Representing and extracting lung cancer study metadata: Study objective and study design
Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that...
Saved in:
Published in | Computers in biology and medicine Vol. 58; pp. 63 - 72 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F -scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. |
---|---|
AbstractList | This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research articles on driver mutations in non-small cell lung cancer. Casama’s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama’s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed’s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F -scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama׳s representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama׳s support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed׳s built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. •We propose to improve retrieval by representing and extracting study metadata.•Multiple expert readers produced a gold standard of 430 abstracts on lung cancer.•Automatic classification performed better than or comparable to PubMed׳s filters.•Study design classification was robust to differences in vocabulary across corpora.•Top-ranked features were not domain-specific and could generalize to other domains. This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama's representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama's support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higher F-scores compared to PubMed's built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research papers on driver mutations in non-small cell lung cancer. Casama's representation of lung cancer studies aims to capture elements that will assist an end-user in retrieving studies and, importantly, judging their strength. This paper focuses on two types of study metadata: study objective and study design. 430 abstracts on EGFR and ALK mutations in lung cancer were annotated manually. Casama's support vector machine (SVM) automatically classified the abstracts by study objective with as much as 129% higherF-scores compared to PubMed's built-in filters. A second SVM classified the abstracts by epidemiological study design, suggesting strength of evidence at a more granular level than in previous work. The classification results and the top features determined by the classifiers suggest that this scheme would be generalizable to other mutations in lung cancer, as well as studies on driver mutations in other cancer domains. |
Author | Garcia-Gathright, Jean I Spiegel, Marshall L Abarca, Phillip A Sago, William Aberle, Denise R Garon, Edward B Bui, Alex A.T Wolf, Brian Oh, Andrea Han, Mary |
Author_xml | – sequence: 1 fullname: Garcia-Gathright, Jean I – sequence: 2 fullname: Oh, Andrea – sequence: 3 fullname: Abarca, Phillip A – sequence: 4 fullname: Han, Mary – sequence: 5 fullname: Sago, William – sequence: 6 fullname: Spiegel, Marshall L – sequence: 7 fullname: Wolf, Brian – sequence: 8 fullname: Garon, Edward B – sequence: 9 fullname: Bui, Alex A.T – sequence: 10 fullname: Aberle, Denise R |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25618216$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFv4AiceGSMP6Ik3CoBBVfUiUkChI3y3ZmFy-JvdjJiv33eHdLCz31YmvkZ17PzDtn5MQHj4QUFCoKVL5aVzaMG-PCiH3FgNYV0ApAPCIL2jZdCTUXJ2QBQKEULatPyVlKa8gEcHhCTlktacuoXJDvX3ATMaGfnF8V2vcF_p6itodwmPNhtbcYizTN_a4YcdK9nvTr4voQB7PGzG7xkHpkekxu5Z-Sx0s9JHx2c5-Tb-_ffb38WF59_vDp8s1VaeuunkrNW8Op0awzwqDpbZdL7LiWtOYtggTd9QhWNx0uRS1tC9g0TFBjuDQCNT8nF0fdzWzyNGzuJOpBbaIbddypoJ36_8W7H2oVtkpwThlnWeDljUAMv2ZMkxpdsjgM2mOYk6JSCgaSA38AWjecttmijL64h67DHH2exJ4SnWSCiUy1R8rGkFLE5W3dFNTeabVWd06rvdMKqMo-5tTn__Z9m_jX2gy8PQKYp791GFWyDrOXvYvZM9UH95BfLu6J2MF5Z_XwE3eY7npSiSlQ1_uN2y8crfOyQSP4H_qu1p0 |
CODEN | CBMDAW |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2017_10_034 |
Cites_doi | 10.1186/1471-2105-11-55 10.1197/jamia.M1124 10.1016/j.artmed.2010.04.003 10.1038/nrd1445 10.1186/1471-2105-7-370 10.1136/bmj.38446.498542.8F 10.1111/j.1471-1842.2008.00827.x 10.3233/ISU-2011-0627 10.1197/jamia.M2996 10.1109/CSB.2005.36 10.1001/jama.2014.3741 10.1186/1471-2105-9-205 10.1016/j.neuron.2013.07.024 10.1016/j.ins.2012.05.027 10.4066/AMJ.2012.1375 10.1186/1471-2105-4-11 10.1016/j.jbi.2013.10.005 |
ContentType | Journal Article |
Copyright | Elsevier Ltd 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Mar 2015 2015 Elsevier Ltd. All rights reserved. 2015 |
Copyright_xml | – notice: Elsevier Ltd – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Mar 2015 – notice: 2015 Elsevier Ltd. All rights reserved. 2015 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS Q9U 7X8 7QO 5PM |
DOI | 10.1016/j.compbiomed.2015.01.004 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Proquest Nursing & Allied Health Source ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest research library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 72 |
ExternalDocumentID | 3589592511 10_1016_j_compbiomed_2015_01_004 25618216 S0010482515000074 1_s2_0_S0010482515000074 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01-LM009961 – fundername: NLM NIH HHS grantid: T15 LM007356 – fundername: NLM NIH HHS grantid: T15-LM007356 – fundername: NLM NIH HHS grantid: R01 LM011333 – fundername: NLM NIH HHS grantid: R01 LM009961 – fundername: NCI NIH HHS grantid: K23 CA149079 – fundername: NCI NIH HHS grantid: K23CA149079 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 3V. 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABXDB ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AEVXI AFCTW AFJKZ AFKRA AFKWA AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M0N M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQQKQ PROAC PSQYO Q38 R2- RIG ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP WOW WUQ X7M XPP Z5R ZGI ~G- AAIAV ABLVK ABYKQ AJBFU EFLBG HMCUK LCYCR UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PQEST PQUKI PRINS Q9U 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c595t-a38b31ba29b4bebdc940393a61538e060a9de0ca79ef456c80e77241bb36b4ea3 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 |
IngestDate | Tue Sep 17 21:15:37 EDT 2024 Fri Oct 25 06:40:58 EDT 2024 Fri Oct 25 09:50:59 EDT 2024 Thu Oct 10 22:54:05 EDT 2024 Thu Sep 26 18:28:51 EDT 2024 Sat Sep 28 08:06:26 EDT 2024 Fri Feb 23 02:24:56 EST 2024 Tue Oct 15 14:34:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Automatic summarization Quality of evidence Information retrieval |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-a38b31ba29b4bebdc940393a61538e060a9de0ca79ef456c80e77241bb36b4ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Department of Medicine - Division of Hematology-Oncology 924 Westwood Boulevard, Suite 200 Los Angeles, CA 90024 USA Department of Bioengineering 924 Westwood Boulevard, Suite 420 Los Angeles, CA 90024 USA Department of Radiological Sciences 924 Westwood Boulevard, Suite 420 Los Angeles, CA 90024 USA |
OpenAccessLink | https://escholarship.org/content/qt2n88c0xj/qt2n88c0xj.pdf?t=rt5l8e |
PMID | 25618216 |
PQID | 1654962424 |
PQPubID | 1226355 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4331232 proquest_miscellaneous_1664206303 proquest_miscellaneous_1657318101 proquest_journals_1654962424 crossref_primary_10_1016_j_compbiomed_2015_01_004 pubmed_primary_25618216 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2015_01_004 elsevier_clinicalkeyesjournals_1_s2_0_S0010482515000074 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Steven Bird, Ewan Klein, Edward Loper, Natural Language Processing with Python, 1st edition, O׳Reilly Media, Beijing, Cambridge Mass, July 2009. Rindflesch, Kilicoglu, Fiszman, Rosemblat, Shin (bib24) 2011; 31 Mollá, Elena Santiago-Martínez (bib17) 2012; 5 Bachmann, Coray, Estermann, Riet (bib3) 2002; 9 Nalini Polavarapu, Shamkant B. Navathe, Ramprasad Ramnarayanan, Abrar ul Haque, Saurav Sahay, Ying Liu, Investigation into biomedical literature classification using support vector machines, in: Proceedings/IEEE Computational Systems Bioinformatics Conference, CSB, 2005, pp. 366–374. Yetisgen-Yildiz, Pratt (bib8) 2005; 2005 Kim, Choi (bib9) 2014; 47 Manning, Raghavan, Schütze (bib25) 2008 Yu, Clyne, Dolan, Yesupriya, Wulf, Liu, Khoury, Gwinn (bib5) 2008; 9 Nelson, Ziehr, Agulnik, Johnson (bib26) 2013; 6 Kris, Johnson, Berry, Kwiatkowski, John Iafrate, Wistuba, Varella-Garcia, Franklin, Aronson, Su, Shyr, Ross Camidge, Sequist, Glisson, Khuri, Garon, Pao, Rudin, Schiller, Haura, Socinski, Shirai, Chen, Giaccone, Ladanyi, Kugler, Minna, Bunn (bib1) 2014; 311 Landreth, Silva (bib19) 2013; 79 Donaldson, Martin, Bruijn, Wolting, Lay, Tuekam, Zhang, Baskin, Bader, Michalickova, Pawson, Hogue (bib7) 2003; 4 Ann McKibbon, Lou Wilczynski, Brian Haynes (bib4) 2009; 26 Joachims (bib21) April 2002 Choi, Ryu, Yoo, Choi (bib16) 2012; 214 Aphinyanaphongs, Tsamardinos, Statnikov, Hardin, Aliferis (bib13) 2005; 12 Fiszman, Bray, Shin, Kilicoglu, Bennett, Bodenreider, Rindflesch (bib15) 2010; 160 Binod Gyawali, Thamar Solorio, Yassine Benajiba, Grading the quality of medical evidence. in: Proceedings of the 2012 Workshop on Biomedical Natural Language Processing, BioNLP ׳12, Stroudsburg, PA, USA, 2012, Association for Computational Linguistics, pp. 176–184. Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib23) 2011; 12 Brian Haynes, Ann McKibbon, Wilczynski, Walter, Werre (bib2) 2005; 330 Kilicoglu, Demner-Fushman, Rindflesch, Wilczynski, Brian Haynes (bib14) 2009; 16 Kirkpatrick, Graham, Muhsin (bib27) 2004; 3 Yin, Xu, Torii, Niu, Maisog, Wu, Hu, Liu (bib12) 2010; 49 Wallace, Trikalinos, Lau, Brodley, Schmid (bib10) 2010; 11 Chen, Müller, Sternberg (bib11) 2006; 7 OCEBM Levels of Evidence Working Group, The Oxford 2011 Levels of Evidence, 2011. 19712211 - Health Info Libr J. 2009 Sep;26(3):187-202 15894554 - BMJ. 2005 May 21;330(7501):1179 23931992 - Neuron. 2013 Aug 7;79(3):411-5 15561789 - J Am Med Inform Assoc. 2005 Mar-Apr;12(2):207-16 20102628 - BMC Bioinformatics. 2010;11:55 23115585 - Australas Med J. 2012;5(9):503-6 16779160 - AMIA Annu Symp Proc. 2005;:849-53 24846037 - JAMA. 2014 May 21;311(19):1998-2006 24177318 - J Biomed Inform. 2014 Feb;47:153-9 18430222 - BMC Bioinformatics. 2008;9:205 16893465 - BMC Bioinformatics. 2006;7:370 23493883 - Onco Targets Ther. 2013;6:135-43 20472411 - Artif Intell Med. 2010 Jul;49(3):155-60 15272498 - Nat Rev Drug Discov. 2004 Jul;3(7):549-50 12689350 - BMC Bioinformatics. 2003 Mar 27;4:11 16447994 - Proc IEEE Comput Syst Bioinform Conf. 2005;:366-74 12386115 - J Am Med Inform Assoc. 2002 Nov-Dec;9(6):653-8 20841778 - Stud Health Technol Inform. 2010;160(Pt 1):709-13 18952929 - J Am Med Inform Assoc. 2009 Jan-Feb;16(1):25-31 Kris (10.1016/j.compbiomed.2015.01.004_bib1) 2014; 311 Bachmann (10.1016/j.compbiomed.2015.01.004_bib3) 2002; 9 Fiszman (10.1016/j.compbiomed.2015.01.004_bib15) 2010; 160 10.1016/j.compbiomed.2015.01.004_bib6 10.1016/j.compbiomed.2015.01.004_bib18 Kim (10.1016/j.compbiomed.2015.01.004_bib9) 2014; 47 Brian Haynes (10.1016/j.compbiomed.2015.01.004_bib2) 2005; 330 Aphinyanaphongs (10.1016/j.compbiomed.2015.01.004_bib13) 2005; 12 Yu (10.1016/j.compbiomed.2015.01.004_bib5) 2008; 9 Ann McKibbon (10.1016/j.compbiomed.2015.01.004_bib4) 2009; 26 Chen (10.1016/j.compbiomed.2015.01.004_bib11) 2006; 7 Yetisgen-Yildiz (10.1016/j.compbiomed.2015.01.004_bib8) 2005; 2005 Yin (10.1016/j.compbiomed.2015.01.004_bib12) 2010; 49 Joachims (10.1016/j.compbiomed.2015.01.004_bib21) 2002 Mollá (10.1016/j.compbiomed.2015.01.004_bib17) 2012; 5 Choi (10.1016/j.compbiomed.2015.01.004_bib16) 2012; 214 Kilicoglu (10.1016/j.compbiomed.2015.01.004_bib14) 2009; 16 Pedregosa (10.1016/j.compbiomed.2015.01.004_bib23) 2011; 12 10.1016/j.compbiomed.2015.01.004_bib22 Donaldson (10.1016/j.compbiomed.2015.01.004_bib7) 2003; 4 10.1016/j.compbiomed.2015.01.004_bib20 Landreth (10.1016/j.compbiomed.2015.01.004_bib19) 2013; 79 Nelson (10.1016/j.compbiomed.2015.01.004_bib26) 2013; 6 Manning (10.1016/j.compbiomed.2015.01.004_bib25) 2008 Wallace (10.1016/j.compbiomed.2015.01.004_bib10) 2010; 11 Kirkpatrick (10.1016/j.compbiomed.2015.01.004_bib27) 2004; 3 Rindflesch (10.1016/j.compbiomed.2015.01.004_bib24) 2011; 31 |
References_xml | – volume: 12 start-page: 207 year: 2005 end-page: 216 ident: bib13 article-title: Text categorization models for high-quality article retrieval in internal medicine publication-title: J. Am. Med. Inf. Assoc. contributor: fullname: Aliferis – volume: 4 start-page: 11 year: 2003 ident: bib7 article-title: PreBIND and textomy – mining the biomedical literature for protein-protein interactions using a support vector machine publication-title: BMC Bioinf. contributor: fullname: Hogue – volume: 49 start-page: 155 year: 2010 end-page: 160 ident: bib12 article-title: Document classification for mining host pathogen protein-protein interactions publication-title: Artif. Intell. Med. contributor: fullname: Liu – year: April 2002 ident: bib21 article-title: Learning to Classify Text Using Support Vector Machines contributor: fullname: Joachims – volume: 9 start-page: 653 year: 2002 end-page: 658 ident: bib3 article-title: Identifying diagnostic studies in MEDLINE publication-title: J. Am. Med. Inf. Assoc. contributor: fullname: Riet – year: 2008 ident: bib25 article-title: Introduction to Information Retrieval contributor: fullname: Schütze – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib23 article-title: Scikit-learn publication-title: J. Mach. Learn. Res. contributor: fullname: Duchesnay – volume: 31 start-page: 15 year: 2011 end-page: 21 ident: bib24 article-title: Semantic MEDLINE: an advanced information management application for biomedicine publication-title: Inf. Serv. Use contributor: fullname: Shin – volume: 214 start-page: 76 year: 2012 end-page: 90 ident: bib16 article-title: Combining relevancy and methodological quality into a single ranking for evidence-based medicine publication-title: Inf. Sci. contributor: fullname: Choi – volume: 47 start-page: 153 year: 2014 end-page: 159 ident: bib9 article-title: An SVM-based high-quality article classifier for systematic reviews publication-title: J. Biomed. Inf. contributor: fullname: Choi – volume: 11 start-page: 55 year: 2010 ident: bib10 article-title: Semi-automated screening of biomedical citations for systematic reviews publication-title: BMC Bioinf. contributor: fullname: Schmid – volume: 7 start-page: 370 year: 2006 ident: bib11 article-title: Automatic document classification of biological literature publication-title: BMC Bioinf. contributor: fullname: Sternberg – volume: 5 start-page: 503 year: 2012 end-page: 506 ident: bib17 article-title: Creation of a corpus for evidence based medicine summarisation publication-title: Australas. Med. J. contributor: fullname: Elena Santiago-Martínez – volume: 6 start-page: 135 year: 2013 end-page: 143 ident: bib26 article-title: Afatinib publication-title: OncoTargets Therapy contributor: fullname: Johnson – volume: 330 start-page: 1179 year: 2005 ident: bib2 article-title: Optimal search strategies for retrieving scientifically strong studies of treatment from medline publication-title: Br. Med. J. contributor: fullname: Werre – volume: 16 start-page: 25 year: 2009 end-page: 31 ident: bib14 article-title: Towards automatic recognition of scientifically rigorous clinical research evidence publication-title: J. Am. Med. Inf. Assoc. contributor: fullname: Brian Haynes – volume: 79 start-page: 411 year: 2013 end-page: 415 ident: bib19 article-title: The need for research maps to navigate published work and inform experiment planning publication-title: Neuron contributor: fullname: Silva – volume: 9 start-page: 205 year: 2008 ident: bib5 article-title: GAPscreener publication-title: BMC Bioinf. contributor: fullname: Gwinn – volume: 2005 start-page: 849 year: 2005 end-page: 853 ident: bib8 article-title: The effect of feature representation on MEDLINE document classification publication-title: AMIA Annu. Symp. Proc. contributor: fullname: Pratt – volume: 26 start-page: 187 year: 2009 end-page: 202 ident: bib4 article-title: Retrieving randomized controlled trials from medline publication-title: Health Inf Libr. J. contributor: fullname: Brian Haynes – volume: 311 start-page: 1998 year: 2014 end-page: 2006 ident: bib1 article-title: Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs publication-title: J. Am. Med. Assoc. contributor: fullname: Bunn – volume: 3 start-page: 549 year: 2004 end-page: 550 ident: bib27 article-title: Cetuximab publication-title: Nat. Rev. Drug Discov. contributor: fullname: Muhsin – volume: 160 start-page: 709 year: 2010 end-page: 713 ident: bib15 article-title: Combining relevance assignment with quality of the evidence to support guideline development publication-title: Stud. Health Technol. Inf. contributor: fullname: Rindflesch – volume: 11 start-page: 55 issue: January (1) year: 2010 ident: 10.1016/j.compbiomed.2015.01.004_bib10 article-title: Semi-automated screening of biomedical citations for systematic reviews publication-title: BMC Bioinf. doi: 10.1186/1471-2105-11-55 contributor: fullname: Wallace – volume: 9 start-page: 653 issue: 6 year: 2002 ident: 10.1016/j.compbiomed.2015.01.004_bib3 article-title: Identifying diagnostic studies in MEDLINE publication-title: J. Am. Med. Inf. Assoc. doi: 10.1197/jamia.M1124 contributor: fullname: Bachmann – volume: 160 start-page: 709 issue: Pt 1 year: 2010 ident: 10.1016/j.compbiomed.2015.01.004_bib15 article-title: Combining relevance assignment with quality of the evidence to support guideline development publication-title: Stud. Health Technol. Inf. contributor: fullname: Fiszman – volume: 12 start-page: 207 issue: April (2) year: 2005 ident: 10.1016/j.compbiomed.2015.01.004_bib13 article-title: Text categorization models for high-quality article retrieval in internal medicine publication-title: J. Am. Med. Inf. Assoc. contributor: fullname: Aphinyanaphongs – volume: 49 start-page: 155 issue: July (3) year: 2010 ident: 10.1016/j.compbiomed.2015.01.004_bib12 article-title: Document classification for mining host pathogen protein-protein interactions publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2010.04.003 contributor: fullname: Yin – ident: 10.1016/j.compbiomed.2015.01.004_bib18 – volume: 3 start-page: 549 issue: July (7) year: 2004 ident: 10.1016/j.compbiomed.2015.01.004_bib27 article-title: Cetuximab publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1445 contributor: fullname: Kirkpatrick – volume: 7 start-page: 370 issue: August (1) year: 2006 ident: 10.1016/j.compbiomed.2015.01.004_bib11 article-title: Automatic document classification of biological literature publication-title: BMC Bioinf. doi: 10.1186/1471-2105-7-370 contributor: fullname: Chen – year: 2002 ident: 10.1016/j.compbiomed.2015.01.004_bib21 contributor: fullname: Joachims – volume: 12 start-page: 2825 issue: November year: 2011 ident: 10.1016/j.compbiomed.2015.01.004_bib23 article-title: Scikit-learn publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – volume: 330 start-page: 1179 issue: May (7501) year: 2005 ident: 10.1016/j.compbiomed.2015.01.004_bib2 article-title: Optimal search strategies for retrieving scientifically strong studies of treatment from medline publication-title: Br. Med. J. doi: 10.1136/bmj.38446.498542.8F contributor: fullname: Brian Haynes – volume: 6 start-page: 135 year: 2013 ident: 10.1016/j.compbiomed.2015.01.004_bib26 article-title: Afatinib publication-title: OncoTargets Therapy contributor: fullname: Nelson – volume: 26 start-page: 187 issue: September (3) year: 2009 ident: 10.1016/j.compbiomed.2015.01.004_bib4 article-title: Retrieving randomized controlled trials from medline publication-title: Health Inf Libr. J. doi: 10.1111/j.1471-1842.2008.00827.x contributor: fullname: Ann McKibbon – volume: 31 start-page: 15 issue: January (1–2) year: 2011 ident: 10.1016/j.compbiomed.2015.01.004_bib24 article-title: Semantic MEDLINE: an advanced information management application for biomedicine publication-title: Inf. Serv. Use doi: 10.3233/ISU-2011-0627 contributor: fullname: Rindflesch – year: 2008 ident: 10.1016/j.compbiomed.2015.01.004_bib25 contributor: fullname: Manning – volume: 16 start-page: 25 issue: February (1) year: 2009 ident: 10.1016/j.compbiomed.2015.01.004_bib14 article-title: Towards automatic recognition of scientifically rigorous clinical research evidence publication-title: J. Am. Med. Inf. Assoc. doi: 10.1197/jamia.M2996 contributor: fullname: Kilicoglu – ident: 10.1016/j.compbiomed.2015.01.004_bib6 doi: 10.1109/CSB.2005.36 – volume: 311 start-page: 1998 issue: May (19) year: 2014 ident: 10.1016/j.compbiomed.2015.01.004_bib1 article-title: Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2014.3741 contributor: fullname: Kris – volume: 2005 start-page: 849 year: 2005 ident: 10.1016/j.compbiomed.2015.01.004_bib8 article-title: The effect of feature representation on MEDLINE document classification publication-title: AMIA Annu. Symp. Proc. contributor: fullname: Yetisgen-Yildiz – ident: 10.1016/j.compbiomed.2015.01.004_bib20 – ident: 10.1016/j.compbiomed.2015.01.004_bib22 – volume: 9 start-page: 205 year: 2008 ident: 10.1016/j.compbiomed.2015.01.004_bib5 article-title: GAPscreener publication-title: BMC Bioinf. doi: 10.1186/1471-2105-9-205 contributor: fullname: Yu – volume: 79 start-page: 411 issue: July (3) year: 2013 ident: 10.1016/j.compbiomed.2015.01.004_bib19 article-title: The need for research maps to navigate published work and inform experiment planning publication-title: Neuron doi: 10.1016/j.neuron.2013.07.024 contributor: fullname: Landreth – volume: 214 start-page: 76 issue: December year: 2012 ident: 10.1016/j.compbiomed.2015.01.004_bib16 article-title: Combining relevancy and methodological quality into a single ranking for evidence-based medicine publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.05.027 contributor: fullname: Choi – volume: 5 start-page: 503 issue: September (9) year: 2012 ident: 10.1016/j.compbiomed.2015.01.004_bib17 article-title: Creation of a corpus for evidence based medicine summarisation publication-title: Australas. Med. J. doi: 10.4066/AMJ.2012.1375 contributor: fullname: Mollá – volume: 4 start-page: 11 issue: March (1) year: 2003 ident: 10.1016/j.compbiomed.2015.01.004_bib7 article-title: PreBIND and textomy – mining the biomedical literature for protein-protein interactions using a support vector machine publication-title: BMC Bioinf. doi: 10.1186/1471-2105-4-11 contributor: fullname: Donaldson – volume: 47 start-page: 153 issue: February year: 2014 ident: 10.1016/j.compbiomed.2015.01.004_bib9 article-title: An SVM-based high-quality article classifier for systematic reviews publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2013.10.005 contributor: fullname: Kim |
SSID | ssj0004030 |
Score | 2.117296 |
Snippet | Abstract This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current... This paper describes the information retrieval step in Casama (Contextualized Semantic Maps), a project that summarizes and contextualizes current research... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 63 |
SubjectTerms | Automatic summarization Biomedical research Cancer therapies Classification Clinical trials Computational Biology - methods Databases, Factual Humans Information retrieval Information Storage and Retrieval Internal Medicine Lung cancer Lung Neoplasms - diagnosis Lung Neoplasms - genetics Lung Neoplasms - therapy Medical prognosis Metadata Mutation Other Prognosis Quality of evidence Research Design ROC Curve Studies Support Vector Machine |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA66gngR366uUsFrMem7ehAR10XQgw_YW0iaFF20VXf3_zuTpF1fiMeSpI_pZPIl880MIYcqANWNU1DeQgXoZiz9vKSxjy6sUsVBZg_crm-SwUN0NYyH7sBt7GiVjU00hlrVBZ6RH2HUTW6CGU5f33ysGoXeVVdCY54ssCBNcfOV9S9ncZE0tCEoYGsi2Ao5Jo_ldyFl24a4I8HLJu905dp-WZ5-ws_vLMpPy1J_hSw7POmdWQVYJXO6WiOL185jvk6Gt4bqqk1BCE9UygNrbCKj4PIZZrpX4H9_90yeWe9FTwSSRo-9O3Ndy5G1iGao7aMM6WODPPQv7s8Hvqum4BdxHk98EWYyZFIEuYyklqrII4zLFYj4Mk0TKnKlaSHSXJeAqoqMakDeEZMyTGSkRbhJOlVd6W3i0QCaMGsNwJ-I6lJSIQSLhGJUFbDedwlrhMhfbdIM3rDJRnwmeI6C55RxEHyXpI20eRMUCmZMj92cGnPGxwGn_M6kFMKI29j4YWHkSTvSwQYLBzisCv94bq_5tXz2qFbZuuSgbYaJh94UUel6avqkYBDh5n_1ge0dZjULu2TLaksrEMCasLdjCXz4Fz1qO2Di768t1dOjSQCOUW6AhHf-fvVdsoTfaQlzPdKZvE_1HiCoidw30-QDAZ0bIw priority: 102 providerName: ProQuest |
Title | Representing and extracting lung cancer study metadata: Study objective and study design |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0010482515000074 https://dx.doi.org/10.1016/j.compbiomed.2015.01.004 https://www.ncbi.nlm.nih.gov/pubmed/25618216 https://www.proquest.com/docview/1654962424 https://search.proquest.com/docview/1657318101 https://search.proquest.com/docview/1664206303 https://pubmed.ncbi.nlm.nih.gov/PMC4331232 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8hkNBepg32kfGhIO01w0mcr-0JEKWAqCY2pL5ZduyIIkgRLa_87buznZYCmpB4SeT68nU-3517vzsDfNcJim5WoPDWOqEwYxNVDcsiCmE1OktK94fb2SDvX_CTYTZcgoMuF4ZglV73O51utbX_Zddzc_d2NKIcX1xKUOZlZuNxVBOUo_lDmf7xMId5cJa6NBTUN0Tt0TwO40WwbZfmTiAvV8DTb9n2gol67oI-RVI-Mk29D_De-5Thnnvtj7Bk2jVYPfNR83UYnlu4q7GbQoSy1SFqZJsdhc1rnO1hTWN_F9pas-GNmUoCjv4M_9j2WF05rWgvdTTaAj8-wUXv8O9BP_I7KkR1VmXTSKalSmMlk0pxZZSuK065uZK8vtKwnMlKG1bLojINelZ1yQx63zxWKs0VNzL9DMvtuDVfIWQJdlHlGnSBODONYlLKmEsdM12jzQ8g7pgobl3hDNEhyq7EnPGCGC9YLJDxARQdt0WXGIqqzEz8vJqIWEwSwcSzsQ_g1-zKBfERaBle8dzNbmjF_FE5Lp1t9kwAO7NunHwUUZGtGd9bmgKVIt78fzS4xKPKZmkAX5y0zBiC_iau7-IcP3xBjmYEVPx7sacdXdoi4JTpht7wtzd9-Aa8o5bD1G3C8vTu3myhkzVV23YW4bEYFngse0fbsLJ3fNof4Hn_cPD7_B_f7ytO |
link.rule.ids | 230,315,783,787,888,4509,12068,12777,21400,24128,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,45597,45691,74073,74363,74630 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7BkICXaYxfhQ2CtNcIJ3GaZntA07RSWNuHtZX6Ztmxo1FtaemP_393tpNSmCYeo9hNczmfP_u-7wxwomN03TRD5y10TGnGMsxLloaUwip1Gnfchttg2O5N-M9pOvUbbitPq6xjog3Uel7QHvlXUt3kVszwbfE7pFOjKLvqj9B4Cs94gnM1KcW737e6SJY4CQrGGo5LIc_kcfwuomw7iTsRvFzxTn9c2wPT07_w828W5R_TUvcA9j2eDM6dA7yCJ6Y6hOcDnzF_DdNrS3U19kCIQFY6wGhslVF4eYsjPSjouy8DW2c2uDNrSaTR02Bkr-dq5iKi7eraaEv6eAOT7uX4ohf60xTCIs3TdSiTjkoiJeNccWWULnJOulxJiK9jWJvJXBtWyCw3JaKqosMMIm8eKZW0FTcyeQt71bwy7yFgMd6iqjUIfzgzpWJSyohLHTFd4Hzfgqg2oli4ohmiZpPNxNbwggwvWCTQ8C3IamuLWhSKYcys_JhaiUisYsHEyJYUIsVtavOw2POs6elhg4MDAmeF_3juUf1pxfZRjbO14EtzGwceZVNkZeYb2ybDgIg__lgbXN5RVbOkBe-ctzQGQayJa7uojS--40dNAyr8vXun-nVjC4CTyg2R8IfH__pneNEbD_qi_2N49RFe0js78twR7K2XG3OMaGqtPtkhcw9PnR4F |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8NJlW8INgGK5Qtk_Ya1flsAg8IsXXdR6tpXaW-WXbsaCBIS1v-f-5sJ123qdpjZDuJL-fzz7nf3QG8VyGqbtJD5S1USG7G0s9LlvjkwipVEmb2h9twlA4m8ZdpMnX8p6WjVdY20RhqNSvoH3mXom5yE8zQLR0t4vuH_uX8wacKUuRpdeU0duA57oop6XzW_7SOkWSRDUdBuxPjscixeizXi-jbNtydyF42kacr3faPrepvKPono_K3Lap_APsOW3pXVhkO4ZmuXkBr6LznL2H6w9BetSkO4YlKeTg9EyWFl3e46r2CdGDhmZyz3r1eCSKQnntjcz2Tt9Y6mqG2jzIEkFcw6X_8eT3wXWUFv0jyZOWLKJNRIEWYy1hqqYo8phhdQegv0yxlIleaFaKX6xIRVpExjSg8DqSMUhlrER3BbjWr9GvwWIhNlMEGoVDMdCmZECKIhQqYKnDvb0NQC5HPbQINXjPLbvla8JwEz1nAUfBt6NXS5nWAKJo0vXTra8kDvgw542OTXoiibxPjk8WRF81IByEsNOC4Q_zHczv1p-XrRzWK14Z3TTMuQvKsiErPHk2fHhpHvPm2PnjUowxnURuOrbY0AkHciee8IMWJb-hR04GSgG-2VDe_TDJwinhDVHyy_dXfQgtXC__2efT1FPZoypZH14Hd1eJRnyGwWsk3ZsU8AcK2Ij0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representing+and+extracting+lung+cancer+study+metadata%3A+Study+objective+and+study+design&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Garcia-Gathright%2C+Jean+I&rft.au=Oh%2C+Andrea&rft.au=Abarca%2C+Phillip+A&rft.au=Han%2C+Mary&rft.date=2015-03-01&rft.issn=0010-4825&rft.volume=58&rft.spage=63&rft.epage=72&rft_id=info:doi/10.1016%2Fj.compbiomed.2015.01.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482515X00023%2Fcov150h.gif |