Translocation of Proteins through a Distorted Lipid Bilayer
Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a...
Saved in:
Published in | Trends in cell biology Vol. 31; no. 6; pp. 473 - 484 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.
In all cells, proteins are translocated completely or partially across membranes. Translocases are generally required to overcome the energy barrier of a membrane.An entirely hydrophilic conduit is formed by the evolutionarily conserved SecY/Sec61 channel that is responsible for the secretion of proteins and the insertion of most membrane proteins.A growing number of translocase structures indicate that entirely hydrophilic channels are not always required. An example is the Hrd1 complex that mediates the retrotranslocation of misfolded proteins from the ER lumen into the cytosol. In this case, translocation occurs through luminal and cytosolic hydrophilic cavities and a locally thinned, distorted membrane region.In several other systems, translocation also occurs through a protein-induced distorted lipid bilayer, indicating a new paradigm for lowering the energy barrier. |
---|---|
AbstractList | Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retro-translocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multi-spanning proteins with aqueous luminal and cytosolic cavities and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier. Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier. Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier. In all cells, proteins are translocated completely or partially across membranes. Translocases are generally required to overcome the energy barrier of a membrane.An entirely hydrophilic conduit is formed by the evolutionarily conserved SecY/Sec61 channel that is responsible for the secretion of proteins and the insertion of most membrane proteins.A growing number of translocase structures indicate that entirely hydrophilic channels are not always required. An example is the Hrd1 complex that mediates the retrotranslocation of misfolded proteins from the ER lumen into the cytosol. In this case, translocation occurs through luminal and cytosolic hydrophilic cavities and a locally thinned, distorted membrane region.In several other systems, translocation also occurs through a protein-induced distorted lipid bilayer, indicating a new paradigm for lowering the energy barrier. Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier.Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different translocation systems, the best studied being the Sec61/SecY channel. This channel forms a hydrophilic, hourglass-shaped membrane channel, with a lateral gate towards the surrounding lipid. However, recent studies show that an aqueous pore is not required in other cases of protein translocation. The Hrd1 complex, mediating the retrotranslocation of misfolded proteins from the endoplasmic reticulum (ER) lumen into the cytosol, contains multispanning proteins with aqueous luminal and cytosolic cavities, and lateral gates juxtaposed in a thinned membrane region. A locally thinned, distorted lipid bilayer also allows protein translocation in other systems, suggesting a new paradigm to overcome the membrane barrier. |
Author | Wu, Xudong Rapoport, Tom A. |
AuthorAffiliation | 1 Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA |
AuthorAffiliation_xml | – name: 1 Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA |
Author_xml | – sequence: 1 givenname: Xudong surname: Wu fullname: Wu, Xudong organization: Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA – sequence: 2 givenname: Tom A. surname: Rapoport fullname: Rapoport, Tom A. email: tom_rapoport@hms.harvard.edu organization: Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33531207$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9rFDEUxYNU7Lb6AXyRAV98mfUmmclkKAha_8KCPtTnkGTudLPOJmuSKey3N3Vb0X2ocCEPOb_DufeckRMfPBLynMKSAhWvN8tszZIBo0soA-wRWVDZ9TUHKU_IAnrBatmz5pScpbQBgI5R_oScct5yyqBbkIurqH2agtXZBV-FsfoWQ0bnU5XXMczX60pX713KIWYcqpXbuaF65ya9x_iUPB71lPDZ3XtOvn_8cHX5uV59_fTl8u2qtm3f5lobNI1gHZq-bQYuGhAAWuhxENIYwaUVTPbjYEQnDOcwyL5Boe1oRSuMpvycvDn47mazxcGiz1FPahfdVse9Ctqpf3-8W6vrcKMkZQyaphi8ujOI4eeMKautSxanSXsMc1KskYI2QKks0pdH0k2Yoy_rKdZyIRn0nSiqF38n-hPl_q5F0B0ENoaUIo7Kuvz7xCWgmxQFddug2qjSoLptUEEZYIWkR-S9-UPMxYHB0sKNw6iSdegtDi6izWoI7kG6P6Lt5LyzevqB-_-wvwB8jsXs |
CitedBy_id | crossref_primary_10_1038_s41586_023_05856_5 crossref_primary_10_1038_s41586_023_06239_6 crossref_primary_10_26508_lsa_202201805 crossref_primary_10_1002_2211_5463_13905 crossref_primary_10_1016_j_jbc_2025_108395 crossref_primary_10_1091_mbc_E24_01_0012 crossref_primary_10_1038_s44318_024_00063_y crossref_primary_10_1101_cshperspect_a041400 crossref_primary_10_1007_s00294_022_01227_1 crossref_primary_10_1126_sciadv_adc8917 crossref_primary_10_3389_fcell_2021_784367 crossref_primary_10_1096_fj_202302266R crossref_primary_10_1107_S2059798322011652 crossref_primary_10_1016_j_jbc_2022_102373 crossref_primary_10_1073_pnas_2319476121 crossref_primary_10_1126_sciadv_add8579 crossref_primary_10_1016_j_abb_2022_109427 crossref_primary_10_1016_j_ejmech_2023_115447 crossref_primary_10_3390_cells10112965 crossref_primary_10_1016_j_str_2024_01_012 crossref_primary_10_1126_sciadv_abq8303 crossref_primary_10_1038_s41594_024_01296_5 crossref_primary_10_3389_fphys_2022_933153 crossref_primary_10_1038_s41467_023_42867_2 crossref_primary_10_1038_s41586_023_06477_8 crossref_primary_10_1016_j_chembiol_2022_10_003 crossref_primary_10_1016_j_jbc_2022_101690 crossref_primary_10_1016_j_molcel_2022_07_006 crossref_primary_10_1101_cshperspect_a041251 crossref_primary_10_1101_cshperspect_a041252 crossref_primary_10_1146_annurev_biochem_032620_104553 crossref_primary_10_1128_mbio_03319_24 crossref_primary_10_1128_jb_00249_24 crossref_primary_10_1021_acs_langmuir_3c01913 crossref_primary_10_1016_j_jbc_2022_102107 crossref_primary_10_1016_j_jhazmat_2024_135007 crossref_primary_10_1038_s41580_021_00413_2 crossref_primary_10_3390_ijms22084082 crossref_primary_10_1016_j_cell_2022_10_030 crossref_primary_10_1016_j_molcel_2022_09_035 crossref_primary_10_1242_jcs_261219 crossref_primary_10_1016_j_bpj_2024_04_009 crossref_primary_10_1016_j_tibs_2023_08_004 crossref_primary_10_1016_j_str_2024_03_014 crossref_primary_10_1016_j_tcb_2023_08_005 crossref_primary_10_1146_annurev_biochem_030122_040444 crossref_primary_10_3390_ijms23094627 |
Cites_doi | 10.1126/science.1080945 10.1111/j.1432-1033.1979.tb13100.x 10.1126/science.aad4992 10.1016/j.str.2013.03.004 10.1146/annurev-micro-090816-093754 10.1073/pnas.0503558102 10.1038/nature02218 10.1038/nrm3226 10.1016/j.cell.2006.05.043 10.15252/embj.2018101140 10.1038/nature14096 10.1126/science.aao0076 10.1126/science.aao3099 10.1007/s11120-018-0540-x 10.3390/v8090242 10.7554/eLife.43229 10.1038/nsmb.2111 10.1126/science.abb5008 10.7554/eLife.57887 10.1038/s41467-019-10918-2 10.1016/j.molcel.2009.10.015 10.1016/j.cell.2018.10.009 10.1002/yea.1407 10.1073/pnas.1722530115 10.1016/0092-8674(81)90136-7 10.1016/j.cell.2014.05.024 10.1038/nrmicro2814 10.1007/s10858-018-0201-6 10.1038/nrmicro.2015.3 10.1146/annurev.bi.48.070179.000323 10.1016/j.ceb.2020.04.010 10.1128/JVI.00791-06 10.1016/0962-8924(93)90066-A 10.1038/nrm4073 10.1146/annurev-biochem-060815-014352 10.1016/j.celrep.2019.07.052 10.1515/hsz-2012-0199 10.7554/eLife.44364 10.1126/science.1255638 10.1016/0968-0004(90)90186-F 10.1016/j.molcel.2017.12.012 10.1007/s00018-009-0029-z 10.1038/s41467-020-17144-1 10.1038/nature17163 10.1038/nature11683 10.1016/j.ceb.2018.04.004 10.1073/pnas.1219486110 10.7554/eLife.62611 10.1007/s10930-019-09835-6 10.1083/jcb.201408088 10.1038/nature13167 10.1038/s41586-020-2389-3 10.1083/jcb.200608101 10.1038/s41586-020-2370-1 10.1016/S0092-8674(00)80767-9 10.1083/jcb.67.3.835 10.1146/annurev-cellbio-100616-060439 10.1126/science.aaz2449 10.1529/biophysj.107.109967 10.1038/ncb2882 10.1016/j.isci.2020.101493 10.1007/s13238-020-00712-y 10.3109/10409239309086795 10.1038/s42003-020-01419-w 10.7554/eLife.56945 10.1126/science.aad3460 10.1016/j.cell.2010.10.028 10.1016/j.cell.2014.03.063 10.7554/eLife.37018 10.1002/j.1460-2075.1994.tb06713.x 10.1126/science.aah6834 10.1016/j.str.2017.07.008 10.1016/j.bbamcr.2013.12.022 10.1016/j.molcel.2020.08.012 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jun 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jun 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1016/j.tcb.2021.01.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-3088 |
EndPage | 484 |
ExternalDocumentID | PMC8122044 33531207 10_1016_j_tcb_2021_01_002 S0962892421000064 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM052586 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 186 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IH2 IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XPP Y6R YNT Z5R ~G- AACTN AAIAV ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG RCE RIG VQA ZA5 AAYXX AGRNS BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7QL 7QP 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c595t-abeb4627eb954d3640600a6afd68bb638c6289fdb676b330d894e6acfc656ba13 |
IEDL.DBID | .~1 |
ISSN | 0962-8924 1879-3088 |
IngestDate | Thu Aug 21 13:55:43 EDT 2025 Fri Jul 11 07:56:24 EDT 2025 Wed Aug 13 04:38:49 EDT 2025 Mon Jul 21 06:00:25 EDT 2025 Thu Apr 24 22:53:58 EDT 2025 Tue Jul 01 01:53:44 EDT 2025 Fri Feb 23 02:46:00 EST 2024 Tue Aug 26 16:33:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | lipid bilayer membrane distortion structure endoplasmic reticulum protein translocation |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-abeb4627eb954d3640600a6afd68bb638c6289fdb676b330d894e6acfc656ba13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8122044 |
PMID | 33531207 |
PQID | 2536820976 |
PQPubID | 2045389 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8122044 proquest_miscellaneous_2486140118 proquest_journals_2536820976 pubmed_primary_33531207 crossref_citationtrail_10_1016_j_tcb_2021_01_002 crossref_primary_10_1016_j_tcb_2021_01_002 elsevier_sciencedirect_doi_10_1016_j_tcb_2021_01_002 elsevier_clinicalkey_doi_10_1016_j_tcb_2021_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Trends in cell biology |
PublicationTitleAlternate | Trends Cell Biol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Tomasek (bb0325) 2020; 583 Palmer, Berks (bb0010) 2012; 10 Diederichs (bb0330) 2020; 11 Kumazaki (bb0215) 2014; 509 Kuan, Saier (bb0285) 1993; 28 Wu, Rapoport (bb0115) 2018; 53 Khmelinskii (bb0175) 2014; 516 Konovalova (bb0015) 2017; 71 Bauer (bb0065) 2014; 157 McDowell (bb0235) 2020; 80 Guna (bb0110) 2018; 359 He (bb0345) 2020; 11 Voorhees (bb0045) 2014; 157 Horn (bb0155) 2009; 36 Carvalho (bb0150) 2006; 126 Neal (bb0190) 2020; 23 Wu (bb0080) 2020; 368 Kutay (bb0230) 1993; 3 Engelman, Steitz (bb0375) 1981; 23 Xu, Ng (bb0120) 2015; 16 Bai (bb0245) 2020; 584 Mehnert (bb0140) 2014; 16 Höhr (bb0320) 2018; 359 Lundquist (bb0335) 2018; 115 Habeck (bb0160) 2015; 209 Dupzyk, Tsai (bb0205) 2016; 8 Wiedemann, Pfanner (bb0020) 2017; 86 Dal Peraro, van der Goot (bb0095) 2016; 14 Zhang (bb0275) 2020 Reshetnyak (bb0085) 2007; 93 Kniss (bb0125) 2018; 72 Chen (bb0225) 2017; 25 Walther (bb0310) 2009; 66 Day, Theg (bb0025) 2018; 138 Berg (bb0040) 2004; 427 Greenblatt (bb0130) 2011; 18 Schmidt (bb0165) 2020; 9 Hegde, Keenan (bb0105) 2011; 12 Rollauer (bb0300) 2012; 492 Saller (bb0100) 2012; 393 Wickner (bb0380) 1979; 48 Catipovic (bb0070) 2019; 38 Qi (bb0280) 2020 Foresti (bb0170) 2014; 346 Miller-Vedam (bb0255) 2020; 9 Ma (bb0055) 2019; 10 Voorhees, Hegde (bb0060) 2016; 351 Bakelar (bb0315) 2016; 351 Kreutzberger (bb0135) 2019; 363 Neal (bb0180) 2018; 69 Lilley (bb0210) 2006; 80 Falzone (bb0350) 2019; 8 Sato, Hampton (bb0195) 2006; 23 O'Donnell (bb0250) 2020; 9 Dalbey (bb0220) 2014; 1843 Pleiner (bb0240) 2020; 369 Rodriguez (bb0295) 2013; 110 Fonseca, Carvalho (bb0185) 2020 Feng (bb0360) 2019; 28 Muesch (bb0035) 1990; 15 van den Boomen (bb0200) 2020; 65 Ramasamy (bb0305) 2013; 21 Chitwood (bb0260) 2018; 175 Kalienkova (bb0355) 2019; 8 Li (bb0050) 2016; 531 Mothes (bb0385) 1994; 13 Rapoport (bb0005) 2017; 33 von Heijne, Blomberg (bb0370) 1979; 97 Iadanza (bb0340) 2020; 3 Gohlke (bb0290) 2005; 102 Blobel, Dobberstein (bb0365) 1975; 67 Walter, Erdmann (bb0030) 2019; 38 Brambillasca (bb0090) 2006; 175 Carvalho (bb0145) 2010; 143 Rehling (bb0270) 2003; 299 Shurtleff (bb0265) 2018; 7 Matlack (bb0075) 1999; 97 Feng (10.1016/j.tcb.2021.01.002_bb0360) 2019; 28 Wiedemann (10.1016/j.tcb.2021.01.002_bb0020) 2017; 86 Horn (10.1016/j.tcb.2021.01.002_bb0155) 2009; 36 McDowell (10.1016/j.tcb.2021.01.002_bb0235) 2020; 80 Wu (10.1016/j.tcb.2021.01.002_bb0115) 2018; 53 van den Boomen (10.1016/j.tcb.2021.01.002_bb0200) 2020; 65 Muesch (10.1016/j.tcb.2021.01.002_bb0035) 1990; 15 Mothes (10.1016/j.tcb.2021.01.002_bb0385) 1994; 13 Kalienkova (10.1016/j.tcb.2021.01.002_bb0355) 2019; 8 Mehnert (10.1016/j.tcb.2021.01.002_bb0140) 2014; 16 Kuan (10.1016/j.tcb.2021.01.002_bb0285) 1993; 28 Walther (10.1016/j.tcb.2021.01.002_bb0310) 2009; 66 Tomasek (10.1016/j.tcb.2021.01.002_bb0325) 2020; 583 Carvalho (10.1016/j.tcb.2021.01.002_bb0150) 2006; 126 Saller (10.1016/j.tcb.2021.01.002_bb0100) 2012; 393 Höhr (10.1016/j.tcb.2021.01.002_bb0320) 2018; 359 Carvalho (10.1016/j.tcb.2021.01.002_bb0145) 2010; 143 Zhang (10.1016/j.tcb.2021.01.002_bb0275) 2020 Falzone (10.1016/j.tcb.2021.01.002_bb0350) 2019; 8 Fonseca (10.1016/j.tcb.2021.01.002_bb0185) 2020 Ma (10.1016/j.tcb.2021.01.002_bb0055) 2019; 10 Brambillasca (10.1016/j.tcb.2021.01.002_bb0090) 2006; 175 Khmelinskii (10.1016/j.tcb.2021.01.002_bb0175) 2014; 516 Habeck (10.1016/j.tcb.2021.01.002_bb0160) 2015; 209 Li (10.1016/j.tcb.2021.01.002_bb0050) 2016; 531 Neal (10.1016/j.tcb.2021.01.002_bb0190) 2020; 23 Dal Peraro (10.1016/j.tcb.2021.01.002_bb0095) 2016; 14 Pleiner (10.1016/j.tcb.2021.01.002_bb0240) 2020; 369 Greenblatt (10.1016/j.tcb.2021.01.002_bb0130) 2011; 18 Dupzyk (10.1016/j.tcb.2021.01.002_bb0205) 2016; 8 Lilley (10.1016/j.tcb.2021.01.002_bb0210) 2006; 80 Miller-Vedam (10.1016/j.tcb.2021.01.002_bb0255) 2020; 9 Sato (10.1016/j.tcb.2021.01.002_bb0195) 2006; 23 Qi (10.1016/j.tcb.2021.01.002_bb0280) 2020 Rehling (10.1016/j.tcb.2021.01.002_bb0270) 2003; 299 Engelman (10.1016/j.tcb.2021.01.002_bb0375) 1981; 23 Konovalova (10.1016/j.tcb.2021.01.002_bb0015) 2017; 71 O'Donnell (10.1016/j.tcb.2021.01.002_bb0250) 2020; 9 Guna (10.1016/j.tcb.2021.01.002_bb0110) 2018; 359 Gohlke (10.1016/j.tcb.2021.01.002_bb0290) 2005; 102 Dalbey (10.1016/j.tcb.2021.01.002_bb0220) 2014; 1843 Chen (10.1016/j.tcb.2021.01.002_bb0225) 2017; 25 Kutay (10.1016/j.tcb.2021.01.002_bb0230) 1993; 3 Kumazaki (10.1016/j.tcb.2021.01.002_bb0215) 2014; 509 Palmer (10.1016/j.tcb.2021.01.002_bb0010) 2012; 10 Bakelar (10.1016/j.tcb.2021.01.002_bb0315) 2016; 351 Blobel (10.1016/j.tcb.2021.01.002_bb0365) 1975; 67 Ramasamy (10.1016/j.tcb.2021.01.002_bb0305) 2013; 21 Bauer (10.1016/j.tcb.2021.01.002_bb0065) 2014; 157 Lundquist (10.1016/j.tcb.2021.01.002_bb0335) 2018; 115 Voorhees (10.1016/j.tcb.2021.01.002_bb0045) 2014; 157 Diederichs (10.1016/j.tcb.2021.01.002_bb0330) 2020; 11 Schmidt (10.1016/j.tcb.2021.01.002_bb0165) 2020; 9 Rapoport (10.1016/j.tcb.2021.01.002_bb0005) 2017; 33 Kniss (10.1016/j.tcb.2021.01.002_bb0125) 2018; 72 Berg (10.1016/j.tcb.2021.01.002_bb0040) 2004; 427 Xu (10.1016/j.tcb.2021.01.002_bb0120) 2015; 16 Hegde (10.1016/j.tcb.2021.01.002_bb0105) 2011; 12 Chitwood (10.1016/j.tcb.2021.01.002_bb0260) 2018; 175 Catipovic (10.1016/j.tcb.2021.01.002_bb0070) 2019; 38 Rollauer (10.1016/j.tcb.2021.01.002_bb0300) 2012; 492 Iadanza (10.1016/j.tcb.2021.01.002_bb0340) 2020; 3 Matlack (10.1016/j.tcb.2021.01.002_bb0075) 1999; 97 Walter (10.1016/j.tcb.2021.01.002_bb0030) 2019; 38 Kreutzberger (10.1016/j.tcb.2021.01.002_bb0135) 2019; 363 Voorhees (10.1016/j.tcb.2021.01.002_bb0060) 2016; 351 Foresti (10.1016/j.tcb.2021.01.002_bb0170) 2014; 346 Neal (10.1016/j.tcb.2021.01.002_bb0180) 2018; 69 Wickner (10.1016/j.tcb.2021.01.002_bb0380) 1979; 48 Reshetnyak (10.1016/j.tcb.2021.01.002_bb0085) 2007; 93 Bai (10.1016/j.tcb.2021.01.002_bb0245) 2020; 584 Shurtleff (10.1016/j.tcb.2021.01.002_bb0265) 2018; 7 Day (10.1016/j.tcb.2021.01.002_bb0025) 2018; 138 von Heijne (10.1016/j.tcb.2021.01.002_bb0370) 1979; 97 Wu (10.1016/j.tcb.2021.01.002_bb0080) 2020; 368 Rodriguez (10.1016/j.tcb.2021.01.002_bb0295) 2013; 110 He (10.1016/j.tcb.2021.01.002_bb0345) 2020; 11 |
References_xml | – volume: 21 start-page: 777 year: 2013 end-page: 788 ident: bb0305 article-title: The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation publication-title: Structure – volume: 48 start-page: 23 year: 1979 end-page: 45 ident: bb0380 article-title: The assembly of proteins into biological membranes: the membrane trigger hypothesis publication-title: Annu. Rev. Biochem. – volume: 359 start-page: 470 year: 2018 end-page: 473 ident: bb0110 article-title: The ER membrane protein complex is a transmembrane domain insertase publication-title: Science – volume: 492 start-page: 210 year: 2012 end-page: 214 ident: bb0300 article-title: Structure of the TatC core of the twin-arginine protein transport system publication-title: Nature – volume: 9 year: 2020 ident: bb0255 article-title: Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients publication-title: eLife – volume: 584 start-page: 475 year: 2020 end-page: 478 ident: bb0245 article-title: Structure of the ER membrane complex, a transmembrane-domain insertase publication-title: Nature – volume: 369 start-page: 433 year: 2020 end-page: 436 ident: bb0240 article-title: Structural basis for membrane insertion by the human ER membrane protein complex publication-title: Science – volume: 53 start-page: 22 year: 2018 end-page: 28 ident: bb0115 article-title: Mechanistic insights into ER-associated protein degradation publication-title: Curr. Opin. Cell Biol. – volume: 368 year: 2020 ident: bb0080 article-title: Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex publication-title: Science – volume: 115 start-page: E7942 year: 2018 end-page: E7949 ident: bb0335 article-title: C-terminal kink formation is required for lateral gating in BamA publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 157 start-page: 1632 year: 2014 end-page: 1643 ident: bb0045 article-title: Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution publication-title: Cell – volume: 15 start-page: 86 year: 1990 end-page: 88 ident: bb0035 article-title: A novel pathway for secretory proteins? publication-title: Trends Biochem. Sci. – volume: 23 start-page: 1053 year: 2006 end-page: 1064 ident: bb0195 article-title: Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis publication-title: Yeast – volume: 583 start-page: 473 year: 2020 end-page: 478 ident: bb0325 article-title: Structure of a nascent membrane protein as it folds on the BAM complex publication-title: Nature – volume: 10 start-page: 483 year: 2012 end-page: 496 ident: bb0010 article-title: The twin-arginine translocation (Tat) protein export pathway publication-title: Nat. Rev. Microbiol. – volume: 175 start-page: 1507 year: 2018 end-page: 1519 ident: bb0260 article-title: EMC is required to initiate accurate membrane protein topogenesis publication-title: Cell – volume: 23 start-page: 411 year: 1981 end-page: 422 ident: bb0375 article-title: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis publication-title: Cell – year: 2020 ident: bb0275 article-title: Structure of the mitochondrial TIM22 complex from yeast publication-title: Cell Res. – volume: 351 start-page: 88 year: 2016 end-page: 91 ident: bb0060 article-title: Structure of the Sec61 channel opened by a signal sequence publication-title: Science – volume: 175 start-page: 767 year: 2006 end-page: 777 ident: bb0090 article-title: Unassisted translocation of large polypeptide domains across phospholipid bilayers publication-title: J. Cell Biol. – volume: 393 start-page: 1279 year: 2012 end-page: 1290 ident: bb0100 article-title: The YidC/Oxa1/Alb3 protein family: common principles and distinct features publication-title: Biol. Chem. – volume: 72 start-page: 1 year: 2018 end-page: 10 ident: bb0125 article-title: Structural investigation of glycan recognition by the ERAD quality control lectin Yos9 publication-title: J. Biomol. NMR – volume: 509 start-page: 516 year: 2014 end-page: 520 ident: bb0215 article-title: Structural basis of Sec-independent membrane protein insertion by YidC publication-title: Nature – volume: 427 start-page: 36 year: 2004 end-page: 44 ident: bb0040 article-title: X-ray structure of a protein-conducting channel publication-title: Nature – volume: 65 start-page: 103 year: 2020 end-page: 111 ident: bb0200 article-title: Ubiquitin-mediated regulation of sterol homeostasis publication-title: Curr. Opin. Cell Biol. – volume: 67 start-page: 835 year: 1975 end-page: 851 ident: bb0365 article-title: Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma publication-title: J. Cell Biol. – volume: 86 start-page: 685 year: 2017 end-page: 714 ident: bb0020 article-title: Mitochondrial machineries for protein import and assembly publication-title: Annu. Rev. Biochem. – volume: 346 start-page: 751 year: 2014 end-page: 755 ident: bb0170 article-title: Quality control of inner nuclear membrane proteins by the Asi complex publication-title: Science – volume: 80 start-page: 72 year: 2020 end-page: 86 ident: bb0235 article-title: Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex publication-title: Mol. cell – volume: 18 start-page: 1147 year: 2011 end-page: 1152 ident: bb0130 article-title: Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum publication-title: Nat. Struct. Mol. Biol. – volume: 9 year: 2020 ident: bb0165 article-title: Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation publication-title: eLife – volume: 66 start-page: 2789 year: 2009 end-page: 2804 ident: bb0310 article-title: Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence publication-title: Cell. Mol. Life Sci. – volume: 11 start-page: 3290 year: 2020 ident: bb0330 article-title: Structural insight into mitochondrial β-barrel outer membrane protein biogenesis publication-title: Nat. Commun. – volume: 12 start-page: 787 year: 2011 end-page: 798 ident: bb0105 article-title: Tail-anchored membrane protein insertion into the endoplasmic reticulum publication-title: Nat. Rev. Mol. Cell Biol. – volume: 36 start-page: 782 year: 2009 end-page: 793 ident: bb0155 article-title: Usa1 functions as a scaffold of the HRD-ubiquitin ligase publication-title: Mol. Cell – volume: 28 start-page: 1385 year: 2019 ident: bb0360 article-title: Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling publication-title: Cell Rep. – volume: 531 start-page: 395 year: 2016 end-page: 399 ident: bb0050 article-title: Crystal structure of a substrate-engaged SecY protein-translocation channel publication-title: Nature – volume: 7 year: 2018 ident: bb0265 article-title: The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins publication-title: eLife – volume: 16 start-page: 742 year: 2015 end-page: 752 ident: bb0120 article-title: Glycosylation-directed quality control of protein folding publication-title: Nat. Rev. Mol. Cell Biol. – volume: 3 start-page: 766 year: 2020 ident: bb0340 article-title: Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs publication-title: Commun. Biol. – volume: 71 start-page: 539 year: 2017 end-page: 556 ident: bb0015 article-title: Outer membrane biogenesis publication-title: Annu. Rev. Microbiol. – volume: 80 start-page: 8739 year: 2006 end-page: 8744 ident: bb0210 article-title: Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection publication-title: J. Virol. – volume: 359 year: 2018 ident: bb0320 article-title: Membrane protein insertion through a mitochondrial β-barrel gate publication-title: Science – volume: 143 start-page: 579 year: 2010 end-page: 591 ident: bb0145 article-title: Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p publication-title: Cell – volume: 33 start-page: 369 year: 2017 end-page: 390 ident: bb0005 article-title: Structural and mechanistic insights into protein translocation publication-title: Annu. Rev. Cell Dev. Biol. – volume: 97 start-page: 175 year: 1979 end-page: 181 ident: bb0370 article-title: Trans-membrane translocation of proteins. The direct transfer model publication-title: Eur. J. Biochem. – volume: 126 start-page: 361 year: 2006 end-page: 373 ident: bb0150 article-title: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins publication-title: Cell – volume: 9 year: 2020 ident: bb0250 article-title: The architecture of EMC reveals a path for membrane protein insertion publication-title: eLife – volume: 14 start-page: 77 year: 2016 end-page: 92 ident: bb0095 article-title: Pore-forming toxins: ancient, but never really out of fashion publication-title: Nat. Rev. Microbiol. – volume: 28 start-page: 209 year: 1993 end-page: 233 ident: bb0285 article-title: The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 516 start-page: 410 year: 2014 end-page: 413 ident: bb0175 article-title: Protein quality control at the inner nuclear membrane publication-title: Nature – volume: 25 start-page: 1403 year: 2017 end-page: 1414 ident: bb0225 article-title: YidC insertase of publication-title: Structure – volume: 1843 start-page: 1489 year: 2014 end-page: 1496 ident: bb0220 article-title: The membrane insertase YidC publication-title: Biochim. Biophys. Acta – volume: 69 start-page: 306 year: 2018 end-page: 320 ident: bb0180 article-title: The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins publication-title: Mol. Cell – volume: 157 start-page: 1416 year: 2014 end-page: 1429 ident: bb0065 article-title: A ‘push and slide’ mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase publication-title: Cell – volume: 23 year: 2020 ident: bb0190 article-title: HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation publication-title: iScience – volume: 10 start-page: 2872 year: 2019 ident: bb0055 article-title: Structure of the substrate-engaged SecA-SecY protein translocation machine publication-title: Nat. Commun. – volume: 351 start-page: 180 year: 2016 end-page: 186 ident: bb0315 article-title: The structure of the β-barrel assembly machinery complex publication-title: Science – volume: 102 start-page: 10482 year: 2005 end-page: 10486 ident: bb0290 article-title: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 299 start-page: 1747 year: 2003 end-page: 1751 ident: bb0270 article-title: Protein insertion into the mitochondrial inner membrane by a twin-pore translocase publication-title: Science – volume: 11 start-page: 458 year: 2020 end-page: 463 ident: bb0345 article-title: Structures of a P4-ATPase lipid flippase in lipid bilayers publication-title: Protein Cell – volume: 8 year: 2019 ident: bb0350 article-title: Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase publication-title: eLife – volume: 8 start-page: 242 year: 2016 ident: bb0205 article-title: How polyomaviruses exploit the ERAD machinery to cause infection publication-title: Viruses – volume: 209 start-page: 261 year: 2015 end-page: 273 ident: bb0160 article-title: The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron publication-title: J. Cell Biol. – volume: 38 year: 2019 ident: bb0070 article-title: Protein translocation by the SecA ATPase occurs by a power-stroke mechanism publication-title: EMBO J. – volume: 16 start-page: 77 year: 2014 end-page: 86 ident: bb0140 article-title: Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane publication-title: Nat. Cell Biol. – volume: 13 start-page: 3937 year: 1994 end-page: 3982 ident: bb0385 article-title: Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane publication-title: EMBO J. – year: 2020 ident: bb0280 article-title: Cryo-EM structure of the human mitochondrial translocase TIM22 complex publication-title: Cell Res. – volume: 93 start-page: 2363 year: 2007 end-page: 2372 ident: bb0085 article-title: A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers publication-title: Biophys. J. – volume: 97 start-page: 553 year: 1999 end-page: 564 ident: bb0075 article-title: BiP acts as a molecular ratchet during post-translational transport of prepro-alpha factor across the ER membrane publication-title: Cell – volume: 110 start-page: E1092 year: 2013 end-page: E1101 ident: bb0295 article-title: Structural model for the protein-translocating element of the twin-arginine transport system publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 363 year: 2019 ident: bb0135 article-title: Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion publication-title: Science – volume: 138 start-page: 315 year: 2018 end-page: 326 ident: bb0025 article-title: Evolution of protein transport to the chloroplast envelope membranes publication-title: Photosynth. Res. – volume: 38 start-page: 351 year: 2019 end-page: 362 ident: bb0030 article-title: Current advances in protein import into peroxisomes publication-title: Protein J. – volume: 8 year: 2019 ident: bb0355 article-title: Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM publication-title: eLife – volume: 3 start-page: 72 year: 1993 end-page: 75 ident: bb0230 article-title: A class of membrane proteins with a C-terminal anchor publication-title: Trends Cell Biol. – year: 2020 ident: bb0185 article-title: The Derlin Dfm1 promotes retrotranslocation of folded protein domains from the endoplasmic reticulum publication-title: bioRxiv – volume: 299 start-page: 1747 year: 2003 ident: 10.1016/j.tcb.2021.01.002_bb0270 article-title: Protein insertion into the mitochondrial inner membrane by a twin-pore translocase publication-title: Science doi: 10.1126/science.1080945 – volume: 97 start-page: 175 year: 1979 ident: 10.1016/j.tcb.2021.01.002_bb0370 article-title: Trans-membrane translocation of proteins. The direct transfer model publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1979.tb13100.x – volume: 351 start-page: 88 year: 2016 ident: 10.1016/j.tcb.2021.01.002_bb0060 article-title: Structure of the Sec61 channel opened by a signal sequence publication-title: Science doi: 10.1126/science.aad4992 – volume: 21 start-page: 777 year: 2013 ident: 10.1016/j.tcb.2021.01.002_bb0305 article-title: The glove-like structure of the conserved membrane protein TatC provides insight into signal sequence recognition in twin-arginine translocation publication-title: Structure doi: 10.1016/j.str.2013.03.004 – volume: 71 start-page: 539 year: 2017 ident: 10.1016/j.tcb.2021.01.002_bb0015 article-title: Outer membrane biogenesis publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090816-093754 – volume: 102 start-page: 10482 year: 2005 ident: 10.1016/j.tcb.2021.01.002_bb0290 article-title: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0503558102 – volume: 427 start-page: 36 year: 2004 ident: 10.1016/j.tcb.2021.01.002_bb0040 article-title: X-ray structure of a protein-conducting channel publication-title: Nature doi: 10.1038/nature02218 – volume: 12 start-page: 787 year: 2011 ident: 10.1016/j.tcb.2021.01.002_bb0105 article-title: Tail-anchored membrane protein insertion into the endoplasmic reticulum publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3226 – volume: 126 start-page: 361 year: 2006 ident: 10.1016/j.tcb.2021.01.002_bb0150 article-title: Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins publication-title: Cell doi: 10.1016/j.cell.2006.05.043 – volume: 38 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0070 article-title: Protein translocation by the SecA ATPase occurs by a power-stroke mechanism publication-title: EMBO J. doi: 10.15252/embj.2018101140 – volume: 516 start-page: 410 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0175 article-title: Protein quality control at the inner nuclear membrane publication-title: Nature doi: 10.1038/nature14096 – volume: 363 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0135 article-title: Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion publication-title: Science doi: 10.1126/science.aao0076 – volume: 359 start-page: 470 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0110 article-title: The ER membrane protein complex is a transmembrane domain insertase publication-title: Science doi: 10.1126/science.aao3099 – volume: 138 start-page: 315 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0025 article-title: Evolution of protein transport to the chloroplast envelope membranes publication-title: Photosynth. Res. doi: 10.1007/s11120-018-0540-x – volume: 8 start-page: 242 year: 2016 ident: 10.1016/j.tcb.2021.01.002_bb0205 article-title: How polyomaviruses exploit the ERAD machinery to cause infection publication-title: Viruses doi: 10.3390/v8090242 – volume: 8 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0350 article-title: Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase publication-title: eLife doi: 10.7554/eLife.43229 – volume: 18 start-page: 1147 year: 2011 ident: 10.1016/j.tcb.2021.01.002_bb0130 article-title: Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2111 – volume: 369 start-page: 433 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0240 article-title: Structural basis for membrane insertion by the human ER membrane protein complex publication-title: Science doi: 10.1126/science.abb5008 – volume: 9 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0250 article-title: The architecture of EMC reveals a path for membrane protein insertion publication-title: eLife doi: 10.7554/eLife.57887 – volume: 10 start-page: 2872 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0055 article-title: Structure of the substrate-engaged SecA-SecY protein translocation machine publication-title: Nat. Commun. doi: 10.1038/s41467-019-10918-2 – volume: 36 start-page: 782 year: 2009 ident: 10.1016/j.tcb.2021.01.002_bb0155 article-title: Usa1 functions as a scaffold of the HRD-ubiquitin ligase publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.10.015 – volume: 175 start-page: 1507 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0260 article-title: EMC is required to initiate accurate membrane protein topogenesis publication-title: Cell doi: 10.1016/j.cell.2018.10.009 – volume: 23 start-page: 1053 year: 2006 ident: 10.1016/j.tcb.2021.01.002_bb0195 article-title: Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis publication-title: Yeast doi: 10.1002/yea.1407 – volume: 115 start-page: E7942 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0335 article-title: C-terminal kink formation is required for lateral gating in BamA publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1722530115 – volume: 23 start-page: 411 year: 1981 ident: 10.1016/j.tcb.2021.01.002_bb0375 article-title: The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis publication-title: Cell doi: 10.1016/0092-8674(81)90136-7 – volume: 157 start-page: 1632 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0045 article-title: Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution publication-title: Cell doi: 10.1016/j.cell.2014.05.024 – volume: 10 start-page: 483 year: 2012 ident: 10.1016/j.tcb.2021.01.002_bb0010 article-title: The twin-arginine translocation (Tat) protein export pathway publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2814 – volume: 72 start-page: 1 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0125 article-title: Structural investigation of glycan recognition by the ERAD quality control lectin Yos9 publication-title: J. Biomol. NMR doi: 10.1007/s10858-018-0201-6 – volume: 14 start-page: 77 year: 2016 ident: 10.1016/j.tcb.2021.01.002_bb0095 article-title: Pore-forming toxins: ancient, but never really out of fashion publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2015.3 – volume: 48 start-page: 23 year: 1979 ident: 10.1016/j.tcb.2021.01.002_bb0380 article-title: The assembly of proteins into biological membranes: the membrane trigger hypothesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.48.070179.000323 – volume: 65 start-page: 103 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0200 article-title: Ubiquitin-mediated regulation of sterol homeostasis publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2020.04.010 – volume: 80 start-page: 8739 year: 2006 ident: 10.1016/j.tcb.2021.01.002_bb0210 article-title: Murine polyomavirus requires the endoplasmic reticulum protein Derlin-2 to initiate infection publication-title: J. Virol. doi: 10.1128/JVI.00791-06 – volume: 3 start-page: 72 year: 1993 ident: 10.1016/j.tcb.2021.01.002_bb0230 article-title: A class of membrane proteins with a C-terminal anchor publication-title: Trends Cell Biol. doi: 10.1016/0962-8924(93)90066-A – volume: 16 start-page: 742 year: 2015 ident: 10.1016/j.tcb.2021.01.002_bb0120 article-title: Glycosylation-directed quality control of protein folding publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4073 – volume: 86 start-page: 685 year: 2017 ident: 10.1016/j.tcb.2021.01.002_bb0020 article-title: Mitochondrial machineries for protein import and assembly publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060815-014352 – volume: 28 start-page: 1385 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0360 article-title: Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.052 – volume: 393 start-page: 1279 year: 2012 ident: 10.1016/j.tcb.2021.01.002_bb0100 article-title: The YidC/Oxa1/Alb3 protein family: common principles and distinct features publication-title: Biol. Chem. doi: 10.1515/hsz-2012-0199 – volume: 8 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0355 article-title: Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM publication-title: eLife doi: 10.7554/eLife.44364 – volume: 346 start-page: 751 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0170 article-title: Quality control of inner nuclear membrane proteins by the Asi complex publication-title: Science doi: 10.1126/science.1255638 – year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0275 article-title: Structure of the mitochondrial TIM22 complex from yeast publication-title: Cell Res. – year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0280 article-title: Cryo-EM structure of the human mitochondrial translocase TIM22 complex publication-title: Cell Res. – volume: 15 start-page: 86 year: 1990 ident: 10.1016/j.tcb.2021.01.002_bb0035 article-title: A novel pathway for secretory proteins? publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(90)90186-F – volume: 69 start-page: 306 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0180 article-title: The Dfm1 Derlin is required for ERAD retrotranslocation of integral membrane proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.012 – volume: 66 start-page: 2789 year: 2009 ident: 10.1016/j.tcb.2021.01.002_bb0310 article-title: Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-009-0029-z – volume: 11 start-page: 3290 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0330 article-title: Structural insight into mitochondrial β-barrel outer membrane protein biogenesis publication-title: Nat. Commun. doi: 10.1038/s41467-020-17144-1 – volume: 531 start-page: 395 year: 2016 ident: 10.1016/j.tcb.2021.01.002_bb0050 article-title: Crystal structure of a substrate-engaged SecY protein-translocation channel publication-title: Nature doi: 10.1038/nature17163 – volume: 492 start-page: 210 year: 2012 ident: 10.1016/j.tcb.2021.01.002_bb0300 article-title: Structure of the TatC core of the twin-arginine protein transport system publication-title: Nature doi: 10.1038/nature11683 – volume: 53 start-page: 22 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0115 article-title: Mechanistic insights into ER-associated protein degradation publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2018.04.004 – volume: 110 start-page: E1092 year: 2013 ident: 10.1016/j.tcb.2021.01.002_bb0295 article-title: Structural model for the protein-translocating element of the twin-arginine transport system publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1219486110 – volume: 9 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0255 article-title: Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients publication-title: eLife doi: 10.7554/eLife.62611 – volume: 38 start-page: 351 year: 2019 ident: 10.1016/j.tcb.2021.01.002_bb0030 article-title: Current advances in protein import into peroxisomes publication-title: Protein J. doi: 10.1007/s10930-019-09835-6 – volume: 209 start-page: 261 year: 2015 ident: 10.1016/j.tcb.2021.01.002_bb0160 article-title: The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron publication-title: J. Cell Biol. doi: 10.1083/jcb.201408088 – volume: 509 start-page: 516 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0215 article-title: Structural basis of Sec-independent membrane protein insertion by YidC publication-title: Nature doi: 10.1038/nature13167 – volume: 584 start-page: 475 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0245 article-title: Structure of the ER membrane complex, a transmembrane-domain insertase publication-title: Nature doi: 10.1038/s41586-020-2389-3 – volume: 175 start-page: 767 year: 2006 ident: 10.1016/j.tcb.2021.01.002_bb0090 article-title: Unassisted translocation of large polypeptide domains across phospholipid bilayers publication-title: J. Cell Biol. doi: 10.1083/jcb.200608101 – volume: 583 start-page: 473 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0325 article-title: Structure of a nascent membrane protein as it folds on the BAM complex publication-title: Nature doi: 10.1038/s41586-020-2370-1 – volume: 97 start-page: 553 year: 1999 ident: 10.1016/j.tcb.2021.01.002_bb0075 article-title: BiP acts as a molecular ratchet during post-translational transport of prepro-alpha factor across the ER membrane publication-title: Cell doi: 10.1016/S0092-8674(00)80767-9 – volume: 67 start-page: 835 year: 1975 ident: 10.1016/j.tcb.2021.01.002_bb0365 article-title: Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma publication-title: J. Cell Biol. doi: 10.1083/jcb.67.3.835 – volume: 33 start-page: 369 year: 2017 ident: 10.1016/j.tcb.2021.01.002_bb0005 article-title: Structural and mechanistic insights into protein translocation publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100616-060439 – volume: 368 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0080 article-title: Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex publication-title: Science doi: 10.1126/science.aaz2449 – volume: 93 start-page: 2363 year: 2007 ident: 10.1016/j.tcb.2021.01.002_bb0085 article-title: A monomeric membrane peptide that lives in three worlds: in solution, attached to, and inserted across lipid bilayers publication-title: Biophys. J. doi: 10.1529/biophysj.107.109967 – volume: 16 start-page: 77 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0140 article-title: Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane publication-title: Nat. Cell Biol. doi: 10.1038/ncb2882 – volume: 23 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0190 article-title: HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation publication-title: iScience doi: 10.1016/j.isci.2020.101493 – volume: 11 start-page: 458 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0345 article-title: Structures of a P4-ATPase lipid flippase in lipid bilayers publication-title: Protein Cell doi: 10.1007/s13238-020-00712-y – volume: 28 start-page: 209 year: 1993 ident: 10.1016/j.tcb.2021.01.002_bb0285 article-title: The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.3109/10409239309086795 – volume: 3 start-page: 766 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0340 article-title: Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs publication-title: Commun. Biol. doi: 10.1038/s42003-020-01419-w – volume: 9 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0165 article-title: Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation publication-title: eLife doi: 10.7554/eLife.56945 – volume: 351 start-page: 180 year: 2016 ident: 10.1016/j.tcb.2021.01.002_bb0315 article-title: The structure of the β-barrel assembly machinery complex publication-title: Science doi: 10.1126/science.aad3460 – volume: 143 start-page: 579 year: 2010 ident: 10.1016/j.tcb.2021.01.002_bb0145 article-title: Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p publication-title: Cell doi: 10.1016/j.cell.2010.10.028 – year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0185 article-title: The Derlin Dfm1 promotes retrotranslocation of folded protein domains from the endoplasmic reticulum publication-title: bioRxiv – volume: 157 start-page: 1416 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0065 article-title: A ‘push and slide’ mechanism allows sequence-insensitive translocation of secretory proteins by the SecA ATPase publication-title: Cell doi: 10.1016/j.cell.2014.03.063 – volume: 7 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0265 article-title: The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins publication-title: eLife doi: 10.7554/eLife.37018 – volume: 13 start-page: 3937 year: 1994 ident: 10.1016/j.tcb.2021.01.002_bb0385 article-title: Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06713.x – volume: 359 year: 2018 ident: 10.1016/j.tcb.2021.01.002_bb0320 article-title: Membrane protein insertion through a mitochondrial β-barrel gate publication-title: Science doi: 10.1126/science.aah6834 – volume: 25 start-page: 1403 year: 2017 ident: 10.1016/j.tcb.2021.01.002_bb0225 article-title: YidC insertase of Escherichia coli: water accessibility and membrane shaping publication-title: Structure doi: 10.1016/j.str.2017.07.008 – volume: 1843 start-page: 1489 year: 2014 ident: 10.1016/j.tcb.2021.01.002_bb0220 article-title: The membrane insertase YidC publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2013.12.022 – volume: 80 start-page: 72 year: 2020 ident: 10.1016/j.tcb.2021.01.002_bb0235 article-title: Structural basis of tail-anchored membrane protein biogenesis by the GET insertase complex publication-title: Mol. cell doi: 10.1016/j.molcel.2020.08.012 |
SSID | ssj0007213 |
Score | 2.5470667 |
SecondaryResourceType | review_article |
Snippet | Membranes surrounding cells or organelles represent barriers to proteins and other molecules. However, specific proteins can cross membranes by different... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 473 |
SubjectTerms | Cytosol Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum-Associated Degradation lipid bilayer Lipid bilayers Lipid Bilayers - metabolism Lipids membrane distortion Membranes Organelles Protein folding protein translocation Protein Transport Proteins Saccharomyces cerevisiae Proteins - metabolism structure Translocation |
Title | Translocation of Proteins through a Distorted Lipid Bilayer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0962892421000064 https://dx.doi.org/10.1016/j.tcb.2021.01.002 https://www.ncbi.nlm.nih.gov/pubmed/33531207 https://www.proquest.com/docview/2536820976 https://www.proquest.com/docview/2486140118 https://pubmed.ncbi.nlm.nih.gov/PMC8122044 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MDcEXcX7WfRDBJ6HeNEnTFp-26bh6cYg63FtI0gQro3dsdw---Ld7kqbVqzJBKJQ2CTQnOef80pz8DsAzqStnqPB54WuTC8tkrhFF5FUjvTSIIHika3p3Iuen4u1ZebYBR-NZmBBWmWz_YNOjtU5vZkmas4uum31E8I2rhbClGY1u4AQVogqz_MX3n2EeuMIZ0slL1HysPe5sxhivlTW4RGRFZO5Mf1b-4pv-xJ6_h1D-4pOO78KdBCbJwfC927Dh-ntwa0gv-e0-vIyOKHirIH2y9OR9YGXo-iuS0vMQTV5FnhDEnSSksW7JYXeuEYY_gNPj15-O5nlKlpDbsilXuTbOCMlQ8k0pWi7RUVOqpfatrI1BLbNBWr41spIGB6CtG-Gktt4iojO64A9hs1_27jEQ411Ba8-M9FrohuumpLyxguvCO1vZDOgoJmUTk3hIaHGuxpCxrwolq4JkFcWLsgyeT00uBhqNmyqzUfZqPB-KFk2hkb-pkZgarU2gfzXbHQdXJe29UqzkEpERIrUMnk7FqHdhM0X3bnmNdUQtw-K0qDN4NMyFqWeco2VjtMqgWpslU4XA6b1e0ndfIrc34i1GhXjyf73ZgdvhaQhl24XN1eW120PQtDL7USv2YevgzWJ-Eu6LD58XPwDibhb7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW9lPTtNmlU6KlgVpZk2aanJE3YvJZCE8hNSLJEXII3NJtD_31Htmy6bUkg4JOlAWukmflkjb4B-CR14QwVPs18aVJhmUw1ooi0qKSXBhEE7-iaTudydi6OLvKLNdgb7sKEtMro-3uf3nnr-GYatTm9bprpdwTfuFsIR5qd0xWPYD2wU-UTWN85PJ7NR4eMm5y-orxE40eB4XCzS_NaWoO7RJZ15J3x58p_wtO_8PPvLMo_wtLBBjyLeJLs9J_8HNZc-wIe9xUmf72EL10sCgErTABZePItEDM07Q2JFXqIJl87qhCEniRUsq7JbnOlEYm_gvOD_bO9WRrrJaQ2r_Jlqo0zQjJUfpWLmkuM1ZRqqX0tS2PQ0GxQmK-NLKTBOajLSjiprbcI6ozO-GuYtIvWvQVivMto6ZmRXgtdcV3llFdWcJ15ZwubAB3UpGwkEw81La7UkDX2Q6FmVdCsovhQlsDnUeS6Z9K4qzMbdK-GK6Lo1BT6-buExCi0sobuE9scJldFA75RLOcSwRGCtQQ-js1oeuE8RbducYt9RCnD_jQrE3jTr4VxZJyjc2O0SKBYWSVjh0DrvdrSNpcdvTdCLkaFePew0WzDk9nZ6Yk6OZwfv4enoaXPbNuEyfLnrdtCDLU0H6KN_AalZxgJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translocation+of+Proteins+through+a+Distorted+Lipid+Bilayer&rft.jtitle=Trends+in+cell+biology&rft.au=Wu%2C+Xudong&rft.au=Rapoport%2C+Tom+A.&rft.date=2021-06-01&rft.issn=0962-8924&rft.volume=31&rft.issue=6&rft.spage=473&rft.epage=484&rft_id=info:doi/10.1016%2Fj.tcb.2021.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcb_2021_01_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8924&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8924&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8924&client=summon |