Translocation of Proteins through a Distorted Lipid Bilayer

Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a...

Full description

Saved in:
Bibliographic Details
Published inTrends in cell biology Vol. 31; no. 6; pp. 473 - 484
Main Authors Wu, Xudong, Rapoport, Tom A.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier. In all cells, proteins are translocated completely or partially across membranes. Translocases are generally required to overcome the energy barrier of a membrane.An entirely hydrophilic conduit is formed by the evolutionarily conserved SecY/Sec61 channel that is responsible for the secretion of proteins and the insertion of most membrane proteins.A growing number of translocase structures indicate that entirely hydrophilic channels are not always required. An example is the Hrd1 complex that mediates the retrotranslocation of misfolded proteins from the ER lumen into the cytosol. In this case, translocation occurs through luminal and cytosolic hydrophilic cavities and a locally thinned, distorted membrane region.In several other systems, translocation also occurs through a protein-induced distorted lipid bilayer, indicating a new paradigm for lowering the energy barrier.
AbstractList Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retro-translocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multi-spanning proteins with aqueous luminal and cytosolic cavities and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier. In all cells, proteins are translocated completely or partially across membranes. Translocases are generally required to overcome the energy barrier of a membrane.An entirely hydrophilic conduit is formed by the evolutionarily conserved SecY/Sec61 channel that is responsible for the secretion of proteins and the insertion of most membrane proteins.A growing number of translocase structures indicate that entirely hydrophilic channels are not always required. An example is the Hrd1 complex that mediates the retrotranslocation of misfolded proteins from the ER lumen into the cytosol. In this case, translocation occurs through luminal and cytosolic hydrophilic cavities and a locally thinned, distorted membrane region.In several other systems, translocation also occurs through a protein-induced distorted lipid bilayer, indicating a new paradigm for lowering the energy barrier.
Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
Author Wu, Xudong
Rapoport, Tom A.
AuthorAffiliation 1 Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
AuthorAffiliation_xml – name: 1 Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
Author_xml – sequence: 1
  givenname: Xudong
  surname: Wu
  fullname: Wu, Xudong
  organization: Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
– sequence: 2
  givenname: Tom A.
  surname: Rapoport
  fullname: Rapoport, Tom A.
  email: tom_rapoport@hms.harvard.edu
  organization: Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33531207$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYNU7Lb6AXyRAV98mfUmmclkKAha_8KCPtTnkGTudLPOJmuSKey3N3Vb0X2ocCEPOb_DufeckRMfPBLynMKSAhWvN8tszZIBo0soA-wRWVDZ9TUHKU_IAnrBatmz5pScpbQBgI5R_oScct5yyqBbkIurqH2agtXZBV-FsfoWQ0bnU5XXMczX60pX713KIWYcqpXbuaF65ya9x_iUPB71lPDZ3XtOvn_8cHX5uV59_fTl8u2qtm3f5lobNI1gHZq-bQYuGhAAWuhxENIYwaUVTPbjYEQnDOcwyL5Boe1oRSuMpvycvDn47mazxcGiz1FPahfdVse9Ctqpf3-8W6vrcKMkZQyaphi8ujOI4eeMKautSxanSXsMc1KskYI2QKks0pdH0k2Yoy_rKdZyIRn0nSiqF38n-hPl_q5F0B0ENoaUIo7Kuvz7xCWgmxQFddug2qjSoLptUEEZYIWkR-S9-UPMxYHB0sKNw6iSdegtDi6izWoI7kG6P6Lt5LyzevqB-_-wvwB8jsXs
CitedBy_id crossref_primary_10_1038_s41586_023_05856_5
crossref_primary_10_1038_s41586_023_06239_6
crossref_primary_10_26508_lsa_202201805
crossref_primary_10_1002_2211_5463_13905
crossref_primary_10_1016_j_jbc_2025_108395
crossref_primary_10_1091_mbc_E24_01_0012
crossref_primary_10_1038_s44318_024_00063_y
crossref_primary_10_1101_cshperspect_a041400
crossref_primary_10_1007_s00294_022_01227_1
crossref_primary_10_1126_sciadv_adc8917
crossref_primary_10_3389_fcell_2021_784367
crossref_primary_10_1096_fj_202302266R
crossref_primary_10_1107_S2059798322011652
crossref_primary_10_1016_j_jbc_2022_102373
crossref_primary_10_1073_pnas_2319476121
crossref_primary_10_1126_sciadv_add8579
crossref_primary_10_1016_j_abb_2022_109427
crossref_primary_10_1016_j_ejmech_2023_115447
crossref_primary_10_3390_cells10112965
crossref_primary_10_1016_j_str_2024_01_012
crossref_primary_10_1126_sciadv_abq8303
crossref_primary_10_1038_s41594_024_01296_5
crossref_primary_10_3389_fphys_2022_933153
crossref_primary_10_1038_s41467_023_42867_2
crossref_primary_10_1038_s41586_023_06477_8
crossref_primary_10_1016_j_chembiol_2022_10_003
crossref_primary_10_1016_j_jbc_2022_101690
crossref_primary_10_1016_j_molcel_2022_07_006
crossref_primary_10_1101_cshperspect_a041251
crossref_primary_10_1101_cshperspect_a041252
crossref_primary_10_1146_annurev_biochem_032620_104553
crossref_primary_10_1128_mbio_03319_24
crossref_primary_10_1128_jb_00249_24
crossref_primary_10_1021_acs_langmuir_3c01913
crossref_primary_10_1016_j_jbc_2022_102107
crossref_primary_10_1016_j_jhazmat_2024_135007
crossref_primary_10_1038_s41580_021_00413_2
crossref_primary_10_3390_ijms22084082
crossref_primary_10_1016_j_cell_2022_10_030
crossref_primary_10_1016_j_molcel_2022_09_035
crossref_primary_10_1242_jcs_261219
crossref_primary_10_1016_j_bpj_2024_04_009
crossref_primary_10_1016_j_tibs_2023_08_004
crossref_primary_10_1016_j_str_2024_03_014
crossref_primary_10_1016_j_tcb_2023_08_005
crossref_primary_10_1146_annurev_biochem_030122_040444
crossref_primary_10_3390_ijms23094627
Cites_doi 10.1126/science.1080945
10.1111/j.1432-1033.1979.tb13100.x
10.1126/science.aad4992
10.1016/j.str.2013.03.004
10.1146/annurev-micro-090816-093754
10.1073/pnas.0503558102
10.1038/nature02218
10.1038/nrm3226
10.1016/j.cell.2006.05.043
10.15252/embj.2018101140
10.1038/nature14096
10.1126/science.aao0076
10.1126/science.aao3099
10.1007/s11120-018-0540-x
10.3390/v8090242
10.7554/eLife.43229
10.1038/nsmb.2111
10.1126/science.abb5008
10.7554/eLife.57887
10.1038/s41467-019-10918-2
10.1016/j.molcel.2009.10.015
10.1016/j.cell.2018.10.009
10.1002/yea.1407
10.1073/pnas.1722530115
10.1016/0092-8674(81)90136-7
10.1016/j.cell.2014.05.024
10.1038/nrmicro2814
10.1007/s10858-018-0201-6
10.1038/nrmicro.2015.3
10.1146/annurev.bi.48.070179.000323
10.1016/j.ceb.2020.04.010
10.1128/JVI.00791-06
10.1016/0962-8924(93)90066-A
10.1038/nrm4073
10.1146/annurev-biochem-060815-014352
10.1016/j.celrep.2019.07.052
10.1515/hsz-2012-0199
10.7554/eLife.44364
10.1126/science.1255638
10.1016/0968-0004(90)90186-F
10.1016/j.molcel.2017.12.012
10.1007/s00018-009-0029-z
10.1038/s41467-020-17144-1
10.1038/nature17163
10.1038/nature11683
10.1016/j.ceb.2018.04.004
10.1073/pnas.1219486110
10.7554/eLife.62611
10.1007/s10930-019-09835-6
10.1083/jcb.201408088
10.1038/nature13167
10.1038/s41586-020-2389-3
10.1083/jcb.200608101
10.1038/s41586-020-2370-1
10.1016/S0092-8674(00)80767-9
10.1083/jcb.67.3.835
10.1146/annurev-cellbio-100616-060439
10.1126/science.aaz2449
10.1529/biophysj.107.109967
10.1038/ncb2882
10.1016/j.isci.2020.101493
10.1007/s13238-020-00712-y
10.3109/10409239309086795
10.1038/s42003-020-01419-w
10.7554/eLife.56945
10.1126/science.aad3460
10.1016/j.cell.2010.10.028
10.1016/j.cell.2014.03.063
10.7554/eLife.37018
10.1002/j.1460-2075.1994.tb06713.x
10.1126/science.aah6834
10.1016/j.str.2017.07.008
10.1016/j.bbamcr.2013.12.022
10.1016/j.molcel.2020.08.012
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Jun 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Jun 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1016/j.tcb.2021.01.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-3088
EndPage 484
ExternalDocumentID PMC8122044
33531207
10_1016_j_tcb_2021_01_002
S0962892421000064
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM052586
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
186
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
ADVLN
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IH2
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XPP
Y6R
YNT
Z5R
~G-
AACTN
AAIAV
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
RCE
RIG
VQA
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c595t-abeb4627eb954d3640600a6afd68bb638c6289fdb676b330d894e6acfc656ba13
IEDL.DBID .~1
ISSN 0962-8924
1879-3088
IngestDate Thu Aug 21 13:55:43 EDT 2025
Fri Jul 11 07:56:24 EDT 2025
Wed Aug 13 04:38:49 EDT 2025
Mon Jul 21 06:00:25 EDT 2025
Thu Apr 24 22:53:58 EDT 2025
Tue Jul 01 01:53:44 EDT 2025
Fri Feb 23 02:46:00 EST 2024
Tue Aug 26 16:33:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords lipid bilayer
membrane distortion
structure
endoplasmic reticulum
protein translocation
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-abeb4627eb954d3640600a6afd68bb638c6289fdb676b330d894e6acfc656ba13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8122044
PMID 33531207
PQID 2536820976
PQPubID 2045389
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122044
proquest_miscellaneous_2486140118
proquest_journals_2536820976
pubmed_primary_33531207
crossref_citationtrail_10_1016_j_tcb_2021_01_002
crossref_primary_10_1016_j_tcb_2021_01_002
elsevier_sciencedirect_doi_10_1016_j_tcb_2021_01_002
elsevier_clinicalkey_doi_10_1016_j_tcb_2021_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Trends in cell biology
PublicationTitleAlternate Trends Cell Biol
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tomasek (bb0325) 2020; 583
Palmer, Berks (bb0010) 2012; 10
Diederichs (bb0330) 2020; 11
Kumazaki (bb0215) 2014; 509
Kuan, Saier (bb0285) 1993; 28
Wu, Rapoport (bb0115) 2018; 53
Khmelinskii (bb0175) 2014; 516
Konovalova (bb0015) 2017; 71
Bauer (bb0065) 2014; 157
McDowell (bb0235) 2020; 80
Guna (bb0110) 2018; 359
He (bb0345) 2020; 11
Voorhees (bb0045) 2014; 157
Horn (bb0155) 2009; 36
Carvalho (bb0150) 2006; 126
Neal (bb0190) 2020; 23
Wu (bb0080) 2020; 368
Kutay (bb0230) 1993; 3
Engelman, Steitz (bb0375) 1981; 23
Xu, Ng (bb0120) 2015; 16
Bai (bb0245) 2020; 584
Mehnert (bb0140) 2014; 16
Höhr (bb0320) 2018; 359
Lundquist (bb0335) 2018; 115
Habeck (bb0160) 2015; 209
Dupzyk, Tsai (bb0205) 2016; 8
Wiedemann, Pfanner (bb0020) 2017; 86
Dal Peraro, van der Goot (bb0095) 2016; 14
Zhang (bb0275) 2020
Reshetnyak (bb0085) 2007; 93
Kniss (bb0125) 2018; 72
Chen (bb0225) 2017; 25
Walther (bb0310) 2009; 66
Day, Theg (bb0025) 2018; 138
Berg (bb0040) 2004; 427
Greenblatt (bb0130) 2011; 18
Schmidt (bb0165) 2020; 9
Hegde, Keenan (bb0105) 2011; 12
Rollauer (bb0300) 2012; 492
Saller (bb0100) 2012; 393
Wickner (bb0380) 1979; 48
Catipovic (bb0070) 2019; 38
Qi (bb0280) 2020
Foresti (bb0170) 2014; 346
Miller-Vedam (bb0255) 2020; 9
Ma (bb0055) 2019; 10
Voorhees, Hegde (bb0060) 2016; 351
Bakelar (bb0315) 2016; 351
Kreutzberger (bb0135) 2019; 363
Neal (bb0180) 2018; 69
Lilley (bb0210) 2006; 80
Falzone (bb0350) 2019; 8
Sato, Hampton (bb0195) 2006; 23
O'Donnell (bb0250) 2020; 9
Dalbey (bb0220) 2014; 1843
Pleiner (bb0240) 2020; 369
Rodriguez (bb0295) 2013; 110
Fonseca, Carvalho (bb0185) 2020
Feng (bb0360) 2019; 28
Muesch (bb0035) 1990; 15
van den Boomen (bb0200) 2020; 65
Ramasamy (bb0305) 2013; 21
Chitwood (bb0260) 2018; 175
Kalienkova (bb0355) 2019; 8
Li (bb0050) 2016; 531
Mothes (bb0385) 1994; 13
Rapoport (bb0005) 2017; 33
von Heijne, Blomberg (bb0370) 1979; 97
Iadanza (bb0340) 2020; 3
Gohlke (bb0290) 2005; 102
Blobel, Dobberstein (bb0365) 1975; 67
Walter, Erdmann (bb0030) 2019; 38
Brambillasca (bb0090) 2006; 175
Carvalho (bb0145) 2010; 143
Rehling (bb0270) 2003; 299
Shurtleff (bb0265) 2018; 7
Matlack (bb0075) 1999; 97
Feng (10.1016/j.tcb.2021.01.002_bb0360) 2019; 28
Wiedemann (10.1016/j.tcb.2021.01.002_bb0020) 2017; 86
Horn (10.1016/j.tcb.2021.01.002_bb0155) 2009; 36
McDowell (10.1016/j.tcb.2021.01.002_bb0235) 2020; 80
Wu (10.1016/j.tcb.2021.01.002_bb0115) 2018; 53
van den Boomen (10.1016/j.tcb.2021.01.002_bb0200) 2020; 65
Muesch (10.1016/j.tcb.2021.01.002_bb0035) 1990; 15
Mothes (10.1016/j.tcb.2021.01.002_bb0385) 1994; 13
Kalienkova (10.1016/j.tcb.2021.01.002_bb0355) 2019; 8
Mehnert (10.1016/j.tcb.2021.01.002_bb0140) 2014; 16
Kuan (10.1016/j.tcb.2021.01.002_bb0285) 1993; 28
Walther (10.1016/j.tcb.2021.01.002_bb0310) 2009; 66
Tomasek (10.1016/j.tcb.2021.01.002_bb0325) 2020; 583
Carvalho (10.1016/j.tcb.2021.01.002_bb0150) 2006; 126
Saller (10.1016/j.tcb.2021.01.002_bb0100) 2012; 393
Höhr (10.1016/j.tcb.2021.01.002_bb0320) 2018; 359
Carvalho (10.1016/j.tcb.2021.01.002_bb0145) 2010; 143
Zhang (10.1016/j.tcb.2021.01.002_bb0275) 2020
Falzone (10.1016/j.tcb.2021.01.002_bb0350) 2019; 8
Fonseca (10.1016/j.tcb.2021.01.002_bb0185) 2020
Ma (10.1016/j.tcb.2021.01.002_bb0055) 2019; 10
Brambillasca (10.1016/j.tcb.2021.01.002_bb0090) 2006; 175
Khmelinskii (10.1016/j.tcb.2021.01.002_bb0175) 2014; 516
Habeck (10.1016/j.tcb.2021.01.002_bb0160) 2015; 209
Li (10.1016/j.tcb.2021.01.002_bb0050) 2016; 531
Neal (10.1016/j.tcb.2021.01.002_bb0190) 2020; 23
Dal Peraro (10.1016/j.tcb.2021.01.002_bb0095) 2016; 14
Pleiner (10.1016/j.tcb.2021.01.002_bb0240) 2020; 369
Greenblatt (10.1016/j.tcb.2021.01.002_bb0130) 2011; 18
Dupzyk (10.1016/j.tcb.2021.01.002_bb0205) 2016; 8
Lilley (10.1016/j.tcb.2021.01.002_bb0210) 2006; 80
Miller-Vedam (10.1016/j.tcb.2021.01.002_bb0255) 2020; 9
Sato (10.1016/j.tcb.2021.01.002_bb0195) 2006; 23
Qi (10.1016/j.tcb.2021.01.002_bb0280) 2020
Rehling (10.1016/j.tcb.2021.01.002_bb0270) 2003; 299
Engelman (10.1016/j.tcb.2021.01.002_bb0375) 1981; 23
Konovalova (10.1016/j.tcb.2021.01.002_bb0015) 2017; 71
O'Donnell (10.1016/j.tcb.2021.01.002_bb0250) 2020; 9
Guna (10.1016/j.tcb.2021.01.002_bb0110) 2018; 359
Gohlke (10.1016/j.tcb.2021.01.002_bb0290) 2005; 102
Dalbey (10.1016/j.tcb.2021.01.002_bb0220) 2014; 1843
Chen (10.1016/j.tcb.2021.01.002_bb0225) 2017; 25
Kutay (10.1016/j.tcb.2021.01.002_bb0230) 1993; 3
Kumazaki (10.1016/j.tcb.2021.01.002_bb0215) 2014; 509
Palmer (10.1016/j.tcb.2021.01.002_bb0010) 2012; 10
Bakelar (10.1016/j.tcb.2021.01.002_bb0315) 2016; 351
Blobel (10.1016/j.tcb.2021.01.002_bb0365) 1975; 67
Ramasamy (10.1016/j.tcb.2021.01.002_bb0305) 2013; 21
Bauer (10.1016/j.tcb.2021.01.002_bb0065) 2014; 157
Lundquist (10.1016/j.tcb.2021.01.002_bb0335) 2018; 115
Voorhees (10.1016/j.tcb.2021.01.002_bb0045) 2014; 157
Diederichs (10.1016/j.tcb.2021.01.002_bb0330) 2020; 11
Schmidt (10.1016/j.tcb.2021.01.002_bb0165) 2020; 9
Rapoport (10.1016/j.tcb.2021.01.002_bb0005) 2017; 33
Kniss (10.1016/j.tcb.2021.01.002_bb0125) 2018; 72
Berg (10.1016/j.tcb.2021.01.002_bb0040) 2004; 427
Xu (10.1016/j.tcb.2021.01.002_bb0120) 2015; 16
Hegde (10.1016/j.tcb.2021.01.002_bb0105) 2011; 12
Chitwood (10.1016/j.tcb.2021.01.002_bb0260) 2018; 175
Catipovic (10.1016/j.tcb.2021.01.002_bb0070) 2019; 38
Rollauer (10.1016/j.tcb.2021.01.002_bb0300) 2012; 492
Iadanza (10.1016/j.tcb.2021.01.002_bb0340) 2020; 3
Matlack (10.1016/j.tcb.2021.01.002_bb0075) 1999; 97
Walter (10.1016/j.tcb.2021.01.002_bb0030) 2019; 38
Kreutzberger (10.1016/j.tcb.2021.01.002_bb0135) 2019; 363
Voorhees (10.1016/j.tcb.2021.01.002_bb0060) 2016; 351
Foresti (10.1016/j.tcb.2021.01.002_bb0170) 2014; 346
Neal (10.1016/j.tcb.2021.01.002_bb0180) 2018; 69
Wickner (10.1016/j.tcb.2021.01.002_bb0380) 1979; 48
Reshetnyak (10.1016/j.tcb.2021.01.002_bb0085) 2007; 93
Bai (10.1016/j.tcb.2021.01.002_bb0245) 2020; 584
Shurtleff (10.1016/j.tcb.2021.01.002_bb0265) 2018; 7
Day (10.1016/j.tcb.2021.01.002_bb0025) 2018; 138
von Heijne (10.1016/j.tcb.2021.01.002_bb0370) 1979; 97
Wu (10.1016/j.tcb.2021.01.002_bb0080) 2020; 368
Rodriguez (10.1016/j.tcb.2021.01.002_bb0295) 2013; 110
He (10.1016/j.tcb.2021.01.002_bb0345) 2020; 11
References_xml – volume: 21
  start-page: 777
  year: 2013
  end-page: 788
  ident: bb0305
  article-title: The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation
  publication-title: Structure
– volume: 48
  start-page: 23
  year: 1979
  end-page: 45
  ident: bb0380
  article-title: The assembly of proteins into biological membranes: the membrane trigger hypothesis
  publication-title: Annu. Rev. Biochem.
– volume: 359
  start-page: 470
  year: 2018
  end-page: 473
  ident: bb0110
  article-title: The ER membrane protein complex is a transmembrane domain insertase
  publication-title: Science
– volume: 492
  start-page: 210
  year: 2012
  end-page: 214
  ident: bb0300
  article-title: Structure of the TatC core of the twin-arginine protein transport system
  publication-title: Nature
– volume: 9
  year: 2020
  ident: bb0255
  article-title: Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients
  publication-title: eLife
– volume: 584
  start-page: 475
  year: 2020
  end-page: 478
  ident: bb0245
  article-title: Structure of the ER membrane complex, a transmembrane-domain insertase
  publication-title: Nature
– volume: 369
  start-page: 433
  year: 2020
  end-page: 436
  ident: bb0240
  article-title: Structural basis for membrane insertion by the human ER membrane protein complex
  publication-title: Science
– volume: 53
  start-page: 22
  year: 2018
  end-page: 28
  ident: bb0115
  article-title: Mechanistic insights into ER-associated protein degradation
  publication-title: Curr. Opin. Cell Biol.
– volume: 368
  year: 2020
  ident: bb0080
  article-title: Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex
  publication-title: Science
– volume: 115
  start-page: E7942
  year: 2018
  end-page: E7949
  ident: bb0335
  article-title: C-terminal kink formation is required for lateral gating in BamA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 157
  start-page: 1632
  year: 2014
  end-page: 1643
  ident: bb0045
  article-title: Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution
  publication-title: Cell
– volume: 15
  start-page: 86
  year: 1990
  end-page: 88
  ident: bb0035
  article-title: A novel pathway for secretory proteins?
  publication-title: Trends Biochem. Sci.
– volume: 23
  start-page: 1053
  year: 2006
  end-page: 1064
  ident: bb0195
  article-title: Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis
  publication-title: Yeast
– volume: 583
  start-page: 473
  year: 2020
  end-page: 478
  ident: bb0325
  article-title: Structure of a nascent membrane protein as it folds on the BAM complex
  publication-title: Nature
– volume: 10
  start-page: 483
  year: 2012
  end-page: 496
  ident: bb0010
  article-title: The twin-arginine translocation (Tat) protein export pathway
  publication-title: Nat. Rev. Microbiol.
– volume: 175
  start-page: 1507
  year: 2018
  end-page: 1519
  ident: bb0260
  article-title: EMC is required to initiate accurate membrane protein topogenesis
  publication-title: Cell
– volume: 23
  start-page: 411
  year: 1981
  end-page: 422
  ident: bb0375
  article-title: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis
  publication-title: Cell
– year: 2020
  ident: bb0275
  article-title: Structure of the mitochondrial TIM22 complex from yeast
  publication-title: Cell Res.
– volume: 351
  start-page: 88
  year: 2016
  end-page: 91
  ident: bb0060
  article-title: Structure of the Sec61 channel opened by a signal sequence
  publication-title: Science
– volume: 175
  start-page: 767
  year: 2006
  end-page: 777
  ident: bb0090
  article-title: Unassisted translocation of large polypeptide domains across phospholipid bilayers
  publication-title: J. Cell Biol.
– volume: 393
  start-page: 1279
  year: 2012
  end-page: 1290
  ident: bb0100
  article-title: The YidC/Oxa1/Alb3 protein family: common principles and distinct features
  publication-title: Biol. Chem.
– volume: 72
  start-page: 1
  year: 2018
  end-page: 10
  ident: bb0125
  article-title: Structural investigation of glycan recognition by the ERAD quality control lectin Yos9
  publication-title: J. Biomol. NMR
– volume: 509
  start-page: 516
  year: 2014
  end-page: 520
  ident: bb0215
  article-title: Structural basis of Sec-independent membrane protein insertion by YidC
  publication-title: Nature
– volume: 427
  start-page: 36
  year: 2004
  end-page: 44
  ident: bb0040
  article-title: X-ray structure of a protein-conducting channel
  publication-title: Nature
– volume: 65
  start-page: 103
  year: 2020
  end-page: 111
  ident: bb0200
  article-title: Ubiquitin-mediated regulation of sterol homeostasis
  publication-title: Curr. Opin. Cell Biol.
– volume: 67
  start-page: 835
  year: 1975
  end-page: 851
  ident: bb0365
  article-title: Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma
  publication-title: J. Cell Biol.
– volume: 86
  start-page: 685
  year: 2017
  end-page: 714
  ident: bb0020
  article-title: Mitochondrial machineries for protein import and assembly
  publication-title: Annu. Rev. Biochem.
– volume: 346
  start-page: 751
  year: 2014
  end-page: 755
  ident: bb0170
  article-title: Quality control of inner nuclear membrane proteins by the Asi complex
  publication-title: Science
– volume: 80
  start-page: 72
  year: 2020
  end-page: 86
  ident: bb0235
  article-title: Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex
  publication-title: Mol. cell
– volume: 18
  start-page: 1147
  year: 2011
  end-page: 1152
  ident: bb0130
  article-title: Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum
  publication-title: Nat. Struct. Mol. Biol.
– volume: 9
  year: 2020
  ident: bb0165
  article-title: Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation
  publication-title: eLife
– volume: 66
  start-page: 2789
  year: 2009
  end-page: 2804
  ident: bb0310
  article-title: Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence
  publication-title: Cell. Mol. Life Sci.
– volume: 11
  start-page: 3290
  year: 2020
  ident: bb0330
  article-title: Structural insight into mitochondrial β-barrel outer membrane protein biogenesis
  publication-title: Nat. Commun.
– volume: 12
  start-page: 787
  year: 2011
  end-page: 798
  ident: bb0105
  article-title: Tail-anchored membrane protein insertion into the endoplasmic reticulum
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 36
  start-page: 782
  year: 2009
  end-page: 793
  ident: bb0155
  article-title: Usa1 functions as a scaffold of the HRD-ubiquitin ligase
  publication-title: Mol. Cell
– volume: 28
  start-page: 1385
  year: 2019
  ident: bb0360
  article-title: Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling
  publication-title: Cell Rep.
– volume: 531
  start-page: 395
  year: 2016
  end-page: 399
  ident: bb0050
  article-title: Crystal structure of a substrate-engaged SecY protein-translocation channel
  publication-title: Nature
– volume: 7
  year: 2018
  ident: bb0265
  article-title: The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins
  publication-title: eLife
– volume: 16
  start-page: 742
  year: 2015
  end-page: 752
  ident: bb0120
  article-title: Glycosylation-directed quality control of protein folding
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 3
  start-page: 766
  year: 2020
  ident: bb0340
  article-title: Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs
  publication-title: Commun. Biol.
– volume: 71
  start-page: 539
  year: 2017
  end-page: 556
  ident: bb0015
  article-title: Outer membrane biogenesis
  publication-title: Annu. Rev. Microbiol.
– volume: 80
  start-page: 8739
  year: 2006
  end-page: 8744
  ident: bb0210
  article-title: Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection
  publication-title: J. Virol.
– volume: 359
  year: 2018
  ident: bb0320
  article-title: Membrane protein insertion through a mitochondrial β-barrel gate
  publication-title: Science
– volume: 143
  start-page: 579
  year: 2010
  end-page: 591
  ident: bb0145
  article-title: Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p
  publication-title: Cell
– volume: 33
  start-page: 369
  year: 2017
  end-page: 390
  ident: bb0005
  article-title: Structural and mechanistic insights into protein translocation
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 97
  start-page: 175
  year: 1979
  end-page: 181
  ident: bb0370
  article-title: Trans-membrane translocation of proteins. The direct transfer model
  publication-title: Eur. J. Biochem.
– volume: 126
  start-page: 361
  year: 2006
  end-page: 373
  ident: bb0150
  article-title: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins
  publication-title: Cell
– volume: 9
  year: 2020
  ident: bb0250
  article-title: The architecture of EMC reveals a path for membrane protein insertion
  publication-title: eLife
– volume: 14
  start-page: 77
  year: 2016
  end-page: 92
  ident: bb0095
  article-title: Pore-forming toxins: ancient, but never really out of fashion
  publication-title: Nat. Rev. Microbiol.
– volume: 28
  start-page: 209
  year: 1993
  end-page: 233
  ident: bb0285
  article-title: The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 516
  start-page: 410
  year: 2014
  end-page: 413
  ident: bb0175
  article-title: Protein quality control at the inner nuclear membrane
  publication-title: Nature
– volume: 25
  start-page: 1403
  year: 2017
  end-page: 1414
  ident: bb0225
  article-title: YidC insertase of
  publication-title: Structure
– volume: 1843
  start-page: 1489
  year: 2014
  end-page: 1496
  ident: bb0220
  article-title: The membrane insertase YidC
  publication-title: Biochim. Biophys. Acta
– volume: 69
  start-page: 306
  year: 2018
  end-page: 320
  ident: bb0180
  article-title: The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins
  publication-title: Mol. Cell
– volume: 157
  start-page: 1416
  year: 2014
  end-page: 1429
  ident: bb0065
  article-title: A ‘push and slide’ mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase
  publication-title: Cell
– volume: 23
  year: 2020
  ident: bb0190
  article-title: HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation
  publication-title: iScience
– volume: 10
  start-page: 2872
  year: 2019
  ident: bb0055
  article-title: Structure of the substrate-engaged SecA-SecY protein translocation machine
  publication-title: Nat. Commun.
– volume: 351
  start-page: 180
  year: 2016
  end-page: 186
  ident: bb0315
  article-title: The structure of the β-barrel assembly machinery complex
  publication-title: Science
– volume: 102
  start-page: 10482
  year: 2005
  end-page: 10486
  ident: bb0290
  article-title: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 299
  start-page: 1747
  year: 2003
  end-page: 1751
  ident: bb0270
  article-title: Protein insertion into the mitochondrial inner membrane by a twin-pore translocase
  publication-title: Science
– volume: 11
  start-page: 458
  year: 2020
  end-page: 463
  ident: bb0345
  article-title: Structures of a P4-ATPase lipid flippase in lipid bilayers
  publication-title: Protein Cell
– volume: 8
  year: 2019
  ident: bb0350
  article-title: Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase
  publication-title: eLife
– volume: 8
  start-page: 242
  year: 2016
  ident: bb0205
  article-title: How polyomaviruses exploit the ERAD machinery to cause infection
  publication-title: Viruses
– volume: 209
  start-page: 261
  year: 2015
  end-page: 273
  ident: bb0160
  article-title: The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron
  publication-title: J. Cell Biol.
– volume: 38
  year: 2019
  ident: bb0070
  article-title: Protein translocation by the SecA ATPase occurs by a power-stroke mechanism
  publication-title: EMBO J.
– volume: 16
  start-page: 77
  year: 2014
  end-page: 86
  ident: bb0140
  article-title: Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane
  publication-title: Nat. Cell Biol.
– volume: 13
  start-page: 3937
  year: 1994
  end-page: 3982
  ident: bb0385
  article-title: Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
  publication-title: EMBO J.
– year: 2020
  ident: bb0280
  article-title: Cryo-EM structure of the human mitochondrial translocase TIM22 complex
  publication-title: Cell Res.
– volume: 93
  start-page: 2363
  year: 2007
  end-page: 2372
  ident: bb0085
  article-title: A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers
  publication-title: Biophys. J.
– volume: 97
  start-page: 553
  year: 1999
  end-page: 564
  ident: bb0075
  article-title: BiP acts as a molecular ratchet during post-translational transport of prepro-alpha factor across the ER membrane
  publication-title: Cell
– volume: 110
  start-page: E1092
  year: 2013
  end-page: E1101
  ident: bb0295
  article-title: Structural model for the protein-translocating element of the twin-arginine transport system
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 363
  year: 2019
  ident: bb0135
  article-title: Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion
  publication-title: Science
– volume: 138
  start-page: 315
  year: 2018
  end-page: 326
  ident: bb0025
  article-title: Evolution of protein transport to the chloroplast envelope membranes
  publication-title: Photosynth. Res.
– volume: 38
  start-page: 351
  year: 2019
  end-page: 362
  ident: bb0030
  article-title: Current advances in protein import into peroxisomes
  publication-title: Protein J.
– volume: 8
  year: 2019
  ident: bb0355
  article-title: Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM
  publication-title: eLife
– volume: 3
  start-page: 72
  year: 1993
  end-page: 75
  ident: bb0230
  article-title: A class of membrane proteins with a C-terminal anchor
  publication-title: Trends Cell Biol.
– year: 2020
  ident: bb0185
  article-title: The Derlin Dfm1 promotes retrotranslocation of folded protein domains from the endoplasmic reticulum
  publication-title: bioRxiv
– volume: 299
  start-page: 1747
  year: 2003
  ident: 10.1016/j.tcb.2021.01.002_bb0270
  article-title: Protein insertion into the mitochondrial inner membrane by a twin-pore translocase
  publication-title: Science
  doi: 10.1126/science.1080945
– volume: 97
  start-page: 175
  year: 1979
  ident: 10.1016/j.tcb.2021.01.002_bb0370
  article-title: Trans-membrane translocation of proteins. The direct transfer model
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1979.tb13100.x
– volume: 351
  start-page: 88
  year: 2016
  ident: 10.1016/j.tcb.2021.01.002_bb0060
  article-title: Structure of the Sec61 channel opened by a signal sequence
  publication-title: Science
  doi: 10.1126/science.aad4992
– volume: 21
  start-page: 777
  year: 2013
  ident: 10.1016/j.tcb.2021.01.002_bb0305
  article-title: The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation
  publication-title: Structure
  doi: 10.1016/j.str.2013.03.004
– volume: 71
  start-page: 539
  year: 2017
  ident: 10.1016/j.tcb.2021.01.002_bb0015
  article-title: Outer membrane biogenesis
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090816-093754
– volume: 102
  start-page: 10482
  year: 2005
  ident: 10.1016/j.tcb.2021.01.002_bb0290
  article-title: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0503558102
– volume: 427
  start-page: 36
  year: 2004
  ident: 10.1016/j.tcb.2021.01.002_bb0040
  article-title: X-ray structure of a protein-conducting channel
  publication-title: Nature
  doi: 10.1038/nature02218
– volume: 12
  start-page: 787
  year: 2011
  ident: 10.1016/j.tcb.2021.01.002_bb0105
  article-title: Tail-anchored membrane protein insertion into the endoplasmic reticulum
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3226
– volume: 126
  start-page: 361
  year: 2006
  ident: 10.1016/j.tcb.2021.01.002_bb0150
  article-title: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2006.05.043
– volume: 38
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0070
  article-title: Protein translocation by the SecA ATPase occurs by a power-stroke mechanism
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101140
– volume: 516
  start-page: 410
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0175
  article-title: Protein quality control at the inner nuclear membrane
  publication-title: Nature
  doi: 10.1038/nature14096
– volume: 363
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0135
  article-title: Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion
  publication-title: Science
  doi: 10.1126/science.aao0076
– volume: 359
  start-page: 470
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0110
  article-title: The ER membrane protein complex is a transmembrane domain insertase
  publication-title: Science
  doi: 10.1126/science.aao3099
– volume: 138
  start-page: 315
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0025
  article-title: Evolution of protein transport to the chloroplast envelope membranes
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-018-0540-x
– volume: 8
  start-page: 242
  year: 2016
  ident: 10.1016/j.tcb.2021.01.002_bb0205
  article-title: How polyomaviruses exploit the ERAD machinery to cause infection
  publication-title: Viruses
  doi: 10.3390/v8090242
– volume: 8
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0350
  article-title: Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase
  publication-title: eLife
  doi: 10.7554/eLife.43229
– volume: 18
  start-page: 1147
  year: 2011
  ident: 10.1016/j.tcb.2021.01.002_bb0130
  article-title: Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2111
– volume: 369
  start-page: 433
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0240
  article-title: Structural basis for membrane insertion by the human ER membrane protein complex
  publication-title: Science
  doi: 10.1126/science.abb5008
– volume: 9
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0250
  article-title: The architecture of EMC reveals a path for membrane protein insertion
  publication-title: eLife
  doi: 10.7554/eLife.57887
– volume: 10
  start-page: 2872
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0055
  article-title: Structure of the substrate-engaged SecA-SecY protein translocation machine
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10918-2
– volume: 36
  start-page: 782
  year: 2009
  ident: 10.1016/j.tcb.2021.01.002_bb0155
  article-title: Usa1 functions as a scaffold of the HRD-ubiquitin ligase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.10.015
– volume: 175
  start-page: 1507
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0260
  article-title: EMC is required to initiate accurate membrane protein topogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.009
– volume: 23
  start-page: 1053
  year: 2006
  ident: 10.1016/j.tcb.2021.01.002_bb0195
  article-title: Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis
  publication-title: Yeast
  doi: 10.1002/yea.1407
– volume: 115
  start-page: E7942
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0335
  article-title: C-terminal kink formation is required for lateral gating in BamA
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1722530115
– volume: 23
  start-page: 411
  year: 1981
  ident: 10.1016/j.tcb.2021.01.002_bb0375
  article-title: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis
  publication-title: Cell
  doi: 10.1016/0092-8674(81)90136-7
– volume: 157
  start-page: 1632
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0045
  article-title: Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.024
– volume: 10
  start-page: 483
  year: 2012
  ident: 10.1016/j.tcb.2021.01.002_bb0010
  article-title: The twin-arginine translocation (Tat) protein export pathway
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2814
– volume: 72
  start-page: 1
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0125
  article-title: Structural investigation of glycan recognition by the ERAD quality control lectin Yos9
  publication-title: J. Biomol. NMR
  doi: 10.1007/s10858-018-0201-6
– volume: 14
  start-page: 77
  year: 2016
  ident: 10.1016/j.tcb.2021.01.002_bb0095
  article-title: Pore-forming toxins: ancient, but never really out of fashion
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2015.3
– volume: 48
  start-page: 23
  year: 1979
  ident: 10.1016/j.tcb.2021.01.002_bb0380
  article-title: The assembly of proteins into biological membranes: the membrane trigger hypothesis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.48.070179.000323
– volume: 65
  start-page: 103
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0200
  article-title: Ubiquitin-mediated regulation of sterol homeostasis
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2020.04.010
– volume: 80
  start-page: 8739
  year: 2006
  ident: 10.1016/j.tcb.2021.01.002_bb0210
  article-title: Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.00791-06
– volume: 3
  start-page: 72
  year: 1993
  ident: 10.1016/j.tcb.2021.01.002_bb0230
  article-title: A class of membrane proteins with a C-terminal anchor
  publication-title: Trends Cell Biol.
  doi: 10.1016/0962-8924(93)90066-A
– volume: 16
  start-page: 742
  year: 2015
  ident: 10.1016/j.tcb.2021.01.002_bb0120
  article-title: Glycosylation-directed quality control of protein folding
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4073
– volume: 86
  start-page: 685
  year: 2017
  ident: 10.1016/j.tcb.2021.01.002_bb0020
  article-title: Mitochondrial machineries for protein import and assembly
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060815-014352
– volume: 28
  start-page: 1385
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0360
  article-title: Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.07.052
– volume: 393
  start-page: 1279
  year: 2012
  ident: 10.1016/j.tcb.2021.01.002_bb0100
  article-title: The YidC/Oxa1/Alb3 protein family: common principles and distinct features
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2012-0199
– volume: 8
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0355
  article-title: Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM
  publication-title: eLife
  doi: 10.7554/eLife.44364
– volume: 346
  start-page: 751
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0170
  article-title: Quality control of inner nuclear membrane proteins by the Asi complex
  publication-title: Science
  doi: 10.1126/science.1255638
– year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0275
  article-title: Structure of the mitochondrial TIM22 complex from yeast
  publication-title: Cell Res.
– year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0280
  article-title: Cryo-EM structure of the human mitochondrial translocase TIM22 complex
  publication-title: Cell Res.
– volume: 15
  start-page: 86
  year: 1990
  ident: 10.1016/j.tcb.2021.01.002_bb0035
  article-title: A novel pathway for secretory proteins?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(90)90186-F
– volume: 69
  start-page: 306
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0180
  article-title: The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.012
– volume: 66
  start-page: 2789
  year: 2009
  ident: 10.1016/j.tcb.2021.01.002_bb0310
  article-title: Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-009-0029-z
– volume: 11
  start-page: 3290
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0330
  article-title: Structural insight into mitochondrial β-barrel outer membrane protein biogenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17144-1
– volume: 531
  start-page: 395
  year: 2016
  ident: 10.1016/j.tcb.2021.01.002_bb0050
  article-title: Crystal structure of a substrate-engaged SecY protein-translocation channel
  publication-title: Nature
  doi: 10.1038/nature17163
– volume: 492
  start-page: 210
  year: 2012
  ident: 10.1016/j.tcb.2021.01.002_bb0300
  article-title: Structure of the TatC core of the twin-arginine protein transport system
  publication-title: Nature
  doi: 10.1038/nature11683
– volume: 53
  start-page: 22
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0115
  article-title: Mechanistic insights into ER-associated protein degradation
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2018.04.004
– volume: 110
  start-page: E1092
  year: 2013
  ident: 10.1016/j.tcb.2021.01.002_bb0295
  article-title: Structural model for the protein-translocating element of the twin-arginine transport system
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1219486110
– volume: 9
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0255
  article-title: Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients
  publication-title: eLife
  doi: 10.7554/eLife.62611
– volume: 38
  start-page: 351
  year: 2019
  ident: 10.1016/j.tcb.2021.01.002_bb0030
  article-title: Current advances in protein import into peroxisomes
  publication-title: Protein J.
  doi: 10.1007/s10930-019-09835-6
– volume: 209
  start-page: 261
  year: 2015
  ident: 10.1016/j.tcb.2021.01.002_bb0160
  article-title: The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201408088
– volume: 509
  start-page: 516
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0215
  article-title: Structural basis of Sec-independent membrane protein insertion by YidC
  publication-title: Nature
  doi: 10.1038/nature13167
– volume: 584
  start-page: 475
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0245
  article-title: Structure of the ER membrane complex, a transmembrane-domain insertase
  publication-title: Nature
  doi: 10.1038/s41586-020-2389-3
– volume: 175
  start-page: 767
  year: 2006
  ident: 10.1016/j.tcb.2021.01.002_bb0090
  article-title: Unassisted translocation of large polypeptide domains across phospholipid bilayers
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200608101
– volume: 583
  start-page: 473
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0325
  article-title: Structure of a nascent membrane protein as it folds on the BAM complex
  publication-title: Nature
  doi: 10.1038/s41586-020-2370-1
– volume: 97
  start-page: 553
  year: 1999
  ident: 10.1016/j.tcb.2021.01.002_bb0075
  article-title: BiP acts as a molecular ratchet during post-translational transport of prepro-alpha factor across the ER membrane
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80767-9
– volume: 67
  start-page: 835
  year: 1975
  ident: 10.1016/j.tcb.2021.01.002_bb0365
  article-title: Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.67.3.835
– volume: 33
  start-page: 369
  year: 2017
  ident: 10.1016/j.tcb.2021.01.002_bb0005
  article-title: Structural and mechanistic insights into protein translocation
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060439
– volume: 368
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0080
  article-title: Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex
  publication-title: Science
  doi: 10.1126/science.aaz2449
– volume: 93
  start-page: 2363
  year: 2007
  ident: 10.1016/j.tcb.2021.01.002_bb0085
  article-title: A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.109967
– volume: 16
  start-page: 77
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0140
  article-title: Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2882
– volume: 23
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0190
  article-title: HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101493
– volume: 11
  start-page: 458
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0345
  article-title: Structures of a P4-ATPase lipid flippase in lipid bilayers
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00712-y
– volume: 28
  start-page: 209
  year: 1993
  ident: 10.1016/j.tcb.2021.01.002_bb0285
  article-title: The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409239309086795
– volume: 3
  start-page: 766
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0340
  article-title: Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01419-w
– volume: 9
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0165
  article-title: Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation
  publication-title: eLife
  doi: 10.7554/eLife.56945
– volume: 351
  start-page: 180
  year: 2016
  ident: 10.1016/j.tcb.2021.01.002_bb0315
  article-title: The structure of the β-barrel assembly machinery complex
  publication-title: Science
  doi: 10.1126/science.aad3460
– volume: 143
  start-page: 579
  year: 2010
  ident: 10.1016/j.tcb.2021.01.002_bb0145
  article-title: Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.028
– year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0185
  article-title: The Derlin Dfm1 promotes retrotranslocation of folded protein domains from the endoplasmic reticulum
  publication-title: bioRxiv
– volume: 157
  start-page: 1416
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0065
  article-title: A ‘push and slide’ mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase
  publication-title: Cell
  doi: 10.1016/j.cell.2014.03.063
– volume: 7
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0265
  article-title: The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins
  publication-title: eLife
  doi: 10.7554/eLife.37018
– volume: 13
  start-page: 3937
  year: 1994
  ident: 10.1016/j.tcb.2021.01.002_bb0385
  article-title: Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06713.x
– volume: 359
  year: 2018
  ident: 10.1016/j.tcb.2021.01.002_bb0320
  article-title: Membrane protein insertion through a mitochondrial β-barrel gate
  publication-title: Science
  doi: 10.1126/science.aah6834
– volume: 25
  start-page: 1403
  year: 2017
  ident: 10.1016/j.tcb.2021.01.002_bb0225
  article-title: YidC insertase of Escherichia coli: water accessibility and membrane shaping
  publication-title: Structure
  doi: 10.1016/j.str.2017.07.008
– volume: 1843
  start-page: 1489
  year: 2014
  ident: 10.1016/j.tcb.2021.01.002_bb0220
  article-title: The membrane insertase YidC
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2013.12.022
– volume: 80
  start-page: 72
  year: 2020
  ident: 10.1016/j.tcb.2021.01.002_bb0235
  article-title: Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex
  publication-title: Mol. cell
  doi: 10.1016/j.molcel.2020.08.012
SSID ssj0007213
Score 2.5470667
SecondaryResourceType review_article
Snippet Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 473
SubjectTerms Cytosol
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum-Associated Degradation
lipid bilayer
Lipid bilayers
Lipid Bilayers - metabolism
Lipids
membrane distortion
Membranes
Organelles
Protein folding
protein translocation
Protein Transport
Proteins
Saccharomyces cerevisiae Proteins - metabolism
structure
Translocation
Title Translocation of Proteins through a Distorted Lipid Bilayer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0962892421000064
https://dx.doi.org/10.1016/j.tcb.2021.01.002
https://www.ncbi.nlm.nih.gov/pubmed/33531207
https://www.proquest.com/docview/2536820976
https://www.proquest.com/docview/2486140118
https://pubmed.ncbi.nlm.nih.gov/PMC8122044
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MDcEXcX7WfRDBJ6HeNEnTFp-26bh6cYg63FtI0gQro3dsdw---Ld7kqbVqzJBKJQ2CTQnOef80pz8DsAzqStnqPB54WuTC8tkrhFF5FUjvTSIIHika3p3Iuen4u1ZebYBR-NZmBBWmWz_YNOjtU5vZkmas4uum31E8I2rhbClGY1u4AQVogqz_MX3n2EeuMIZ0slL1HysPe5sxhivlTW4RGRFZO5Mf1b-4pv-xJ6_h1D-4pOO78KdBCbJwfC927Dh-ntwa0gv-e0-vIyOKHirIH2y9OR9YGXo-iuS0vMQTV5FnhDEnSSksW7JYXeuEYY_gNPj15-O5nlKlpDbsilXuTbOCMlQ8k0pWi7RUVOqpfatrI1BLbNBWr41spIGB6CtG-Gktt4iojO64A9hs1_27jEQ411Ba8-M9FrohuumpLyxguvCO1vZDOgoJmUTk3hIaHGuxpCxrwolq4JkFcWLsgyeT00uBhqNmyqzUfZqPB-KFk2hkb-pkZgarU2gfzXbHQdXJe29UqzkEpERIrUMnk7FqHdhM0X3bnmNdUQtw-K0qDN4NMyFqWeco2VjtMqgWpslU4XA6b1e0ndfIrc34i1GhXjyf73ZgdvhaQhl24XN1eW120PQtDL7USv2YevgzWJ-Eu6LD58XPwDibhb7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW9lPTtNmlU6KlgVpZk2aanJE3YvJZCE8hNSLJEXII3NJtD_31Htmy6bUkg4JOlAWukmflkjb4B-CR14QwVPs18aVJhmUw1ooi0qKSXBhEE7-iaTudydi6OLvKLNdgb7sKEtMro-3uf3nnr-GYatTm9bprpdwTfuFsIR5qd0xWPYD2wU-UTWN85PJ7NR4eMm5y-orxE40eB4XCzS_NaWoO7RJZ15J3x58p_wtO_8PPvLMo_wtLBBjyLeJLs9J_8HNZc-wIe9xUmf72EL10sCgErTABZePItEDM07Q2JFXqIJl87qhCEniRUsq7JbnOlEYm_gvOD_bO9WRrrJaQ2r_Jlqo0zQjJUfpWLmkuM1ZRqqX0tS2PQ0GxQmK-NLKTBOajLSjiprbcI6ozO-GuYtIvWvQVivMto6ZmRXgtdcV3llFdWcJ15ZwubAB3UpGwkEw81La7UkDX2Q6FmVdCsovhQlsDnUeS6Z9K4qzMbdK-GK6Lo1BT6-buExCi0sobuE9scJldFA75RLOcSwRGCtQQ-js1oeuE8RbducYt9RCnD_jQrE3jTr4VxZJyjc2O0SKBYWSVjh0DrvdrSNpcdvTdCLkaFePew0WzDk9nZ6Yk6OZwfv4enoaXPbNuEyfLnrdtCDLU0H6KN_AalZxgJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translocation+of+Proteins+through+a+Distorted+Lipid+Bilayer&rft.jtitle=Trends+in+cell+biology&rft.au=Wu%2C+Xudong&rft.au=Rapoport%2C+Tom+A.&rft.date=2021-06-01&rft.issn=0962-8924&rft.volume=31&rft.issue=6&rft.spage=473&rft.epage=484&rft_id=info:doi/10.1016%2Fj.tcb.2021.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcb_2021_01_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8924&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8924&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8924&client=summon