IngestDate | Thu Aug 21 14:08:38 EDT 2025 Mon Jul 21 10:33:42 EDT 2025 Wed Jul 30 11:19:22 EDT 2025 Fri Jul 11 10:19:15 EDT 2025 Thu Apr 03 06:56:53 EDT 2025 Tue Jul 01 03:40:47 EDT 2025 Thu Apr 24 22:59:17 EDT 2025 Fri Feb 23 02:30:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-ae1b1baa784ab42c63c999db632e5d693e8f1dc5ab437b95127b3a5cf5ec1e633 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S109727651630137X |
PMID | 27264872 |
PQID | 1797868979 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914829 proquest_miscellaneous_1825427840 proquest_miscellaneous_1811909828 proquest_miscellaneous_1797868979 pubmed_primary_27264872 crossref_citationtrail_10_1016_j_molcel_2016_04_035 crossref_primary_10_1016_j_molcel_2016_04_035 elsevier_sciencedirect_doi_10_1016_j_molcel_2016_04_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-06-16 |
PublicationDateYYYYMMDD | 2016-06-16 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Solovei, Wang, Thanisch, Schmidt, Krebs, Zwerger, Cohen, Devys, Foisner, Peichl (bib29) 2013; 152 Stark, Karvas, Siegel, Cornelison (bib30) 2011; 138 Therizols, Illingworth, Courilleau, Boyle, Wood, Bickmore (bib32) 2014; 346 Kumaran, Spector (bib16) 2008; 180 Mattout, Pike, Towbin, Bank, Gonzalez-Sandoval, Stadler, Meister, Gruenbaum, Gasser (bib20) 2011; 21 Caruelle, Mazouzi, Husmann, Delbé, Duchesnay, Gautron, Martelly, Courty (bib5) 2004; 25 Davidson, Shen, Huang, Su, Karaulanov, Bartscherer, Hassler, Stannek, Boutros, Niehrs (bib8) 2009; 17 Zuleger, Robson, Schirmer (bib42) 2011; 2 Yamada, Tatsumi, Yamanouchi, Hosoyama, Shiratsuchi, Sato, Mizunoya, Ikeuchi, Furuse, Allen (bib39) 2010; 298 Lu, Webb, Richardson, Olson (bib19) 1999; 96 Wu, Yao (bib37) 2013; 14 Yue, Cheng, Breschi, Vierstra, Wu, Ryba, Sandstrom, Ma, Davis, Pope (bib41) 2014; 515 Asp, Blum, Vethantham, Parisi, Micsinai, Cheng, Bowman, Kluger, Dynlacht (bib2) 2011; 108 Pombo, Dillon (bib25) 2015; 16 De Paepe, Creus, Martin, De Bleecker (bib9) 2012; 46 Akhtar, de Jong, Pindyurin, Pagie, Meuleman, de Ridder, Berns, Wessels, van Lohuizen, van Steensel (bib1) 2013; 154 Dietrich, Abou-Rebyeh, Brohmann, Bladt, Sonnenberg-Riethmacher, Yamaai, Lumsden, Brand-Saberi, Birchmeier (bib10) 1999; 126 Wilkie, Korfali, Swanson, Malik, Srsen, Batrakou, de las Heras, Zuleger, Kerr, Florens (bib35) 2011; 10 Fonseca, Fukuma, Lipson, Nguyen, Allen, Oka, Urano (bib12) 2005; 280 Reddy, Zullo, Bertolino, Singh (bib26) 2008; 452 Sáenz, Azpitarte, Armañanzas, Leturcq, Alzualde, Inza, García-Bragado, De la Herran, Corcuera, Cabello (bib28) 2008; 3 Liu, Guan, Datta, Coppinger, Yates, Gerace (bib18) 2009; 29 Yaffe, Saxel (bib38) 1977; 270 Jesse, LaChance, Iademarco, Dean (bib13) 1998; 140 Yazawa, Ferrante, Feng, Mio, Ogura, Zhang, Lin, Pan, Komazaki, Kato (bib40) 2007; 448 Neu, Adams, Munz (bib22) 2006; 74 Vogel, Peric-Hupkes, van Steensel (bib34) 2007; 2 Finlan, Sproul, Thomson, Boyle, Kerr, Perry, Ylstra, Chubb, Bickmore (bib11) 2008; 4 Takeda, Inoue, Tanizawa, Matsuzaki, Oba, Watanabe, Shinoda, Oka (bib31) 2001; 10 Bickmore, van Steensel (bib4) 2013; 152 Peric-Hupkes, Meuleman, Pagie, Bruggeman, Solovei, Brugman, Gräf, Flicek, Kerkhoven, van Lohuizen (bib24) 2010; 38 Zuleger, Boyle, Kelly, de las Heras, Lazou, Korfali, Batrakou, Randles, Morris, Harrison (bib43) 2013; 14 Zullo, Demarco, Piqué-Regi, Gaffney, Epstein, Spooner, Luperchio, Bernstein, Pritchard, Reddy, Singh (bib44) 2012; 149 Chubb, Boyle, Perry, Bickmore (bib6) 2002; 12 Mousavi, Jasmin (bib21) 2006; 26 D’Angelo, Gomez-Cavazos, Mei, Lackner, Hetzer (bib7) 2012; 22 Kohara, Pignatelli, Rivest, Jung, Kitamura, Suh, Frank, Kajikawa, Mise, Obata (bib14) 2014; 17 Li, Wei, Li, He, Zhou, Yan, Zhang, Liu, Liu, Shu (bib17) 2013; 288 Uhlén, Fagerberg, Hallström, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjöstedt, Asplund (bib33) 2015; 347 Rosen, Sanes, LaChance, Cunningham, Roman, Dean (bib27) 1992; 69 Bakay, Wang, Melcon, Schiltz, Xuan, Zhao, Sartorelli, Seo, Pegoraro, Angelini (bib3) 2006; 129 Kumagai, Sato, Yamada, Mahony, Seghezzi, Lees, Arai, Masai (bib15) 1999; 19 Wong, Luperchio, Reddy (bib36) 2014; 28 Peng, Ali, Dai, Daggett, Raulo, Rauvala (bib23) 1995; 15 Liu (10.1016/j.molcel.2016.04.035_bib18) 2009; 29 Mattout (10.1016/j.molcel.2016.04.035_bib20) 2011; 21 Wilkie (10.1016/j.molcel.2016.04.035_bib35) 2011; 10 Zullo (10.1016/j.molcel.2016.04.035_bib44) 2012; 149 Zuleger (10.1016/j.molcel.2016.04.035_bib42) 2011; 2 Bakay (10.1016/j.molcel.2016.04.035_bib3) 2006; 129 Kohara (10.1016/j.molcel.2016.04.035_bib14) 2014; 17 Yue (10.1016/j.molcel.2016.04.035_bib41) 2014; 515 Yamada (10.1016/j.molcel.2016.04.035_bib39) 2010; 298 Fonseca (10.1016/j.molcel.2016.04.035_bib12) 2005; 280 Jesse (10.1016/j.molcel.2016.04.035_bib13) 1998; 140 Davidson (10.1016/j.molcel.2016.04.035_bib8) 2009; 17 Therizols (10.1016/j.molcel.2016.04.035_bib32) 2014; 346 D’Angelo (10.1016/j.molcel.2016.04.035_bib7) 2012; 22 Peric-Hupkes (10.1016/j.molcel.2016.04.035_bib24) 2010; 38 Stark (10.1016/j.molcel.2016.04.035_bib30) 2011; 138 Wu (10.1016/j.molcel.2016.04.035_bib37) 2013; 14 Akhtar (10.1016/j.molcel.2016.04.035_bib1) 2013; 154 De Paepe (10.1016/j.molcel.2016.04.035_bib9) 2012; 46 Li (10.1016/j.molcel.2016.04.035_bib17) 2013; 288 Pombo (10.1016/j.molcel.2016.04.035_bib25) 2015; 16 Finlan (10.1016/j.molcel.2016.04.035_bib11) 2008; 4 Zuleger (10.1016/j.molcel.2016.04.035_bib43) 2013; 14 Lu (10.1016/j.molcel.2016.04.035_bib19) 1999; 96 Takeda (10.1016/j.molcel.2016.04.035_bib31) 2001; 10 Bickmore (10.1016/j.molcel.2016.04.035_bib4) 2013; 152 Neu (10.1016/j.molcel.2016.04.035_bib22) 2006; 74 Yaffe (10.1016/j.molcel.2016.04.035_bib38) 1977; 270 Caruelle (10.1016/j.molcel.2016.04.035_bib5) 2004; 25 Chubb (10.1016/j.molcel.2016.04.035_bib6) 2002; 12 Vogel (10.1016/j.molcel.2016.04.035_bib34) 2007; 2 Asp (10.1016/j.molcel.2016.04.035_bib2) 2011; 108 Mousavi (10.1016/j.molcel.2016.04.035_bib21) 2006; 26 Rosen (10.1016/j.molcel.2016.04.035_bib27) 1992; 69 Kumaran (10.1016/j.molcel.2016.04.035_bib16) 2008; 180 Solovei (10.1016/j.molcel.2016.04.035_bib29) 2013; 152 Uhlén (10.1016/j.molcel.2016.04.035_bib33) 2015; 347 Dietrich (10.1016/j.molcel.2016.04.035_bib10) 1999; 126 Kumagai (10.1016/j.molcel.2016.04.035_bib15) 1999; 19 Reddy (10.1016/j.molcel.2016.04.035_bib26) 2008; 452 Yazawa (10.1016/j.molcel.2016.04.035_bib40) 2007; 448 Wong (10.1016/j.molcel.2016.04.035_bib36) 2014; 28 Sáenz (10.1016/j.molcel.2016.04.035_bib28) 2008; 3 Peng (10.1016/j.molcel.2016.04.035_bib23) 1995; 15 |
References_xml | – volume: 280 start-page: 39609 year: 2005 end-page: 39615 ident: bib12 article-title: WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells publication-title: J. Biol. Chem. – volume: 38 start-page: 603 year: 2010 end-page: 613 ident: bib24 article-title: Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation publication-title: Mol. Cell – volume: 3 start-page: e3750 year: 2008 ident: bib28 article-title: Gene expression profiling in limb-girdle muscular dystrophy 2A publication-title: PLoS ONE – volume: 346 start-page: 1238 year: 2014 end-page: 1242 ident: bib32 article-title: Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells publication-title: Science – volume: 452 start-page: 243 year: 2008 end-page: 247 ident: bib26 article-title: Transcriptional repression mediated by repositioning of genes to the nuclear lamina publication-title: Nature – volume: 14 start-page: 591 year: 2013 ident: bib37 article-title: Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping publication-title: BMC Genomics – volume: 149 start-page: 1474 year: 2012 end-page: 1487 ident: bib44 article-title: DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina publication-title: Cell – volume: 26 start-page: 5739 year: 2006 end-page: 5749 ident: bib21 article-title: BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation publication-title: J. Neurosci. – volume: 17 start-page: 788 year: 2009 end-page: 799 ident: bib8 article-title: Cell cycle control of wnt receptor activation publication-title: Dev. Cell – volume: 180 start-page: 51 year: 2008 end-page: 65 ident: bib16 article-title: A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence publication-title: J. Cell Biol. – volume: 10 start-page: 477 year: 2001 end-page: 484 ident: bib31 article-title: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain publication-title: Hum. Mol. Genet. – volume: 16 start-page: 245 year: 2015 end-page: 257 ident: bib25 article-title: Three-dimensional genome architecture: players and mechanisms publication-title: Nat. Rev. Mol. Cell Biol. – volume: 69 start-page: 1107 year: 1992 end-page: 1119 ident: bib27 article-title: Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis publication-title: Cell – volume: 138 start-page: 5279 year: 2011 end-page: 5289 ident: bib30 article-title: Eph/ephrin interactions modulate muscle satellite cell motility and patterning publication-title: Development – volume: 29 start-page: 5800 year: 2009 end-page: 5812 ident: bib18 article-title: Regulation of myoblast differentiation by the nuclear envelope protein NET39 publication-title: Mol. Cell. Biol. – volume: 21 start-page: 1603 year: 2011 end-page: 1614 ident: bib20 article-title: An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity publication-title: Curr. Biol. – volume: 154 start-page: 914 year: 2013 end-page: 927 ident: bib1 article-title: Chromatin position effects assayed by thousands of reporters integrated in parallel publication-title: Cell – volume: 515 start-page: 355 year: 2014 end-page: 364 ident: bib41 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature – volume: 129 start-page: 996 year: 2006 end-page: 1013 ident: bib3 article-title: Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration publication-title: Brain – volume: 15 start-page: 3027 year: 1995 end-page: 3038 ident: bib23 article-title: The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells publication-title: J. Neurosci. – volume: 96 start-page: 552 year: 1999 end-page: 557 ident: bib19 article-title: MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 105 year: 2014 end-page: 120 ident: bib36 article-title: NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation publication-title: Curr. Opin. Cell Biol. – volume: 46 start-page: 917 year: 2012 end-page: 925 ident: bib9 article-title: Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis publication-title: Muscle Nerve – volume: 19 start-page: 5083 year: 1999 end-page: 5095 ident: bib15 article-title: A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells publication-title: Mol. Cell. Biol. – volume: 74 start-page: 573 year: 2006 end-page: 582 ident: bib22 article-title: Differential expression of entactin-1/nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation publication-title: Differentiation – volume: 22 start-page: 446 year: 2012 end-page: 458 ident: bib7 article-title: A change in nuclear pore complex composition regulates cell differentiation publication-title: Dev. Cell – volume: 448 start-page: 78 year: 2007 end-page: 82 ident: bib40 article-title: TRIC channels are essential for Ca2+ handling in intracellular stores publication-title: Nature – volume: 347 start-page: 1260419 year: 2015 ident: bib33 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science – volume: 2 start-page: 1467 year: 2007 end-page: 1478 ident: bib34 article-title: Detection of in vivo protein-DNA interactions using DamID in mammalian cells publication-title: Nat. Protoc. – volume: 10 year: 2011 ident: bib35 article-title: Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations publication-title: Mol. Cell. Proteomics – volume: 14 start-page: R14 year: 2013 ident: bib43 article-title: Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery publication-title: Genome Biol. – volume: 12 start-page: 439 year: 2002 end-page: 445 ident: bib6 article-title: Chromatin motion is constrained by association with nuclear compartments in human cells publication-title: Curr. Biol. – volume: 298 start-page: C465 year: 2010 end-page: C476 ident: bib39 article-title: High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo publication-title: Am. J. Physiol. Cell Physiol. – volume: 2 start-page: 339 year: 2011 end-page: 349 ident: bib42 article-title: The nuclear envelope as a chromatin organizer publication-title: Nucleus – volume: 140 start-page: 1265 year: 1998 end-page: 1276 ident: bib13 article-title: Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1 publication-title: J. Cell Biol. – volume: 17 start-page: 269 year: 2014 end-page: 279 ident: bib14 article-title: Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits publication-title: Nat. Neurosci. – volume: 108 start-page: E149 year: 2011 end-page: E158 ident: bib2 article-title: Genome-wide remodeling of the epigenetic landscape during myogenic differentiation publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 45 year: 2004 end-page: 53 ident: bib5 article-title: Upregulation of HARP during in vitro myogenesis and rat soleus muscle regeneration publication-title: J. Muscle Res. Cell Motil. – volume: 288 start-page: 17908 year: 2013 end-page: 17917 ident: bib17 article-title: Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis publication-title: J. Biol. Chem. – volume: 4 start-page: e1000039 year: 2008 ident: bib11 article-title: Recruitment to the nuclear periphery can alter expression of genes in human cells publication-title: PLoS Genet. – volume: 152 start-page: 584 year: 2013 end-page: 598 ident: bib29 article-title: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation publication-title: Cell – volume: 152 start-page: 1270 year: 2013 end-page: 1284 ident: bib4 article-title: Genome architecture: domain organization of interphase chromosomes publication-title: Cell – volume: 270 start-page: 725 year: 1977 end-page: 727 ident: bib38 article-title: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle publication-title: Nature – volume: 126 start-page: 1621 year: 1999 end-page: 1629 ident: bib10 article-title: The role of SF/HGF and c-Met in the development of skeletal muscle publication-title: Development – volume: 25 start-page: 45 year: 2004 ident: 10.1016/j.molcel.2016.04.035_bib5 article-title: Upregulation of HARP during in vitro myogenesis and rat soleus muscle regeneration publication-title: J. Muscle Res. Cell Motil. doi: 10.1023/B:JURE.0000021387.92378.2e – volume: 3 start-page: e3750 year: 2008 ident: 10.1016/j.molcel.2016.04.035_bib28 article-title: Gene expression profiling in limb-girdle muscular dystrophy 2A publication-title: PLoS ONE doi: 10.1371/journal.pone.0003750 – volume: 46 start-page: 917 year: 2012 ident: 10.1016/j.molcel.2016.04.035_bib9 article-title: Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis publication-title: Muscle Nerve doi: 10.1002/mus.23481 – volume: 12 start-page: 439 year: 2002 ident: 10.1016/j.molcel.2016.04.035_bib6 article-title: Chromatin motion is constrained by association with nuclear compartments in human cells publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00695-4 – volume: 21 start-page: 1603 year: 2011 ident: 10.1016/j.molcel.2016.04.035_bib20 article-title: An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.030 – volume: 15 start-page: 3027 year: 1995 ident: 10.1016/j.molcel.2016.04.035_bib23 article-title: The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-04-03027.1995 – volume: 69 start-page: 1107 year: 1992 ident: 10.1016/j.molcel.2016.04.035_bib27 article-title: Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis publication-title: Cell doi: 10.1016/0092-8674(92)90633-N – volume: 346 start-page: 1238 year: 2014 ident: 10.1016/j.molcel.2016.04.035_bib32 article-title: Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells publication-title: Science doi: 10.1126/science.1259587 – volume: 38 start-page: 603 year: 2010 ident: 10.1016/j.molcel.2016.04.035_bib24 article-title: Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.03.016 – volume: 140 start-page: 1265 year: 1998 ident: 10.1016/j.molcel.2016.04.035_bib13 article-title: Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1 publication-title: J. Cell Biol. doi: 10.1083/jcb.140.5.1265 – volume: 270 start-page: 725 year: 1977 ident: 10.1016/j.molcel.2016.04.035_bib38 article-title: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle publication-title: Nature doi: 10.1038/270725a0 – volume: 108 start-page: E149 year: 2011 ident: 10.1016/j.molcel.2016.04.035_bib2 article-title: Genome-wide remodeling of the epigenetic landscape during myogenic differentiation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1102223108 – volume: 29 start-page: 5800 year: 2009 ident: 10.1016/j.molcel.2016.04.035_bib18 article-title: Regulation of myoblast differentiation by the nuclear envelope protein NET39 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00684-09 – volume: 347 start-page: 1260419 year: 2015 ident: 10.1016/j.molcel.2016.04.035_bib33 article-title: Proteomics. Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 4 start-page: e1000039 year: 2008 ident: 10.1016/j.molcel.2016.04.035_bib11 article-title: Recruitment to the nuclear periphery can alter expression of genes in human cells publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000039 – volume: 288 start-page: 17908 year: 2013 ident: 10.1016/j.molcel.2016.04.035_bib17 article-title: Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.458836 – volume: 22 start-page: 446 year: 2012 ident: 10.1016/j.molcel.2016.04.035_bib7 article-title: A change in nuclear pore complex composition regulates cell differentiation publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.11.021 – volume: 16 start-page: 245 year: 2015 ident: 10.1016/j.molcel.2016.04.035_bib25 article-title: Three-dimensional genome architecture: players and mechanisms publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3965 – volume: 14 start-page: R14 year: 2013 ident: 10.1016/j.molcel.2016.04.035_bib43 article-title: Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery publication-title: Genome Biol. doi: 10.1186/gb-2013-14-2-r14 – volume: 19 start-page: 5083 year: 1999 ident: 10.1016/j.molcel.2016.04.035_bib15 article-title: A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.7.5083 – volume: 28 start-page: 105 year: 2014 ident: 10.1016/j.molcel.2016.04.035_bib36 article-title: NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2014.04.005 – volume: 10 year: 2011 ident: 10.1016/j.molcel.2016.04.035_bib35 article-title: Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M110.003129 – volume: 2 start-page: 1467 year: 2007 ident: 10.1016/j.molcel.2016.04.035_bib34 article-title: Detection of in vivo protein-DNA interactions using DamID in mammalian cells publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.148 – volume: 280 start-page: 39609 year: 2005 ident: 10.1016/j.molcel.2016.04.035_bib12 article-title: WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507426200 – volume: 2 start-page: 339 year: 2011 ident: 10.1016/j.molcel.2016.04.035_bib42 article-title: The nuclear envelope as a chromatin organizer publication-title: Nucleus doi: 10.4161/nucl.2.5.17846 – volume: 26 start-page: 5739 year: 2006 ident: 10.1016/j.molcel.2016.04.035_bib21 article-title: BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5398-05.2006 – volume: 298 start-page: C465 year: 2010 ident: 10.1016/j.molcel.2016.04.035_bib39 article-title: High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00449.2009 – volume: 129 start-page: 996 year: 2006 ident: 10.1016/j.molcel.2016.04.035_bib3 article-title: Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration publication-title: Brain doi: 10.1093/brain/awl023 – volume: 17 start-page: 269 year: 2014 ident: 10.1016/j.molcel.2016.04.035_bib14 article-title: Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits publication-title: Nat. Neurosci. doi: 10.1038/nn.3614 – volume: 180 start-page: 51 year: 2008 ident: 10.1016/j.molcel.2016.04.035_bib16 article-title: A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence publication-title: J. Cell Biol. doi: 10.1083/jcb.200706060 – volume: 152 start-page: 584 year: 2013 ident: 10.1016/j.molcel.2016.04.035_bib29 article-title: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation publication-title: Cell doi: 10.1016/j.cell.2013.01.009 – volume: 10 start-page: 477 year: 2001 ident: 10.1016/j.molcel.2016.04.035_bib31 article-title: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.5.477 – volume: 515 start-page: 355 year: 2014 ident: 10.1016/j.molcel.2016.04.035_bib41 article-title: A comparative encyclopedia of DNA elements in the mouse genome publication-title: Nature doi: 10.1038/nature13992 – volume: 17 start-page: 788 year: 2009 ident: 10.1016/j.molcel.2016.04.035_bib8 article-title: Cell cycle control of wnt receptor activation publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.11.006 – volume: 448 start-page: 78 year: 2007 ident: 10.1016/j.molcel.2016.04.035_bib40 article-title: TRIC channels are essential for Ca2+ handling in intracellular stores publication-title: Nature doi: 10.1038/nature05928 – volume: 154 start-page: 914 year: 2013 ident: 10.1016/j.molcel.2016.04.035_bib1 article-title: Chromatin position effects assayed by thousands of reporters integrated in parallel publication-title: Cell doi: 10.1016/j.cell.2013.07.018 – volume: 14 start-page: 591 year: 2013 ident: 10.1016/j.molcel.2016.04.035_bib37 article-title: Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping publication-title: BMC Genomics doi: 10.1186/1471-2164-14-591 – volume: 126 start-page: 1621 year: 1999 ident: 10.1016/j.molcel.2016.04.035_bib10 article-title: The role of SF/HGF and c-Met in the development of skeletal muscle publication-title: Development doi: 10.1242/dev.126.8.1621 – volume: 74 start-page: 573 year: 2006 ident: 10.1016/j.molcel.2016.04.035_bib22 article-title: Differential expression of entactin-1/nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation publication-title: Differentiation doi: 10.1111/j.1432-0436.2006.00100.x – volume: 96 start-page: 552 year: 1999 ident: 10.1016/j.molcel.2016.04.035_bib19 article-title: MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.2.552 – volume: 152 start-page: 1270 year: 2013 ident: 10.1016/j.molcel.2016.04.035_bib4 article-title: Genome architecture: domain organization of interphase chromosomes publication-title: Cell doi: 10.1016/j.cell.2013.02.001 – volume: 138 start-page: 5279 year: 2011 ident: 10.1016/j.molcel.2016.04.035_bib30 article-title: Eph/ephrin interactions modulate muscle satellite cell motility and patterning publication-title: Development doi: 10.1242/dev.068411 – volume: 149 start-page: 1474 year: 2012 ident: 10.1016/j.molcel.2016.04.035_bib44 article-title: DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina publication-title: Cell doi: 10.1016/j.cell.2012.04.035 – volume: 452 start-page: 243 year: 2008 ident: 10.1016/j.molcel.2016.04.035_bib26 article-title: Transcriptional repression mediated by repositioning of genes to the nuclear lamina publication-title: Nature doi: 10.1038/nature06727 |
SSID | ssj0014589 |
Score | 2.5507445 |
Snippet | Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 834 |
SubjectTerms | Animals Cell Differentiation Cell Line cell nucleolus Chromosome Positioning Down-Regulation gene expression regulation Gene Expression Regulation, Developmental genes Humans Ion Channels - genetics Ion Channels - metabolism Kinetics Membrane Proteins - genetics Membrane Proteins - metabolism Mice muscle development Muscle Development - genetics Muscle Fibers, Skeletal - metabolism muscles Myoblasts, Skeletal - metabolism myotubes Nuclear Envelope - metabolism nuclear membrane Nuclear Proteins - genetics Nuclear Proteins - metabolism RNA Interference transcriptomics Transfection transmembrane proteins |
Title | Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis |
URI | https://dx.doi.org/10.1016/j.molcel.2016.04.035 https://www.ncbi.nlm.nih.gov/pubmed/27264872 https://www.proquest.com/docview/1797868979 https://www.proquest.com/docview/1811909828 https://www.proquest.com/docview/1825427840 https://pubmed.ncbi.nlm.nih.gov/PMC4914829 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6bvbR1ChV7O29bKOaUgIDRtKm9C9CUkrNy6JHeLdw_6H_ujOSPaSbUsCPWo9Ym3NaDRivvmGkI9B2RxOkSLTCm46PGieaYvIHNhXJfJXhVj1PjuVx-f881zMd8jBWAuDsMrB9yefHr318Mt0WM3pddNMv2HutFRSQESBvHlz8MOMV7GIb_5pk0ngIrbBQ-EMpcfyuYjxuuoufcAERCEj4Wls-vbP4-nv8PNPFOWtY-noCXk8xJN0P73yU7IT2mfkYeowuX5Ofp3Fhc1im_m68RRppilG3QmrBQcXdWs6W_Uwm54iubG9obNwBZdoEPyCLA5N29PD9gLNo8epCTnb0q6mY6MEegt7BCP8k56mCkg6W3c_cNz0L8j50eHZwXE2NGDIvNBimdlQuMJZqypuHS-9ZB7iyYWTrAxiITULVV0svICHTDmI1UrlmBW-FsEXQTL2kuy2XRteE2pzjUKlz2skBSgrh9yQ2i1s7RXYxYSwcd2NH9jJsUnGpRlhaD9N0pZBbZmcG9DWhGSbWdeJneMeeTWq1GxZmYED5J6ZH0YLMLABMasCauhWvQGPpipZaaXvkKkKCLw03G7vkoG7OqaB8wl5lSxr802lQiCiKuH9t2xuI4Ak4dtP2uYikoVzjUyv-s1_f_lb8ghHCI8r5Duyu7xZhfcQiC3dHnmwf_L1-8le3HG_AU9dNpE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSmkvoe9unyr0ataWLck6piFh08ZLoRvYm5C0cuOS2CHePex_6I_ujGwv2TQk0KOtEbY0I82I-fQNIV-8NDF4kSRSEk46mVdZpAwic2BdMeSv8uHWezEVk9Ps25zPd8jBcBcGYZX93t_t6WG37t-M-9kcX1bV-CfmTpkUHCIK5M2bPyAPIRqQuDqP5183qYSMhzp4KB2h-HB_LoC8Lppz5zEDkYjAeBqqvt3qn_6NP2_CKK_5paOnZK8PKOl-98_PyI6vn5NHXYnJ9QvyZxZmNgp15svKUeSZphh2d2At8FzUrmmxaqE3nSK7sbmihb-AUzQI_kAah6pu6WF9hvbRYtcOOlvTpqRDpQR6DXwET_iRlnZXIGmxbn7hc9W-JKdHh7ODSdRXYIgcV3wZGZ_YxBoj88zYjDmROggoF1akzPOFUKnPy2ThODSm0kKwxqRNDXcl9y7xIk1fkd26qf0bQk2sUIi5uERWAJZbJIdUdmFKJ8EwRiQd5l27np4cq2Sc6wGH9lt32tKoLR1nGrQ1ItGm12VHz3GPvBxUqrfMTIMHuafn58ECNKxATKuAGppVq2FLk7nIlVR3yOQJRF4Kjrd3ycBhHfPA8Yi87ixrMyYmEYkoGfz_ls1tBJAlfLulrs4CW3imkOpVvf3vkX8ijyez4kSfHE-_vyNPsAWxcol4T3aXVyv_AaKypf0YVt1fG5A4Dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue-Specific+Gene+Repositioning+by+Muscle+Nuclear+Membrane+Proteins+Enhances+Repression+of+Critical+Developmental+Genes+during+Myogenesis&rft.jtitle=Molecular+cell&rft.au=Robson%2C+Michael%C2%A0I.&rft.au=de%C2%A0las%C2%A0Heras%2C+Jose%C2%A0I.&rft.au=Czapiewski%2C+Rafal&rft.au=L%C3%AA%C2%A0Th%C3%A0nh%2C+Ph%C3%BA&rft.date=2016-06-16&rft.issn=1097-2765&rft.volume=62&rft.issue=6&rft.spage=834&rft.epage=847&rft_id=info:doi/10.1016%2Fj.molcel.2016.04.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2016_04_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |