A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle

The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramat...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 2; no. 4; pp. 866 - 877
Main Authors Reissmann, Stefanie, Joachimiak, Lukasz A., Chen, Bryan, Meyer, Anne S., Nguyen, Anthony, Frydman, Judith
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.10.2012
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2012.08.036

Cover

Abstract The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins. [Display omitted] ► The eight paralogous TRiC subunits display hierarchical ATP occupancy ► Conservation of nucleoside contacts among TRiC orthologs mirrors ATP affinity ► ATP binding and hydrolysis in the low-affinity subunits are dispensable for life ► ATP usage segregates asymmetrically into two hemispheres of the chaperonin ring The eukaryotic chaperonin TRiC/CCT consists of two identical stacked rings assembled from eight paralogous subunits, each containing an ATP-binding domain. ATP hydrolysis induces lid closure, resulting in substrate encapsulation within the central folding chamber. Joachimiak, Frydman, and colleagues discover that paralogous subunits have strikingly different affinities for ATP conserved in evolution. High- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, thus generating an asymmetric power stroke that efficiently uses ATP to drive lid closure.
AbstractList The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high-and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT’s unique ability to fold complex eukaryotic proteins.
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins. [Display omitted] ► The eight paralogous TRiC subunits display hierarchical ATP occupancy ► Conservation of nucleoside contacts among TRiC orthologs mirrors ATP affinity ► ATP binding and hydrolysis in the low-affinity subunits are dispensable for life ► ATP usage segregates asymmetrically into two hemispheres of the chaperonin ring The eukaryotic chaperonin TRiC/CCT consists of two identical stacked rings assembled from eight paralogous subunits, each containing an ATP-binding domain. ATP hydrolysis induces lid closure, resulting in substrate encapsulation within the central folding chamber. Joachimiak, Frydman, and colleagues discover that paralogous subunits have strikingly different affinities for ATP conserved in evolution. High- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, thus generating an asymmetric power stroke that efficiently uses ATP to drive lid closure.
Author Reissmann, Stefanie
Nguyen, Anthony
Frydman, Judith
Chen, Bryan
Meyer, Anne S.
Joachimiak, Lukasz A.
AuthorAffiliation 1 Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
AuthorAffiliation_xml – name: 1 Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
Author_xml – sequence: 1
  givenname: Stefanie
  surname: Reissmann
  fullname: Reissmann, Stefanie
  organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
– sequence: 2
  givenname: Lukasz A.
  surname: Joachimiak
  fullname: Joachimiak, Lukasz A.
  email: lajoachi@stanford.edu
  organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
– sequence: 3
  givenname: Bryan
  surname: Chen
  fullname: Chen, Bryan
  organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
– sequence: 4
  givenname: Anne S.
  surname: Meyer
  fullname: Meyer, Anne S.
  organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
– sequence: 5
  givenname: Anthony
  surname: Nguyen
  fullname: Nguyen, Anthony
  organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
– sequence: 6
  givenname: Judith
  surname: Frydman
  fullname: Frydman, Judith
  email: jfrydman@stanford.edu
  organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23041314$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQx1eoiD7oN0DIRy5J_VzvckCKFhoiVaKCcLa83nHisFkH2wnKt8dpUtRyAF88msdv7Jn_ZXE2-AGK4g3BY4JJebMaG-gDbMYUEzrG1Riz8kVxQSkhI0K5PHtinxfXMa5wPiUmpOavinPKMCeM8IvCT9A06M7BkJC3aDK_RxNr3eCSg4imMEDQKVt6QJO4X68hBWfQvf8FAX1Lwf8A9DG4nRsWKC0BNUu9geAHN6D511lz0zRzdOv77hBv9qaH18VLq_sI16f7qvh--2nefB7dfZnOmsndyIhapJEuMWaGWc0kSKA17awUVGgDtbRcYsw7qIiUdUfq_JeSyFa3UhCuNeOiteyqmB25ndcrtQlurcNeee3Ug8OHhdIhufwixZk1HSmhlQBcdlZXBtO2Li0wKmrMMuvDkbXZtmvoTJ5V0P0z6PPI4JZq4XeKCc6qssqAdydA8D-3EJNau5gX2OsB_DYqQigthRCE5NS3T3v9afK4sZzw_phggo8xgFXGJZ2cP7R2vSJYHRSiVuqoEHVQiMKVygrJxfyv4kf-f8pOA4C8sZ2DoKLJijHQuQAm5ZG6fwN-A2st1l4
CitedBy_id crossref_primary_10_1002_pro_4298
crossref_primary_10_1016_j_molcel_2023_07_031
crossref_primary_10_1002_prot_24510
crossref_primary_10_1093_bioinformatics_btae112
crossref_primary_10_1016_j_mocell_2024_100012
crossref_primary_10_1042_BST20220591
crossref_primary_10_1007_s10529_021_03151_9
crossref_primary_10_1016_j_bpj_2016_04_045
crossref_primary_10_3390_jpm11020069
crossref_primary_10_1073_pnas_2018127118
crossref_primary_10_1016_j_cell_2014_10_042
crossref_primary_10_1021_acs_chemrev_5b00556
crossref_primary_10_3390_ijms161125975
crossref_primary_10_1016_j_bbrc_2016_10_120
crossref_primary_10_1038_s41467_024_45242_x
crossref_primary_10_3389_fcell_2022_906530
crossref_primary_10_1016_j_celrep_2014_09_056
crossref_primary_10_18632_oncotarget_19369
crossref_primary_10_1016_j_apsb_2021_12_024
crossref_primary_10_1073_pnas_1218836109
crossref_primary_10_1016_j_cell_2019_03_012
crossref_primary_10_1016_j_jmb_2015_04_013
crossref_primary_10_1016_j_str_2013_01_017
crossref_primary_10_1042_BCJ20170378
crossref_primary_10_3724_abbs_2022142
crossref_primary_10_1016_j_pbiomolbio_2020_08_006
crossref_primary_10_1146_annurev_biophys_082521_113418
crossref_primary_10_1126_sciadv_abb7242
crossref_primary_10_1016_j_pbiomolbio_2014_03_001
crossref_primary_10_1096_fj_14_1202ufm
crossref_primary_10_3390_ijms25168612
crossref_primary_10_1038_s41467_019_10781_1
crossref_primary_10_1038_s41467_021_25099_0
crossref_primary_10_1126_science_adp8721
crossref_primary_10_1016_j_cell_2018_07_006
crossref_primary_10_1017_S0033583519000143
crossref_primary_10_1038_nsmb_3309
crossref_primary_10_1128_iai_00234_24
crossref_primary_10_1016_j_str_2015_12_016
crossref_primary_10_1038_srep20696
crossref_primary_10_1021_cb400238a
crossref_primary_10_1016_j_febslet_2015_06_019
crossref_primary_10_1016_j_molcel_2023_09_032
crossref_primary_10_1111_febs_17213
crossref_primary_10_1111_tpj_14273
crossref_primary_10_1038_nnano_2013_242
crossref_primary_10_3390_ijms23052485
crossref_primary_10_1038_srep40859
crossref_primary_10_15252_embr_202052145
crossref_primary_10_1038_nsmb_3440
crossref_primary_10_1016_j_celrep_2017_12_069
crossref_primary_10_1016_j_sbi_2019_03_002
crossref_primary_10_1371_journal_pone_0176054
crossref_primary_10_1091_mbc_E16_04_0224
crossref_primary_10_1111_febs_13521
crossref_primary_10_1073_pnas_1617746114
crossref_primary_10_3103_S0096392523700219
crossref_primary_10_1016_j_cell_2022_11_014
crossref_primary_10_1126_science_aac4354
crossref_primary_10_1097_MD_0000000000033219
crossref_primary_10_1016_j_jmb_2015_06_007
crossref_primary_10_55959_10_55959_MSU0137_0952_16_78_3S_7
crossref_primary_10_1126_sciadv_ade1207
crossref_primary_10_1158_1078_0432_CCR_15_2502
crossref_primary_10_3389_fonc_2021_739660
crossref_primary_10_1016_j_jmb_2021_167399
crossref_primary_10_1073_pnas_1903976116
crossref_primary_10_1038_s41598_024_55199_y
crossref_primary_10_1002_bip_22361
crossref_primary_10_1155_2022_5239255
crossref_primary_10_1074_jbc_R117_796862
crossref_primary_10_3390_ijms241914850
crossref_primary_10_1016_j_sbi_2025_102999
crossref_primary_10_1038_nmeth_3631
crossref_primary_10_1074_jbc_M112_443929
crossref_primary_10_1096_fj_201701061R
crossref_primary_10_1007_s12192_018_0949_3
crossref_primary_10_1016_j_sbi_2022_102339
crossref_primary_10_1093_jxb_erz099
crossref_primary_10_1016_j_cell_2014_11_029
crossref_primary_10_1038_s41594_022_00755_1
crossref_primary_10_1038_s42003_023_04915_x
crossref_primary_10_1038_s41598_021_91086_6
Cites_doi 10.1038/emboj.2011.366
10.1016/S1074-7613(03)00024-4
10.1007/BF01946400
10.1016/S0092-8674(00)81152-6
10.1038/nsmb.1971
10.1038/nature10317
10.1126/science.285.5429.901
10.1038/emboj.2011.468
10.1016/S0022-2836(05)80360-2
10.1016/j.jmb.2010.06.037
10.1529/biophysj.106.097154
10.1016/j.jmb.2003.11.028
10.1006/jsbi.2001.4353
10.1016/j.tcb.2004.09.015
10.1038/ncb1477
10.1002/j.1460-2075.1996.tb00999.x
10.1006/jmbi.2000.3833
10.1038/371614a0
10.1146/annurev.cellbio.23.090506.123555
10.1016/j.ijfoodmicro.2011.12.035
10.1093/nar/gkl480
10.1016/j.jmb.2008.11.010
10.1371/journal.pbio.1000291
10.1110/ps.44401
10.1016/0968-0004(94)90058-2
10.1073/pnas.1112244108
10.1016/S0022-2836(03)00184-0
10.1093/bioinformatics/18.suppl_1.S71
10.1093/bioinformatics/bti430
10.1093/nar/gkn741
10.1093/emboj/18.1.85
10.1002/yea.1210
10.1016/j.abb.2008.03.015
10.1038/emboj.2011.208
10.1002/prot.10629
10.1016/S0092-8674(00)80742-4
10.1074/jbc.270.23.13956
10.1371/journal.pone.0015976
10.1016/j.cell.2005.11.039
10.1016/S0092-8674(03)00307-6
10.1038/ncb1478
10.1016/S0021-9258(19)50496-3
10.1038/nsmb1236
10.1038/nsmb.1436
10.1016/S1097-2765(03)00244-2
10.1016/S0168-6445(03)00065-2
10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO;2-#
10.1038/nsmb901
10.1038/375250a0
10.1093/molbev/msp259
10.1074/jbc.M900097200
10.1093/nar/22.22.4673
10.1021/cr040435v
10.1016/j.cell.2009.12.031
10.1002/(SICI)1097-0061(19960630)12:8<731::AID-YEA961>3.0.CO;2-Z
10.1177/1087057105285112
10.1016/S1097-2765(03)00423-4
10.1038/nsmb.1515
10.1016/j.molcel.2006.09.003
10.1074/jbc.M406795200
10.1016/j.cell.2010.12.017
10.1038/nrm2993
10.1093/genetics/147.4.1609
10.1016/j.str.2012.03.007
ContentType Journal Article
Copyright 2012 The Authors
Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
2012 The Authors 2012
Copyright_xml – notice: 2012 The Authors
– notice: Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2012 The Authors 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2012.08.036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 877
ExternalDocumentID oai_doaj_org_article_43fcd16eb7ee47dfa8c02b96fe325903
PMC3543868
23041314
10_1016_j_celrep_2012_08_036
S2211124712002768
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM074074
– fundername: NEI NIH HHS
  grantid: PN2 EY016525
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM074074 || GM
– fundername: National Eye Institute : NEI
  grantid: PN2 EY016525 || EY
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
HZ~
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-a6003c3fa37e7e292df7525ace97f47004de81779d19304617bab7514aa345bf3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:24:16 EDT 2025
Thu Aug 21 17:59:07 EDT 2025
Fri Jul 11 04:03:51 EDT 2025
Mon Jul 21 06:01:43 EDT 2025
Tue Jul 01 03:07:15 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Wed May 17 00:07:18 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-a6003c3fa37e7e292df7525ace97f47004de81779d19304617bab7514aa345bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Present address: Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
Present address: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2012.08.036
PMID 23041314
PQID 1122655511
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_43fcd16eb7ee47dfa8c02b96fe325903
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3543868
proquest_miscellaneous_1122655511
pubmed_primary_23041314
crossref_citationtrail_10_1016_j_celrep_2012_08_036
crossref_primary_10_1016_j_celrep_2012_08_036
elsevier_sciencedirect_doi_10_1016_j_celrep_2012_08_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-25
PublicationDateYYYYMMDD 2012-10-25
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Pupko, Bell, Mayrose, Glaser, Ben-Tal (bib37) 2002; 18
Cong, Schroder, Meyer, Jakana, Ma, Dougherty, Schmid, Reissmann, Levitt, Ludtke (bib13) 2011; 31
Rivenzon-Segal, Wolf, Shimon, Willison, Horovitz (bib41) 2005; 12
Abe, Yoon, Kubota, Mendoza, Gygi, Blenis (bib1) 2009; 284
Thulasiraman, Yang, Frydman (bib47) 1999; 18
Douglas, Reissmann, Zhang, Chen, Jakana, Kumar, Chiu, Frydman (bib17) 2011; 144
Spiess, Meyer, Reissmann, Frydman (bib43) 2004; 14
Bigotti, Clarke (bib8) 2008; 474
Pereira, Ralston, Douglas, Kumar, Lopez, McAndrew, Knee, King, Frydman, Adams (bib36) 2011; 31
Kim, Willison, Horwich (bib28) 1994; 19
Albanèse, Yam, Baughman, Parnot, Frydman (bib2) 2006; 124
Richard (bib39) 2003; 27
Lin, Cardillo, Richard, Segel, Sherman (bib31) 1997; 147
Tam, Geller, Spiess, Frydman (bib46) 2006; 8
Neef, Turski, Thiele (bib35) 2010; 8
Bertram, Satin, Pedersen, Luciani, Sherman (bib7) 2007; 92
Ditzel, Löwe, Stock, Stetter, Huber, Huber, Steinbacher (bib16) 1998; 93
Fenton, Kashi, Furtak, Horwich (bib19) 1994; 371
Bochkareva, Lissin, Flynn, Rothman, Girshovich (bib9) 1992; 267
Dekker, Roe, McCormack, Beuron, Pearl, Willison (bib15) 2011; 30
Amit, Weisberg, Nadler-Holly, McCormack, Feldmesser, Kaganovich, Willison, Horovitz (bib3) 2010; 401
Horwich, Farr, Fenton (bib23) 2006; 106
Camasses, Bogdanova, Shevchenko, Zachariae (bib11) 2003; 12
Tian, Vainberg, Tap, Lewis, Cowan (bib49) 1995; 375
Reissmann, Parnot, Booth, Chiu, Frydman (bib38) 2007; 14
Richard, Teusink, Hemker, Van Dam, Westerhoff (bib40) 1996; 12
Rye, Roseman, Chen, Furtak, Fenton, Saibil, Horwich (bib42) 1999; 97
van Anken, Romijn, Maggioni, Mezghrani, Sitia, Braakman, Heck (bib51) 2003; 18
Chivian, Baker (bib12) 2006; 34
Kafri, Willison, Horovitz (bib27) 2001; 10
Taguchi, Tsukuda, Motojima, Koike-Takeshita, Yoshida (bib45) 2004; 279
Viarengo, Secondini, Scoppa, Orunesu (bib52) 1986; 42
Muñoz, Yébenes, Zhou, Mesa, Serna, Park, Bragado-Nilsson, Beloso, de Cárcer, Malumbres (bib34) 2011; 18
Yam, Xia, Lin, Burlingame, Gerstein, Frydman (bib54) 2008; 15
Hartl, Bracher, Hayer-Hartl (bib22) 2011; 475
Meyer, Gillespie, Walther, Millet, Doniach, Frydman (bib33) 2003; 113
Archibald, Blouin, Doolittle (bib4) 2001; 135
Liu, Larsson, Caballero, Hao, Oling, Grantham, Nyström (bib32) 2010; 140
Feldman, Spiess, Howard, Frydman (bib18) 2003; 12
Batista-Nascimento, Neef, Liu, Rodrigues-Pousada, Thiele (bib6) 2011; 6
Booth, Meyer, Cong, Topf, Sali, Ludtke, Chiu, Frydman (bib10) 2008; 15
Gutsche, Mihalache, Baumeister (bib20) 2000; 300
Thulasiraman, Ferreyra, Frydman (bib48) 2000; 140
Spiess, Miller, McClellan, Frydman (bib44) 2006; 24
Kitamura, Kubota, Pack, Matsumoto, Hirayama, Takahashi, Kimura, Kinjo, Morimoto, Nagata (bib29) 2006; 8
Hara, Mori (bib21) 2006; 11
Kabir, Kaminska, Segel, Bethlendy, Lin, Della Seta, Blegen, Swiderek, Zoładek, Arndt, Sherman (bib26) 2005; 22
Tyedmers, Mogk, Bukau (bib50) 2010; 11
Davis, Baker (bib14) 2009; 385
Horwich, Fenton, Chapman, Farr (bib24) 2007; 23
Weiss, Goloubinoff (bib53) 1995; 270
Ashkenazy, Erez, Martz, Pupko, Ben-Tal (bib5) 2010; 38
Leitner, Joachimiak, Bracher, Mönkemeyer, Walzthoeni, Chen, Pechmann, Holmes, Cong, Ma (bib30) 2012; 20
Jiang, Douglas, Conley, Miller, Frydman, Moerner (bib25) 2011; 108
Hara (10.1016/j.celrep.2012.08.036_bib21) 2006; 11
Liu (10.1016/j.celrep.2012.08.036_bib32) 2010; 140
Dekker (10.1016/j.celrep.2012.08.036_bib15) 2011; 30
Davis (10.1016/j.celrep.2012.08.036_bib14) 2009; 385
Leitner (10.1016/j.celrep.2012.08.036_bib30) 2012; 20
Reissmann (10.1016/j.celrep.2012.08.036_bib38) 2007; 14
Viarengo (10.1016/j.celrep.2012.08.036_bib52) 1986; 42
Ditzel (10.1016/j.celrep.2012.08.036_bib16) 1998; 93
Kim (10.1016/j.celrep.2012.08.036_bib28) 1994; 19
Albanèse (10.1016/j.celrep.2012.08.036_bib2) 2006; 124
Neef (10.1016/j.celrep.2012.08.036_bib35) 2010; 8
van Anken (10.1016/j.celrep.2012.08.036_bib51) 2003; 18
Batista-Nascimento (10.1016/j.celrep.2012.08.036_bib6) 2011; 6
Meyer (10.1016/j.celrep.2012.08.036_bib33) 2003; 113
Tian (10.1016/j.celrep.2012.08.036_bib49) 1995; 375
10.1016/j.celrep.2012.08.036_bib67
Douglas (10.1016/j.celrep.2012.08.036_bib17) 2011; 144
Muñoz (10.1016/j.celrep.2012.08.036_bib34) 2011; 18
10.1016/j.celrep.2012.08.036_bib68
10.1016/j.celrep.2012.08.036_bib65
10.1016/j.celrep.2012.08.036_bib66
Bigotti (10.1016/j.celrep.2012.08.036_bib8) 2008; 474
10.1016/j.celrep.2012.08.036_bib63
Spiess (10.1016/j.celrep.2012.08.036_bib43) 2004; 14
10.1016/j.celrep.2012.08.036_bib64
Tyedmers (10.1016/j.celrep.2012.08.036_bib50) 2010; 11
10.1016/j.celrep.2012.08.036_bib61
Bochkareva (10.1016/j.celrep.2012.08.036_bib9) 1992; 267
10.1016/j.celrep.2012.08.036_bib62
Feldman (10.1016/j.celrep.2012.08.036_bib18) 2003; 12
10.1016/j.celrep.2012.08.036_bib60
Richard (10.1016/j.celrep.2012.08.036_bib39) 2003; 27
Gutsche (10.1016/j.celrep.2012.08.036_bib20) 2000; 300
Thulasiraman (10.1016/j.celrep.2012.08.036_bib48) 2000; 140
Amit (10.1016/j.celrep.2012.08.036_bib3) 2010; 401
Rivenzon-Segal (10.1016/j.celrep.2012.08.036_bib41) 2005; 12
Taguchi (10.1016/j.celrep.2012.08.036_bib45) 2004; 279
Cong (10.1016/j.celrep.2012.08.036_bib13) 2011; 31
Bertram (10.1016/j.celrep.2012.08.036_bib7) 2007; 92
Chivian (10.1016/j.celrep.2012.08.036_bib12) 2006; 34
Spiess (10.1016/j.celrep.2012.08.036_bib44) 2006; 24
10.1016/j.celrep.2012.08.036_bib58
10.1016/j.celrep.2012.08.036_bib59
10.1016/j.celrep.2012.08.036_bib56
Yam (10.1016/j.celrep.2012.08.036_bib54) 2008; 15
10.1016/j.celrep.2012.08.036_bib57
10.1016/j.celrep.2012.08.036_bib55
Thulasiraman (10.1016/j.celrep.2012.08.036_bib47) 1999; 18
Camasses (10.1016/j.celrep.2012.08.036_bib11) 2003; 12
Jiang (10.1016/j.celrep.2012.08.036_bib25) 2011; 108
Fenton (10.1016/j.celrep.2012.08.036_bib19) 1994; 371
Archibald (10.1016/j.celrep.2012.08.036_bib4) 2001; 135
Horwich (10.1016/j.celrep.2012.08.036_bib24) 2007; 23
Pupko (10.1016/j.celrep.2012.08.036_bib37) 2002; 18
Kafri (10.1016/j.celrep.2012.08.036_bib27) 2001; 10
Rye (10.1016/j.celrep.2012.08.036_bib42) 1999; 97
Tam (10.1016/j.celrep.2012.08.036_bib46) 2006; 8
Hartl (10.1016/j.celrep.2012.08.036_bib22) 2011; 475
Richard (10.1016/j.celrep.2012.08.036_bib40) 1996; 12
Kabir (10.1016/j.celrep.2012.08.036_bib26) 2005; 22
Horwich (10.1016/j.celrep.2012.08.036_bib23) 2006; 106
Lin (10.1016/j.celrep.2012.08.036_bib31) 1997; 147
Pereira (10.1016/j.celrep.2012.08.036_bib36) 2011; 31
Abe (10.1016/j.celrep.2012.08.036_bib1) 2009; 284
Booth (10.1016/j.celrep.2012.08.036_bib10) 2008; 15
Kitamura (10.1016/j.celrep.2012.08.036_bib29) 2006; 8
Ashkenazy (10.1016/j.celrep.2012.08.036_bib5) 2010; 38
Weiss (10.1016/j.celrep.2012.08.036_bib53) 1995; 270
9878053 - EMBO J. 1999 Jan 4;18(1):85-95
18536725 - Nat Struct Mol Biol. 2008 Jul;15(7):746-53
14550945 - FEMS Microbiol Rev. 2003 Oct;27(4):547-57
11484485 - Methods Mol Biol. 2000;140:161-7
17018290 - Mol Cell. 2006 Oct 6;24(1):25-37
22045336 - EMBO J. 2012 Feb 1;31(3):720-30
12594951 - Immunity. 2003 Feb;18(2):243-53
11266630 - Protein Sci. 2001 Feb;10(2):445-9
17489689 - Annu Rev Cell Dev Biol. 2007;23:115-45
7746329 - Nature. 1995 May 18;375(6528):250-3
16413483 - Cell. 2006 Jan 13;124(1):75-88
9546398 - Cell. 1998 Apr 3;93(1):125-38
7775456 - J Biol Chem. 1995 Jun 9;270(23):13956-60
17172305 - Biophys J. 2007 Mar 1;92(5):1544-55
16490767 - J Biomol Screen. 2006 Apr;11(3):310-7
11580265 - J Struct Biol. 2001 Aug;135(2):157-69
21776078 - Nature. 2011 Jul 21;475(7356):324-32
22193720 - EMBO J. 2012 Feb 1;31(3):731-40
20600117 - J Mol Biol. 2010 Aug 20;401(3):532-43
15519848 - Trends Cell Biol. 2004 Nov;14(11):598-604
16980958 - Nat Cell Biol. 2006 Oct;8(10):1163-70
16971460 - Nucleic Acids Res. 2006;34(17):e112
22503819 - Structure. 2012 May 9;20(5):814-25
17460696 - Nat Struct Mol Biol. 2007 May;14(5):432-40
18395510 - Arch Biochem Biophys. 2008 Jun 15;474(2):331-9
21701561 - EMBO J. 2011 Aug 3;30(15):3078-90
20944667 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88
7846767 - Trends Biochem Sci. 1994 Dec;19(12):543-8
15696173 - Nat Struct Mol Biol. 2005 Mar;12(3):233-7
8813760 - Yeast. 1996 Jun 30;12(8):731-40
20098725 - PLoS Biol. 2010 Jan;8(1):e1000291
7935796 - Nature. 1994 Oct 13;371(6498):614-9
3780947 - Experientia. 1986 Dec 1;42(11-12):1234-5
20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33
14636579 - Mol Cell. 2003 Nov;12(5):1213-24
19011634 - Nat Struct Mol Biol. 2008 Dec;15(12):1255-62
9409825 - Genetics. 1997 Dec;147(4):1609-33
12169533 - Bioinformatics. 2002;18 Suppl 1:S71-7
21241893 - Cell. 2011 Jan 21;144(2):240-52
21151115 - Nat Struct Mol Biol. 2011 Jan;18(1):14-9
21253609 - PLoS One. 2011;6(1):e15976
10319813 - Cell. 1999 Apr 30;97(3):325-38
21896715 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16962-7
15704212 - Yeast. 2005 Feb;22(3):219-39
15347650 - J Biol Chem. 2004 Oct 29;279(44):45737-43
19332537 - J Biol Chem. 2009 May 29;284(22):14939-48
19041878 - J Mol Biol. 2009 Jan 16;385(2):381-92
16980959 - Nat Cell Biol. 2006 Oct;8(10):1155-62
10864508 - J Mol Biol. 2000 Jun 30;300(1):187-96
1348056 - J Biol Chem. 1992 Apr 5;267(10):6796-800
16683761 - Chem Rev. 2006 May;106(5):1917-30
12732144 - Cell. 2003 May 2;113(3):369-81
20141839 - Cell. 2010 Jan 22;140(2):257-67
12887895 - Mol Cell. 2003 Jul;12(1):87-100
References_xml – volume: 22
  start-page: 219
  year: 2005
  end-page: 239
  ident: bib26
  article-title: Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae
  publication-title: Yeast
– volume: 10
  start-page: 445
  year: 2001
  end-page: 449
  ident: bib27
  article-title: Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1
  publication-title: Protein Sci.
– volume: 12
  start-page: 731
  year: 1996
  end-page: 740
  ident: bib40
  article-title: Sustained oscillations in free-energy state and hexose phosphates in yeast
  publication-title: Yeast
– volume: 401
  start-page: 532
  year: 2010
  end-page: 543
  ident: bib3
  article-title: Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes
  publication-title: J. Mol. Biol.
– volume: 34
  start-page: e112
  year: 2006
  ident: bib12
  article-title: Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 543
  year: 1994
  end-page: 548
  ident: bib28
  article-title: Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains
  publication-title: Trends Biochem. Sci.
– volume: 18
  start-page: 243
  year: 2003
  end-page: 253
  ident: bib51
  article-title: Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion
  publication-title: Immunity
– volume: 31
  start-page: 720
  year: 2011
  end-page: 730
  ident: bib13
  article-title: Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle
  publication-title: EMBO J.
– volume: 18
  start-page: 85
  year: 1999
  end-page: 95
  ident: bib47
  article-title: In vivo newly translated polypeptides are sequestered in a protected folding environment
  publication-title: EMBO J.
– volume: 11
  start-page: 310
  year: 2006
  end-page: 317
  ident: bib21
  article-title: An efficient method for quantitative determination of cellular ATP synthetic activity
  publication-title: J. Biomol. Screen.
– volume: 18
  start-page: 14
  year: 2011
  end-page: 19
  ident: bib34
  article-title: Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin
  publication-title: Nat. Struct. Mol. Biol.
– volume: 371
  start-page: 614
  year: 1994
  end-page: 619
  ident: bib19
  article-title: Residues in chaperonin GroEL required for polypeptide binding and release
  publication-title: Nature
– volume: 15
  start-page: 1255
  year: 2008
  end-page: 1262
  ident: bib54
  article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
  publication-title: Nat. Struct. Mol. Biol.
– volume: 12
  start-page: 1213
  year: 2003
  end-page: 1224
  ident: bib18
  article-title: Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding
  publication-title: Mol. Cell
– volume: 14
  start-page: 432
  year: 2007
  end-page: 440
  ident: bib38
  article-title: Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
  publication-title: Nat. Struct. Mol. Biol.
– volume: 140
  start-page: 257
  year: 2010
  end-page: 267
  ident: bib32
  article-title: The polarisome is required for segregation and retrograde transport of protein aggregates
  publication-title: Cell
– volume: 106
  start-page: 1917
  year: 2006
  end-page: 1930
  ident: bib23
  article-title: GroEL-GroES-mediated protein folding
  publication-title: Chem. Rev.
– volume: 475
  start-page: 324
  year: 2011
  end-page: 332
  ident: bib22
  article-title: Molecular chaperones in protein folding and proteostasis
  publication-title: Nature
– volume: 11
  start-page: 777
  year: 2010
  end-page: 788
  ident: bib50
  article-title: Cellular strategies for controlling protein aggregation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 284
  start-page: 14939
  year: 2009
  end-page: 14948
  ident: bib1
  article-title: p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 16962
  year: 2011
  end-page: 16967
  ident: bib25
  article-title: Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 375
  start-page: 250
  year: 1995
  end-page: 253
  ident: bib49
  article-title: Specificity in chaperonin-mediated protein folding
  publication-title: Nature
– volume: 38
  year: 2010
  ident: bib5
  article-title: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids
  publication-title: Nucleic Acids Res.
– volume: 267
  start-page: 6796
  year: 1992
  end-page: 6800
  ident: bib9
  article-title: Positive cooperativity in the functioning of molecular chaperone GroEL
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 233
  year: 2005
  end-page: 237
  ident: bib41
  article-title: Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
  publication-title: Nat. Struct. Mol. Biol.
– volume: 135
  start-page: 157
  year: 2001
  end-page: 169
  ident: bib4
  article-title: Gene duplication and the evolution of group II chaperonins: implications for structure and function
  publication-title: J. Struct. Biol.
– volume: 31
  start-page: 731
  year: 2011
  end-page: 740
  ident: bib36
  article-title: Mechanism of nucleotide sensing in group II chaperonins
  publication-title: EMBO J.
– volume: 270
  start-page: 13956
  year: 1995
  end-page: 13960
  ident: bib53
  article-title: A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 75
  year: 2006
  end-page: 88
  ident: bib2
  article-title: Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells
  publication-title: Cell
– volume: 24
  start-page: 25
  year: 2006
  end-page: 37
  ident: bib44
  article-title: Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins
  publication-title: Mol. Cell
– volume: 140
  start-page: 161
  year: 2000
  end-page: 167
  ident: bib48
  article-title: Monitoring actin folding. Purification protocols for labeled proteins and binding to DNase I-sepharose beads
  publication-title: Methods Mol. Biol.
– volume: 385
  start-page: 381
  year: 2009
  end-page: 392
  ident: bib14
  article-title: RosettaLigand docking with full ligand and receptor flexibility
  publication-title: J. Mol. Biol.
– volume: 8
  start-page: 1155
  year: 2006
  end-page: 1162
  ident: bib46
  article-title: The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
  publication-title: Nat. Cell Biol.
– volume: 279
  start-page: 45737
  year: 2004
  end-page: 45743
  ident: bib45
  article-title: BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers
  publication-title: J. Biol. Chem.
– volume: 113
  start-page: 369
  year: 2003
  end-page: 381
  ident: bib33
  article-title: Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
  publication-title: Cell
– volume: 97
  start-page: 325
  year: 1999
  end-page: 338
  ident: bib42
  article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
  publication-title: Cell
– volume: 30
  start-page: 3078
  year: 2011
  end-page: 3090
  ident: bib15
  article-title: The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins
  publication-title: EMBO J.
– volume: 93
  start-page: 125
  year: 1998
  end-page: 138
  ident: bib16
  article-title: Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT
  publication-title: Cell
– volume: 144
  start-page: 240
  year: 2011
  end-page: 252
  ident: bib17
  article-title: Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber
  publication-title: Cell
– volume: 20
  start-page: 814
  year: 2012
  end-page: 825
  ident: bib30
  article-title: The molecular architecture of the eukaryotic chaperonin TRiC/CCT
  publication-title: Structure
– volume: 14
  start-page: 598
  year: 2004
  end-page: 604
  ident: bib43
  article-title: Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets
  publication-title: Trends Cell Biol.
– volume: 15
  start-page: 746
  year: 2008
  end-page: 753
  ident: bib10
  article-title: Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT
  publication-title: Nat. Struct. Mol. Biol.
– volume: 23
  start-page: 115
  year: 2007
  end-page: 145
  ident: bib24
  article-title: Two families of chaperonin: physiology and mechanism
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 92
  start-page: 1544
  year: 2007
  end-page: 1555
  ident: bib7
  article-title: Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets
  publication-title: Biophys. J.
– volume: 42
  start-page: 1234
  year: 1986
  end-page: 1235
  ident: bib52
  article-title: A rapid HPLC method for determination of adenylate energy charge
  publication-title: Experientia
– volume: 8
  start-page: 1163
  year: 2006
  end-page: 1170
  ident: bib29
  article-title: Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
  publication-title: Nat. Cell Biol.
– volume: 8
  start-page: e1000291
  year: 2010
  ident: bib35
  article-title: Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease
  publication-title: PLoS Biol.
– volume: 300
  start-page: 187
  year: 2000
  end-page: 196
  ident: bib20
  article-title: ATPase cycle of an archaeal chaperonin
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: e15976
  year: 2011
  ident: bib6
  article-title: Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast
  publication-title: PLoS ONE
– volume: 474
  start-page: 331
  year: 2008
  end-page: 339
  ident: bib8
  article-title: Chaperonins: the hunt for the Group II mechanism
  publication-title: Arch. Biochem. Biophys.
– volume: 147
  start-page: 1609
  year: 1997
  end-page: 1633
  ident: bib31
  article-title: Analysis of mutationally altered forms of the Cct6 subunit of the chaperonin from Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 18
  start-page: S71
  year: 2002
  end-page: S77
  ident: bib37
  article-title: Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues
  publication-title: Bioinformatics
– volume: 27
  start-page: 547
  year: 2003
  end-page: 557
  ident: bib39
  article-title: The rhythm of yeast
  publication-title: FEMS Microbiol. Rev.
– volume: 12
  start-page: 87
  year: 2003
  end-page: 100
  ident: bib11
  article-title: The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20
  publication-title: Mol. Cell
– ident: 10.1016/j.celrep.2012.08.036_bib56
  doi: 10.1038/emboj.2011.366
– volume: 18
  start-page: 243
  year: 2003
  ident: 10.1016/j.celrep.2012.08.036_bib51
  article-title: Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion
  publication-title: Immunity
  doi: 10.1016/S1074-7613(03)00024-4
– volume: 42
  start-page: 1234
  year: 1986
  ident: 10.1016/j.celrep.2012.08.036_bib52
  article-title: A rapid HPLC method for determination of adenylate energy charge
  publication-title: Experientia
  doi: 10.1007/BF01946400
– volume: 140
  start-page: 161
  year: 2000
  ident: 10.1016/j.celrep.2012.08.036_bib48
  article-title: Monitoring actin folding. Purification protocols for labeled proteins and binding to DNase I-sepharose beads
  publication-title: Methods Mol. Biol.
– volume: 93
  start-page: 125
  year: 1998
  ident: 10.1016/j.celrep.2012.08.036_bib16
  article-title: Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81152-6
– ident: 10.1016/j.celrep.2012.08.036_bib61
  doi: 10.1038/nsmb.1971
– volume: 475
  start-page: 324
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib22
  article-title: Molecular chaperones in protein folding and proteostasis
  publication-title: Nature
  doi: 10.1038/nature10317
– ident: 10.1016/j.celrep.2012.08.036_bib68
  doi: 10.1126/science.285.5429.901
– volume: 31
  start-page: 731
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib36
  article-title: Mechanism of nucleotide sensing in group II chaperonins
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.468
– ident: 10.1016/j.celrep.2012.08.036_bib55
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 401
  start-page: 532
  year: 2010
  ident: 10.1016/j.celrep.2012.08.036_bib3
  article-title: Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.06.037
– volume: 92
  start-page: 1544
  year: 2007
  ident: 10.1016/j.celrep.2012.08.036_bib7
  article-title: Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.097154
– ident: 10.1016/j.celrep.2012.08.036_bib65
  doi: 10.1016/j.jmb.2003.11.028
– volume: 135
  start-page: 157
  year: 2001
  ident: 10.1016/j.celrep.2012.08.036_bib4
  article-title: Gene duplication and the evolution of group II chaperonins: implications for structure and function
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2001.4353
– volume: 14
  start-page: 598
  year: 2004
  ident: 10.1016/j.celrep.2012.08.036_bib43
  article-title: Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.09.015
– volume: 8
  start-page: 1155
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib46
  article-title: The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1477
– ident: 10.1016/j.celrep.2012.08.036_bib59
  doi: 10.1002/j.1460-2075.1996.tb00999.x
– volume: 300
  start-page: 187
  year: 2000
  ident: 10.1016/j.celrep.2012.08.036_bib20
  article-title: ATPase cycle of an archaeal chaperonin
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3833
– volume: 371
  start-page: 614
  year: 1994
  ident: 10.1016/j.celrep.2012.08.036_bib19
  article-title: Residues in chaperonin GroEL required for polypeptide binding and release
  publication-title: Nature
  doi: 10.1038/371614a0
– volume: 23
  start-page: 115
  year: 2007
  ident: 10.1016/j.celrep.2012.08.036_bib24
  article-title: Two families of chaperonin: physiology and mechanism
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.23.090506.123555
– ident: 10.1016/j.celrep.2012.08.036_bib62
  doi: 10.1016/j.ijfoodmicro.2011.12.035
– volume: 34
  start-page: e112
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib12
  article-title: Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl480
– volume: 385
  start-page: 381
  year: 2009
  ident: 10.1016/j.celrep.2012.08.036_bib14
  article-title: RosettaLigand docking with full ligand and receptor flexibility
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.11.010
– volume: 8
  start-page: e1000291
  year: 2010
  ident: 10.1016/j.celrep.2012.08.036_bib35
  article-title: Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000291
– volume: 10
  start-page: 445
  year: 2001
  ident: 10.1016/j.celrep.2012.08.036_bib27
  article-title: Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1
  publication-title: Protein Sci.
  doi: 10.1110/ps.44401
– volume: 19
  start-page: 543
  year: 1994
  ident: 10.1016/j.celrep.2012.08.036_bib28
  article-title: Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(94)90058-2
– volume: 108
  start-page: 16962
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib25
  article-title: Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112244108
– ident: 10.1016/j.celrep.2012.08.036_bib67
  doi: 10.1016/S0022-2836(03)00184-0
– volume: 18
  start-page: S71
  issue: Suppl 1
  year: 2002
  ident: 10.1016/j.celrep.2012.08.036_bib37
  article-title: Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_1.S71
– ident: 10.1016/j.celrep.2012.08.036_bib60
  doi: 10.1093/bioinformatics/bti430
– ident: 10.1016/j.celrep.2012.08.036_bib64
  doi: 10.1093/nar/gkn741
– volume: 18
  start-page: 85
  year: 1999
  ident: 10.1016/j.celrep.2012.08.036_bib47
  article-title: In vivo newly translated polypeptides are sequestered in a protected folding environment
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.1.85
– volume: 22
  start-page: 219
  year: 2005
  ident: 10.1016/j.celrep.2012.08.036_bib26
  article-title: Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.1210
– volume: 474
  start-page: 331
  year: 2008
  ident: 10.1016/j.celrep.2012.08.036_bib8
  article-title: Chaperonins: the hunt for the Group II mechanism
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2008.03.015
– volume: 30
  start-page: 3078
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib15
  article-title: The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.208
– ident: 10.1016/j.celrep.2012.08.036_bib63
  doi: 10.1002/prot.10629
– volume: 97
  start-page: 325
  year: 1999
  ident: 10.1016/j.celrep.2012.08.036_bib42
  article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80742-4
– volume: 270
  start-page: 13956
  year: 1995
  ident: 10.1016/j.celrep.2012.08.036_bib53
  article-title: A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.23.13956
– volume: 6
  start-page: e15976
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib6
  article-title: Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0015976
– volume: 124
  start-page: 75
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib2
  article-title: Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.039
– volume: 113
  start-page: 369
  year: 2003
  ident: 10.1016/j.celrep.2012.08.036_bib33
  article-title: Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00307-6
– volume: 8
  start-page: 1163
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib29
  article-title: Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1478
– volume: 267
  start-page: 6796
  year: 1992
  ident: 10.1016/j.celrep.2012.08.036_bib9
  article-title: Positive cooperativity in the functioning of molecular chaperone GroEL
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50496-3
– volume: 14
  start-page: 432
  year: 2007
  ident: 10.1016/j.celrep.2012.08.036_bib38
  article-title: Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1236
– volume: 15
  start-page: 746
  year: 2008
  ident: 10.1016/j.celrep.2012.08.036_bib10
  article-title: Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1436
– volume: 12
  start-page: 87
  year: 2003
  ident: 10.1016/j.celrep.2012.08.036_bib11
  article-title: The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00244-2
– volume: 27
  start-page: 547
  year: 2003
  ident: 10.1016/j.celrep.2012.08.036_bib39
  article-title: The rhythm of yeast
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/S0168-6445(03)00065-2
– ident: 10.1016/j.celrep.2012.08.036_bib57
  doi: 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO;2-#
– volume: 12
  start-page: 233
  year: 2005
  ident: 10.1016/j.celrep.2012.08.036_bib41
  article-title: Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb901
– volume: 375
  start-page: 250
  year: 1995
  ident: 10.1016/j.celrep.2012.08.036_bib49
  article-title: Specificity in chaperonin-mediated protein folding
  publication-title: Nature
  doi: 10.1038/375250a0
– ident: 10.1016/j.celrep.2012.08.036_bib58
  doi: 10.1093/molbev/msp259
– volume: 284
  start-page: 14939
  year: 2009
  ident: 10.1016/j.celrep.2012.08.036_bib1
  article-title: p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M900097200
– ident: 10.1016/j.celrep.2012.08.036_bib66
  doi: 10.1093/nar/22.22.4673
– volume: 31
  start-page: 720
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib13
  article-title: Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.366
– volume: 106
  start-page: 1917
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib23
  article-title: GroEL-GroES-mediated protein folding
  publication-title: Chem. Rev.
  doi: 10.1021/cr040435v
– volume: 140
  start-page: 257
  year: 2010
  ident: 10.1016/j.celrep.2012.08.036_bib32
  article-title: The polarisome is required for segregation and retrograde transport of protein aggregates
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.031
– volume: 12
  start-page: 731
  year: 1996
  ident: 10.1016/j.celrep.2012.08.036_bib40
  article-title: Sustained oscillations in free-energy state and hexose phosphates in yeast
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19960630)12:8<731::AID-YEA961>3.0.CO;2-Z
– volume: 11
  start-page: 310
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib21
  article-title: An efficient method for quantitative determination of cellular ATP synthetic activity
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057105285112
– volume: 12
  start-page: 1213
  year: 2003
  ident: 10.1016/j.celrep.2012.08.036_bib18
  article-title: Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00423-4
– volume: 15
  start-page: 1255
  year: 2008
  ident: 10.1016/j.celrep.2012.08.036_bib54
  article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1515
– volume: 38
  issue: Web Server issue
  year: 2010
  ident: 10.1016/j.celrep.2012.08.036_bib5
  article-title: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 25
  year: 2006
  ident: 10.1016/j.celrep.2012.08.036_bib44
  article-title: Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.09.003
– volume: 279
  start-page: 45737
  year: 2004
  ident: 10.1016/j.celrep.2012.08.036_bib45
  article-title: BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M406795200
– volume: 144
  start-page: 240
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib17
  article-title: Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.017
– volume: 11
  start-page: 777
  year: 2010
  ident: 10.1016/j.celrep.2012.08.036_bib50
  article-title: Cellular strategies for controlling protein aggregation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2993
– volume: 18
  start-page: 14
  year: 2011
  ident: 10.1016/j.celrep.2012.08.036_bib34
  article-title: Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1971
– volume: 147
  start-page: 1609
  year: 1997
  ident: 10.1016/j.celrep.2012.08.036_bib31
  article-title: Analysis of mutationally altered forms of the Cct6 subunit of the chaperonin from Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/147.4.1609
– volume: 20
  start-page: 814
  year: 2012
  ident: 10.1016/j.celrep.2012.08.036_bib30
  article-title: The molecular architecture of the eukaryotic chaperonin TRiC/CCT
  publication-title: Structure
  doi: 10.1016/j.str.2012.03.007
– reference: 12169533 - Bioinformatics. 2002;18 Suppl 1:S71-7
– reference: 20944667 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88
– reference: 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33
– reference: 17460696 - Nat Struct Mol Biol. 2007 May;14(5):432-40
– reference: 15519848 - Trends Cell Biol. 2004 Nov;14(11):598-604
– reference: 14636579 - Mol Cell. 2003 Nov;12(5):1213-24
– reference: 16683761 - Chem Rev. 2006 May;106(5):1917-30
– reference: 17018290 - Mol Cell. 2006 Oct 6;24(1):25-37
– reference: 18395510 - Arch Biochem Biophys. 2008 Jun 15;474(2):331-9
– reference: 19332537 - J Biol Chem. 2009 May 29;284(22):14939-48
– reference: 22503819 - Structure. 2012 May 9;20(5):814-25
– reference: 18536725 - Nat Struct Mol Biol. 2008 Jul;15(7):746-53
– reference: 9409825 - Genetics. 1997 Dec;147(4):1609-33
– reference: 7775456 - J Biol Chem. 1995 Jun 9;270(23):13956-60
– reference: 16490767 - J Biomol Screen. 2006 Apr;11(3):310-7
– reference: 21776078 - Nature. 2011 Jul 21;475(7356):324-32
– reference: 10319813 - Cell. 1999 Apr 30;97(3):325-38
– reference: 22045336 - EMBO J. 2012 Feb 1;31(3):720-30
– reference: 12594951 - Immunity. 2003 Feb;18(2):243-53
– reference: 21896715 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16962-7
– reference: 9546398 - Cell. 1998 Apr 3;93(1):125-38
– reference: 21151115 - Nat Struct Mol Biol. 2011 Jan;18(1):14-9
– reference: 22193720 - EMBO J. 2012 Feb 1;31(3):731-40
– reference: 19011634 - Nat Struct Mol Biol. 2008 Dec;15(12):1255-62
– reference: 21253609 - PLoS One. 2011;6(1):e15976
– reference: 11484485 - Methods Mol Biol. 2000;140:161-7
– reference: 15704212 - Yeast. 2005 Feb;22(3):219-39
– reference: 3780947 - Experientia. 1986 Dec 1;42(11-12):1234-5
– reference: 15696173 - Nat Struct Mol Biol. 2005 Mar;12(3):233-7
– reference: 20600117 - J Mol Biol. 2010 Aug 20;401(3):532-43
– reference: 20141839 - Cell. 2010 Jan 22;140(2):257-67
– reference: 11580265 - J Struct Biol. 2001 Aug;135(2):157-69
– reference: 10864508 - J Mol Biol. 2000 Jun 30;300(1):187-96
– reference: 16980958 - Nat Cell Biol. 2006 Oct;8(10):1163-70
– reference: 16971460 - Nucleic Acids Res. 2006;34(17):e112
– reference: 16413483 - Cell. 2006 Jan 13;124(1):75-88
– reference: 20098725 - PLoS Biol. 2010 Jan;8(1):e1000291
– reference: 12732144 - Cell. 2003 May 2;113(3):369-81
– reference: 11266630 - Protein Sci. 2001 Feb;10(2):445-9
– reference: 7846767 - Trends Biochem Sci. 1994 Dec;19(12):543-8
– reference: 21241893 - Cell. 2011 Jan 21;144(2):240-52
– reference: 14550945 - FEMS Microbiol Rev. 2003 Oct;27(4):547-57
– reference: 17172305 - Biophys J. 2007 Mar 1;92(5):1544-55
– reference: 8813760 - Yeast. 1996 Jun 30;12(8):731-40
– reference: 16980959 - Nat Cell Biol. 2006 Oct;8(10):1155-62
– reference: 21701561 - EMBO J. 2011 Aug 3;30(15):3078-90
– reference: 9878053 - EMBO J. 1999 Jan 4;18(1):85-95
– reference: 19041878 - J Mol Biol. 2009 Jan 16;385(2):381-92
– reference: 1348056 - J Biol Chem. 1992 Apr 5;267(10):6796-800
– reference: 7935796 - Nature. 1994 Oct 13;371(6498):614-9
– reference: 7746329 - Nature. 1995 May 18;375(6528):250-3
– reference: 15347650 - J Biol Chem. 2004 Oct 29;279(44):45737-43
– reference: 17489689 - Annu Rev Cell Dev Biol. 2007;23:115-45
– reference: 12887895 - Mol Cell. 2003 Jul;12(1):87-100
SSID ssj0000601194
Score 2.3271623
Snippet The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 866
SubjectTerms Adenosine Triphosphate - metabolism
Amino Acid Sequence
Animals
Binding Sites
Catalytic Domain
Cattle
Chaperonin Containing TCP-1 - chemistry
Chaperonin Containing TCP-1 - metabolism
Molecular Sequence Data
Protein Binding
Protein Folding
Protein Subunits - chemistry
Protein Subunits - metabolism
Saccharomyces cerevisiae - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfLS0biGpr4EcfHEFgKEqiCrdRbZDtjsaVNUJoe9t_jiZNlFw574Zo4sccz9ny2x98Q8sZx58OyIUuU1ZAIW_DEcoAA5FKbZ8ZkwuKG_pev-cmZ-Hwuz3dSfWFMWKQHjh13LLh3TZaDVQBCNd4ULmVW5x54QO6R5zPV6c5iKs7ByGWGR8qMYcwWE2q-NzcGdzm47AHpKnErsHibjgzNf_zSSN-_557-hZ9_R1HuuKXlPXJ3wpO0jHLcJ7egfUBuxwyTm4ekK-nHfozqGmjnabk6paX363bkUaWRczqATWpaWl5vrq4wv5ajp5g6jX4f-u4n0Pf9GjcdaECKFG8rALLptnT17VN1XFUruoznV7TahAY8ImfLD6vqJJlyLCROajkkJgAe7rg3XIECplnjlWTSONDKC-S-b6DIlNJNQHpIzq6ssSqgLGO4kNbzx-So7Vp4SqgOUwEwz8DKRgjwxgremNy6wnltdLogfO7h2k0E5JgH47KeI80u6qiXGvVSY3pMni9Isv3qVyTgOFD-HSpvWxbps8cHwajqyajqQ0a1IGpWfT0hkYgwwq_WB6p_PVtKHQYqnr6YFrqb67DUCkhXBoCaLciTaDnbRuLOfMYzEerds6k9KfbftOsfIxk4l4IXefHsf4j9nNxBUdA1M_mCHA39DbwMmGuwr8bh9RvzoymY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Titles*
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-Wl4zENewmtuPkmAaWggSq6FbaW2Q7Y0hpkypND_vvmcljIXCoxDGJnTj2ZObzZOYbxt464TxuG8JA2xQCaRMRWAGAQG5l49CYUFpy6H_5Gh-fyc9btT1g-ZQLQ2GVo-4fdHqvrcczy3E2l1dVtTyNcO-C1kmHFGeAqBn1MGWVUhLf9mjvZyG-kbCvh0jtA-owZdD1YV4OLlog4kpyCibvVj1X828L1RP5zwzVv0D073jKPwzU-j67NyJLng2Df8AOoH7I7gy1JnePWJPxj20f39XxxvNsc8Iz76u6Z1TlA_s0wk5uap5d7y4vqdKW4ydURI2fdm3zE_j7tiL3A0fMyClvAYhXt-abb5_yZZ5v-Hr4k8XzHQ7gMTtbf9jkx8FYbSFwKlVdYBD6CCe8ERo0RGlUeq0iZRyk2ktiwS8hCbVOS8R8RNOurbEa8ZYxQirrxRN2WDc1PGM8RaUAkY_AqlJK8MZKUZrYusT51KSrBRPTDBdupCKnihgXxRRzdl4M61LQuhRUKFPECxbse10NVBy3tD-ixdu3JSLt_kTTfi9GSSqk8K4MY7AaQOrSm8StIpvGHgRuDFdiwfS09MVMLvFW1S2PfzNJSoGfLP2HMTU0N9e46ULMqxCqhgv2dJCc_SDJRx-KUOJzZzI1e4v5lbr60dOCCyVFEifP_3vEL9hdOiLLHKmX7LBrb-AVQq7Ovu6_qV-iICni
  priority: 102
  providerName: Elsevier
Title A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle
URI https://dx.doi.org/10.1016/j.celrep.2012.08.036
https://www.ncbi.nlm.nih.gov/pubmed/23041314
https://www.proquest.com/docview/1122655511
https://pubmed.ncbi.nlm.nih.gov/PMC3543868
https://doaj.org/article/43fcd16eb7ee47dfa8c02b96fe325903
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGEBIviG_Kx2QkXjOa2I6TB4S6imlDGkKolfoW2c65y-iSkXYS_e-5y0chwLSXPCS24_jufL-znd8x9s4J5zFsCANtUwikTURgBQACubGNQ2NCaWlB_-xLfDKXnxdqscf6nK3dAK7_G9pRPql5vTr8-WP7EQ3-w--zWg5WNRD7JK3sJYc4K99hd9E3xRSOnXWAv52bieNM9v_Q3VCZGIIxzA9FKAfuqmH1H3itf1Hp34cr__BWxw_Zgw5m8kmrF4_YHpSP2b028eT2CasmfFk3h702vPJ8MvvKjfdF2dCr8mVDRY0YlJuSm_X28pLSbjl-RRnV-HpTV9-B53VBaxEcASR354b4xsui5LNvp9P30-mM-3Zbi7stduApmx9_mk1Pgi71QuBUqjaBQRwknPBGaNAQpVHutYqUcZBqL4kSP4ck1DrNEQASZ7u2xmoEX8YIqawXz9h-WZXwgvEUZwiIfARW5VKCN1aK3MTWJc6nJh2PmOhHOHMdLzmlx1hl_QG0i6wVUUYiyihrpohHLNjVump5OW4pf0TC25UlVu3mRlUvs85IMym8y8MYrAaQOvcmcePIprEHgVHiWIyY7kWfdQClBR7YVHHL69_2mpKh_dKmjCmhul5jBIYAWCFuDUfseas5u072SojvHejU4CuGT8rivOEIF0qKJE5e3tjmK3af-kduOFKv2f6mvoY3iK829qBZl8Dr6eLooDGfX_4KJho
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYJLxbNseRmJa9hN7MTJcRtYdqGtKrqV9hbZzhgCbVKl6WH_PTN5LCwcKnH1I3bssefzePwNY--ssA6PDb6nTAKeNLHwjABAIDcxka-1Lw0Z9I9Povm5_LwKVzssHd7CkFtlv_d3e3q7W_cp4340x1dFMT4L8OyC2kn55GeAqPkOu4toICIC_cXqcGNoIcIRvw2ISBU8qjE8oWv9vCxc1EDMlWQVjN9PWrLm3yqqZfLf0lT_ItG_HSr_0FCzh2yvh5Z82vX-EduB8jG71wWbXD9h1ZR_qlsHr4ZXjk-Xp3zqXFG2lKq8o59G3Ml1yafX68tLCrVl-SlFUeNnTV39BP6hLsj-wBE0cnq4AESsW_Ll10U6TtMln3VXWTxdYweesvPZx2U69_pwC54Nk7DxNGIfYYXTQoGCIAlyp8Ig1BYS5STR4OcQ-0olOYI-4mlXRhuFgEtrIUPjxDO2W1YlPGc8wV0BAheACXMpwWkjRa4jY2PrEp1MRkwMI5zZnoucQmJcZIPT2Y-sm5eM5iWjSJkiGjFvU-uq4-K4pfwhTd6mLDFptwlV_S3rRSmTwtncj8AoAKlyp2M7CUwSORB4MpyIEVPD1GdbgomfKm5p_u0gKRmuWbqI0SVUN9d46kLQGyJW9Udsv5OcTSfJSO8LX2K7WzK19RfbOWXxveUFF6EUcRQf_HeP37D78-XxUXa0OPnygj2gHFLTQfiS7Tb1DbxC_NWY1-36-gWi_i0G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gradient+of+ATP+affinities+generates+an+asymmetric+power+stroke+driving+the+chaperonin+TRIC%2FCCT+folding+cycle&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Reissmann%2C+Stefanie&rft.au=Joachimiak%2C+Lukasz+A&rft.au=Chen%2C+Bryan&rft.au=Meyer%2C+Anne+S&rft.date=2012-10-25&rft.eissn=2211-1247&rft.volume=2&rft.issue=4&rft.spage=866&rft_id=info:doi/10.1016%2Fj.celrep.2012.08.036&rft_id=info%3Apmid%2F23041314&rft.externalDocID=23041314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon