Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis

Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal rep...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 62; no. 6; pp. 834 - 847
Main Authors Robson, Michael I., de las Heras, Jose I., Czapiewski, Rafal, Lê Thành, Phú, Booth, Daniel G., Kelly, David A., Webb, Shaun, Kerr, Alastair R.W., Schirmer, Eric C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.06.2016
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. [Display omitted] •Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis•Expression changes for NET-repositioned genes depend on cell differentiation state•Isolating position from differentiation reveals its contribution to gene expression•Three NETs together affect 37% of all genes normally changing in myogenesis Muscle-specific nuclear envelope transmembrane proteins (NETs) optimize myogenic gene expression by physically recruiting genes to the periphery and enhancing their repression. Specifically manipulating the position of endogenous genes in myoblasts and myotubes indicates that peripheral localization enhances repression, but only in context of other changes in differentiation.
AbstractList Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation.
Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. • Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis • Expression changes for NET-repositioned genes depend on cell differentiation state • Isolating position from differentiation reveals its contribution to gene expression • Three NETs together affect 37% of all genes normally changing in myogenesis Muscle-specific nuclear envelope transmembrane proteins (NETs) optimize myogenic gene expression by physically recruiting genes to the periphery and enhancing their repression. Specifically manipulating the position of endogenous genes in myoblasts and myotubes indicates that peripheral localization enhances repression, but only in context of other changes in differentiation.
Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. [Display omitted] •Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis•Expression changes for NET-repositioned genes depend on cell differentiation state•Isolating position from differentiation reveals its contribution to gene expression•Three NETs together affect 37% of all genes normally changing in myogenesis Muscle-specific nuclear envelope transmembrane proteins (NETs) optimize myogenic gene expression by physically recruiting genes to the periphery and enhancing their repression. Specifically manipulating the position of endogenous genes in myoblasts and myotubes indicates that peripheral localization enhances repression, but only in context of other changes in differentiation.
Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes 1/3 to 2/3 of a gene's normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation.
Author Schirmer, Eric C.
Robson, Michael I.
Booth, Daniel G.
de las Heras, Jose I.
Webb, Shaun
Kelly, David A.
Czapiewski, Rafal
Lê Thành, Phú
Kerr, Alastair R.W.
AuthorAffiliation 1 The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
AuthorAffiliation_xml – name: 1 The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
Author_xml – sequence: 1
  givenname: Michael I.
  surname: Robson
  fullname: Robson, Michael I.
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 2
  givenname: Jose I.
  surname: de las Heras
  fullname: de las Heras, Jose I.
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 3
  givenname: Rafal
  surname: Czapiewski
  fullname: Czapiewski, Rafal
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 4
  givenname: Phú
  surname: Lê Thành
  fullname: Lê Thành, Phú
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 5
  givenname: Daniel G.
  surname: Booth
  fullname: Booth, Daniel G.
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 6
  givenname: David A.
  surname: Kelly
  fullname: Kelly, David A.
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 7
  givenname: Shaun
  surname: Webb
  fullname: Webb, Shaun
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 8
  givenname: Alastair R.W.
  surname: Kerr
  fullname: Kerr, Alastair R.W.
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
– sequence: 9
  givenname: Eric C.
  surname: Schirmer
  fullname: Schirmer, Eric C.
  email: e.schirmer@ed.ac.uk
  organization: The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27264872$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUtVARfcAfIOQlmwTbseOYBRIaSkHqAIKythznZupREqd2MtL8Ax-No5kiYEHZ2L665xzfxzlHJ4MfAKHnlOSU0PLVNu99Z6HLWYpywnNSiEfojBIlM05LfnJ8M1mKU3Qe45YQykWlnqBTJlnJK8nO0I8bF-MM2bcRrGudxVcwAP4Ko49ucn5wwwbXe7yeo-0Af5rTaQJeQ18Hk4Bfgp_ADRFfDrdmsBAXaoAYExX7Fq9CUrGmw-9gB50feximFC2fRNzMYZFf7_1miV18ih63povw7HhfoO_vL29WH7Lrz1cfV2-vMyuUmDIDtKa1MbLipubMloVVSjV1WTAQTakKqFraWJGShayVoEzWhRG2FWAplEVxgd4cdMe57qGxqahgOj0G15uw1944_WdmcLd643eaK8orppLAy6NA8HczxEn3LqZddGkmfo6aVkxwluoj_wGlVBFVsephqFSyKisllwJe_N7Br9LvF5sArw8AG3yMAVpt3WSWjaaGXKcp0YuL9FYfXKQXF2nCdXJRIvO_yPf6D9COY4W0u52DoKN1kFzRuAB20o13_xb4Cd1Y5w0
CitedBy_id crossref_primary_10_1080_19491034_2021_1874135
crossref_primary_10_1091_mbc_E22_09_0448
crossref_primary_10_1134_S0006297918040077
crossref_primary_10_1038_s41598_017_16746_y
crossref_primary_10_1101_cshperspect_a041268
crossref_primary_10_3389_fgene_2019_00602
crossref_primary_10_1016_j_nmd_2016_12_003
crossref_primary_10_1080_19491034_2020_1868105
crossref_primary_10_1007_s00018_020_03731_4
crossref_primary_10_1186_s13059_022_02662_6
crossref_primary_10_3389_fgene_2018_00623
crossref_primary_10_1038_s41467_025_57758_x
crossref_primary_10_1242_dev_174078
crossref_primary_10_1007_s10577_022_09686_5
crossref_primary_10_3233_JND_160169
crossref_primary_10_12688_f1000research_9260_1
crossref_primary_10_3389_fcell_2022_913458
crossref_primary_10_1016_j_ceb_2020_05_005
crossref_primary_10_1080_19491034_2018_1460044
crossref_primary_10_1016_j_tcb_2019_12_008
crossref_primary_10_3390_ijms23116002
crossref_primary_10_1016_j_molcel_2023_12_032
crossref_primary_10_1242_jcs_199216
crossref_primary_10_3389_fphys_2018_01533
crossref_primary_10_15252_embj_2022110600
crossref_primary_10_1016_j_molcel_2019_05_032
crossref_primary_10_3390_cells9040844
crossref_primary_10_1080_19491034_2018_1449498
crossref_primary_10_3389_fcell_2018_00172
crossref_primary_10_1016_j_livsci_2019_103861
crossref_primary_10_1186_s13059_023_02849_5
crossref_primary_10_1007_s00418_018_1726_1
crossref_primary_10_1146_annurev_genom_121219_083616
crossref_primary_10_1016_j_ceb_2020_11_006
crossref_primary_10_7554_eLife_70490
crossref_primary_10_1093_hmg_ddac065
crossref_primary_10_1016_j_jgg_2024_10_005
crossref_primary_10_1186_s12915_022_01269_4
crossref_primary_10_1016_j_ceb_2023_102313
crossref_primary_10_3390_ijms25010032
crossref_primary_10_3389_fcell_2019_00018
crossref_primary_10_1080_19491034_2022_2153564
crossref_primary_10_1080_19491034_2018_1469351
crossref_primary_10_1002_mco2_326
crossref_primary_10_7554_eLife_63476
crossref_primary_10_1038_s41576_021_00438_5
crossref_primary_10_1007_s00424_021_02513_6
crossref_primary_10_1016_j_cell_2022_09_006
crossref_primary_10_1038_s41556_023_01271_0
crossref_primary_10_1016_j_devcel_2017_05_007
crossref_primary_10_1080_19491034_2023_2202548
crossref_primary_10_3389_fphys_2018_01277
crossref_primary_10_1042_BST20210858
crossref_primary_10_1177_03009858211030541
crossref_primary_10_1007_s10522_018_9758_4
crossref_primary_10_1080_19491034_2023_2197693
crossref_primary_10_3389_fcell_2023_1240285
crossref_primary_10_3390_cells13201744
crossref_primary_10_1038_s41467_021_20987_x
crossref_primary_10_1038_s41576_018_0063_5
crossref_primary_10_3390_biomedicines8070188
crossref_primary_10_1242_jcs_203430
crossref_primary_10_7554_eLife_49278
crossref_primary_10_1063_5_0087699
crossref_primary_10_1016_j_gde_2016_12_005
crossref_primary_10_1016_j_cell_2017_04_022
crossref_primary_10_3389_fcell_2022_1022723
crossref_primary_10_1080_19491034_2016_1261230
crossref_primary_10_1002_1873_3468_14771
crossref_primary_10_1016_j_gde_2019_04_008
crossref_primary_10_1016_j_ebiom_2019_11_048
crossref_primary_10_3390_cells6040038
crossref_primary_10_1186_s13395_016_0113_7
crossref_primary_10_3389_fcell_2020_592573
crossref_primary_10_1172_JCI163333
crossref_primary_10_1016_j_gendis_2021_03_004
crossref_primary_10_3389_fgene_2017_00076
crossref_primary_10_3390_cells11111846
crossref_primary_10_3390_epigenomes4010001
crossref_primary_10_3390_cells6020009
crossref_primary_10_1016_j_it_2019_07_003
crossref_primary_10_1101_gr_212308_116
crossref_primary_10_1126_sciadv_abd9371
crossref_primary_10_1016_j_celrep_2020_107964
crossref_primary_10_1080_19491034_2017_1285988
crossref_primary_10_1016_j_ydbio_2020_07_010
crossref_primary_10_1016_j_gde_2024_102234
crossref_primary_10_1111_pce_14761
crossref_primary_10_3389_fgene_2019_00917
crossref_primary_10_3390_cells10020318
crossref_primary_10_1016_j_gde_2021_02_003
crossref_primary_10_1093_nar_gkab392
crossref_primary_10_1242_jcs_235093
crossref_primary_10_1016_j_cell_2017_09_018
crossref_primary_10_1038_s41467_021_27869_2
crossref_primary_10_1038_s41598_020_79384_x
crossref_primary_10_1038_s44318_024_00214_1
crossref_primary_10_1093_hmg_ddac264
crossref_primary_10_1038_s41593_021_00879_5
crossref_primary_10_1016_j_ymeth_2018_11_005
crossref_primary_10_3390_biom11101547
crossref_primary_10_3390_ijms242115771
crossref_primary_10_1152_physiolgenomics_00128_2017
crossref_primary_10_1016_j_jgg_2021_02_004
crossref_primary_10_1042_BST20170153
crossref_primary_10_1016_j_sbi_2024_102867
crossref_primary_10_3390_cells8030271
crossref_primary_10_1097_WCO_0000000000001297
crossref_primary_10_3390_genes14020334
crossref_primary_10_3389_fcell_2022_951875
crossref_primary_10_1007_s12551_018_0431_6
crossref_primary_10_1093_nar_gkae752
crossref_primary_10_3389_fcell_2021_761469
crossref_primary_10_1016_j_semcdb_2018_07_004
crossref_primary_10_1038_nrm_2016_153
crossref_primary_10_1016_j_psj_2020_09_027
crossref_primary_10_3390_cells8020136
crossref_primary_10_1080_19491034_2016_1243634
crossref_primary_10_1093_hmg_ddy055
crossref_primary_10_1186_s13072_021_00403_w
crossref_primary_10_1038_s42003_024_06325_z
crossref_primary_10_15252_embj_2019103159
crossref_primary_10_1038_nprot_2018_009
crossref_primary_10_1093_nar_gkz123
crossref_primary_10_1186_s13059_020_02003_5
crossref_primary_10_1007_s12038_019_9968_1
crossref_primary_10_1016_j_cell_2019_12_004
crossref_primary_10_3389_fcell_2022_1007331
crossref_primary_10_1016_j_isci_2024_110869
crossref_primary_10_2139_ssrn_3947354
crossref_primary_10_3389_fcell_2023_1293891
crossref_primary_10_1016_j_stem_2020_12_016
crossref_primary_10_1097_WCO_0000000000000359
Cites_doi 10.1023/B:JURE.0000021387.92378.2e
10.1371/journal.pone.0003750
10.1002/mus.23481
10.1016/S0960-9822(02)00695-4
10.1016/j.cub.2011.08.030
10.1523/JNEUROSCI.15-04-03027.1995
10.1016/0092-8674(92)90633-N
10.1126/science.1259587
10.1016/j.molcel.2010.03.016
10.1083/jcb.140.5.1265
10.1038/270725a0
10.1073/pnas.1102223108
10.1128/MCB.00684-09
10.1126/science.1260419
10.1371/journal.pgen.1000039
10.1074/jbc.M113.458836
10.1016/j.devcel.2011.11.021
10.1038/nrm3965
10.1186/gb-2013-14-2-r14
10.1128/MCB.19.7.5083
10.1016/j.ceb.2014.04.005
10.1074/mcp.M110.003129
10.1038/nprot.2007.148
10.1074/jbc.M507426200
10.4161/nucl.2.5.17846
10.1523/JNEUROSCI.5398-05.2006
10.1152/ajpcell.00449.2009
10.1093/brain/awl023
10.1038/nn.3614
10.1083/jcb.200706060
10.1016/j.cell.2013.01.009
10.1093/hmg/10.5.477
10.1038/nature13992
10.1016/j.devcel.2009.11.006
10.1038/nature05928
10.1016/j.cell.2013.07.018
10.1186/1471-2164-14-591
10.1242/dev.126.8.1621
10.1111/j.1432-0436.2006.00100.x
10.1073/pnas.96.2.552
10.1016/j.cell.2013.02.001
10.1242/dev.068411
10.1016/j.cell.2012.04.035
10.1038/nature06727
ContentType Journal Article
Copyright 2016 The Authors
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2016 The Authors 2016
Copyright_xml – notice: 2016 The Authors
– notice: Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2016 The Authors 2016
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
7S9
L.6
5PM
DOI 10.1016/j.molcel.2016.04.035
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA


Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 847
ExternalDocumentID PMC4914829
27264872
10_1016_j_molcel_2016_04_035
S109727651630137X
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 092076
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 095209
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
EFKBS
FR3
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c595t-ae1b1baa784ab42c63c999db632e5d693e8f1dc5ab437b95127b3a5cf5ec1e633
IEDL.DBID IXB
ISSN 1097-2765
IngestDate Thu Aug 21 14:08:38 EDT 2025
Mon Jul 21 10:33:42 EDT 2025
Wed Jul 30 11:19:22 EDT 2025
Fri Jul 11 10:19:15 EDT 2025
Thu Apr 03 06:56:53 EDT 2025
Tue Jul 01 03:40:47 EDT 2025
Thu Apr 24 22:59:17 EDT 2025
Fri Feb 23 02:30:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This is an open access article under the CC BY license.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-ae1b1baa784ab42c63c999db632e5d693e8f1dc5ab437b95127b3a5cf5ec1e633
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S109727651630137X
PMID 27264872
PQID 1797868979
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4914829
proquest_miscellaneous_1825427840
proquest_miscellaneous_1811909828
proquest_miscellaneous_1797868979
pubmed_primary_27264872
crossref_citationtrail_10_1016_j_molcel_2016_04_035
crossref_primary_10_1016_j_molcel_2016_04_035
elsevier_sciencedirect_doi_10_1016_j_molcel_2016_04_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-16
PublicationDateYYYYMMDD 2016-06-16
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2016
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Solovei, Wang, Thanisch, Schmidt, Krebs, Zwerger, Cohen, Devys, Foisner, Peichl (bib29) 2013; 152
Stark, Karvas, Siegel, Cornelison (bib30) 2011; 138
Therizols, Illingworth, Courilleau, Boyle, Wood, Bickmore (bib32) 2014; 346
Kumaran, Spector (bib16) 2008; 180
Mattout, Pike, Towbin, Bank, Gonzalez-Sandoval, Stadler, Meister, Gruenbaum, Gasser (bib20) 2011; 21
Caruelle, Mazouzi, Husmann, Delbé, Duchesnay, Gautron, Martelly, Courty (bib5) 2004; 25
Davidson, Shen, Huang, Su, Karaulanov, Bartscherer, Hassler, Stannek, Boutros, Niehrs (bib8) 2009; 17
Zuleger, Robson, Schirmer (bib42) 2011; 2
Yamada, Tatsumi, Yamanouchi, Hosoyama, Shiratsuchi, Sato, Mizunoya, Ikeuchi, Furuse, Allen (bib39) 2010; 298
Lu, Webb, Richardson, Olson (bib19) 1999; 96
Wu, Yao (bib37) 2013; 14
Yue, Cheng, Breschi, Vierstra, Wu, Ryba, Sandstrom, Ma, Davis, Pope (bib41) 2014; 515
Asp, Blum, Vethantham, Parisi, Micsinai, Cheng, Bowman, Kluger, Dynlacht (bib2) 2011; 108
Pombo, Dillon (bib25) 2015; 16
De Paepe, Creus, Martin, De Bleecker (bib9) 2012; 46
Akhtar, de Jong, Pindyurin, Pagie, Meuleman, de Ridder, Berns, Wessels, van Lohuizen, van Steensel (bib1) 2013; 154
Dietrich, Abou-Rebyeh, Brohmann, Bladt, Sonnenberg-Riethmacher, Yamaai, Lumsden, Brand-Saberi, Birchmeier (bib10) 1999; 126
Wilkie, Korfali, Swanson, Malik, Srsen, Batrakou, de las Heras, Zuleger, Kerr, Florens (bib35) 2011; 10
Fonseca, Fukuma, Lipson, Nguyen, Allen, Oka, Urano (bib12) 2005; 280
Reddy, Zullo, Bertolino, Singh (bib26) 2008; 452
Sáenz, Azpitarte, Armañanzas, Leturcq, Alzualde, Inza, García-Bragado, De la Herran, Corcuera, Cabello (bib28) 2008; 3
Liu, Guan, Datta, Coppinger, Yates, Gerace (bib18) 2009; 29
Yaffe, Saxel (bib38) 1977; 270
Jesse, LaChance, Iademarco, Dean (bib13) 1998; 140
Yazawa, Ferrante, Feng, Mio, Ogura, Zhang, Lin, Pan, Komazaki, Kato (bib40) 2007; 448
Neu, Adams, Munz (bib22) 2006; 74
Vogel, Peric-Hupkes, van Steensel (bib34) 2007; 2
Finlan, Sproul, Thomson, Boyle, Kerr, Perry, Ylstra, Chubb, Bickmore (bib11) 2008; 4
Takeda, Inoue, Tanizawa, Matsuzaki, Oba, Watanabe, Shinoda, Oka (bib31) 2001; 10
Bickmore, van Steensel (bib4) 2013; 152
Peric-Hupkes, Meuleman, Pagie, Bruggeman, Solovei, Brugman, Gräf, Flicek, Kerkhoven, van Lohuizen (bib24) 2010; 38
Zuleger, Boyle, Kelly, de las Heras, Lazou, Korfali, Batrakou, Randles, Morris, Harrison (bib43) 2013; 14
Zullo, Demarco, Piqué-Regi, Gaffney, Epstein, Spooner, Luperchio, Bernstein, Pritchard, Reddy, Singh (bib44) 2012; 149
Chubb, Boyle, Perry, Bickmore (bib6) 2002; 12
Mousavi, Jasmin (bib21) 2006; 26
D’Angelo, Gomez-Cavazos, Mei, Lackner, Hetzer (bib7) 2012; 22
Kohara, Pignatelli, Rivest, Jung, Kitamura, Suh, Frank, Kajikawa, Mise, Obata (bib14) 2014; 17
Li, Wei, Li, He, Zhou, Yan, Zhang, Liu, Liu, Shu (bib17) 2013; 288
Uhlén, Fagerberg, Hallström, Lindskog, Oksvold, Mardinoglu, Sivertsson, Kampf, Sjöstedt, Asplund (bib33) 2015; 347
Rosen, Sanes, LaChance, Cunningham, Roman, Dean (bib27) 1992; 69
Bakay, Wang, Melcon, Schiltz, Xuan, Zhao, Sartorelli, Seo, Pegoraro, Angelini (bib3) 2006; 129
Kumagai, Sato, Yamada, Mahony, Seghezzi, Lees, Arai, Masai (bib15) 1999; 19
Wong, Luperchio, Reddy (bib36) 2014; 28
Peng, Ali, Dai, Daggett, Raulo, Rauvala (bib23) 1995; 15
Liu (10.1016/j.molcel.2016.04.035_bib18) 2009; 29
Mattout (10.1016/j.molcel.2016.04.035_bib20) 2011; 21
Wilkie (10.1016/j.molcel.2016.04.035_bib35) 2011; 10
Zullo (10.1016/j.molcel.2016.04.035_bib44) 2012; 149
Zuleger (10.1016/j.molcel.2016.04.035_bib42) 2011; 2
Bakay (10.1016/j.molcel.2016.04.035_bib3) 2006; 129
Kohara (10.1016/j.molcel.2016.04.035_bib14) 2014; 17
Yue (10.1016/j.molcel.2016.04.035_bib41) 2014; 515
Yamada (10.1016/j.molcel.2016.04.035_bib39) 2010; 298
Fonseca (10.1016/j.molcel.2016.04.035_bib12) 2005; 280
Jesse (10.1016/j.molcel.2016.04.035_bib13) 1998; 140
Davidson (10.1016/j.molcel.2016.04.035_bib8) 2009; 17
Therizols (10.1016/j.molcel.2016.04.035_bib32) 2014; 346
D’Angelo (10.1016/j.molcel.2016.04.035_bib7) 2012; 22
Peric-Hupkes (10.1016/j.molcel.2016.04.035_bib24) 2010; 38
Stark (10.1016/j.molcel.2016.04.035_bib30) 2011; 138
Wu (10.1016/j.molcel.2016.04.035_bib37) 2013; 14
Akhtar (10.1016/j.molcel.2016.04.035_bib1) 2013; 154
De Paepe (10.1016/j.molcel.2016.04.035_bib9) 2012; 46
Li (10.1016/j.molcel.2016.04.035_bib17) 2013; 288
Pombo (10.1016/j.molcel.2016.04.035_bib25) 2015; 16
Finlan (10.1016/j.molcel.2016.04.035_bib11) 2008; 4
Zuleger (10.1016/j.molcel.2016.04.035_bib43) 2013; 14
Lu (10.1016/j.molcel.2016.04.035_bib19) 1999; 96
Takeda (10.1016/j.molcel.2016.04.035_bib31) 2001; 10
Bickmore (10.1016/j.molcel.2016.04.035_bib4) 2013; 152
Neu (10.1016/j.molcel.2016.04.035_bib22) 2006; 74
Yaffe (10.1016/j.molcel.2016.04.035_bib38) 1977; 270
Caruelle (10.1016/j.molcel.2016.04.035_bib5) 2004; 25
Chubb (10.1016/j.molcel.2016.04.035_bib6) 2002; 12
Vogel (10.1016/j.molcel.2016.04.035_bib34) 2007; 2
Asp (10.1016/j.molcel.2016.04.035_bib2) 2011; 108
Mousavi (10.1016/j.molcel.2016.04.035_bib21) 2006; 26
Rosen (10.1016/j.molcel.2016.04.035_bib27) 1992; 69
Kumaran (10.1016/j.molcel.2016.04.035_bib16) 2008; 180
Solovei (10.1016/j.molcel.2016.04.035_bib29) 2013; 152
Uhlén (10.1016/j.molcel.2016.04.035_bib33) 2015; 347
Dietrich (10.1016/j.molcel.2016.04.035_bib10) 1999; 126
Kumagai (10.1016/j.molcel.2016.04.035_bib15) 1999; 19
Reddy (10.1016/j.molcel.2016.04.035_bib26) 2008; 452
Yazawa (10.1016/j.molcel.2016.04.035_bib40) 2007; 448
Wong (10.1016/j.molcel.2016.04.035_bib36) 2014; 28
Sáenz (10.1016/j.molcel.2016.04.035_bib28) 2008; 3
Peng (10.1016/j.molcel.2016.04.035_bib23) 1995; 15
References_xml – volume: 280
  start-page: 39609
  year: 2005
  end-page: 39615
  ident: bib12
  article-title: WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells
  publication-title: J. Biol. Chem.
– volume: 38
  start-page: 603
  year: 2010
  end-page: 613
  ident: bib24
  article-title: Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
  publication-title: Mol. Cell
– volume: 3
  start-page: e3750
  year: 2008
  ident: bib28
  article-title: Gene expression profiling in limb-girdle muscular dystrophy 2A
  publication-title: PLoS ONE
– volume: 346
  start-page: 1238
  year: 2014
  end-page: 1242
  ident: bib32
  article-title: Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells
  publication-title: Science
– volume: 452
  start-page: 243
  year: 2008
  end-page: 247
  ident: bib26
  article-title: Transcriptional repression mediated by repositioning of genes to the nuclear lamina
  publication-title: Nature
– volume: 14
  start-page: 591
  year: 2013
  ident: bib37
  article-title: Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping
  publication-title: BMC Genomics
– volume: 149
  start-page: 1474
  year: 2012
  end-page: 1487
  ident: bib44
  article-title: DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina
  publication-title: Cell
– volume: 26
  start-page: 5739
  year: 2006
  end-page: 5749
  ident: bib21
  article-title: BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation
  publication-title: J. Neurosci.
– volume: 17
  start-page: 788
  year: 2009
  end-page: 799
  ident: bib8
  article-title: Cell cycle control of wnt receptor activation
  publication-title: Dev. Cell
– volume: 180
  start-page: 51
  year: 2008
  end-page: 65
  ident: bib16
  article-title: A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 477
  year: 2001
  end-page: 484
  ident: bib31
  article-title: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain
  publication-title: Hum. Mol. Genet.
– volume: 16
  start-page: 245
  year: 2015
  end-page: 257
  ident: bib25
  article-title: Three-dimensional genome architecture: players and mechanisms
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 69
  start-page: 1107
  year: 1992
  end-page: 1119
  ident: bib27
  article-title: Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis
  publication-title: Cell
– volume: 138
  start-page: 5279
  year: 2011
  end-page: 5289
  ident: bib30
  article-title: Eph/ephrin interactions modulate muscle satellite cell motility and patterning
  publication-title: Development
– volume: 29
  start-page: 5800
  year: 2009
  end-page: 5812
  ident: bib18
  article-title: Regulation of myoblast differentiation by the nuclear envelope protein NET39
  publication-title: Mol. Cell. Biol.
– volume: 21
  start-page: 1603
  year: 2011
  end-page: 1614
  ident: bib20
  article-title: An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity
  publication-title: Curr. Biol.
– volume: 154
  start-page: 914
  year: 2013
  end-page: 927
  ident: bib1
  article-title: Chromatin position effects assayed by thousands of reporters integrated in parallel
  publication-title: Cell
– volume: 515
  start-page: 355
  year: 2014
  end-page: 364
  ident: bib41
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
– volume: 129
  start-page: 996
  year: 2006
  end-page: 1013
  ident: bib3
  article-title: Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration
  publication-title: Brain
– volume: 15
  start-page: 3027
  year: 1995
  end-page: 3038
  ident: bib23
  article-title: The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells
  publication-title: J. Neurosci.
– volume: 96
  start-page: 552
  year: 1999
  end-page: 557
  ident: bib19
  article-title: MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 105
  year: 2014
  end-page: 120
  ident: bib36
  article-title: NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation
  publication-title: Curr. Opin. Cell Biol.
– volume: 46
  start-page: 917
  year: 2012
  end-page: 925
  ident: bib9
  article-title: Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis
  publication-title: Muscle Nerve
– volume: 19
  start-page: 5083
  year: 1999
  end-page: 5095
  ident: bib15
  article-title: A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells
  publication-title: Mol. Cell. Biol.
– volume: 74
  start-page: 573
  year: 2006
  end-page: 582
  ident: bib22
  article-title: Differential expression of entactin-1/nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation
  publication-title: Differentiation
– volume: 22
  start-page: 446
  year: 2012
  end-page: 458
  ident: bib7
  article-title: A change in nuclear pore complex composition regulates cell differentiation
  publication-title: Dev. Cell
– volume: 448
  start-page: 78
  year: 2007
  end-page: 82
  ident: bib40
  article-title: TRIC channels are essential for Ca2+ handling in intracellular stores
  publication-title: Nature
– volume: 347
  start-page: 1260419
  year: 2015
  ident: bib33
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
– volume: 2
  start-page: 1467
  year: 2007
  end-page: 1478
  ident: bib34
  article-title: Detection of in vivo protein-DNA interactions using DamID in mammalian cells
  publication-title: Nat. Protoc.
– volume: 10
  year: 2011
  ident: bib35
  article-title: Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations
  publication-title: Mol. Cell. Proteomics
– volume: 14
  start-page: R14
  year: 2013
  ident: bib43
  article-title: Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery
  publication-title: Genome Biol.
– volume: 12
  start-page: 439
  year: 2002
  end-page: 445
  ident: bib6
  article-title: Chromatin motion is constrained by association with nuclear compartments in human cells
  publication-title: Curr. Biol.
– volume: 298
  start-page: C465
  year: 2010
  end-page: C476
  ident: bib39
  article-title: High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 2
  start-page: 339
  year: 2011
  end-page: 349
  ident: bib42
  article-title: The nuclear envelope as a chromatin organizer
  publication-title: Nucleus
– volume: 140
  start-page: 1265
  year: 1998
  end-page: 1276
  ident: bib13
  article-title: Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1
  publication-title: J. Cell Biol.
– volume: 17
  start-page: 269
  year: 2014
  end-page: 279
  ident: bib14
  article-title: Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits
  publication-title: Nat. Neurosci.
– volume: 108
  start-page: E149
  year: 2011
  end-page: E158
  ident: bib2
  article-title: Genome-wide remodeling of the epigenetic landscape during myogenic differentiation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 45
  year: 2004
  end-page: 53
  ident: bib5
  article-title: Upregulation of HARP during in vitro myogenesis and rat soleus muscle regeneration
  publication-title: J. Muscle Res. Cell Motil.
– volume: 288
  start-page: 17908
  year: 2013
  end-page: 17917
  ident: bib17
  article-title: Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: e1000039
  year: 2008
  ident: bib11
  article-title: Recruitment to the nuclear periphery can alter expression of genes in human cells
  publication-title: PLoS Genet.
– volume: 152
  start-page: 584
  year: 2013
  end-page: 598
  ident: bib29
  article-title: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation
  publication-title: Cell
– volume: 152
  start-page: 1270
  year: 2013
  end-page: 1284
  ident: bib4
  article-title: Genome architecture: domain organization of interphase chromosomes
  publication-title: Cell
– volume: 270
  start-page: 725
  year: 1977
  end-page: 727
  ident: bib38
  article-title: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle
  publication-title: Nature
– volume: 126
  start-page: 1621
  year: 1999
  end-page: 1629
  ident: bib10
  article-title: The role of SF/HGF and c-Met in the development of skeletal muscle
  publication-title: Development
– volume: 25
  start-page: 45
  year: 2004
  ident: 10.1016/j.molcel.2016.04.035_bib5
  article-title: Upregulation of HARP during in vitro myogenesis and rat soleus muscle regeneration
  publication-title: J. Muscle Res. Cell Motil.
  doi: 10.1023/B:JURE.0000021387.92378.2e
– volume: 3
  start-page: e3750
  year: 2008
  ident: 10.1016/j.molcel.2016.04.035_bib28
  article-title: Gene expression profiling in limb-girdle muscular dystrophy 2A
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003750
– volume: 46
  start-page: 917
  year: 2012
  ident: 10.1016/j.molcel.2016.04.035_bib9
  article-title: Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis
  publication-title: Muscle Nerve
  doi: 10.1002/mus.23481
– volume: 12
  start-page: 439
  year: 2002
  ident: 10.1016/j.molcel.2016.04.035_bib6
  article-title: Chromatin motion is constrained by association with nuclear compartments in human cells
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00695-4
– volume: 21
  start-page: 1603
  year: 2011
  ident: 10.1016/j.molcel.2016.04.035_bib20
  article-title: An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.08.030
– volume: 15
  start-page: 3027
  year: 1995
  ident: 10.1016/j.molcel.2016.04.035_bib23
  article-title: The role of heparin-binding growth-associated molecule (HB-GAM) in the postsynaptic induction in cultured muscle cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-04-03027.1995
– volume: 69
  start-page: 1107
  year: 1992
  ident: 10.1016/j.molcel.2016.04.035_bib27
  article-title: Roles for the integrin VLA-4 and its counter receptor VCAM-1 in myogenesis
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90633-N
– volume: 346
  start-page: 1238
  year: 2014
  ident: 10.1016/j.molcel.2016.04.035_bib32
  article-title: Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells
  publication-title: Science
  doi: 10.1126/science.1259587
– volume: 38
  start-page: 603
  year: 2010
  ident: 10.1016/j.molcel.2016.04.035_bib24
  article-title: Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.03.016
– volume: 140
  start-page: 1265
  year: 1998
  ident: 10.1016/j.molcel.2016.04.035_bib13
  article-title: Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.140.5.1265
– volume: 270
  start-page: 725
  year: 1977
  ident: 10.1016/j.molcel.2016.04.035_bib38
  article-title: Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle
  publication-title: Nature
  doi: 10.1038/270725a0
– volume: 108
  start-page: E149
  year: 2011
  ident: 10.1016/j.molcel.2016.04.035_bib2
  article-title: Genome-wide remodeling of the epigenetic landscape during myogenic differentiation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1102223108
– volume: 29
  start-page: 5800
  year: 2009
  ident: 10.1016/j.molcel.2016.04.035_bib18
  article-title: Regulation of myoblast differentiation by the nuclear envelope protein NET39
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00684-09
– volume: 347
  start-page: 1260419
  year: 2015
  ident: 10.1016/j.molcel.2016.04.035_bib33
  article-title: Proteomics. Tissue-based map of the human proteome
  publication-title: Science
  doi: 10.1126/science.1260419
– volume: 4
  start-page: e1000039
  year: 2008
  ident: 10.1016/j.molcel.2016.04.035_bib11
  article-title: Recruitment to the nuclear periphery can alter expression of genes in human cells
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000039
– volume: 288
  start-page: 17908
  year: 2013
  ident: 10.1016/j.molcel.2016.04.035_bib17
  article-title: Transmembrane protein 214 (TMEM214) mediates endoplasmic reticulum stress-induced caspase 4 enzyme activation and apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.458836
– volume: 22
  start-page: 446
  year: 2012
  ident: 10.1016/j.molcel.2016.04.035_bib7
  article-title: A change in nuclear pore complex composition regulates cell differentiation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.11.021
– volume: 16
  start-page: 245
  year: 2015
  ident: 10.1016/j.molcel.2016.04.035_bib25
  article-title: Three-dimensional genome architecture: players and mechanisms
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3965
– volume: 14
  start-page: R14
  year: 2013
  ident: 10.1016/j.molcel.2016.04.035_bib43
  article-title: Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-2-r14
– volume: 19
  start-page: 5083
  year: 1999
  ident: 10.1016/j.molcel.2016.04.035_bib15
  article-title: A novel growth- and cell cycle-regulated protein, ASK, activates human Cdc7-related kinase and is essential for G1/S transition in mammalian cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.7.5083
– volume: 28
  start-page: 105
  year: 2014
  ident: 10.1016/j.molcel.2016.04.035_bib36
  article-title: NET gains and losses: the role of changing nuclear envelope proteomes in genome regulation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2014.04.005
– volume: 10
  year: 2011
  ident: 10.1016/j.molcel.2016.04.035_bib35
  article-title: Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M110.003129
– volume: 2
  start-page: 1467
  year: 2007
  ident: 10.1016/j.molcel.2016.04.035_bib34
  article-title: Detection of in vivo protein-DNA interactions using DamID in mammalian cells
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.148
– volume: 280
  start-page: 39609
  year: 2005
  ident: 10.1016/j.molcel.2016.04.035_bib12
  article-title: WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507426200
– volume: 2
  start-page: 339
  year: 2011
  ident: 10.1016/j.molcel.2016.04.035_bib42
  article-title: The nuclear envelope as a chromatin organizer
  publication-title: Nucleus
  doi: 10.4161/nucl.2.5.17846
– volume: 26
  start-page: 5739
  year: 2006
  ident: 10.1016/j.molcel.2016.04.035_bib21
  article-title: BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5398-05.2006
– volume: 298
  start-page: C465
  year: 2010
  ident: 10.1016/j.molcel.2016.04.035_bib39
  article-title: High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00449.2009
– volume: 129
  start-page: 996
  year: 2006
  ident: 10.1016/j.molcel.2016.04.035_bib3
  article-title: Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration
  publication-title: Brain
  doi: 10.1093/brain/awl023
– volume: 17
  start-page: 269
  year: 2014
  ident: 10.1016/j.molcel.2016.04.035_bib14
  article-title: Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3614
– volume: 180
  start-page: 51
  year: 2008
  ident: 10.1016/j.molcel.2016.04.035_bib16
  article-title: A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200706060
– volume: 152
  start-page: 584
  year: 2013
  ident: 10.1016/j.molcel.2016.04.035_bib29
  article-title: LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.009
– volume: 10
  start-page: 477
  year: 2001
  ident: 10.1016/j.molcel.2016.04.035_bib31
  article-title: WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.5.477
– volume: 515
  start-page: 355
  year: 2014
  ident: 10.1016/j.molcel.2016.04.035_bib41
  article-title: A comparative encyclopedia of DNA elements in the mouse genome
  publication-title: Nature
  doi: 10.1038/nature13992
– volume: 17
  start-page: 788
  year: 2009
  ident: 10.1016/j.molcel.2016.04.035_bib8
  article-title: Cell cycle control of wnt receptor activation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.11.006
– volume: 448
  start-page: 78
  year: 2007
  ident: 10.1016/j.molcel.2016.04.035_bib40
  article-title: TRIC channels are essential for Ca2+ handling in intracellular stores
  publication-title: Nature
  doi: 10.1038/nature05928
– volume: 154
  start-page: 914
  year: 2013
  ident: 10.1016/j.molcel.2016.04.035_bib1
  article-title: Chromatin position effects assayed by thousands of reporters integrated in parallel
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.018
– volume: 14
  start-page: 591
  year: 2013
  ident: 10.1016/j.molcel.2016.04.035_bib37
  article-title: Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-591
– volume: 126
  start-page: 1621
  year: 1999
  ident: 10.1016/j.molcel.2016.04.035_bib10
  article-title: The role of SF/HGF and c-Met in the development of skeletal muscle
  publication-title: Development
  doi: 10.1242/dev.126.8.1621
– volume: 74
  start-page: 573
  year: 2006
  ident: 10.1016/j.molcel.2016.04.035_bib22
  article-title: Differential expression of entactin-1/nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.2006.00100.x
– volume: 96
  start-page: 552
  year: 1999
  ident: 10.1016/j.molcel.2016.04.035_bib19
  article-title: MyoR: a muscle-restricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.2.552
– volume: 152
  start-page: 1270
  year: 2013
  ident: 10.1016/j.molcel.2016.04.035_bib4
  article-title: Genome architecture: domain organization of interphase chromosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.001
– volume: 138
  start-page: 5279
  year: 2011
  ident: 10.1016/j.molcel.2016.04.035_bib30
  article-title: Eph/ephrin interactions modulate muscle satellite cell motility and patterning
  publication-title: Development
  doi: 10.1242/dev.068411
– volume: 149
  start-page: 1474
  year: 2012
  ident: 10.1016/j.molcel.2016.04.035_bib44
  article-title: DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.035
– volume: 452
  start-page: 243
  year: 2008
  ident: 10.1016/j.molcel.2016.04.035_bib26
  article-title: Transcriptional repression mediated by repositioning of genes to the nuclear lamina
  publication-title: Nature
  doi: 10.1038/nature06727
SSID ssj0014589
Score 2.5507445
Snippet Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 834
SubjectTerms Animals
Cell Differentiation
Cell Line
cell nucleolus
Chromosome Positioning
Down-Regulation
gene expression regulation
Gene Expression Regulation, Developmental
genes
Humans
Ion Channels - genetics
Ion Channels - metabolism
Kinetics
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
muscle development
Muscle Development - genetics
Muscle Fibers, Skeletal - metabolism
muscles
Myoblasts, Skeletal - metabolism
myotubes
Nuclear Envelope - metabolism
nuclear membrane
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
RNA Interference
transcriptomics
Transfection
transmembrane proteins
Title Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis
URI https://dx.doi.org/10.1016/j.molcel.2016.04.035
https://www.ncbi.nlm.nih.gov/pubmed/27264872
https://www.proquest.com/docview/1797868979
https://www.proquest.com/docview/1811909828
https://www.proquest.com/docview/1825427840
https://pubmed.ncbi.nlm.nih.gov/PMC4914829
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpdBL6bvbR1ChV7O29bKOaUgIDRtKm9C9CUkrNy6JHeLdw_6H_ujOSPaSbUsCPWo9Ym3NaDRivvmGkI9B2RxOkSLTCm46PGieaYvIHNhXJfJXhVj1PjuVx-f881zMd8jBWAuDsMrB9yefHr318Mt0WM3pddNMv2HutFRSQESBvHlz8MOMV7GIb_5pk0ngIrbBQ-EMpcfyuYjxuuoufcAERCEj4Wls-vbP4-nv8PNPFOWtY-noCXk8xJN0P73yU7IT2mfkYeowuX5Ofp3Fhc1im_m68RRppilG3QmrBQcXdWs6W_Uwm54iubG9obNwBZdoEPyCLA5N29PD9gLNo8epCTnb0q6mY6MEegt7BCP8k56mCkg6W3c_cNz0L8j50eHZwXE2NGDIvNBimdlQuMJZqypuHS-9ZB7iyYWTrAxiITULVV0svICHTDmI1UrlmBW-FsEXQTL2kuy2XRteE2pzjUKlz2skBSgrh9yQ2i1s7RXYxYSwcd2NH9jJsUnGpRlhaD9N0pZBbZmcG9DWhGSbWdeJneMeeTWq1GxZmYED5J6ZH0YLMLABMasCauhWvQGPpipZaaXvkKkKCLw03G7vkoG7OqaB8wl5lSxr802lQiCiKuH9t2xuI4Ak4dtP2uYikoVzjUyv-s1_f_lb8ghHCI8r5Duyu7xZhfcQiC3dHnmwf_L1-8le3HG_AU9dNpE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSmkvoe9unyr0ataWLck6piFh08ZLoRvYm5C0cuOS2CHePex_6I_ujGwv2TQk0KOtEbY0I82I-fQNIV-8NDF4kSRSEk46mVdZpAwic2BdMeSv8uHWezEVk9Ps25zPd8jBcBcGYZX93t_t6WG37t-M-9kcX1bV-CfmTpkUHCIK5M2bPyAPIRqQuDqP5183qYSMhzp4KB2h-HB_LoC8Lppz5zEDkYjAeBqqvt3qn_6NP2_CKK_5paOnZK8PKOl-98_PyI6vn5NHXYnJ9QvyZxZmNgp15svKUeSZphh2d2At8FzUrmmxaqE3nSK7sbmihb-AUzQI_kAah6pu6WF9hvbRYtcOOlvTpqRDpQR6DXwET_iRlnZXIGmxbn7hc9W-JKdHh7ODSdRXYIgcV3wZGZ_YxBoj88zYjDmROggoF1akzPOFUKnPy2ThODSm0kKwxqRNDXcl9y7xIk1fkd26qf0bQk2sUIi5uERWAJZbJIdUdmFKJ8EwRiQd5l27np4cq2Sc6wGH9lt32tKoLR1nGrQ1ItGm12VHz3GPvBxUqrfMTIMHuafn58ECNKxATKuAGppVq2FLk7nIlVR3yOQJRF4Kjrd3ycBhHfPA8Yi87ixrMyYmEYkoGfz_ls1tBJAlfLulrs4CW3imkOpVvf3vkX8ijyez4kSfHE-_vyNPsAWxcol4T3aXVyv_AaKypf0YVt1fG5A4Dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tissue-Specific+Gene+Repositioning+by+Muscle+Nuclear+Membrane+Proteins+Enhances+Repression+of+Critical+Developmental+Genes+during+Myogenesis&rft.jtitle=Molecular+cell&rft.au=Robson%2C+Michael%C2%A0I.&rft.au=de%C2%A0las%C2%A0Heras%2C+Jose%C2%A0I.&rft.au=Czapiewski%2C+Rafal&rft.au=L%C3%AA%C2%A0Th%C3%A0nh%2C+Ph%C3%BA&rft.date=2016-06-16&rft.issn=1097-2765&rft.volume=62&rft.issue=6&rft.spage=834&rft.epage=847&rft_id=info:doi/10.1016%2Fj.molcel.2016.04.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2016_04_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon