A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle
The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramat...
Saved in:
Published in | Cell reports (Cambridge) Vol. 2; no. 4; pp. 866 - 877 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.10.2012
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2012.08.036 |
Cover
Abstract | The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.
[Display omitted]
► The eight paralogous TRiC subunits display hierarchical ATP occupancy ► Conservation of nucleoside contacts among TRiC orthologs mirrors ATP affinity ► ATP binding and hydrolysis in the low-affinity subunits are dispensable for life ► ATP usage segregates asymmetrically into two hemispheres of the chaperonin ring
The eukaryotic chaperonin TRiC/CCT consists of two identical stacked rings assembled from eight paralogous subunits, each containing an ATP-binding domain. ATP hydrolysis induces lid closure, resulting in substrate encapsulation within the central folding chamber. Joachimiak, Frydman, and colleagues discover that paralogous subunits have strikingly different affinities for ATP conserved in evolution. High- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, thus generating an asymmetric power stroke that efficiently uses ATP to drive lid closure. |
---|---|
AbstractList | The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins.The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins. The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins. The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high-and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT’s unique ability to fold complex eukaryotic proteins. The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of two identical stacked rings assembled from eight paralogous subunits, each containing a conserved ATP-binding domain. Here, we report a dramatic asymmetry in the ATP utilization cycle of this ring-shaped chaperonin, despite its apparently symmetric architecture. Only four of the eight different subunits bind ATP at physiological concentrations. ATP binding and hydrolysis by the low-affinity subunits is fully dispensable for TRiC function in vivo. The conserved nucleotide-binding hierarchy among TRiC subunits is evolutionarily modulated through differential nucleoside contacts. Strikingly, high- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, generating an asymmetric power stroke that drives the folding cycle. This unusual mode of ATP utilization likely serves to orchestrate a directional mechanism underlying TRiC/CCT's unique ability to fold complex eukaryotic proteins. [Display omitted] ► The eight paralogous TRiC subunits display hierarchical ATP occupancy ► Conservation of nucleoside contacts among TRiC orthologs mirrors ATP affinity ► ATP binding and hydrolysis in the low-affinity subunits are dispensable for life ► ATP usage segregates asymmetrically into two hemispheres of the chaperonin ring The eukaryotic chaperonin TRiC/CCT consists of two identical stacked rings assembled from eight paralogous subunits, each containing an ATP-binding domain. ATP hydrolysis induces lid closure, resulting in substrate encapsulation within the central folding chamber. Joachimiak, Frydman, and colleagues discover that paralogous subunits have strikingly different affinities for ATP conserved in evolution. High- and low-affinity subunits are spatially segregated within two contiguous hemispheres in the ring, thus generating an asymmetric power stroke that efficiently uses ATP to drive lid closure. |
Author | Reissmann, Stefanie Nguyen, Anthony Frydman, Judith Chen, Bryan Meyer, Anne S. Joachimiak, Lukasz A. |
AuthorAffiliation | 1 Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA |
AuthorAffiliation_xml | – name: 1 Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA |
Author_xml | – sequence: 1 givenname: Stefanie surname: Reissmann fullname: Reissmann, Stefanie organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA – sequence: 2 givenname: Lukasz A. surname: Joachimiak fullname: Joachimiak, Lukasz A. email: lajoachi@stanford.edu organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA – sequence: 3 givenname: Bryan surname: Chen fullname: Chen, Bryan organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA – sequence: 4 givenname: Anne S. surname: Meyer fullname: Meyer, Anne S. organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA – sequence: 5 givenname: Anthony surname: Nguyen fullname: Nguyen, Anthony organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA – sequence: 6 givenname: Judith surname: Frydman fullname: Frydman, Judith email: jfrydman@stanford.edu organization: Department of Biology and BioX Program, Stanford University, Stanford, CA 94305-5020, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23041314$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQx1eoiD7oN0DIRy5J_VzvckCKFhoiVaKCcLa83nHisFkH2wnKt8dpUtRyAF88msdv7Jn_ZXE2-AGK4g3BY4JJebMaG-gDbMYUEzrG1Riz8kVxQSkhI0K5PHtinxfXMa5wPiUmpOavinPKMCeM8IvCT9A06M7BkJC3aDK_RxNr3eCSg4imMEDQKVt6QJO4X68hBWfQvf8FAX1Lwf8A9DG4nRsWKC0BNUu9geAHN6D511lz0zRzdOv77hBv9qaH18VLq_sI16f7qvh--2nefB7dfZnOmsndyIhapJEuMWaGWc0kSKA17awUVGgDtbRcYsw7qIiUdUfq_JeSyFa3UhCuNeOiteyqmB25ndcrtQlurcNeee3Ug8OHhdIhufwixZk1HSmhlQBcdlZXBtO2Li0wKmrMMuvDkbXZtmvoTJ5V0P0z6PPI4JZq4XeKCc6qssqAdydA8D-3EJNau5gX2OsB_DYqQigthRCE5NS3T3v9afK4sZzw_phggo8xgFXGJZ2cP7R2vSJYHRSiVuqoEHVQiMKVygrJxfyv4kf-f8pOA4C8sZ2DoKLJijHQuQAm5ZG6fwN-A2st1l4 |
CitedBy_id | crossref_primary_10_1002_pro_4298 crossref_primary_10_1016_j_molcel_2023_07_031 crossref_primary_10_1002_prot_24510 crossref_primary_10_1093_bioinformatics_btae112 crossref_primary_10_1016_j_mocell_2024_100012 crossref_primary_10_1042_BST20220591 crossref_primary_10_1007_s10529_021_03151_9 crossref_primary_10_1016_j_bpj_2016_04_045 crossref_primary_10_3390_jpm11020069 crossref_primary_10_1073_pnas_2018127118 crossref_primary_10_1016_j_cell_2014_10_042 crossref_primary_10_1021_acs_chemrev_5b00556 crossref_primary_10_3390_ijms161125975 crossref_primary_10_1016_j_bbrc_2016_10_120 crossref_primary_10_1038_s41467_024_45242_x crossref_primary_10_3389_fcell_2022_906530 crossref_primary_10_1016_j_celrep_2014_09_056 crossref_primary_10_18632_oncotarget_19369 crossref_primary_10_1016_j_apsb_2021_12_024 crossref_primary_10_1073_pnas_1218836109 crossref_primary_10_1016_j_cell_2019_03_012 crossref_primary_10_1016_j_jmb_2015_04_013 crossref_primary_10_1016_j_str_2013_01_017 crossref_primary_10_1042_BCJ20170378 crossref_primary_10_3724_abbs_2022142 crossref_primary_10_1016_j_pbiomolbio_2020_08_006 crossref_primary_10_1146_annurev_biophys_082521_113418 crossref_primary_10_1126_sciadv_abb7242 crossref_primary_10_1016_j_pbiomolbio_2014_03_001 crossref_primary_10_1096_fj_14_1202ufm crossref_primary_10_3390_ijms25168612 crossref_primary_10_1038_s41467_019_10781_1 crossref_primary_10_1038_s41467_021_25099_0 crossref_primary_10_1126_science_adp8721 crossref_primary_10_1016_j_cell_2018_07_006 crossref_primary_10_1017_S0033583519000143 crossref_primary_10_1038_nsmb_3309 crossref_primary_10_1128_iai_00234_24 crossref_primary_10_1016_j_str_2015_12_016 crossref_primary_10_1038_srep20696 crossref_primary_10_1021_cb400238a crossref_primary_10_1016_j_febslet_2015_06_019 crossref_primary_10_1016_j_molcel_2023_09_032 crossref_primary_10_1111_febs_17213 crossref_primary_10_1111_tpj_14273 crossref_primary_10_1038_nnano_2013_242 crossref_primary_10_3390_ijms23052485 crossref_primary_10_1038_srep40859 crossref_primary_10_15252_embr_202052145 crossref_primary_10_1038_nsmb_3440 crossref_primary_10_1016_j_celrep_2017_12_069 crossref_primary_10_1016_j_sbi_2019_03_002 crossref_primary_10_1371_journal_pone_0176054 crossref_primary_10_1091_mbc_E16_04_0224 crossref_primary_10_1111_febs_13521 crossref_primary_10_1073_pnas_1617746114 crossref_primary_10_3103_S0096392523700219 crossref_primary_10_1016_j_cell_2022_11_014 crossref_primary_10_1126_science_aac4354 crossref_primary_10_1097_MD_0000000000033219 crossref_primary_10_1016_j_jmb_2015_06_007 crossref_primary_10_55959_10_55959_MSU0137_0952_16_78_3S_7 crossref_primary_10_1126_sciadv_ade1207 crossref_primary_10_1158_1078_0432_CCR_15_2502 crossref_primary_10_3389_fonc_2021_739660 crossref_primary_10_1016_j_jmb_2021_167399 crossref_primary_10_1073_pnas_1903976116 crossref_primary_10_1038_s41598_024_55199_y crossref_primary_10_1002_bip_22361 crossref_primary_10_1155_2022_5239255 crossref_primary_10_1074_jbc_R117_796862 crossref_primary_10_3390_ijms241914850 crossref_primary_10_1016_j_sbi_2025_102999 crossref_primary_10_1038_nmeth_3631 crossref_primary_10_1074_jbc_M112_443929 crossref_primary_10_1096_fj_201701061R crossref_primary_10_1007_s12192_018_0949_3 crossref_primary_10_1016_j_sbi_2022_102339 crossref_primary_10_1093_jxb_erz099 crossref_primary_10_1016_j_cell_2014_11_029 crossref_primary_10_1038_s41594_022_00755_1 crossref_primary_10_1038_s42003_023_04915_x crossref_primary_10_1038_s41598_021_91086_6 |
Cites_doi | 10.1038/emboj.2011.366 10.1016/S1074-7613(03)00024-4 10.1007/BF01946400 10.1016/S0092-8674(00)81152-6 10.1038/nsmb.1971 10.1038/nature10317 10.1126/science.285.5429.901 10.1038/emboj.2011.468 10.1016/S0022-2836(05)80360-2 10.1016/j.jmb.2010.06.037 10.1529/biophysj.106.097154 10.1016/j.jmb.2003.11.028 10.1006/jsbi.2001.4353 10.1016/j.tcb.2004.09.015 10.1038/ncb1477 10.1002/j.1460-2075.1996.tb00999.x 10.1006/jmbi.2000.3833 10.1038/371614a0 10.1146/annurev.cellbio.23.090506.123555 10.1016/j.ijfoodmicro.2011.12.035 10.1093/nar/gkl480 10.1016/j.jmb.2008.11.010 10.1371/journal.pbio.1000291 10.1110/ps.44401 10.1016/0968-0004(94)90058-2 10.1073/pnas.1112244108 10.1016/S0022-2836(03)00184-0 10.1093/bioinformatics/18.suppl_1.S71 10.1093/bioinformatics/bti430 10.1093/nar/gkn741 10.1093/emboj/18.1.85 10.1002/yea.1210 10.1016/j.abb.2008.03.015 10.1038/emboj.2011.208 10.1002/prot.10629 10.1016/S0092-8674(00)80742-4 10.1074/jbc.270.23.13956 10.1371/journal.pone.0015976 10.1016/j.cell.2005.11.039 10.1016/S0092-8674(03)00307-6 10.1038/ncb1478 10.1016/S0021-9258(19)50496-3 10.1038/nsmb1236 10.1038/nsmb.1436 10.1016/S1097-2765(03)00244-2 10.1016/S0168-6445(03)00065-2 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO;2-# 10.1038/nsmb901 10.1038/375250a0 10.1093/molbev/msp259 10.1074/jbc.M900097200 10.1093/nar/22.22.4673 10.1021/cr040435v 10.1016/j.cell.2009.12.031 10.1002/(SICI)1097-0061(19960630)12:8<731::AID-YEA961>3.0.CO;2-Z 10.1177/1087057105285112 10.1016/S1097-2765(03)00423-4 10.1038/nsmb.1515 10.1016/j.molcel.2006.09.003 10.1074/jbc.M406795200 10.1016/j.cell.2010.12.017 10.1038/nrm2993 10.1093/genetics/147.4.1609 10.1016/j.str.2012.03.007 |
ContentType | Journal Article |
Copyright | 2012 The Authors Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved. 2012 The Authors 2012 |
Copyright_xml | – notice: 2012 The Authors – notice: Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2012 The Authors 2012 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2012.08.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 877 |
ExternalDocumentID | oai_doaj_org_article_43fcd16eb7ee47dfa8c02b96fe325903 PMC3543868 23041314 10_1016_j_celrep_2012_08_036 S2211124712002768 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM074074 – fundername: NEI NIH HHS grantid: PN2 EY016525 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM074074 || GM – fundername: National Eye Institute : NEI grantid: PN2 EY016525 || EY |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 HZ~ IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-a6003c3fa37e7e292df7525ace97f47004de81779d19304617bab7514aa345bf3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:24:16 EDT 2025 Thu Aug 21 17:59:07 EDT 2025 Fri Jul 11 04:03:51 EDT 2025 Mon Jul 21 06:01:43 EDT 2025 Tue Jul 01 03:07:15 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Wed May 17 00:07:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-a6003c3fa37e7e292df7525ace97f47004de81779d19304617bab7514aa345bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work Present address: Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands Present address: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2012.08.036 |
PMID | 23041314 |
PQID | 1122655511 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43fcd16eb7ee47dfa8c02b96fe325903 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3543868 proquest_miscellaneous_1122655511 pubmed_primary_23041314 crossref_citationtrail_10_1016_j_celrep_2012_08_036 crossref_primary_10_1016_j_celrep_2012_08_036 elsevier_sciencedirect_doi_10_1016_j_celrep_2012_08_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-25 |
PublicationDateYYYYMMDD | 2012-10-25 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Pupko, Bell, Mayrose, Glaser, Ben-Tal (bib37) 2002; 18 Cong, Schroder, Meyer, Jakana, Ma, Dougherty, Schmid, Reissmann, Levitt, Ludtke (bib13) 2011; 31 Rivenzon-Segal, Wolf, Shimon, Willison, Horovitz (bib41) 2005; 12 Abe, Yoon, Kubota, Mendoza, Gygi, Blenis (bib1) 2009; 284 Thulasiraman, Yang, Frydman (bib47) 1999; 18 Douglas, Reissmann, Zhang, Chen, Jakana, Kumar, Chiu, Frydman (bib17) 2011; 144 Spiess, Meyer, Reissmann, Frydman (bib43) 2004; 14 Bigotti, Clarke (bib8) 2008; 474 Pereira, Ralston, Douglas, Kumar, Lopez, McAndrew, Knee, King, Frydman, Adams (bib36) 2011; 31 Kim, Willison, Horwich (bib28) 1994; 19 Albanèse, Yam, Baughman, Parnot, Frydman (bib2) 2006; 124 Richard (bib39) 2003; 27 Lin, Cardillo, Richard, Segel, Sherman (bib31) 1997; 147 Tam, Geller, Spiess, Frydman (bib46) 2006; 8 Neef, Turski, Thiele (bib35) 2010; 8 Bertram, Satin, Pedersen, Luciani, Sherman (bib7) 2007; 92 Ditzel, Löwe, Stock, Stetter, Huber, Huber, Steinbacher (bib16) 1998; 93 Fenton, Kashi, Furtak, Horwich (bib19) 1994; 371 Bochkareva, Lissin, Flynn, Rothman, Girshovich (bib9) 1992; 267 Dekker, Roe, McCormack, Beuron, Pearl, Willison (bib15) 2011; 30 Amit, Weisberg, Nadler-Holly, McCormack, Feldmesser, Kaganovich, Willison, Horovitz (bib3) 2010; 401 Horwich, Farr, Fenton (bib23) 2006; 106 Camasses, Bogdanova, Shevchenko, Zachariae (bib11) 2003; 12 Tian, Vainberg, Tap, Lewis, Cowan (bib49) 1995; 375 Reissmann, Parnot, Booth, Chiu, Frydman (bib38) 2007; 14 Richard, Teusink, Hemker, Van Dam, Westerhoff (bib40) 1996; 12 Rye, Roseman, Chen, Furtak, Fenton, Saibil, Horwich (bib42) 1999; 97 van Anken, Romijn, Maggioni, Mezghrani, Sitia, Braakman, Heck (bib51) 2003; 18 Chivian, Baker (bib12) 2006; 34 Kafri, Willison, Horovitz (bib27) 2001; 10 Taguchi, Tsukuda, Motojima, Koike-Takeshita, Yoshida (bib45) 2004; 279 Viarengo, Secondini, Scoppa, Orunesu (bib52) 1986; 42 Muñoz, Yébenes, Zhou, Mesa, Serna, Park, Bragado-Nilsson, Beloso, de Cárcer, Malumbres (bib34) 2011; 18 Yam, Xia, Lin, Burlingame, Gerstein, Frydman (bib54) 2008; 15 Hartl, Bracher, Hayer-Hartl (bib22) 2011; 475 Meyer, Gillespie, Walther, Millet, Doniach, Frydman (bib33) 2003; 113 Archibald, Blouin, Doolittle (bib4) 2001; 135 Liu, Larsson, Caballero, Hao, Oling, Grantham, Nyström (bib32) 2010; 140 Feldman, Spiess, Howard, Frydman (bib18) 2003; 12 Batista-Nascimento, Neef, Liu, Rodrigues-Pousada, Thiele (bib6) 2011; 6 Booth, Meyer, Cong, Topf, Sali, Ludtke, Chiu, Frydman (bib10) 2008; 15 Gutsche, Mihalache, Baumeister (bib20) 2000; 300 Thulasiraman, Ferreyra, Frydman (bib48) 2000; 140 Spiess, Miller, McClellan, Frydman (bib44) 2006; 24 Kitamura, Kubota, Pack, Matsumoto, Hirayama, Takahashi, Kimura, Kinjo, Morimoto, Nagata (bib29) 2006; 8 Hara, Mori (bib21) 2006; 11 Kabir, Kaminska, Segel, Bethlendy, Lin, Della Seta, Blegen, Swiderek, Zoładek, Arndt, Sherman (bib26) 2005; 22 Tyedmers, Mogk, Bukau (bib50) 2010; 11 Davis, Baker (bib14) 2009; 385 Horwich, Fenton, Chapman, Farr (bib24) 2007; 23 Weiss, Goloubinoff (bib53) 1995; 270 Ashkenazy, Erez, Martz, Pupko, Ben-Tal (bib5) 2010; 38 Leitner, Joachimiak, Bracher, Mönkemeyer, Walzthoeni, Chen, Pechmann, Holmes, Cong, Ma (bib30) 2012; 20 Jiang, Douglas, Conley, Miller, Frydman, Moerner (bib25) 2011; 108 Hara (10.1016/j.celrep.2012.08.036_bib21) 2006; 11 Liu (10.1016/j.celrep.2012.08.036_bib32) 2010; 140 Dekker (10.1016/j.celrep.2012.08.036_bib15) 2011; 30 Davis (10.1016/j.celrep.2012.08.036_bib14) 2009; 385 Leitner (10.1016/j.celrep.2012.08.036_bib30) 2012; 20 Reissmann (10.1016/j.celrep.2012.08.036_bib38) 2007; 14 Viarengo (10.1016/j.celrep.2012.08.036_bib52) 1986; 42 Ditzel (10.1016/j.celrep.2012.08.036_bib16) 1998; 93 Kim (10.1016/j.celrep.2012.08.036_bib28) 1994; 19 Albanèse (10.1016/j.celrep.2012.08.036_bib2) 2006; 124 Neef (10.1016/j.celrep.2012.08.036_bib35) 2010; 8 van Anken (10.1016/j.celrep.2012.08.036_bib51) 2003; 18 Batista-Nascimento (10.1016/j.celrep.2012.08.036_bib6) 2011; 6 Meyer (10.1016/j.celrep.2012.08.036_bib33) 2003; 113 Tian (10.1016/j.celrep.2012.08.036_bib49) 1995; 375 10.1016/j.celrep.2012.08.036_bib67 Douglas (10.1016/j.celrep.2012.08.036_bib17) 2011; 144 Muñoz (10.1016/j.celrep.2012.08.036_bib34) 2011; 18 10.1016/j.celrep.2012.08.036_bib68 10.1016/j.celrep.2012.08.036_bib65 10.1016/j.celrep.2012.08.036_bib66 Bigotti (10.1016/j.celrep.2012.08.036_bib8) 2008; 474 10.1016/j.celrep.2012.08.036_bib63 Spiess (10.1016/j.celrep.2012.08.036_bib43) 2004; 14 10.1016/j.celrep.2012.08.036_bib64 Tyedmers (10.1016/j.celrep.2012.08.036_bib50) 2010; 11 10.1016/j.celrep.2012.08.036_bib61 Bochkareva (10.1016/j.celrep.2012.08.036_bib9) 1992; 267 10.1016/j.celrep.2012.08.036_bib62 Feldman (10.1016/j.celrep.2012.08.036_bib18) 2003; 12 10.1016/j.celrep.2012.08.036_bib60 Richard (10.1016/j.celrep.2012.08.036_bib39) 2003; 27 Gutsche (10.1016/j.celrep.2012.08.036_bib20) 2000; 300 Thulasiraman (10.1016/j.celrep.2012.08.036_bib48) 2000; 140 Amit (10.1016/j.celrep.2012.08.036_bib3) 2010; 401 Rivenzon-Segal (10.1016/j.celrep.2012.08.036_bib41) 2005; 12 Taguchi (10.1016/j.celrep.2012.08.036_bib45) 2004; 279 Cong (10.1016/j.celrep.2012.08.036_bib13) 2011; 31 Bertram (10.1016/j.celrep.2012.08.036_bib7) 2007; 92 Chivian (10.1016/j.celrep.2012.08.036_bib12) 2006; 34 Spiess (10.1016/j.celrep.2012.08.036_bib44) 2006; 24 10.1016/j.celrep.2012.08.036_bib58 10.1016/j.celrep.2012.08.036_bib59 10.1016/j.celrep.2012.08.036_bib56 Yam (10.1016/j.celrep.2012.08.036_bib54) 2008; 15 10.1016/j.celrep.2012.08.036_bib57 10.1016/j.celrep.2012.08.036_bib55 Thulasiraman (10.1016/j.celrep.2012.08.036_bib47) 1999; 18 Camasses (10.1016/j.celrep.2012.08.036_bib11) 2003; 12 Jiang (10.1016/j.celrep.2012.08.036_bib25) 2011; 108 Fenton (10.1016/j.celrep.2012.08.036_bib19) 1994; 371 Archibald (10.1016/j.celrep.2012.08.036_bib4) 2001; 135 Horwich (10.1016/j.celrep.2012.08.036_bib24) 2007; 23 Pupko (10.1016/j.celrep.2012.08.036_bib37) 2002; 18 Kafri (10.1016/j.celrep.2012.08.036_bib27) 2001; 10 Rye (10.1016/j.celrep.2012.08.036_bib42) 1999; 97 Tam (10.1016/j.celrep.2012.08.036_bib46) 2006; 8 Hartl (10.1016/j.celrep.2012.08.036_bib22) 2011; 475 Richard (10.1016/j.celrep.2012.08.036_bib40) 1996; 12 Kabir (10.1016/j.celrep.2012.08.036_bib26) 2005; 22 Horwich (10.1016/j.celrep.2012.08.036_bib23) 2006; 106 Lin (10.1016/j.celrep.2012.08.036_bib31) 1997; 147 Pereira (10.1016/j.celrep.2012.08.036_bib36) 2011; 31 Abe (10.1016/j.celrep.2012.08.036_bib1) 2009; 284 Booth (10.1016/j.celrep.2012.08.036_bib10) 2008; 15 Kitamura (10.1016/j.celrep.2012.08.036_bib29) 2006; 8 Ashkenazy (10.1016/j.celrep.2012.08.036_bib5) 2010; 38 Weiss (10.1016/j.celrep.2012.08.036_bib53) 1995; 270 9878053 - EMBO J. 1999 Jan 4;18(1):85-95 18536725 - Nat Struct Mol Biol. 2008 Jul;15(7):746-53 14550945 - FEMS Microbiol Rev. 2003 Oct;27(4):547-57 11484485 - Methods Mol Biol. 2000;140:161-7 17018290 - Mol Cell. 2006 Oct 6;24(1):25-37 22045336 - EMBO J. 2012 Feb 1;31(3):720-30 12594951 - Immunity. 2003 Feb;18(2):243-53 11266630 - Protein Sci. 2001 Feb;10(2):445-9 17489689 - Annu Rev Cell Dev Biol. 2007;23:115-45 7746329 - Nature. 1995 May 18;375(6528):250-3 16413483 - Cell. 2006 Jan 13;124(1):75-88 9546398 - Cell. 1998 Apr 3;93(1):125-38 7775456 - J Biol Chem. 1995 Jun 9;270(23):13956-60 17172305 - Biophys J. 2007 Mar 1;92(5):1544-55 16490767 - J Biomol Screen. 2006 Apr;11(3):310-7 11580265 - J Struct Biol. 2001 Aug;135(2):157-69 21776078 - Nature. 2011 Jul 21;475(7356):324-32 22193720 - EMBO J. 2012 Feb 1;31(3):731-40 20600117 - J Mol Biol. 2010 Aug 20;401(3):532-43 15519848 - Trends Cell Biol. 2004 Nov;14(11):598-604 16980958 - Nat Cell Biol. 2006 Oct;8(10):1163-70 16971460 - Nucleic Acids Res. 2006;34(17):e112 22503819 - Structure. 2012 May 9;20(5):814-25 17460696 - Nat Struct Mol Biol. 2007 May;14(5):432-40 18395510 - Arch Biochem Biophys. 2008 Jun 15;474(2):331-9 21701561 - EMBO J. 2011 Aug 3;30(15):3078-90 20944667 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88 7846767 - Trends Biochem Sci. 1994 Dec;19(12):543-8 15696173 - Nat Struct Mol Biol. 2005 Mar;12(3):233-7 8813760 - Yeast. 1996 Jun 30;12(8):731-40 20098725 - PLoS Biol. 2010 Jan;8(1):e1000291 7935796 - Nature. 1994 Oct 13;371(6498):614-9 3780947 - Experientia. 1986 Dec 1;42(11-12):1234-5 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 14636579 - Mol Cell. 2003 Nov;12(5):1213-24 19011634 - Nat Struct Mol Biol. 2008 Dec;15(12):1255-62 9409825 - Genetics. 1997 Dec;147(4):1609-33 12169533 - Bioinformatics. 2002;18 Suppl 1:S71-7 21241893 - Cell. 2011 Jan 21;144(2):240-52 21151115 - Nat Struct Mol Biol. 2011 Jan;18(1):14-9 21253609 - PLoS One. 2011;6(1):e15976 10319813 - Cell. 1999 Apr 30;97(3):325-38 21896715 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16962-7 15704212 - Yeast. 2005 Feb;22(3):219-39 15347650 - J Biol Chem. 2004 Oct 29;279(44):45737-43 19332537 - J Biol Chem. 2009 May 29;284(22):14939-48 19041878 - J Mol Biol. 2009 Jan 16;385(2):381-92 16980959 - Nat Cell Biol. 2006 Oct;8(10):1155-62 10864508 - J Mol Biol. 2000 Jun 30;300(1):187-96 1348056 - J Biol Chem. 1992 Apr 5;267(10):6796-800 16683761 - Chem Rev. 2006 May;106(5):1917-30 12732144 - Cell. 2003 May 2;113(3):369-81 20141839 - Cell. 2010 Jan 22;140(2):257-67 12887895 - Mol Cell. 2003 Jul;12(1):87-100 |
References_xml | – volume: 22 start-page: 219 year: 2005 end-page: 239 ident: bib26 article-title: Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae publication-title: Yeast – volume: 10 start-page: 445 year: 2001 end-page: 449 ident: bib27 article-title: Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1 publication-title: Protein Sci. – volume: 12 start-page: 731 year: 1996 end-page: 740 ident: bib40 article-title: Sustained oscillations in free-energy state and hexose phosphates in yeast publication-title: Yeast – volume: 401 start-page: 532 year: 2010 end-page: 543 ident: bib3 article-title: Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes publication-title: J. Mol. Biol. – volume: 34 start-page: e112 year: 2006 ident: bib12 article-title: Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection publication-title: Nucleic Acids Res. – volume: 19 start-page: 543 year: 1994 end-page: 548 ident: bib28 article-title: Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains publication-title: Trends Biochem. Sci. – volume: 18 start-page: 243 year: 2003 end-page: 253 ident: bib51 article-title: Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion publication-title: Immunity – volume: 31 start-page: 720 year: 2011 end-page: 730 ident: bib13 article-title: Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle publication-title: EMBO J. – volume: 18 start-page: 85 year: 1999 end-page: 95 ident: bib47 article-title: In vivo newly translated polypeptides are sequestered in a protected folding environment publication-title: EMBO J. – volume: 11 start-page: 310 year: 2006 end-page: 317 ident: bib21 article-title: An efficient method for quantitative determination of cellular ATP synthetic activity publication-title: J. Biomol. Screen. – volume: 18 start-page: 14 year: 2011 end-page: 19 ident: bib34 article-title: Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin publication-title: Nat. Struct. Mol. Biol. – volume: 371 start-page: 614 year: 1994 end-page: 619 ident: bib19 article-title: Residues in chaperonin GroEL required for polypeptide binding and release publication-title: Nature – volume: 15 start-page: 1255 year: 2008 end-page: 1262 ident: bib54 article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies publication-title: Nat. Struct. Mol. Biol. – volume: 12 start-page: 1213 year: 2003 end-page: 1224 ident: bib18 article-title: Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding publication-title: Mol. Cell – volume: 14 start-page: 432 year: 2007 end-page: 440 ident: bib38 article-title: Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins publication-title: Nat. Struct. Mol. Biol. – volume: 140 start-page: 257 year: 2010 end-page: 267 ident: bib32 article-title: The polarisome is required for segregation and retrograde transport of protein aggregates publication-title: Cell – volume: 106 start-page: 1917 year: 2006 end-page: 1930 ident: bib23 article-title: GroEL-GroES-mediated protein folding publication-title: Chem. Rev. – volume: 475 start-page: 324 year: 2011 end-page: 332 ident: bib22 article-title: Molecular chaperones in protein folding and proteostasis publication-title: Nature – volume: 11 start-page: 777 year: 2010 end-page: 788 ident: bib50 article-title: Cellular strategies for controlling protein aggregation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 284 start-page: 14939 year: 2009 end-page: 14948 ident: bib1 article-title: p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling publication-title: J. Biol. Chem. – volume: 108 start-page: 16962 year: 2011 end-page: 16967 ident: bib25 article-title: Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution publication-title: Proc. Natl. Acad. Sci. USA – volume: 375 start-page: 250 year: 1995 end-page: 253 ident: bib49 article-title: Specificity in chaperonin-mediated protein folding publication-title: Nature – volume: 38 year: 2010 ident: bib5 article-title: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids publication-title: Nucleic Acids Res. – volume: 267 start-page: 6796 year: 1992 end-page: 6800 ident: bib9 article-title: Positive cooperativity in the functioning of molecular chaperone GroEL publication-title: J. Biol. Chem. – volume: 12 start-page: 233 year: 2005 end-page: 237 ident: bib41 article-title: Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis publication-title: Nat. Struct. Mol. Biol. – volume: 135 start-page: 157 year: 2001 end-page: 169 ident: bib4 article-title: Gene duplication and the evolution of group II chaperonins: implications for structure and function publication-title: J. Struct. Biol. – volume: 31 start-page: 731 year: 2011 end-page: 740 ident: bib36 article-title: Mechanism of nucleotide sensing in group II chaperonins publication-title: EMBO J. – volume: 270 start-page: 13956 year: 1995 end-page: 13960 ident: bib53 article-title: A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis publication-title: J. Biol. Chem. – volume: 124 start-page: 75 year: 2006 end-page: 88 ident: bib2 article-title: Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells publication-title: Cell – volume: 24 start-page: 25 year: 2006 end-page: 37 ident: bib44 article-title: Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins publication-title: Mol. Cell – volume: 140 start-page: 161 year: 2000 end-page: 167 ident: bib48 article-title: Monitoring actin folding. Purification protocols for labeled proteins and binding to DNase I-sepharose beads publication-title: Methods Mol. Biol. – volume: 385 start-page: 381 year: 2009 end-page: 392 ident: bib14 article-title: RosettaLigand docking with full ligand and receptor flexibility publication-title: J. Mol. Biol. – volume: 8 start-page: 1155 year: 2006 end-page: 1162 ident: bib46 article-title: The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions publication-title: Nat. Cell Biol. – volume: 279 start-page: 45737 year: 2004 end-page: 45743 ident: bib45 article-title: BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers publication-title: J. Biol. Chem. – volume: 113 start-page: 369 year: 2003 end-page: 381 ident: bib33 article-title: Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis publication-title: Cell – volume: 97 start-page: 325 year: 1999 end-page: 338 ident: bib42 article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings publication-title: Cell – volume: 30 start-page: 3078 year: 2011 end-page: 3090 ident: bib15 article-title: The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins publication-title: EMBO J. – volume: 93 start-page: 125 year: 1998 end-page: 138 ident: bib16 article-title: Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT publication-title: Cell – volume: 144 start-page: 240 year: 2011 end-page: 252 ident: bib17 article-title: Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber publication-title: Cell – volume: 20 start-page: 814 year: 2012 end-page: 825 ident: bib30 article-title: The molecular architecture of the eukaryotic chaperonin TRiC/CCT publication-title: Structure – volume: 14 start-page: 598 year: 2004 end-page: 604 ident: bib43 article-title: Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets publication-title: Trends Cell Biol. – volume: 15 start-page: 746 year: 2008 end-page: 753 ident: bib10 article-title: Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT publication-title: Nat. Struct. Mol. Biol. – volume: 23 start-page: 115 year: 2007 end-page: 145 ident: bib24 article-title: Two families of chaperonin: physiology and mechanism publication-title: Annu. Rev. Cell Dev. Biol. – volume: 92 start-page: 1544 year: 2007 end-page: 1555 ident: bib7 article-title: Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets publication-title: Biophys. J. – volume: 42 start-page: 1234 year: 1986 end-page: 1235 ident: bib52 article-title: A rapid HPLC method for determination of adenylate energy charge publication-title: Experientia – volume: 8 start-page: 1163 year: 2006 end-page: 1170 ident: bib29 article-title: Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state publication-title: Nat. Cell Biol. – volume: 8 start-page: e1000291 year: 2010 ident: bib35 article-title: Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease publication-title: PLoS Biol. – volume: 300 start-page: 187 year: 2000 end-page: 196 ident: bib20 article-title: ATPase cycle of an archaeal chaperonin publication-title: J. Mol. Biol. – volume: 6 start-page: e15976 year: 2011 ident: bib6 article-title: Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast publication-title: PLoS ONE – volume: 474 start-page: 331 year: 2008 end-page: 339 ident: bib8 article-title: Chaperonins: the hunt for the Group II mechanism publication-title: Arch. Biochem. Biophys. – volume: 147 start-page: 1609 year: 1997 end-page: 1633 ident: bib31 article-title: Analysis of mutationally altered forms of the Cct6 subunit of the chaperonin from Saccharomyces cerevisiae publication-title: Genetics – volume: 18 start-page: S71 year: 2002 end-page: S77 ident: bib37 article-title: Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues publication-title: Bioinformatics – volume: 27 start-page: 547 year: 2003 end-page: 557 ident: bib39 article-title: The rhythm of yeast publication-title: FEMS Microbiol. Rev. – volume: 12 start-page: 87 year: 2003 end-page: 100 ident: bib11 article-title: The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20 publication-title: Mol. Cell – ident: 10.1016/j.celrep.2012.08.036_bib56 doi: 10.1038/emboj.2011.366 – volume: 18 start-page: 243 year: 2003 ident: 10.1016/j.celrep.2012.08.036_bib51 article-title: Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion publication-title: Immunity doi: 10.1016/S1074-7613(03)00024-4 – volume: 42 start-page: 1234 year: 1986 ident: 10.1016/j.celrep.2012.08.036_bib52 article-title: A rapid HPLC method for determination of adenylate energy charge publication-title: Experientia doi: 10.1007/BF01946400 – volume: 140 start-page: 161 year: 2000 ident: 10.1016/j.celrep.2012.08.036_bib48 article-title: Monitoring actin folding. Purification protocols for labeled proteins and binding to DNase I-sepharose beads publication-title: Methods Mol. Biol. – volume: 93 start-page: 125 year: 1998 ident: 10.1016/j.celrep.2012.08.036_bib16 article-title: Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT publication-title: Cell doi: 10.1016/S0092-8674(00)81152-6 – ident: 10.1016/j.celrep.2012.08.036_bib61 doi: 10.1038/nsmb.1971 – volume: 475 start-page: 324 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib22 article-title: Molecular chaperones in protein folding and proteostasis publication-title: Nature doi: 10.1038/nature10317 – ident: 10.1016/j.celrep.2012.08.036_bib68 doi: 10.1126/science.285.5429.901 – volume: 31 start-page: 731 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib36 article-title: Mechanism of nucleotide sensing in group II chaperonins publication-title: EMBO J. doi: 10.1038/emboj.2011.468 – ident: 10.1016/j.celrep.2012.08.036_bib55 doi: 10.1016/S0022-2836(05)80360-2 – volume: 401 start-page: 532 year: 2010 ident: 10.1016/j.celrep.2012.08.036_bib3 article-title: Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.06.037 – volume: 92 start-page: 1544 year: 2007 ident: 10.1016/j.celrep.2012.08.036_bib7 article-title: Interaction of glycolysis and mitochondrial respiration in metabolic oscillations of pancreatic islets publication-title: Biophys. J. doi: 10.1529/biophysj.106.097154 – ident: 10.1016/j.celrep.2012.08.036_bib65 doi: 10.1016/j.jmb.2003.11.028 – volume: 135 start-page: 157 year: 2001 ident: 10.1016/j.celrep.2012.08.036_bib4 article-title: Gene duplication and the evolution of group II chaperonins: implications for structure and function publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2001.4353 – volume: 14 start-page: 598 year: 2004 ident: 10.1016/j.celrep.2012.08.036_bib43 article-title: Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.09.015 – volume: 8 start-page: 1155 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib46 article-title: The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions publication-title: Nat. Cell Biol. doi: 10.1038/ncb1477 – ident: 10.1016/j.celrep.2012.08.036_bib59 doi: 10.1002/j.1460-2075.1996.tb00999.x – volume: 300 start-page: 187 year: 2000 ident: 10.1016/j.celrep.2012.08.036_bib20 article-title: ATPase cycle of an archaeal chaperonin publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3833 – volume: 371 start-page: 614 year: 1994 ident: 10.1016/j.celrep.2012.08.036_bib19 article-title: Residues in chaperonin GroEL required for polypeptide binding and release publication-title: Nature doi: 10.1038/371614a0 – volume: 23 start-page: 115 year: 2007 ident: 10.1016/j.celrep.2012.08.036_bib24 article-title: Two families of chaperonin: physiology and mechanism publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123555 – ident: 10.1016/j.celrep.2012.08.036_bib62 doi: 10.1016/j.ijfoodmicro.2011.12.035 – volume: 34 start-page: e112 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib12 article-title: Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl480 – volume: 385 start-page: 381 year: 2009 ident: 10.1016/j.celrep.2012.08.036_bib14 article-title: RosettaLigand docking with full ligand and receptor flexibility publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.11.010 – volume: 8 start-page: e1000291 year: 2010 ident: 10.1016/j.celrep.2012.08.036_bib35 article-title: Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000291 – volume: 10 start-page: 445 year: 2001 ident: 10.1016/j.celrep.2012.08.036_bib27 article-title: Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1 publication-title: Protein Sci. doi: 10.1110/ps.44401 – volume: 19 start-page: 543 year: 1994 ident: 10.1016/j.celrep.2012.08.036_bib28 article-title: Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(94)90058-2 – volume: 108 start-page: 16962 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib25 article-title: Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112244108 – ident: 10.1016/j.celrep.2012.08.036_bib67 doi: 10.1016/S0022-2836(03)00184-0 – volume: 18 start-page: S71 issue: Suppl 1 year: 2002 ident: 10.1016/j.celrep.2012.08.036_bib37 article-title: Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_1.S71 – ident: 10.1016/j.celrep.2012.08.036_bib60 doi: 10.1093/bioinformatics/bti430 – ident: 10.1016/j.celrep.2012.08.036_bib64 doi: 10.1093/nar/gkn741 – volume: 18 start-page: 85 year: 1999 ident: 10.1016/j.celrep.2012.08.036_bib47 article-title: In vivo newly translated polypeptides are sequestered in a protected folding environment publication-title: EMBO J. doi: 10.1093/emboj/18.1.85 – volume: 22 start-page: 219 year: 2005 ident: 10.1016/j.celrep.2012.08.036_bib26 article-title: Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.1210 – volume: 474 start-page: 331 year: 2008 ident: 10.1016/j.celrep.2012.08.036_bib8 article-title: Chaperonins: the hunt for the Group II mechanism publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.03.015 – volume: 30 start-page: 3078 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib15 article-title: The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins publication-title: EMBO J. doi: 10.1038/emboj.2011.208 – ident: 10.1016/j.celrep.2012.08.036_bib63 doi: 10.1002/prot.10629 – volume: 97 start-page: 325 year: 1999 ident: 10.1016/j.celrep.2012.08.036_bib42 article-title: GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings publication-title: Cell doi: 10.1016/S0092-8674(00)80742-4 – volume: 270 start-page: 13956 year: 1995 ident: 10.1016/j.celrep.2012.08.036_bib53 article-title: A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.23.13956 – volume: 6 start-page: e15976 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib6 article-title: Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast publication-title: PLoS ONE doi: 10.1371/journal.pone.0015976 – volume: 124 start-page: 75 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib2 article-title: Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells publication-title: Cell doi: 10.1016/j.cell.2005.11.039 – volume: 113 start-page: 369 year: 2003 ident: 10.1016/j.celrep.2012.08.036_bib33 article-title: Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis publication-title: Cell doi: 10.1016/S0092-8674(03)00307-6 – volume: 8 start-page: 1163 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib29 article-title: Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state publication-title: Nat. Cell Biol. doi: 10.1038/ncb1478 – volume: 267 start-page: 6796 year: 1992 ident: 10.1016/j.celrep.2012.08.036_bib9 article-title: Positive cooperativity in the functioning of molecular chaperone GroEL publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50496-3 – volume: 14 start-page: 432 year: 2007 ident: 10.1016/j.celrep.2012.08.036_bib38 article-title: Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1236 – volume: 15 start-page: 746 year: 2008 ident: 10.1016/j.celrep.2012.08.036_bib10 article-title: Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1436 – volume: 12 start-page: 87 year: 2003 ident: 10.1016/j.celrep.2012.08.036_bib11 article-title: The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20 publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00244-2 – volume: 27 start-page: 547 year: 2003 ident: 10.1016/j.celrep.2012.08.036_bib39 article-title: The rhythm of yeast publication-title: FEMS Microbiol. Rev. doi: 10.1016/S0168-6445(03)00065-2 – ident: 10.1016/j.celrep.2012.08.036_bib57 doi: 10.1002/(SICI)1097-0061(19970615)13:7<647::AID-YEA115>3.0.CO;2-# – volume: 12 start-page: 233 year: 2005 ident: 10.1016/j.celrep.2012.08.036_bib41 article-title: Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb901 – volume: 375 start-page: 250 year: 1995 ident: 10.1016/j.celrep.2012.08.036_bib49 article-title: Specificity in chaperonin-mediated protein folding publication-title: Nature doi: 10.1038/375250a0 – ident: 10.1016/j.celrep.2012.08.036_bib58 doi: 10.1093/molbev/msp259 – volume: 284 start-page: 14939 year: 2009 ident: 10.1016/j.celrep.2012.08.036_bib1 article-title: p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M900097200 – ident: 10.1016/j.celrep.2012.08.036_bib66 doi: 10.1093/nar/22.22.4673 – volume: 31 start-page: 720 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib13 article-title: Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle publication-title: EMBO J. doi: 10.1038/emboj.2011.366 – volume: 106 start-page: 1917 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib23 article-title: GroEL-GroES-mediated protein folding publication-title: Chem. Rev. doi: 10.1021/cr040435v – volume: 140 start-page: 257 year: 2010 ident: 10.1016/j.celrep.2012.08.036_bib32 article-title: The polarisome is required for segregation and retrograde transport of protein aggregates publication-title: Cell doi: 10.1016/j.cell.2009.12.031 – volume: 12 start-page: 731 year: 1996 ident: 10.1016/j.celrep.2012.08.036_bib40 article-title: Sustained oscillations in free-energy state and hexose phosphates in yeast publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19960630)12:8<731::AID-YEA961>3.0.CO;2-Z – volume: 11 start-page: 310 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib21 article-title: An efficient method for quantitative determination of cellular ATP synthetic activity publication-title: J. Biomol. Screen. doi: 10.1177/1087057105285112 – volume: 12 start-page: 1213 year: 2003 ident: 10.1016/j.celrep.2012.08.036_bib18 article-title: Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00423-4 – volume: 15 start-page: 1255 year: 2008 ident: 10.1016/j.celrep.2012.08.036_bib54 article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1515 – volume: 38 issue: Web Server issue year: 2010 ident: 10.1016/j.celrep.2012.08.036_bib5 article-title: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids publication-title: Nucleic Acids Res. – volume: 24 start-page: 25 year: 2006 ident: 10.1016/j.celrep.2012.08.036_bib44 article-title: Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.09.003 – volume: 279 start-page: 45737 year: 2004 ident: 10.1016/j.celrep.2012.08.036_bib45 article-title: BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406795200 – volume: 144 start-page: 240 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib17 article-title: Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber publication-title: Cell doi: 10.1016/j.cell.2010.12.017 – volume: 11 start-page: 777 year: 2010 ident: 10.1016/j.celrep.2012.08.036_bib50 article-title: Cellular strategies for controlling protein aggregation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2993 – volume: 18 start-page: 14 year: 2011 ident: 10.1016/j.celrep.2012.08.036_bib34 article-title: Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1971 – volume: 147 start-page: 1609 year: 1997 ident: 10.1016/j.celrep.2012.08.036_bib31 article-title: Analysis of mutationally altered forms of the Cct6 subunit of the chaperonin from Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/147.4.1609 – volume: 20 start-page: 814 year: 2012 ident: 10.1016/j.celrep.2012.08.036_bib30 article-title: The molecular architecture of the eukaryotic chaperonin TRiC/CCT publication-title: Structure doi: 10.1016/j.str.2012.03.007 – reference: 12169533 - Bioinformatics. 2002;18 Suppl 1:S71-7 – reference: 20944667 - Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88 – reference: 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 – reference: 17460696 - Nat Struct Mol Biol. 2007 May;14(5):432-40 – reference: 15519848 - Trends Cell Biol. 2004 Nov;14(11):598-604 – reference: 14636579 - Mol Cell. 2003 Nov;12(5):1213-24 – reference: 16683761 - Chem Rev. 2006 May;106(5):1917-30 – reference: 17018290 - Mol Cell. 2006 Oct 6;24(1):25-37 – reference: 18395510 - Arch Biochem Biophys. 2008 Jun 15;474(2):331-9 – reference: 19332537 - J Biol Chem. 2009 May 29;284(22):14939-48 – reference: 22503819 - Structure. 2012 May 9;20(5):814-25 – reference: 18536725 - Nat Struct Mol Biol. 2008 Jul;15(7):746-53 – reference: 9409825 - Genetics. 1997 Dec;147(4):1609-33 – reference: 7775456 - J Biol Chem. 1995 Jun 9;270(23):13956-60 – reference: 16490767 - J Biomol Screen. 2006 Apr;11(3):310-7 – reference: 21776078 - Nature. 2011 Jul 21;475(7356):324-32 – reference: 10319813 - Cell. 1999 Apr 30;97(3):325-38 – reference: 22045336 - EMBO J. 2012 Feb 1;31(3):720-30 – reference: 12594951 - Immunity. 2003 Feb;18(2):243-53 – reference: 21896715 - Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):16962-7 – reference: 9546398 - Cell. 1998 Apr 3;93(1):125-38 – reference: 21151115 - Nat Struct Mol Biol. 2011 Jan;18(1):14-9 – reference: 22193720 - EMBO J. 2012 Feb 1;31(3):731-40 – reference: 19011634 - Nat Struct Mol Biol. 2008 Dec;15(12):1255-62 – reference: 21253609 - PLoS One. 2011;6(1):e15976 – reference: 11484485 - Methods Mol Biol. 2000;140:161-7 – reference: 15704212 - Yeast. 2005 Feb;22(3):219-39 – reference: 3780947 - Experientia. 1986 Dec 1;42(11-12):1234-5 – reference: 15696173 - Nat Struct Mol Biol. 2005 Mar;12(3):233-7 – reference: 20600117 - J Mol Biol. 2010 Aug 20;401(3):532-43 – reference: 20141839 - Cell. 2010 Jan 22;140(2):257-67 – reference: 11580265 - J Struct Biol. 2001 Aug;135(2):157-69 – reference: 10864508 - J Mol Biol. 2000 Jun 30;300(1):187-96 – reference: 16980958 - Nat Cell Biol. 2006 Oct;8(10):1163-70 – reference: 16971460 - Nucleic Acids Res. 2006;34(17):e112 – reference: 16413483 - Cell. 2006 Jan 13;124(1):75-88 – reference: 20098725 - PLoS Biol. 2010 Jan;8(1):e1000291 – reference: 12732144 - Cell. 2003 May 2;113(3):369-81 – reference: 11266630 - Protein Sci. 2001 Feb;10(2):445-9 – reference: 7846767 - Trends Biochem Sci. 1994 Dec;19(12):543-8 – reference: 21241893 - Cell. 2011 Jan 21;144(2):240-52 – reference: 14550945 - FEMS Microbiol Rev. 2003 Oct;27(4):547-57 – reference: 17172305 - Biophys J. 2007 Mar 1;92(5):1544-55 – reference: 8813760 - Yeast. 1996 Jun 30;12(8):731-40 – reference: 16980959 - Nat Cell Biol. 2006 Oct;8(10):1155-62 – reference: 21701561 - EMBO J. 2011 Aug 3;30(15):3078-90 – reference: 9878053 - EMBO J. 1999 Jan 4;18(1):85-95 – reference: 19041878 - J Mol Biol. 2009 Jan 16;385(2):381-92 – reference: 1348056 - J Biol Chem. 1992 Apr 5;267(10):6796-800 – reference: 7935796 - Nature. 1994 Oct 13;371(6498):614-9 – reference: 7746329 - Nature. 1995 May 18;375(6528):250-3 – reference: 15347650 - J Biol Chem. 2004 Oct 29;279(44):45737-43 – reference: 17489689 - Annu Rev Cell Dev Biol. 2007;23:115-45 – reference: 12887895 - Mol Cell. 2003 Jul;12(1):87-100 |
SSID | ssj0000601194 |
Score | 2.3271623 |
Snippet | The eukaryotic chaperonin TRiC/CCT uses ATP cycling to fold many essential proteins that other chaperones cannot fold. This 1 MDa hetero-oligomer consists of... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 866 |
SubjectTerms | Adenosine Triphosphate - metabolism Amino Acid Sequence Animals Binding Sites Catalytic Domain Cattle Chaperonin Containing TCP-1 - chemistry Chaperonin Containing TCP-1 - metabolism Molecular Sequence Data Protein Binding Protein Folding Protein Subunits - chemistry Protein Subunits - metabolism Saccharomyces cerevisiae - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfLS0biGpr4EcfHEFgKEqiCrdRbZDtjsaVNUJoe9t_jiZNlFw574Zo4sccz9ny2x98Q8sZx58OyIUuU1ZAIW_DEcoAA5FKbZ8ZkwuKG_pev-cmZ-Hwuz3dSfWFMWKQHjh13LLh3TZaDVQBCNd4ULmVW5x54QO6R5zPV6c5iKs7ByGWGR8qMYcwWE2q-NzcGdzm47AHpKnErsHibjgzNf_zSSN-_557-hZ9_R1HuuKXlPXJ3wpO0jHLcJ7egfUBuxwyTm4ekK-nHfozqGmjnabk6paX363bkUaWRczqATWpaWl5vrq4wv5ajp5g6jX4f-u4n0Pf9GjcdaECKFG8rALLptnT17VN1XFUruoznV7TahAY8ImfLD6vqJJlyLCROajkkJgAe7rg3XIECplnjlWTSONDKC-S-b6DIlNJNQHpIzq6ssSqgLGO4kNbzx-So7Vp4SqgOUwEwz8DKRgjwxgremNy6wnltdLogfO7h2k0E5JgH47KeI80u6qiXGvVSY3pMni9Isv3qVyTgOFD-HSpvWxbps8cHwajqyajqQ0a1IGpWfT0hkYgwwq_WB6p_PVtKHQYqnr6YFrqb67DUCkhXBoCaLciTaDnbRuLOfMYzEerds6k9KfbftOsfIxk4l4IXefHsf4j9nNxBUdA1M_mCHA39DbwMmGuwr8bh9RvzoymY priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles* dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcEG-Wl4zENewmtuPkmAaWggSq6FbaW2Q7Y0hpkypND_vvmcljIXCoxDGJnTj2ZObzZOYbxt464TxuG8JA2xQCaRMRWAGAQG5l49CYUFpy6H_5Gh-fyc9btT1g-ZQLQ2GVo-4fdHqvrcczy3E2l1dVtTyNcO-C1kmHFGeAqBn1MGWVUhLf9mjvZyG-kbCvh0jtA-owZdD1YV4OLlog4kpyCibvVj1X828L1RP5zwzVv0D073jKPwzU-j67NyJLng2Df8AOoH7I7gy1JnePWJPxj20f39XxxvNsc8Iz76u6Z1TlA_s0wk5uap5d7y4vqdKW4ydURI2fdm3zE_j7tiL3A0fMyClvAYhXt-abb5_yZZ5v-Hr4k8XzHQ7gMTtbf9jkx8FYbSFwKlVdYBD6CCe8ERo0RGlUeq0iZRyk2ktiwS8hCbVOS8R8RNOurbEa8ZYxQirrxRN2WDc1PGM8RaUAkY_AqlJK8MZKUZrYusT51KSrBRPTDBdupCKnihgXxRRzdl4M61LQuhRUKFPECxbse10NVBy3tD-ixdu3JSLt_kTTfi9GSSqk8K4MY7AaQOrSm8StIpvGHgRuDFdiwfS09MVMLvFW1S2PfzNJSoGfLP2HMTU0N9e46ULMqxCqhgv2dJCc_SDJRx-KUOJzZzI1e4v5lbr60dOCCyVFEifP_3vEL9hdOiLLHKmX7LBrb-AVQq7Ovu6_qV-iICni priority: 102 providerName: Elsevier |
Title | A Gradient of ATP Affinities Generates an Asymmetric Power Stroke Driving the Chaperonin TRIC/CCT Folding Cycle |
URI | https://dx.doi.org/10.1016/j.celrep.2012.08.036 https://www.ncbi.nlm.nih.gov/pubmed/23041314 https://www.proquest.com/docview/1122655511 https://pubmed.ncbi.nlm.nih.gov/PMC3543868 https://doaj.org/article/43fcd16eb7ee47dfa8c02b96fe325903 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGEBIviG_Kx2QkXjOa2I6TB4S6imlDGkKolfoW2c65y-iSkXYS_e-5y0chwLSXPCS24_jufL-znd8x9s4J5zFsCANtUwikTURgBQACubGNQ2NCaWlB_-xLfDKXnxdqscf6nK3dAK7_G9pRPql5vTr8-WP7EQ3-w--zWg5WNRD7JK3sJYc4K99hd9E3xRSOnXWAv52bieNM9v_Q3VCZGIIxzA9FKAfuqmH1H3itf1Hp34cr__BWxw_Zgw5m8kmrF4_YHpSP2b028eT2CasmfFk3h702vPJ8MvvKjfdF2dCr8mVDRY0YlJuSm_X28pLSbjl-RRnV-HpTV9-B53VBaxEcASR354b4xsui5LNvp9P30-mM-3Zbi7stduApmx9_mk1Pgi71QuBUqjaBQRwknPBGaNAQpVHutYqUcZBqL4kSP4ck1DrNEQASZ7u2xmoEX8YIqawXz9h-WZXwgvEUZwiIfARW5VKCN1aK3MTWJc6nJh2PmOhHOHMdLzmlx1hl_QG0i6wVUUYiyihrpohHLNjVump5OW4pf0TC25UlVu3mRlUvs85IMym8y8MYrAaQOvcmcePIprEHgVHiWIyY7kWfdQClBR7YVHHL69_2mpKh_dKmjCmhul5jBIYAWCFuDUfseas5u072SojvHejU4CuGT8rivOEIF0qKJE5e3tjmK3af-kduOFKv2f6mvoY3iK829qBZl8Dr6eLooDGfX_4KJho |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYJLxbNseRmJa9hN7MTJcRtYdqGtKrqV9hbZzhgCbVKl6WH_PTN5LCwcKnH1I3bssefzePwNY--ssA6PDb6nTAKeNLHwjABAIDcxka-1Lw0Z9I9Povm5_LwKVzssHd7CkFtlv_d3e3q7W_cp4340x1dFMT4L8OyC2kn55GeAqPkOu4toICIC_cXqcGNoIcIRvw2ISBU8qjE8oWv9vCxc1EDMlWQVjN9PWrLm3yqqZfLf0lT_ItG_HSr_0FCzh2yvh5Z82vX-EduB8jG71wWbXD9h1ZR_qlsHr4ZXjk-Xp3zqXFG2lKq8o59G3Ml1yafX68tLCrVl-SlFUeNnTV39BP6hLsj-wBE0cnq4AESsW_Ll10U6TtMln3VXWTxdYweesvPZx2U69_pwC54Nk7DxNGIfYYXTQoGCIAlyp8Ig1BYS5STR4OcQ-0olOYI-4mlXRhuFgEtrIUPjxDO2W1YlPGc8wV0BAheACXMpwWkjRa4jY2PrEp1MRkwMI5zZnoucQmJcZIPT2Y-sm5eM5iWjSJkiGjFvU-uq4-K4pfwhTd6mLDFptwlV_S3rRSmTwtncj8AoAKlyp2M7CUwSORB4MpyIEVPD1GdbgomfKm5p_u0gKRmuWbqI0SVUN9d46kLQGyJW9Udsv5OcTSfJSO8LX2K7WzK19RfbOWXxveUFF6EUcRQf_HeP37D78-XxUXa0OPnygj2gHFLTQfiS7Tb1DbxC_NWY1-36-gWi_i0G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+gradient+of+ATP+affinities+generates+an+asymmetric+power+stroke+driving+the+chaperonin+TRIC%2FCCT+folding+cycle&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Reissmann%2C+Stefanie&rft.au=Joachimiak%2C+Lukasz+A&rft.au=Chen%2C+Bryan&rft.au=Meyer%2C+Anne+S&rft.date=2012-10-25&rft.eissn=2211-1247&rft.volume=2&rft.issue=4&rft.spage=866&rft_id=info:doi/10.1016%2Fj.celrep.2012.08.036&rft_id=info%3Apmid%2F23041314&rft.externalDocID=23041314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |