Representing and extracting lung cancer study metadata: Study objective and study design

Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 58; pp. 63 - 72
Main Authors Garcia-Gathright, Jean I, Oh, Andrea, Abarca, Phillip A, Han, Mary, Sago, William, Spiegel, Marshall L, Wolf, Brian, Garon, Edward B, Bui, Alex A.T, Aberle, Denise R
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2015
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F -scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
AbstractList This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research articles on driver mutations in non-small cell lung cancer. Casama’s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama’s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed’s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F -scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. •We propose to improve retrieval by representing and extracting study metadata.•Multiple expert readers produced a gold standard of 430 abstracts on lung cancer.•Automatic classification performed better than or comparable to PubMed׳s filters.•Study design classification was robust to differences in vocabulary across corpora.•Top-ranked features were not domain-specific and could generalize to other domains.
This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama's representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama's support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed's built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama's representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama's support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higherF-scores compared to PubMed's built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains.
Author Garcia-Gathright, Jean I
Spiegel, Marshall L
Abarca, Phillip A
Sago, William
Aberle, Denise R
Garon, Edward B
Bui, Alex A.T
Wolf, Brian
Oh, Andrea
Han, Mary
Author_xml – sequence: 1
  fullname: Garcia-Gathright, Jean I
– sequence: 2
  fullname: Oh, Andrea
– sequence: 3
  fullname: Abarca, Phillip A
– sequence: 4
  fullname: Han, Mary
– sequence: 5
  fullname: Sago, William
– sequence: 6
  fullname: Spiegel, Marshall L
– sequence: 7
  fullname: Wolf, Brian
– sequence: 8
  fullname: Garon, Edward B
– sequence: 9
  fullname: Bui, Alex A.T
– sequence: 10
  fullname: Aberle, Denise R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25618216$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFv4AiceGSMP6Ik3CoBBVfUiUkChI3y3ZmFy-JvdjJiv33eHdLCz31YmvkZ17PzDtn5MQHj4QUFCoKVL5aVzaMG-PCiH3FgNYV0ApAPCIL2jZdCTUXJ2QBQKEULatPyVlKa8gEcHhCTlktacuoXJDvX3ATMaGfnF8V2vcF_p6itodwmPNhtbcYizTN_a4YcdK9nvTr4voQB7PGzG7xkHpkekxu5Z-Sx0s9JHx2c5-Tb-_ffb38WF59_vDp8s1VaeuunkrNW8Op0awzwqDpbZdL7LiWtOYtggTd9QhWNx0uRS1tC9g0TFBjuDQCNT8nF0fdzWzyNGzuJOpBbaIbddypoJ36_8W7H2oVtkpwThlnWeDljUAMv2ZMkxpdsjgM2mOYk6JSCgaSA38AWjecttmijL64h67DHH2exJ4SnWSCiUy1R8rGkFLE5W3dFNTeabVWd06rvdMKqMo-5tTn__Z9m_jX2gy8PQKYp791GFWyDrOXvYvZM9UH95BfLu6J2MF5Z_XwE3eY7npSiSlQ1_uN2y8crfOyQSP4H_qu1p0
CODEN CBMDAW
CitedBy_id crossref_primary_10_1016_j_compbiomed_2017_10_034
Cites_doi 10.1186/1471-2105-11-55
10.1197/jamia.M1124
10.1016/j.artmed.2010.04.003
10.1038/nrd1445
10.1186/1471-2105-7-370
10.1136/bmj.38446.498542.8F
10.1111/j.1471-1842.2008.00827.x
10.3233/ISU-2011-0627
10.1197/jamia.M2996
10.1109/CSB.2005.36
10.1001/jama.2014.3741
10.1186/1471-2105-9-205
10.1016/j.neuron.2013.07.024
10.1016/j.ins.2012.05.027
10.4066/AMJ.2012.1375
10.1186/1471-2105-4-11
10.1016/j.jbi.2013.10.005
ContentType Journal Article
Copyright Elsevier Ltd
2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Mar 2015
2015 Elsevier Ltd. All rights reserved. 2015
Copyright_xml – notice: Elsevier Ltd
– notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Mar 2015
– notice: 2015 Elsevier Ltd. All rights reserved. 2015
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
5PM
DOI 10.1016/j.compbiomed.2015.01.004
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Proquest Nursing & Allied Health Source
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest research library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE - Academic


Engineering Research Database
MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 72
ExternalDocumentID 3589592511
10_1016_j_compbiomed_2015_01_004
25618216
S0010482515000074
1_s2_0_S0010482515000074
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01-LM009961
– fundername: NLM NIH HHS
  grantid: T15 LM007356
– fundername: NLM NIH HHS
  grantid: T15-LM007356
– fundername: NLM NIH HHS
  grantid: R01 LM011333
– fundername: NLM NIH HHS
  grantid: R01 LM009961
– fundername: NCI NIH HHS
  grantid: K23 CA149079
– fundername: NCI NIH HHS
  grantid: K23CA149079
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABXDB
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKRA
AFKWA
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M0N
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQQKQ
PROAC
PSQYO
Q38
R2-
RIG
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
HMCUK
LCYCR
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
5PM
ID FETCH-LOGICAL-c595t-a38b31ba29b4bebdc940393a61538e060a9de0ca79ef456c80e77241bb36b4ea3
IEDL.DBID .~1
ISSN 0010-4825
IngestDate Tue Sep 17 21:15:37 EDT 2024
Fri Oct 25 06:40:58 EDT 2024
Fri Oct 25 09:50:59 EDT 2024
Thu Oct 10 22:54:05 EDT 2024
Thu Sep 26 18:28:51 EDT 2024
Sat Sep 28 08:06:26 EDT 2024
Fri Feb 23 02:24:56 EST 2024
Tue Oct 15 14:34:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Automatic summarization
Quality of evidence
Information retrieval
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-a38b31ba29b4bebdc940393a61538e060a9de0ca79ef456c80e77241bb36b4ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Department of Medicine - Division of Hematology-Oncology 924 Westwood Boulevard, Suite 200 Los Angeles, CA 90024 USA
Department of Bioengineering 924 Westwood Boulevard, Suite 420 Los Angeles, CA 90024 USA
Department of Radiological Sciences 924 Westwood Boulevard, Suite 420 Los Angeles, CA 90024 USA
OpenAccessLink https://escholarship.org/content/qt2n88c0xj/qt2n88c0xj.pdf?t=rt5l8e
PMID 25618216
PQID 1654962424
PQPubID 1226355
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4331232
proquest_miscellaneous_1664206303
proquest_miscellaneous_1657318101
proquest_journals_1654962424
crossref_primary_10_1016_j_compbiomed_2015_01_004
pubmed_primary_25618216
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_01_004
elsevier_clinicalkeyesjournals_1_s2_0_S0010482515000074
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Steven Bird, Ewan Klein, Edward Loper, Natural Language Processing with Python, 1st edition, O׳Reilly Media, Beijing, Cambridge Mass, July 2009.
Rindflesch, Kilicoglu, Fiszman, Rosemblat, Shin (bib24) 2011; 31
Mollá, Elena Santiago-Martínez (bib17) 2012; 5
Bachmann, Coray, Estermann, Riet (bib3) 2002; 9
Nalini Polavarapu, Shamkant B. Navathe, Ramprasad Ramnarayanan, Abrar ul Haque, Saurav Sahay, Ying Liu, Investigation into biomedical literature classification using support vector machines, in: Proceedings/IEEE Computational Systems Bioinformatics Conference, CSB, 2005, pp. 366–374.
Yetisgen-Yildiz, Pratt (bib8) 2005; 2005
Kim, Choi (bib9) 2014; 47
Manning, Raghavan, Schütze (bib25) 2008
Yu, Clyne, Dolan, Yesupriya, Wulf, Liu, Khoury, Gwinn (bib5) 2008; 9
Nelson, Ziehr, Agulnik, Johnson (bib26) 2013; 6
Kris, Johnson, Berry, Kwiatkowski, John Iafrate, Wistuba, Varella-Garcia, Franklin, Aronson, Su, Shyr, Ross Camidge, Sequist, Glisson, Khuri, Garon, Pao, Rudin, Schiller, Haura, Socinski, Shirai, Chen, Giaccone, Ladanyi, Kugler, Minna, Bunn (bib1) 2014; 311
Landreth, Silva (bib19) 2013; 79
Donaldson, Martin, Bruijn, Wolting, Lay, Tuekam, Zhang, Baskin, Bader, Michalickova, Pawson, Hogue (bib7) 2003; 4
Ann McKibbon, Lou Wilczynski, Brian Haynes (bib4) 2009; 26
Joachims (bib21) April 2002
Choi, Ryu, Yoo, Choi (bib16) 2012; 214
Aphinyanaphongs, Tsamardinos, Statnikov, Hardin, Aliferis (bib13) 2005; 12
Fiszman, Bray, Shin, Kilicoglu, Bennett, Bodenreider, Rindflesch (bib15) 2010; 160
Binod Gyawali, Thamar Solorio, Yassine Benajiba, Grading the quality of medical evidence. in: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, BioNLP ׳12, Stroudsburg, PA, USA, 2012, Association for Computational Linguistics, pp. 176–184.
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib23) 2011; 12
Brian Haynes, Ann McKibbon, Wilczynski, Walter, Werre (bib2) 2005; 330
Kilicoglu, Demner-Fushman, Rindflesch, Wilczynski, Brian Haynes (bib14) 2009; 16
Kirkpatrick, Graham, Muhsin (bib27) 2004; 3
Yin, Xu, Torii, Niu, Maisog, Wu, Hu, Liu (bib12) 2010; 49
Wallace, Trikalinos, Lau, Brodley, Schmid (bib10) 2010; 11
Chen, Müller, Sternberg (bib11) 2006; 7
OCEBM Levels of Evidence Working Group, The Oxford 2011 Levels of Evidence, 2011.
19712211 - Health Info Libr J. 2009 Sep;26(3):187-202
15894554 - BMJ. 2005 May 21;330(7501):1179
23931992 - Neuron. 2013 Aug 7;79(3):411-5
15561789 - J Am Med Inform Assoc. 2005 Mar-Apr;12(2):207-16
20102628 - BMC Bioinformatics. 2010;11:55
23115585 - Australas Med J. 2012;5(9):503-6
16779160 - AMIA Annu Symp Proc. 2005;:849-53
24846037 - JAMA. 2014 May 21;311(19):1998-2006
24177318 - J Biomed Inform. 2014 Feb;47:153-9
18430222 - BMC Bioinformatics. 2008;9:205
16893465 - BMC Bioinformatics. 2006;7:370
23493883 - Onco Targets Ther. 2013;6:135-43
20472411 - Artif Intell Med. 2010 Jul;49(3):155-60
15272498 - Nat Rev Drug Discov. 2004 Jul;3(7):549-50
12689350 - BMC Bioinformatics. 2003 Mar 27;4:11
16447994 - Proc IEEE Comput Syst Bioinform Conf. 2005;:366-74
12386115 - J Am Med Inform Assoc. 2002 Nov-Dec;9(6):653-8
20841778 - Stud Health Technol Inform. 2010;160(Pt 1):709-13
18952929 - J Am Med Inform Assoc. 2009 Jan-Feb;16(1):25-31
Kris (10.1016/j.compbiomed.2015.01.004_bib1) 2014; 311
Bachmann (10.1016/j.compbiomed.2015.01.004_bib3) 2002; 9
Fiszman (10.1016/j.compbiomed.2015.01.004_bib15) 2010; 160
10.1016/j.compbiomed.2015.01.004_bib6
10.1016/j.compbiomed.2015.01.004_bib18
Kim (10.1016/j.compbiomed.2015.01.004_bib9) 2014; 47
Brian Haynes (10.1016/j.compbiomed.2015.01.004_bib2) 2005; 330
Aphinyanaphongs (10.1016/j.compbiomed.2015.01.004_bib13) 2005; 12
Yu (10.1016/j.compbiomed.2015.01.004_bib5) 2008; 9
Ann McKibbon (10.1016/j.compbiomed.2015.01.004_bib4) 2009; 26
Chen (10.1016/j.compbiomed.2015.01.004_bib11) 2006; 7
Yetisgen-Yildiz (10.1016/j.compbiomed.2015.01.004_bib8) 2005; 2005
Yin (10.1016/j.compbiomed.2015.01.004_bib12) 2010; 49
Joachims (10.1016/j.compbiomed.2015.01.004_bib21) 2002
Mollá (10.1016/j.compbiomed.2015.01.004_bib17) 2012; 5
Choi (10.1016/j.compbiomed.2015.01.004_bib16) 2012; 214
Kilicoglu (10.1016/j.compbiomed.2015.01.004_bib14) 2009; 16
Pedregosa (10.1016/j.compbiomed.2015.01.004_bib23) 2011; 12
10.1016/j.compbiomed.2015.01.004_bib22
Donaldson (10.1016/j.compbiomed.2015.01.004_bib7) 2003; 4
10.1016/j.compbiomed.2015.01.004_bib20
Landreth (10.1016/j.compbiomed.2015.01.004_bib19) 2013; 79
Nelson (10.1016/j.compbiomed.2015.01.004_bib26) 2013; 6
Manning (10.1016/j.compbiomed.2015.01.004_bib25) 2008
Wallace (10.1016/j.compbiomed.2015.01.004_bib10) 2010; 11
Kirkpatrick (10.1016/j.compbiomed.2015.01.004_bib27) 2004; 3
Rindflesch (10.1016/j.compbiomed.2015.01.004_bib24) 2011; 31
References_xml – volume: 12
  start-page: 207
  year: 2005
  end-page: 216
  ident: bib13
  article-title: Text categorization models for high-quality article retrieval in internal medicine
  publication-title: J. Am. Med. Inf. Assoc.
  contributor:
    fullname: Aliferis
– volume: 4
  start-page: 11
  year: 2003
  ident: bib7
  article-title: PreBIND and textomy – mining the biomedical literature for protein-protein interactions using a support vector machine
  publication-title: BMC Bioinf.
  contributor:
    fullname: Hogue
– volume: 49
  start-page: 155
  year: 2010
  end-page: 160
  ident: bib12
  article-title: Document classification for mining host pathogen protein-protein interactions
  publication-title: Artif. Intell. Med.
  contributor:
    fullname: Liu
– year: April 2002
  ident: bib21
  article-title: Learning to Classify Text Using Support Vector Machines
  contributor:
    fullname: Joachims
– volume: 9
  start-page: 653
  year: 2002
  end-page: 658
  ident: bib3
  article-title: Identifying diagnostic studies in MEDLINE
  publication-title: J. Am. Med. Inf. Assoc.
  contributor:
    fullname: Riet
– year: 2008
  ident: bib25
  article-title: Introduction to Information Retrieval
  contributor:
    fullname: Schütze
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib23
  article-title: Scikit-learn
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Duchesnay
– volume: 31
  start-page: 15
  year: 2011
  end-page: 21
  ident: bib24
  article-title: Semantic MEDLINE: an advanced information management application for biomedicine
  publication-title: Inf. Serv. Use
  contributor:
    fullname: Shin
– volume: 214
  start-page: 76
  year: 2012
  end-page: 90
  ident: bib16
  article-title: Combining relevancy and methodological quality into a single ranking for evidence-based medicine
  publication-title: Inf. Sci.
  contributor:
    fullname: Choi
– volume: 47
  start-page: 153
  year: 2014
  end-page: 159
  ident: bib9
  article-title: An SVM-based high-quality article classifier for systematic reviews
  publication-title: J. Biomed. Inf.
  contributor:
    fullname: Choi
– volume: 11
  start-page: 55
  year: 2010
  ident: bib10
  article-title: Semi-automated screening of biomedical citations for systematic reviews
  publication-title: BMC Bioinf.
  contributor:
    fullname: Schmid
– volume: 7
  start-page: 370
  year: 2006
  ident: bib11
  article-title: Automatic document classification of biological literature
  publication-title: BMC Bioinf.
  contributor:
    fullname: Sternberg
– volume: 5
  start-page: 503
  year: 2012
  end-page: 506
  ident: bib17
  article-title: Creation of a corpus for evidence based medicine summarisation
  publication-title: Australas. Med. J.
  contributor:
    fullname: Elena Santiago-Martínez
– volume: 6
  start-page: 135
  year: 2013
  end-page: 143
  ident: bib26
  article-title: Afatinib
  publication-title: OncoTargets Therapy
  contributor:
    fullname: Johnson
– volume: 330
  start-page: 1179
  year: 2005
  ident: bib2
  article-title: Optimal search strategies for retrieving scientifically strong studies of treatment from medline
  publication-title: Br. Med. J.
  contributor:
    fullname: Werre
– volume: 16
  start-page: 25
  year: 2009
  end-page: 31
  ident: bib14
  article-title: Towards automatic recognition of scientifically rigorous clinical research evidence
  publication-title: J. Am. Med. Inf. Assoc.
  contributor:
    fullname: Brian Haynes
– volume: 79
  start-page: 411
  year: 2013
  end-page: 415
  ident: bib19
  article-title: The need for research maps to navigate published work and inform experiment planning
  publication-title: Neuron
  contributor:
    fullname: Silva
– volume: 9
  start-page: 205
  year: 2008
  ident: bib5
  article-title: GAPscreener
  publication-title: BMC Bioinf.
  contributor:
    fullname: Gwinn
– volume: 2005
  start-page: 849
  year: 2005
  end-page: 853
  ident: bib8
  article-title: The effect of feature representation on MEDLINE document classification
  publication-title: AMIA Annu. Symp. Proc.
  contributor:
    fullname: Pratt
– volume: 26
  start-page: 187
  year: 2009
  end-page: 202
  ident: bib4
  article-title: Retrieving randomized controlled trials from medline
  publication-title: Health Inf Libr. J.
  contributor:
    fullname: Brian Haynes
– volume: 311
  start-page: 1998
  year: 2014
  end-page: 2006
  ident: bib1
  article-title: Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs
  publication-title: J. Am. Med. Assoc.
  contributor:
    fullname: Bunn
– volume: 3
  start-page: 549
  year: 2004
  end-page: 550
  ident: bib27
  article-title: Cetuximab
  publication-title: Nat. Rev. Drug Discov.
  contributor:
    fullname: Muhsin
– volume: 160
  start-page: 709
  year: 2010
  end-page: 713
  ident: bib15
  article-title: Combining relevance assignment with quality of the evidence to support guideline development
  publication-title: Stud. Health Technol. Inf.
  contributor:
    fullname: Rindflesch
– volume: 11
  start-page: 55
  issue: January (1)
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.004_bib10
  article-title: Semi-automated screening of biomedical citations for systematic reviews
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-11-55
  contributor:
    fullname: Wallace
– volume: 9
  start-page: 653
  issue: 6
  year: 2002
  ident: 10.1016/j.compbiomed.2015.01.004_bib3
  article-title: Identifying diagnostic studies in MEDLINE
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1197/jamia.M1124
  contributor:
    fullname: Bachmann
– volume: 160
  start-page: 709
  issue: Pt 1
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.004_bib15
  article-title: Combining relevance assignment with quality of the evidence to support guideline development
  publication-title: Stud. Health Technol. Inf.
  contributor:
    fullname: Fiszman
– volume: 12
  start-page: 207
  issue: April (2)
  year: 2005
  ident: 10.1016/j.compbiomed.2015.01.004_bib13
  article-title: Text categorization models for high-quality article retrieval in internal medicine
  publication-title: J. Am. Med. Inf. Assoc.
  contributor:
    fullname: Aphinyanaphongs
– volume: 49
  start-page: 155
  issue: July (3)
  year: 2010
  ident: 10.1016/j.compbiomed.2015.01.004_bib12
  article-title: Document classification for mining host pathogen protein-protein interactions
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.04.003
  contributor:
    fullname: Yin
– ident: 10.1016/j.compbiomed.2015.01.004_bib18
– volume: 3
  start-page: 549
  issue: July (7)
  year: 2004
  ident: 10.1016/j.compbiomed.2015.01.004_bib27
  article-title: Cetuximab
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1445
  contributor:
    fullname: Kirkpatrick
– volume: 7
  start-page: 370
  issue: August (1)
  year: 2006
  ident: 10.1016/j.compbiomed.2015.01.004_bib11
  article-title: Automatic document classification of biological literature
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-7-370
  contributor:
    fullname: Chen
– year: 2002
  ident: 10.1016/j.compbiomed.2015.01.004_bib21
  contributor:
    fullname: Joachims
– volume: 12
  start-page: 2825
  issue: November
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.004_bib23
  article-title: Scikit-learn
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– volume: 330
  start-page: 1179
  issue: May (7501)
  year: 2005
  ident: 10.1016/j.compbiomed.2015.01.004_bib2
  article-title: Optimal search strategies for retrieving scientifically strong studies of treatment from medline
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.38446.498542.8F
  contributor:
    fullname: Brian Haynes
– volume: 6
  start-page: 135
  year: 2013
  ident: 10.1016/j.compbiomed.2015.01.004_bib26
  article-title: Afatinib
  publication-title: OncoTargets Therapy
  contributor:
    fullname: Nelson
– volume: 26
  start-page: 187
  issue: September (3)
  year: 2009
  ident: 10.1016/j.compbiomed.2015.01.004_bib4
  article-title: Retrieving randomized controlled trials from medline
  publication-title: Health Inf Libr. J.
  doi: 10.1111/j.1471-1842.2008.00827.x
  contributor:
    fullname: Ann McKibbon
– volume: 31
  start-page: 15
  issue: January (1–2)
  year: 2011
  ident: 10.1016/j.compbiomed.2015.01.004_bib24
  article-title: Semantic MEDLINE: an advanced information management application for biomedicine
  publication-title: Inf. Serv. Use
  doi: 10.3233/ISU-2011-0627
  contributor:
    fullname: Rindflesch
– year: 2008
  ident: 10.1016/j.compbiomed.2015.01.004_bib25
  contributor:
    fullname: Manning
– volume: 16
  start-page: 25
  issue: February (1)
  year: 2009
  ident: 10.1016/j.compbiomed.2015.01.004_bib14
  article-title: Towards automatic recognition of scientifically rigorous clinical research evidence
  publication-title: J. Am. Med. Inf. Assoc.
  doi: 10.1197/jamia.M2996
  contributor:
    fullname: Kilicoglu
– ident: 10.1016/j.compbiomed.2015.01.004_bib6
  doi: 10.1109/CSB.2005.36
– volume: 311
  start-page: 1998
  issue: May (19)
  year: 2014
  ident: 10.1016/j.compbiomed.2015.01.004_bib1
  article-title: Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2014.3741
  contributor:
    fullname: Kris
– volume: 2005
  start-page: 849
  year: 2005
  ident: 10.1016/j.compbiomed.2015.01.004_bib8
  article-title: The effect of feature representation on MEDLINE document classification
  publication-title: AMIA Annu. Symp. Proc.
  contributor:
    fullname: Yetisgen-Yildiz
– ident: 10.1016/j.compbiomed.2015.01.004_bib20
– ident: 10.1016/j.compbiomed.2015.01.004_bib22
– volume: 9
  start-page: 205
  year: 2008
  ident: 10.1016/j.compbiomed.2015.01.004_bib5
  article-title: GAPscreener
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-9-205
  contributor:
    fullname: Yu
– volume: 79
  start-page: 411
  issue: July (3)
  year: 2013
  ident: 10.1016/j.compbiomed.2015.01.004_bib19
  article-title: The need for research maps to navigate published work and inform experiment planning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.024
  contributor:
    fullname: Landreth
– volume: 214
  start-page: 76
  issue: December
  year: 2012
  ident: 10.1016/j.compbiomed.2015.01.004_bib16
  article-title: Combining relevancy and methodological quality into a single ranking for evidence-based medicine
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.05.027
  contributor:
    fullname: Choi
– volume: 5
  start-page: 503
  issue: September (9)
  year: 2012
  ident: 10.1016/j.compbiomed.2015.01.004_bib17
  article-title: Creation of a corpus for evidence based medicine summarisation
  publication-title: Australas. Med. J.
  doi: 10.4066/AMJ.2012.1375
  contributor:
    fullname: Mollá
– volume: 4
  start-page: 11
  issue: March (1)
  year: 2003
  ident: 10.1016/j.compbiomed.2015.01.004_bib7
  article-title: PreBIND and textomy – mining the biomedical literature for protein-protein interactions using a support vector machine
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-4-11
  contributor:
    fullname: Donaldson
– volume: 47
  start-page: 153
  issue: February
  year: 2014
  ident: 10.1016/j.compbiomed.2015.01.004_bib9
  article-title: An SVM-based high-quality article classifier for systematic reviews
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2013.10.005
  contributor:
    fullname: Kim
SSID ssj0004030
Score 2.117296
Snippet Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current...
This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 63
SubjectTerms Automatic summarization
Biomedical research
Cancer therapies
Classification
Clinical trials
Computational Biology - methods
Databases, Factual
Humans
Information retrieval
Information Storage and Retrieval
Internal Medicine
Lung cancer
Lung Neoplasms - diagnosis
Lung Neoplasms - genetics
Lung Neoplasms - therapy
Medical prognosis
Metadata
Mutation
Other
Prognosis
Quality of evidence
Research Design
ROC Curve
Studies
Support Vector Machine
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66gngR366uUsFrMem7ehAR10XQgw_YW0iaFF20VXf3_zuTpF1fiMeSpI_pZPIl880MIYcqANWNU1DeQgXoZiz9vKSxjy6sUsVBZg_crm-SwUN0NYyH7sBt7GiVjU00hlrVBZ6RH2HUTW6CGU5f33ysGoXeVVdCY54ssCBNcfOV9S9ncZE0tCEoYGsi2Ao5Jo_ldyFl24a4I8HLJu905dp-WZ5-ws_vLMpPy1J_hSw7POmdWQVYJXO6WiOL185jvk6Gt4bqqk1BCE9UygNrbCKj4PIZZrpX4H9_90yeWe9FTwSSRo-9O3Ndy5G1iGao7aMM6WODPPQv7s8Hvqum4BdxHk98EWYyZFIEuYyklqrII4zLFYj4Mk0TKnKlaSHSXJeAqoqMakDeEZMyTGSkRbhJOlVd6W3i0QCaMGsNwJ-I6lJSIQSLhGJUFbDedwlrhMhfbdIM3rDJRnwmeI6C55RxEHyXpI20eRMUCmZMj92cGnPGxwGn_M6kFMKI29j4YWHkSTvSwQYLBzisCv94bq_5tXz2qFbZuuSgbYaJh94UUel6avqkYBDh5n_1ge0dZjULu2TLaksrEMCasLdjCXz4Fz1qO2Di768t1dOjSQCOUW6AhHf-fvVdsoTfaQlzPdKZvE_1HiCoidw30-QDAZ0bIw
  priority: 102
  providerName: ProQuest
Title Representing and extracting lung cancer study metadata: Study objective and study design
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0010482515000074
https://dx.doi.org/10.1016/j.compbiomed.2015.01.004
https://www.ncbi.nlm.nih.gov/pubmed/25618216
https://www.proquest.com/docview/1654962424
https://search.proquest.com/docview/1657318101
https://search.proquest.com/docview/1664206303
https://pubmed.ncbi.nlm.nih.gov/PMC4331232
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hkNBepg32kfGhIO01w0mcr-0JEKWAqCY2pL5ZduyIIkgRLa_87buznZYCmpB4SeT68nU-3517vzsDfNcJim5WoPDWOqEwYxNVDcsiCmE1OktK94fb2SDvX_CTYTZcgoMuF4ZglV73O51utbX_Zddzc_d2NKIcX1xKUOZlZuNxVBOUo_lDmf7xMId5cJa6NBTUN0Tt0TwO40WwbZfmTiAvV8DTb9n2gol67oI-RVI-Mk29D_De-5Thnnvtj7Bk2jVYPfNR83UYnlu4q7GbQoSy1SFqZJsdhc1rnO1hTWN_F9pas-GNmUoCjv4M_9j2WF05rWgvdTTaAj8-wUXv8O9BP_I7KkR1VmXTSKalSmMlk0pxZZSuK065uZK8vtKwnMlKG1bLojINelZ1yQx63zxWKs0VNzL9DMvtuDVfIWQJdlHlGnSBODONYlLKmEsdM12jzQ8g7pgobl3hDNEhyq7EnPGCGC9YLJDxARQdt0WXGIqqzEz8vJqIWEwSwcSzsQ_g1-zKBfERaBle8dzNbmjF_FE5Lp1t9kwAO7NunHwUUZGtGd9bmgKVIt78fzS4xKPKZmkAX5y0zBiC_iau7-IcP3xBjmYEVPx7sacdXdoi4JTpht7wtzd9-Aa8o5bD1G3C8vTu3myhkzVV23YW4bEYFngse0fbsLJ3fNof4Hn_cPD7_B_f7ytO
link.rule.ids 230,315,783,787,888,4509,12068,12777,21400,24128,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,45597,45691,74073,74363,74630
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BkICXaYxfhQ2CtNcIJ3GaZntA07RSWNuHtZX6Ztmxo1FtaemP_393tpNSmCYeo9hNczmfP_u-7wxwomN03TRD5y10TGnGMsxLloaUwip1Gnfchttg2O5N-M9pOvUbbitPq6xjog3Uel7QHvlXUt3kVszwbfE7pFOjKLvqj9B4Cs94gnM1KcW737e6SJY4CQrGGo5LIc_kcfwuomw7iTsRvFzxTn9c2wPT07_w828W5R_TUvcA9j2eDM6dA7yCJ6Y6hOcDnzF_DdNrS3U19kCIQFY6wGhslVF4eYsjPSjouy8DW2c2uDNrSaTR02Bkr-dq5iKi7eraaEv6eAOT7uX4ohf60xTCIs3TdSiTjkoiJeNccWWULnJOulxJiK9jWJvJXBtWyCw3JaKqosMMIm8eKZW0FTcyeQt71bwy7yFgMd6iqjUIfzgzpWJSyohLHTFd4Hzfgqg2oli4ohmiZpPNxNbwggwvWCTQ8C3IamuLWhSKYcys_JhaiUisYsHEyJYUIsVtavOw2POs6elhg4MDAmeF_3juUf1pxfZRjbO14EtzGwceZVNkZeYb2ybDgIg__lgbXN5RVbOkBe-ctzQGQayJa7uojS--40dNAyr8vXun-nVjC4CTyg2R8IfH__pneNEbD_qi_2N49RFe0js78twR7K2XG3OMaGqtPtkhcw9PnR4F
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NJlW8INgGK5Qtk_Ya1flsAg8IsXXdR6tpXaW-WXbsaCBIS1v-f-5sJ123qdpjZDuJL-fzz7nf3QG8VyGqbtJD5S1USG7G0s9LlvjkwipVEmb2h9twlA4m8ZdpMnX8p6WjVdY20RhqNSvoH3mXom5yE8zQLR0t4vuH_uX8wacKUuRpdeU0duA57oop6XzW_7SOkWSRDUdBuxPjscixeizXi-jbNtydyF42kacr3faPrepvKPono_K3Lap_APsOW3pXVhkO4ZmuXkBr6LznL2H6w9BetSkO4YlKeTg9EyWFl3e46r2CdGDhmZyz3r1eCSKQnntjcz2Tt9Y6mqG2jzIEkFcw6X_8eT3wXWUFv0jyZOWLKJNRIEWYy1hqqYo8phhdQegv0yxlIleaFaKX6xIRVpExjSg8DqSMUhlrER3BbjWr9GvwWIhNlMEGoVDMdCmZECKIhQqYKnDvb0NQC5HPbQINXjPLbvla8JwEz1nAUfBt6NXS5nWAKJo0vXTra8kDvgw542OTXoiibxPjk8WRF81IByEsNOC4Q_zHczv1p-XrRzWK14Z3TTMuQvKsiErPHk2fHhpHvPm2PnjUowxnURuOrbY0AkHciee8IMWJb-hR04GSgG-2VDe_TDJwinhDVHyy_dXfQgtXC__2efT1FPZoypZH14Hd1eJRnyGwWsk3ZsU8AcK2Ij0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+and+extracting+lung+cancer+study+metadata%3A+Study+objective+and+study+design&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Garcia-Gathright%2C+Jean+I&rft.au=Oh%2C+Andrea&rft.au=Abarca%2C+Phillip+A&rft.au=Han%2C+Mary&rft.date=2015-03-01&rft.issn=0010-4825&rft.volume=58&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00023%2Fcov150h.gif