Enhanced TLR-MYD88 Signaling Stimulates Autoinflammation in SH3BP2 Cherubism Mice and Defines the Etiology of Cherubism
Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the in...
Saved in:
Published in | Cell reports (Cambridge) Vol. 8; no. 6; pp. 1752 - 1766 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2014.08.023 |
Cover
Loading…
Abstract | Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression.
[Display omitted]
•TLR2/4-MYD88 signaling controls TNF-α-dependent autoinflammation in cherubism mice•Cherubism inflammation occurs even in a germ-free environment•Cherubism mutation enhances macrophage responsiveness to PAMP/DAMP ligands for TLRs•SYK may be a potential therapeutic target for the treatment of cherubism
The jaw shows a distinct phenotype in human cherubism that disappears with age. Yoshitaka et al. now address this mysterious disease progression by studying the mechanism of inflammation in a mouse cherubism model. Absence of TLR2/TLR4 rescues the mice from inflammation. However, the inflammation occurs even in the absence of microorganisms. These results suggest that both abundant oral bacteria and active jaw remodeling are the cause of jaw-specific lesions and that later stabilization of jaw remodeling might explain the age-dependent effects of this disease. |
---|---|
AbstractList | Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that TNF-α-dependent autoinflammation is a major cause for the disorder, but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88-dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyper-responsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate TLRs, resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression. Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression. [Display omitted] •TLR2/4-MYD88 signaling controls TNF-α-dependent autoinflammation in cherubism mice•Cherubism inflammation occurs even in a germ-free environment•Cherubism mutation enhances macrophage responsiveness to PAMP/DAMP ligands for TLRs•SYK may be a potential therapeutic target for the treatment of cherubism The jaw shows a distinct phenotype in human cherubism that disappears with age. Yoshitaka et al. now address this mysterious disease progression by studying the mechanism of inflammation in a mouse cherubism model. Absence of TLR2/TLR4 rescues the mice from inflammation. However, the inflammation occurs even in the absence of microorganisms. These results suggest that both abundant oral bacteria and active jaw remodeling are the cause of jaw-specific lesions and that later stabilization of jaw remodeling might explain the age-dependent effects of this disease. Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression. Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression.Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause of the disorder but failed to explain why human cherubism lesions are restricted to jaws and regress after puberty. We demonstrate that the inflammation in cherubism mice is MYD88 dependent and is rescued in the absence of TLR2 and TLR4. However, germ-free cherubism mice also develop inflammation. Mutant macrophages are hyperresponsive to PAMPs (pathogen-associated molecular patterns) and DAMPs (damage-associated molecular patterns) that activate Toll-like receptors (TLRs), resulting in TNF-α overproduction. Phosphorylation of SH3BP2 at Y183 is critical for the TNF-α production. Finally, SYK depletion in macrophages prevents the inflammation. These data suggest that the presence of a large amount of TLR ligands, presumably oral bacteria and DAMPs during jawbone remodeling, may cause the jaw-specific development of human cherubism lesions. Reduced levels of DAMPs after stabilization of jaw remodeling may contribute to the age-dependent regression. |
Author | Alford, Lisa M. Mukai, Tomoyuki Yamaguchi, Ken Ueki, Yasuyoshi Masrani, Salome Ishida, Shu Yamada, Motohiko Mizuno, Noriyoshi Yoshitaka, Teruhito Kittaka, Mizuho Reichenberger, Ernst J. Olsen, Bjorn R. |
AuthorAffiliation | 3 Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700, JAPAN 2 Department of Periodontal Medicine, Division of Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734, JAPAN 5 Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA 4 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA 1 Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA |
AuthorAffiliation_xml | – name: 3 Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700, JAPAN – name: 5 Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA – name: 1 Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, MO 64108, USA – name: 4 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA – name: 2 Department of Periodontal Medicine, Division of Applied Life Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734, JAPAN |
Author_xml | – sequence: 1 givenname: Teruhito surname: Yoshitaka fullname: Yoshitaka, Teruhito organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 2 givenname: Tomoyuki surname: Mukai fullname: Mukai, Tomoyuki organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 3 givenname: Mizuho surname: Kittaka fullname: Kittaka, Mizuho organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 4 givenname: Lisa M. surname: Alford fullname: Alford, Lisa M. organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 5 givenname: Salome surname: Masrani fullname: Masrani, Salome organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 6 givenname: Shu surname: Ishida fullname: Ishida, Shu organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 7 givenname: Ken surname: Yamaguchi fullname: Yamaguchi, Ken organization: Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700, Japan – sequence: 8 givenname: Motohiko surname: Yamada fullname: Yamada, Motohiko organization: Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700, Japan – sequence: 9 givenname: Noriyoshi surname: Mizuno fullname: Mizuno, Noriyoshi organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA – sequence: 10 givenname: Bjorn R. surname: Olsen fullname: Olsen, Bjorn R. organization: Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA – sequence: 11 givenname: Ernst J. surname: Reichenberger fullname: Reichenberger, Ernst J. organization: Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA – sequence: 12 givenname: Yasuyoshi surname: Ueki fullname: Ueki, Yasuyoshi email: uekiy@umkc.edu organization: Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25220465$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v0zAYjtAQG2X_ACEfubTkdZzE5YA0usImdQLRceBkOfbr1lVid44ztH-Pu3awcQBfbNnPh_U-z8vsyHmHWfYa8gnkUL3bTBS2AbcTmgOb5HyS0-JZdkIpwBgoq48enY-z077f5GlVOcCUvciOaUlpzqryJPs5d2vpFGpyvfg2vvpxzjlZ2pWTrXUrsoy2G1oZsSdnQ_TWmVZ2nYzWO2IdWV4UH79SMltjGBrbd-TKKiTSaXKOxrrEimsk8wRv_eqOePMH-ip7bmTb4-lhH2XfP82vZxfjxZfPl7OzxViV0zKOOdACFNRgaKUaSc2UVxoYA8lkQ0HqugGUxhSlwVIxLDXnrKZcN7SpqcJilF3udbWXG7ENtpPhTnhpxf2FDyshQ7SqRVGystCq0ZrpiknUvJmySoJpkhEUjUpaH_Za26HpUCt0Mcj2iejTF2fXYuVvBYO6LlJCo-ztQSD4mwH7KDrbpyBb6dAPvYCyqiAtXifom8dev00ekkuA93uACr7vAxqhbLxPJlnbVkAudk0RG7Fvitg1ReRcpH8kMvuL_KD_H9phAJgSu7UYRK8s7tpjA6qYRmr_LfALBRDanw |
CitedBy_id | crossref_primary_10_1038_s41598_017_11915_5 crossref_primary_10_1016_j_cyto_2015_02_012 crossref_primary_10_3390_ijms22084169 crossref_primary_10_1159_000542703 crossref_primary_10_1002_jbmr_3449 crossref_primary_10_1155_2024_2296727 crossref_primary_10_1002_advs_202205048 crossref_primary_10_1016_j_path_2017_04_007 crossref_primary_10_1021_acs_chemrev_7b00122 crossref_primary_10_1042_BCJ20210707 crossref_primary_10_1016_j_jcmgh_2021_08_004 crossref_primary_10_1051_medsci_20153106005 crossref_primary_10_1007_s11914_018_0455_7 crossref_primary_10_1038_nrrheum_2015_79 crossref_primary_10_1172_JCI140869 crossref_primary_10_1007_s12105_017_0837_7 crossref_primary_10_1055_s_0040_1705095 crossref_primary_10_1093_jbmrpl_ziae050 crossref_primary_10_3390_cells8050402 crossref_primary_10_1002_jbm4_10352 crossref_primary_10_1002_jbmr_3295 crossref_primary_10_1016_j_bonr_2020_100258 crossref_primary_10_1186_s12891_020_03580_z crossref_primary_10_3390_cells8020195 crossref_primary_10_1172_JCI71081 crossref_primary_10_1111_odi_13756 crossref_primary_10_1002_jbmr_4922 crossref_primary_10_1016_j_bone_2014_10_021 crossref_primary_10_1016_j_ijom_2020_05_021 crossref_primary_10_1038_nrrheum_2014_219 crossref_primary_10_1080_25785826_2020_1720104 crossref_primary_10_1186_s44280_024_00051_1 crossref_primary_10_1002_jbmr_3882 crossref_primary_10_1111_odi_14073 crossref_primary_10_1016_j_molmed_2023_02_001 crossref_primary_10_1038_s41577_019_0178_8 crossref_primary_10_1155_2023_2347855 crossref_primary_10_3390_cells8101201 crossref_primary_10_1016_j_bone_2020_115315 crossref_primary_10_1016_j_bone_2021_115935 crossref_primary_10_1186_s13023_018_0907_2 crossref_primary_10_1002_jbm4_10562 crossref_primary_10_1155_2016_8768162 |
Cites_doi | 10.1038/nrmicro2337 10.1016/j.immuni.2012.10.014 10.1038/ni1308 10.1038/88832 10.1152/japplphysiol.00348.2011 10.1002/ar.20619 10.1182/blood-2004-10-3919 10.1172/JCI35711 10.1073/pnas.0800387105 10.1038/nri2079 10.1128/MCB.01014-06 10.1016/j.phrs.2012.11.006 10.1073/pnas.96.6.3035 10.1038/nri3547 10.1021/bi048353o 10.1016/j.cell.2006.02.015 10.1023/A:1008942828960 10.4049/jimmunol.166.12.7219 10.1002/jbmr.2125 10.1155/2010/672395 10.1074/jbc.M109.049999 10.1002/path.2284 10.1182/blood-2003-08-2965 10.1038/ni.1801 10.1172/JCI45843 10.1016/j.ceb.2009.12.003 10.1146/annurev-immunol-030409-101335 10.1016/j.immuni.2013.02.003 10.1074/jbc.M301201200 10.1097/MD.0b013e3181fd8ec3 10.1016/S1074-7613(00)80596-8 10.1097/BOR.0b013e32825f5492 10.1038/nri2873 10.1016/j.cell.2011.10.046 10.1016/j.archoralbio.2012.12.009 10.1146/annurev.immunol.25.022106.141627 10.1016/j.cell.2011.11.035 10.1126/science.8438166 10.1002/ar.a.20396 10.1038/ni.1863 10.1084/jem.20070628 10.1038/nri2215 10.1016/j.cell.2006.10.047 10.1126/science.1158298 10.4049/jimmunol.177.12.8296 10.1016/j.cell.2011.10.045 10.1128/CMR.00046-08 10.1016/S1074-7613(00)80657-3 10.1902/jop.2008.070516 10.1172/JCI23755 10.1038/nri3261 10.1186/1750-1172-7-S1-S5 10.1016/S1074-7613(00)80119-3 |
ContentType | Journal Article |
Copyright | 2014 The Authors Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. 2014 The Authors. Published by Elsevier Inc. 2014 |
Copyright_xml | – notice: 2014 The Authors – notice: Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2014 The Authors. Published by Elsevier Inc. 2014 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2014.08.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1766 |
ExternalDocumentID | oai_doaj_org_article_5453dcbdd4d64aed8b946a1fbb2113bc PMC4177302 25220465 10_1016_j_celrep_2014_08_023 S221112471400686X |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE020835 – fundername: NIDCR NIH HHS grantid: R01DE020835 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-81231c171f26cba2f986d1441a4ab21ad7b1eaff35fe5c4e5d884728db2b72ce3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:23:58 EDT 2025 Thu Aug 21 18:07:13 EDT 2025 Fri Jul 11 02:30:50 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Tue Jul 01 03:07:22 EDT 2025 Wed May 17 01:06:26 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-81231c171f26cba2f986d1441a4ab21ad7b1eaff35fe5c4e5d884728db2b72ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S221112471400686X |
PMID | 25220465 |
PQID | 1566111187 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5453dcbdd4d64aed8b946a1fbb2113bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_4177302 proquest_miscellaneous_1566111187 pubmed_primary_25220465 crossref_citationtrail_10_1016_j_celrep_2014_08_023 crossref_primary_10_1016_j_celrep_2014_08_023 elsevier_sciencedirect_doi_10_1016_j_celrep_2014_08_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-25 |
PublicationDateYYYYMMDD | 2014-09-25 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Adachi, Kawai, Takeda, Matsumoto, Tsutsui, Sakagami, Nakanishi, Akira (bib1) 1998; 9 Shaw, Goldstein, Montgomery (bib44) 2013; 13 Darveau (bib13) 2010; 8 Foucault, Le Bras, Charvet, Moon, Altman, Deckert (bib16) 2005; 105 Sun, Ding (bib46) 2006; 7 Qu, Kawauchi-Kamata, Miah, Hatani, Yamamura, Sada (bib40) 2005; 44 Levaot, Voytyuk, Dimitriou, Sircoulomb, Chandrakumar, Deckert, Krzyzanowski, Scotter, Gu, Janmohamed (bib29) 2011; 147 Masters, Simon, Aksentijevich, Kastner (bib34) 2009; 27 Berendsen, Olsen (bib4) 2011; 147 Chen, Dimitriou, La Rose, Ilangumaran, Yeh, Doody, Turner, Gommerman, Rottapel (bib8) 2007; 27 Park, Bourla, Kastner, Colbert, Siegel (bib37) 2012; 12 Christofferson, Yuan (bib10) 2010; 22 Kawai, Akira (bib23) 2010; 11 Huja, Fernandez, Hill, Li (bib20) 2006; 288 von Bernuth, Picard, Jin, Pankla, Xiao, Ku, Chrabieh, Mustapha, Ghandil, Camcioglu (bib50) 2008; 321 Kono, Rock (bib25) 2008; 8 Guettler, LaRose, Petsalaki, Gish, Scotter, Pawson, Rottapel, Sicheri (bib17) 2011; 147 Huja, Beck (bib19) 2008; 291 Maeno, Sada, Kyo, Miah, Kawauchi-Kamata, Qu, Shi, Yamamura (bib32) 2003; 278 Lisboa, Andrade, Cunha-Melo (bib31) 2013; 58 Ueki, Tiziani, Santanna, Fukai, Maulik, Garfinkle, Ninomiya, doAmaral, Peters, Habal (bib48) 2001; 28 Ferguson, El-Shanti (bib15) 2007; 19 Yoshitaka, Ishida, Mukai, Kittaka, Reichenberger, Ueki (bib53) 2014; 29 Casanova, Abel, Quintana-Murci (bib6) 2011; 29 Chen, Nuñez (bib7) 2010; 10 Mogensen (bib35) 2009; 22 Costello, Walters, Mee, Turner, Reynolds, Prisco, Sarner, Zamoyska, Tybulewicz (bib12) 1999; 96 Aliprantis, Ueki, Sulyanto, Park, Sigrist, Sharma, Ostrowski, Olsen, Glimcher (bib3) 2008; 118 Akira, Uematsu, Takeuchi (bib2) 2006; 124 Burns, Bachrach, Shapira, Nussbaum (bib5) 2006; 177 Chervonsky (bib9) 2010; 11 Kook, Jang, Lee (bib26) 2011; 111 Schaefer, Babelova, Kiss, Hausser, Baliova, Krzyzankova, Marsche, Young, Mihalik, Götte (bib43) 2005; 115 Shukla, Hatani, Nakashima, Ogi, Sada (bib45) 2009; 284 Levaot, Simoncic, Dimitriou, Scotter, La Rose, Ng, Willett, Wang, Janmohamed, Grynpas (bib28) 2011; 121 Clausen, Burkhardt, Reith, Renkawitz, Förster (bib11) 1999; 8 Takeuchi, Hoshino, Kawai, Sanjo, Takada, Ogawa, Takeda, Akira (bib47) 1999; 11 Deckert, Tartare-Deckert, Hernandez, Rottapel, Altman (bib14) 1998; 9 Yoshioka, Yoshimura, Kaneko, Golenbock, Hara (bib52) 2008; 79 Zhang, Mosser (bib54) 2008; 214 Piccinini, Midwood (bib39) 2010; 2010 Masternak, Bartke (bib33) 2012; 2 Wade (bib51) 2013; 69 Kollmann, Levy, Montgomery, Goriely (bib24) 2012; 37 Picard, von Bernuth, Ghandil, Chrabieh, Levy, Arkwright, McDonald, Geha, Takada, Krause (bib38) 2010; 89 Jevremovic, Billadeau, Schoon, Dick, Leibson (bib21) 2001; 166 Liao, Zhang (bib30) 2008; 105 Ren, Mayer, Cicchetti, Baltimore (bib42) 1993; 259 Ku, von Bernuth, Picard, Zhang, Chang, Yang, Chrabieh, Issekutz, Cunningham, Gallin (bib27) 2007; 204 Ueki, Lin, Senoo, Ebihara, Agata, Onji, Saheki, Kawai, Mukherjee, Reichenberger, Olsen (bib49) 2007; 128 Reichenberger, Levine, Olsen, Papadaki, Lietman (bib41) 2012; 7 Kaczmarek, Vandenabeele, Krysko (bib22) 2013; 38 O’Neill, Bowie (bib36) 2007; 7 Hebeis, Vigorito, Kovesdi, Turner (bib18) 2005; 106 Ferguson (10.1016/j.celrep.2014.08.023_bib15) 2007; 19 Mogensen (10.1016/j.celrep.2014.08.023_bib35) 2009; 22 Chen (10.1016/j.celrep.2014.08.023_bib8) 2007; 27 Kook (10.1016/j.celrep.2014.08.023_bib26) 2011; 111 Kawai (10.1016/j.celrep.2014.08.023_bib23) 2010; 11 Chervonsky (10.1016/j.celrep.2014.08.023_bib9) 2010; 11 O’Neill (10.1016/j.celrep.2014.08.023_bib36) 2007; 7 Schaefer (10.1016/j.celrep.2014.08.023_bib43) 2005; 115 Hebeis (10.1016/j.celrep.2014.08.023_bib18) 2005; 106 Reichenberger (10.1016/j.celrep.2014.08.023_bib41) 2012; 7 Costello (10.1016/j.celrep.2014.08.023_bib12) 1999; 96 Levaot (10.1016/j.celrep.2014.08.023_bib29) 2011; 147 von Bernuth (10.1016/j.celrep.2014.08.023_bib50) 2008; 321 Takeuchi (10.1016/j.celrep.2014.08.023_bib47) 1999; 11 Christofferson (10.1016/j.celrep.2014.08.023_bib10) 2010; 22 Masters (10.1016/j.celrep.2014.08.023_bib34) 2009; 27 Masternak (10.1016/j.celrep.2014.08.023_bib33) 2012; 2 Chen (10.1016/j.celrep.2014.08.023_bib7) 2010; 10 Foucault (10.1016/j.celrep.2014.08.023_bib16) 2005; 105 Shukla (10.1016/j.celrep.2014.08.023_bib45) 2009; 284 Wade (10.1016/j.celrep.2014.08.023_bib51) 2013; 69 Qu (10.1016/j.celrep.2014.08.023_bib40) 2005; 44 Huja (10.1016/j.celrep.2014.08.023_bib20) 2006; 288 Adachi (10.1016/j.celrep.2014.08.023_bib1) 1998; 9 Huja (10.1016/j.celrep.2014.08.023_bib19) 2008; 291 Akira (10.1016/j.celrep.2014.08.023_bib2) 2006; 124 Yoshioka (10.1016/j.celrep.2014.08.023_bib52) 2008; 79 Picard (10.1016/j.celrep.2014.08.023_bib38) 2010; 89 Berendsen (10.1016/j.celrep.2014.08.023_bib4) 2011; 147 Kaczmarek (10.1016/j.celrep.2014.08.023_bib22) 2013; 38 Aliprantis (10.1016/j.celrep.2014.08.023_bib3) 2008; 118 Levaot (10.1016/j.celrep.2014.08.023_bib28) 2011; 121 Casanova (10.1016/j.celrep.2014.08.023_bib6) 2011; 29 Kollmann (10.1016/j.celrep.2014.08.023_bib24) 2012; 37 Kono (10.1016/j.celrep.2014.08.023_bib25) 2008; 8 Deckert (10.1016/j.celrep.2014.08.023_bib14) 1998; 9 Lisboa (10.1016/j.celrep.2014.08.023_bib31) 2013; 58 Shaw (10.1016/j.celrep.2014.08.023_bib44) 2013; 13 Jevremovic (10.1016/j.celrep.2014.08.023_bib21) 2001; 166 Ren (10.1016/j.celrep.2014.08.023_bib42) 1993; 259 Darveau (10.1016/j.celrep.2014.08.023_bib13) 2010; 8 Liao (10.1016/j.celrep.2014.08.023_bib30) 2008; 105 Sun (10.1016/j.celrep.2014.08.023_bib46) 2006; 7 Guettler (10.1016/j.celrep.2014.08.023_bib17) 2011; 147 Clausen (10.1016/j.celrep.2014.08.023_bib11) 1999; 8 Maeno (10.1016/j.celrep.2014.08.023_bib32) 2003; 278 Zhang (10.1016/j.celrep.2014.08.023_bib54) 2008; 214 Park (10.1016/j.celrep.2014.08.023_bib37) 2012; 12 Ku (10.1016/j.celrep.2014.08.023_bib27) 2007; 204 Ueki (10.1016/j.celrep.2014.08.023_bib49) 2007; 128 Yoshitaka (10.1016/j.celrep.2014.08.023_bib53) 2014; 29 Piccinini (10.1016/j.celrep.2014.08.023_bib39) 2010; 2010 Ueki (10.1016/j.celrep.2014.08.023_bib48) 2001; 28 Burns (10.1016/j.celrep.2014.08.023_bib5) 2006; 177 21219179 - Annu Rev Immunol. 2011;29:447-91 23201354 - Pharmacol Res. 2013 Mar;69(1):137-43 15751964 - Biochemistry. 2005 Mar 15;44(10):3891-8 20016507 - Nat Immunol. 2010 Jan;11(1):28-35 17283041 - Mol Cell Biol. 2007 Apr;27(8):3109-22 20706656 - Mediators Inflamm. 2010;2010. pii: 672395. doi: 10.1155/2010/672395 22153076 - Cell. 2011 Dec 9;147(6):1324-39 17142724 - J Immunol. 2006 Dec 15;177(12):8296-300 21757573 - J Appl Physiol (1985). 2011 Dec;111(6):1575-83 19302049 - Annu Rev Immunol. 2009;27:621-68 19833725 - J Biol Chem. 2009 Dec 4;284(49):33719-28 18454672 - J Periodontol. 2008 May;79(5):920-8 20514045 - Nat Rev Microbiol. 2010 Jul;8(7):481-90 18846253 - J Clin Invest. 2008 Nov;118(11):3775-89 18669862 - Science. 2008 Aug 1;321(5889):691-6 9846481 - Immunity. 1998 Nov;9(5):595-605 17457343 - Nat Rev Immunol. 2007 May;7(5):353-64 20404851 - Nat Immunol. 2010 May;11(5):373-84 16025156 - J Clin Invest. 2005 Aug;115(8):2223-33 23332208 - Arch Oral Biol. 2013 Jun;58(6):731-9 12709437 - J Biol Chem. 2003 Jul 4;278(27):24912-20 18458337 - Proc Natl Acad Sci U S A. 2008 May 13;105(19):6987-92 16491077 - Nat Immunol. 2006 Apr;7(4):375-81 22153068 - Cell. 2011 Dec 9;147(6):1222-3 20045303 - Curr Opin Cell Biol. 2010 Apr;22(2):263-8 24978678 - J Bone Miner Res. 2014;29(5):1170-82 8438166 - Science. 1993 Feb 19;259(5098):1157-61 18161744 - J Pathol. 2008 Jan;214(2):161-78 9697844 - Immunity. 1998 Jul;9(1):143-50 16497588 - Cell. 2006 Feb 24;124(4):783-801 23438821 - Immunity. 2013 Feb 21;38(2):209-23 10077632 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3035-40 18340345 - Nat Rev Immunol. 2008 Apr;8(4):279-89 21057262 - Medicine (Baltimore). 2010 Nov;89(6):403-25 10549626 - Immunity. 1999 Oct;11(4):443-51 18085627 - Anat Rec (Hoboken). 2008 Jan;291(1):1-5 21765218 - J Clin Invest. 2011 Aug;121(8):3244-57 17762617 - Curr Opin Rheumatol. 2007 Sep;19(5):492-8 11390470 - J Immunol. 2001 Jun 15;166(12):7219-28 22640988 - Orphanet J Rare Dis. 2012 May 24;7 Suppl 1:S5 17075846 - Anat Rec A Discov Mol Cell Evol Biol. 2006 Dec;288(12):1243-9 10621974 - Transgenic Res. 1999 Aug;8(4):265-77 17893200 - J Exp Med. 2007 Oct 1;204(10):2407-22 22153077 - Cell. 2011 Dec 9;147(6):1340-54 17218256 - Cell. 2007 Jan 12;128(1):71-83 24157572 - Nat Rev Immunol. 2013 Dec;13(12):875-87 22953033 - Pathobiol Aging Age Relat Dis. 2012;2:null 11381256 - Nat Genet. 2001 Jun;28(2):125-6 23159225 - Immunity. 2012 Nov 16;37(5):771-83 15811961 - Blood. 2005 Jul 15;106(2):635-40 22828911 - Nat Rev Immunol. 2012 Aug;12(8):570-80 15345594 - Blood. 2005 Feb 1;105(3):1106-13 21088683 - Nat Rev Immunol. 2010 Dec;10(12):826-37 19366914 - Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents |
References_xml | – volume: 147 start-page: 1324 year: 2011 end-page: 1339 ident: bib29 article-title: Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism publication-title: Cell – volume: 10 start-page: 826 year: 2010 end-page: 837 ident: bib7 article-title: Sterile inflammation: sensing and reacting to damage publication-title: Nat. Rev. Immunol. – volume: 214 start-page: 161 year: 2008 end-page: 178 ident: bib54 article-title: Macrophage activation by endogenous danger signals publication-title: J. Pathol. – volume: 79 start-page: 920 year: 2008 end-page: 928 ident: bib52 article-title: Analysis of the activity to induce toll-like receptor (TLR)2- and TLR4-mediated stimulation of supragingival plaque publication-title: J. Periodontol. – volume: 147 start-page: 1340 year: 2011 end-page: 1354 ident: bib17 article-title: Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease publication-title: Cell – volume: 8 start-page: 279 year: 2008 end-page: 289 ident: bib25 article-title: How dying cells alert the immune system to danger publication-title: Nat. Rev. Immunol. – volume: 11 start-page: 373 year: 2010 end-page: 384 ident: bib23 article-title: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors publication-title: Nat. Immunol. – volume: 8 start-page: 265 year: 1999 end-page: 277 ident: bib11 article-title: Conditional gene targeting in macrophages and granulocytes using LysMcre mice publication-title: Transgenic Res. – volume: 96 start-page: 3035 year: 1999 end-page: 3040 ident: bib12 article-title: The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 621 year: 2009 end-page: 668 ident: bib34 article-title: Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease ( publication-title: Annu. Rev. Immunol. – volume: 124 start-page: 783 year: 2006 end-page: 801 ident: bib2 article-title: Pathogen recognition and innate immunity publication-title: Cell – volume: 118 start-page: 3775 year: 2008 end-page: 3789 ident: bib3 article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism publication-title: J. Clin. Invest. – volume: 106 start-page: 635 year: 2005 end-page: 640 ident: bib18 article-title: Vav proteins are required for B-lymphocyte responses to LPS publication-title: Blood – volume: 12 start-page: 570 year: 2012 end-page: 580 ident: bib37 article-title: Lighting the fires within: the cell biology of autoinflammatory diseases publication-title: Nat. Rev. Immunol. – volume: 284 start-page: 33719 year: 2009 end-page: 33728 ident: bib45 article-title: Tyrosine phosphorylation of 3BP2 regulates B cell receptor-mediated activation of NFAT publication-title: J. Biol. Chem. – volume: 13 start-page: 875 year: 2013 end-page: 887 ident: bib44 article-title: Age-dependent dysregulation of innate immunity publication-title: Nat. Rev. Immunol. – volume: 204 start-page: 2407 year: 2007 end-page: 2422 ident: bib27 article-title: Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity publication-title: J. Exp. Med. – volume: 147 start-page: 1222 year: 2011 end-page: 1223 ident: bib4 article-title: Tankyrase loses its grip on SH3BP2 in cherubism publication-title: Cell – volume: 291 start-page: 1 year: 2008 end-page: 5 ident: bib19 article-title: Bone remodeling in maxilla, mandible, and femur of young dogs publication-title: Anat. Rec. (Hoboken) – volume: 278 start-page: 24912 year: 2003 end-page: 24920 ident: bib32 article-title: Adaptor protein 3BP2 is a potential ligand of Src homology 2 and 3 domains of Lyn protein-tyrosine kinase publication-title: J. Biol. Chem. – volume: 11 start-page: 443 year: 1999 end-page: 451 ident: bib47 article-title: Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components publication-title: Immunity – volume: 111 start-page: 1575 year: 2011 end-page: 1583 ident: bib26 article-title: Involvement of JNK-AP-1 and ERK-NF-κB signaling in tension-stimulated expression of type I collagen and MMP-1 in human periodontal ligament fibroblasts publication-title: J. Appl. Physiol. – volume: 22 start-page: 240 year: 2009 end-page: 273 ident: bib35 article-title: Pathogen recognition and inflammatory signaling in innate immune defenses publication-title: Clin. Microbiol. Rev. – volume: 166 start-page: 7219 year: 2001 end-page: 7228 ident: bib21 article-title: Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2 publication-title: J. Immunol. – volume: 27 start-page: 3109 year: 2007 end-page: 3122 ident: bib8 article-title: The 3BP2 adapter protein is required for optimal B-cell activation and thymus-independent type 2 humoral response publication-title: Mol. Cell. Biol. – volume: 177 start-page: 8296 year: 2006 end-page: 8300 ident: bib5 article-title: Cutting Edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption publication-title: J. Immunol. – volume: 69 start-page: 137 year: 2013 end-page: 143 ident: bib51 article-title: The oral microbiome in health and disease publication-title: Pharmacol. Res. – volume: 37 start-page: 771 year: 2012 end-page: 783 ident: bib24 article-title: Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly publication-title: Immunity – volume: 128 start-page: 71 year: 2007 end-page: 83 ident: bib49 article-title: Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice publication-title: Cell – volume: 259 start-page: 1157 year: 1993 end-page: 1161 ident: bib42 article-title: Identification of a ten-amino acid proline-rich SH3 binding site publication-title: Science – volume: 321 start-page: 691 year: 2008 end-page: 696 ident: bib50 article-title: Pyogenic bacterial infections in humans with MyD88 deficiency publication-title: Science – volume: 2010 year: 2010 ident: bib39 article-title: DAMPening inflammation by modulating TLR signalling publication-title: Mediators Inflamm. – volume: 11 start-page: 28 year: 2010 end-page: 35 ident: bib9 article-title: Influence of microbial environment on autoimmunity publication-title: Nat. Immunol. – volume: 22 start-page: 263 year: 2010 end-page: 268 ident: bib10 article-title: Necroptosis as an alternative form of programmed cell death publication-title: Curr. Opin. Cell Biol. – volume: 7 start-page: S5 year: 2012 ident: bib41 article-title: The role of SH3BP2 in the pathophysiology of cherubism publication-title: Orphanet J. Rare Dis. – volume: 28 start-page: 125 year: 2001 end-page: 126 ident: bib48 article-title: Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism publication-title: Nat. Genet. – volume: 9 start-page: 595 year: 1998 end-page: 605 ident: bib14 article-title: Adaptor function for the Syk kinases-interacting protein 3BP2 in IL-2 gene activation publication-title: Immunity – volume: 19 start-page: 492 year: 2007 end-page: 498 ident: bib15 article-title: Autoinflammatory bone disorders publication-title: Curr. Opin. Rheumatol. – volume: 115 start-page: 2223 year: 2005 end-page: 2233 ident: bib43 article-title: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages publication-title: J. Clin. Invest. – volume: 2 year: 2012 ident: bib33 article-title: Growth hormone, inflammation and aging publication-title: Pathobiol Aging Age Relat Dis – volume: 7 start-page: 353 year: 2007 end-page: 364 ident: bib36 article-title: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling publication-title: Nat. Rev. Immunol. – volume: 29 start-page: 1170 year: 2014 end-page: 1182 ident: bib53 article-title: Etanercept administration to neonatal SH3BP2 knock-in cherubism mice prevents TNF-α-induced inflammation and bone loss publication-title: J. Bone Miner. Res. – volume: 105 start-page: 6987 year: 2008 end-page: 6992 ident: bib30 article-title: Null mutations in human and mouse orthologs frequently result in different phenotypes publication-title: Proc. Natl. Acad. Sci. USA – volume: 89 start-page: 403 year: 2010 end-page: 425 ident: bib38 article-title: Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency publication-title: Medicine (Baltimore) – volume: 7 start-page: 375 year: 2006 end-page: 381 ident: bib46 article-title: MyD88-mediated stabilization of interferon-gamma-induced cytokine and chemokine mRNA publication-title: Nat. Immunol. – volume: 8 start-page: 481 year: 2010 end-page: 490 ident: bib13 article-title: Periodontitis: a polymicrobial disruption of host homeostasis publication-title: Nat. Rev. Microbiol. – volume: 105 start-page: 1106 year: 2005 end-page: 1113 ident: bib16 article-title: The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor publication-title: Blood – volume: 121 start-page: 3244 year: 2011 end-page: 3257 ident: bib28 article-title: 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions publication-title: J. Clin. Invest. – volume: 288 start-page: 1243 year: 2006 end-page: 1249 ident: bib20 article-title: Remodeling dynamics in the alveolar process in skeletally mature dogs publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. – volume: 58 start-page: 731 year: 2013 end-page: 739 ident: bib31 article-title: Toll-like receptor activation and mechanical force stimulation promote the secretion of matrix metalloproteinases 1, 3 and 10 of human periodontal fibroblasts via p38, JNK and NF-kB publication-title: Arch. Oral Biol. – volume: 9 start-page: 143 year: 1998 end-page: 150 ident: bib1 article-title: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function publication-title: Immunity – volume: 29 start-page: 447 year: 2011 end-page: 491 ident: bib6 article-title: Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics publication-title: Annu. Rev. Immunol. – volume: 44 start-page: 3891 year: 2005 end-page: 3898 ident: bib40 article-title: Tyrosine phosphorylation of adaptor protein 3BP2 induces T cell receptor-mediated activation of transcription factor publication-title: Biochemistry – volume: 38 start-page: 209 year: 2013 end-page: 223 ident: bib22 article-title: Necroptosis: the release of damage-associated molecular patterns and its physiological relevance publication-title: Immunity – volume: 8 start-page: 481 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib13 article-title: Periodontitis: a polymicrobial disruption of host homeostasis publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2337 – volume: 37 start-page: 771 year: 2012 ident: 10.1016/j.celrep.2014.08.023_bib24 article-title: Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly publication-title: Immunity doi: 10.1016/j.immuni.2012.10.014 – volume: 7 start-page: 375 year: 2006 ident: 10.1016/j.celrep.2014.08.023_bib46 article-title: MyD88-mediated stabilization of interferon-gamma-induced cytokine and chemokine mRNA publication-title: Nat. Immunol. doi: 10.1038/ni1308 – volume: 28 start-page: 125 year: 2001 ident: 10.1016/j.celrep.2014.08.023_bib48 article-title: Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism publication-title: Nat. Genet. doi: 10.1038/88832 – volume: 111 start-page: 1575 year: 2011 ident: 10.1016/j.celrep.2014.08.023_bib26 article-title: Involvement of JNK-AP-1 and ERK-NF-κB signaling in tension-stimulated expression of type I collagen and MMP-1 in human periodontal ligament fibroblasts publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00348.2011 – volume: 291 start-page: 1 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib19 article-title: Bone remodeling in maxilla, mandible, and femur of young dogs publication-title: Anat. Rec. (Hoboken) doi: 10.1002/ar.20619 – volume: 106 start-page: 635 year: 2005 ident: 10.1016/j.celrep.2014.08.023_bib18 article-title: Vav proteins are required for B-lymphocyte responses to LPS publication-title: Blood doi: 10.1182/blood-2004-10-3919 – volume: 2 year: 2012 ident: 10.1016/j.celrep.2014.08.023_bib33 article-title: Growth hormone, inflammation and aging publication-title: Pathobiol Aging Age Relat Dis – volume: 118 start-page: 3775 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib3 article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism publication-title: J. Clin. Invest. doi: 10.1172/JCI35711 – volume: 105 start-page: 6987 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib30 article-title: Null mutations in human and mouse orthologs frequently result in different phenotypes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0800387105 – volume: 7 start-page: 353 year: 2007 ident: 10.1016/j.celrep.2014.08.023_bib36 article-title: The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2079 – volume: 27 start-page: 3109 year: 2007 ident: 10.1016/j.celrep.2014.08.023_bib8 article-title: The 3BP2 adapter protein is required for optimal B-cell activation and thymus-independent type 2 humoral response publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01014-06 – volume: 69 start-page: 137 year: 2013 ident: 10.1016/j.celrep.2014.08.023_bib51 article-title: The oral microbiome in health and disease publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2012.11.006 – volume: 96 start-page: 3035 year: 1999 ident: 10.1016/j.celrep.2014.08.023_bib12 article-title: The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.6.3035 – volume: 13 start-page: 875 year: 2013 ident: 10.1016/j.celrep.2014.08.023_bib44 article-title: Age-dependent dysregulation of innate immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3547 – volume: 44 start-page: 3891 year: 2005 ident: 10.1016/j.celrep.2014.08.023_bib40 article-title: Tyrosine phosphorylation of adaptor protein 3BP2 induces T cell receptor-mediated activation of transcription factor publication-title: Biochemistry doi: 10.1021/bi048353o – volume: 124 start-page: 783 year: 2006 ident: 10.1016/j.celrep.2014.08.023_bib2 article-title: Pathogen recognition and innate immunity publication-title: Cell doi: 10.1016/j.cell.2006.02.015 – volume: 8 start-page: 265 year: 1999 ident: 10.1016/j.celrep.2014.08.023_bib11 article-title: Conditional gene targeting in macrophages and granulocytes using LysMcre mice publication-title: Transgenic Res. doi: 10.1023/A:1008942828960 – volume: 166 start-page: 7219 year: 2001 ident: 10.1016/j.celrep.2014.08.023_bib21 article-title: Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2 publication-title: J. Immunol. doi: 10.4049/jimmunol.166.12.7219 – volume: 29 start-page: 1170 year: 2014 ident: 10.1016/j.celrep.2014.08.023_bib53 article-title: Etanercept administration to neonatal SH3BP2 knock-in cherubism mice prevents TNF-α-induced inflammation and bone loss publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2125 – volume: 2010 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib39 article-title: DAMPening inflammation by modulating TLR signalling publication-title: Mediators Inflamm. doi: 10.1155/2010/672395 – volume: 284 start-page: 33719 year: 2009 ident: 10.1016/j.celrep.2014.08.023_bib45 article-title: Tyrosine phosphorylation of 3BP2 regulates B cell receptor-mediated activation of NFAT publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.049999 – volume: 214 start-page: 161 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib54 article-title: Macrophage activation by endogenous danger signals publication-title: J. Pathol. doi: 10.1002/path.2284 – volume: 105 start-page: 1106 year: 2005 ident: 10.1016/j.celrep.2014.08.023_bib16 article-title: The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor publication-title: Blood doi: 10.1182/blood-2003-08-2965 – volume: 11 start-page: 28 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib9 article-title: Influence of microbial environment on autoimmunity publication-title: Nat. Immunol. doi: 10.1038/ni.1801 – volume: 121 start-page: 3244 year: 2011 ident: 10.1016/j.celrep.2014.08.023_bib28 article-title: 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions publication-title: J. Clin. Invest. doi: 10.1172/JCI45843 – volume: 22 start-page: 263 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib10 article-title: Necroptosis as an alternative form of programmed cell death publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.12.003 – volume: 29 start-page: 447 year: 2011 ident: 10.1016/j.celrep.2014.08.023_bib6 article-title: Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-030409-101335 – volume: 38 start-page: 209 year: 2013 ident: 10.1016/j.celrep.2014.08.023_bib22 article-title: Necroptosis: the release of damage-associated molecular patterns and its physiological relevance publication-title: Immunity doi: 10.1016/j.immuni.2013.02.003 – volume: 278 start-page: 24912 year: 2003 ident: 10.1016/j.celrep.2014.08.023_bib32 article-title: Adaptor protein 3BP2 is a potential ligand of Src homology 2 and 3 domains of Lyn protein-tyrosine kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301201200 – volume: 89 start-page: 403 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib38 article-title: Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency publication-title: Medicine (Baltimore) doi: 10.1097/MD.0b013e3181fd8ec3 – volume: 9 start-page: 143 year: 1998 ident: 10.1016/j.celrep.2014.08.023_bib1 article-title: Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function publication-title: Immunity doi: 10.1016/S1074-7613(00)80596-8 – volume: 19 start-page: 492 year: 2007 ident: 10.1016/j.celrep.2014.08.023_bib15 article-title: Autoinflammatory bone disorders publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0b013e32825f5492 – volume: 10 start-page: 826 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib7 article-title: Sterile inflammation: sensing and reacting to damage publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2873 – volume: 147 start-page: 1340 year: 2011 ident: 10.1016/j.celrep.2014.08.023_bib17 article-title: Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease publication-title: Cell doi: 10.1016/j.cell.2011.10.046 – volume: 58 start-page: 731 year: 2013 ident: 10.1016/j.celrep.2014.08.023_bib31 article-title: Toll-like receptor activation and mechanical force stimulation promote the secretion of matrix metalloproteinases 1, 3 and 10 of human periodontal fibroblasts via p38, JNK and NF-kB publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2012.12.009 – volume: 27 start-page: 621 year: 2009 ident: 10.1016/j.celrep.2014.08.023_bib34 article-title: Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (∗) publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.25.022106.141627 – volume: 147 start-page: 1222 year: 2011 ident: 10.1016/j.celrep.2014.08.023_bib4 article-title: Tankyrase loses its grip on SH3BP2 in cherubism publication-title: Cell doi: 10.1016/j.cell.2011.11.035 – volume: 259 start-page: 1157 year: 1993 ident: 10.1016/j.celrep.2014.08.023_bib42 article-title: Identification of a ten-amino acid proline-rich SH3 binding site publication-title: Science doi: 10.1126/science.8438166 – volume: 288 start-page: 1243 year: 2006 ident: 10.1016/j.celrep.2014.08.023_bib20 article-title: Remodeling dynamics in the alveolar process in skeletally mature dogs publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. doi: 10.1002/ar.a.20396 – volume: 11 start-page: 373 year: 2010 ident: 10.1016/j.celrep.2014.08.023_bib23 article-title: The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors publication-title: Nat. Immunol. doi: 10.1038/ni.1863 – volume: 204 start-page: 2407 year: 2007 ident: 10.1016/j.celrep.2014.08.023_bib27 article-title: Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20070628 – volume: 8 start-page: 279 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib25 article-title: How dying cells alert the immune system to danger publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2215 – volume: 128 start-page: 71 year: 2007 ident: 10.1016/j.celrep.2014.08.023_bib49 article-title: Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice publication-title: Cell doi: 10.1016/j.cell.2006.10.047 – volume: 321 start-page: 691 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib50 article-title: Pyogenic bacterial infections in humans with MyD88 deficiency publication-title: Science doi: 10.1126/science.1158298 – volume: 177 start-page: 8296 year: 2006 ident: 10.1016/j.celrep.2014.08.023_bib5 article-title: Cutting Edge: TLR2 is required for the innate response to Porphyromonas gingivalis: activation leads to bacterial persistence and TLR2 deficiency attenuates induced alveolar bone resorption publication-title: J. Immunol. doi: 10.4049/jimmunol.177.12.8296 – volume: 147 start-page: 1324 year: 2011 ident: 10.1016/j.celrep.2014.08.023_bib29 article-title: Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism publication-title: Cell doi: 10.1016/j.cell.2011.10.045 – volume: 22 start-page: 240 year: 2009 ident: 10.1016/j.celrep.2014.08.023_bib35 article-title: Pathogen recognition and inflammatory signaling in innate immune defenses publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00046-08 – volume: 9 start-page: 595 year: 1998 ident: 10.1016/j.celrep.2014.08.023_bib14 article-title: Adaptor function for the Syk kinases-interacting protein 3BP2 in IL-2 gene activation publication-title: Immunity doi: 10.1016/S1074-7613(00)80657-3 – volume: 79 start-page: 920 year: 2008 ident: 10.1016/j.celrep.2014.08.023_bib52 article-title: Analysis of the activity to induce toll-like receptor (TLR)2- and TLR4-mediated stimulation of supragingival plaque publication-title: J. Periodontol. doi: 10.1902/jop.2008.070516 – volume: 115 start-page: 2223 year: 2005 ident: 10.1016/j.celrep.2014.08.023_bib43 article-title: The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages publication-title: J. Clin. Invest. doi: 10.1172/JCI23755 – volume: 12 start-page: 570 year: 2012 ident: 10.1016/j.celrep.2014.08.023_bib37 article-title: Lighting the fires within: the cell biology of autoinflammatory diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3261 – volume: 7 start-page: S5 issue: Suppl 1 year: 2012 ident: 10.1016/j.celrep.2014.08.023_bib41 article-title: The role of SH3BP2 in the pathophysiology of cherubism publication-title: Orphanet J. Rare Dis. doi: 10.1186/1750-1172-7-S1-S5 – volume: 11 start-page: 443 year: 1999 ident: 10.1016/j.celrep.2014.08.023_bib47 article-title: Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components publication-title: Immunity doi: 10.1016/S1074-7613(00)80119-3 – reference: 24157572 - Nat Rev Immunol. 2013 Dec;13(12):875-87 – reference: 19366914 - Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents – reference: 20404851 - Nat Immunol. 2010 May;11(5):373-84 – reference: 21765218 - J Clin Invest. 2011 Aug;121(8):3244-57 – reference: 17457343 - Nat Rev Immunol. 2007 May;7(5):353-64 – reference: 17283041 - Mol Cell Biol. 2007 Apr;27(8):3109-22 – reference: 15345594 - Blood. 2005 Feb 1;105(3):1106-13 – reference: 21219179 - Annu Rev Immunol. 2011;29:447-91 – reference: 11381256 - Nat Genet. 2001 Jun;28(2):125-6 – reference: 17075846 - Anat Rec A Discov Mol Cell Evol Biol. 2006 Dec;288(12):1243-9 – reference: 18846253 - J Clin Invest. 2008 Nov;118(11):3775-89 – reference: 23438821 - Immunity. 2013 Feb 21;38(2):209-23 – reference: 10621974 - Transgenic Res. 1999 Aug;8(4):265-77 – reference: 22953033 - Pathobiol Aging Age Relat Dis. 2012;2:null – reference: 18085627 - Anat Rec (Hoboken). 2008 Jan;291(1):1-5 – reference: 18454672 - J Periodontol. 2008 May;79(5):920-8 – reference: 20514045 - Nat Rev Microbiol. 2010 Jul;8(7):481-90 – reference: 24978678 - J Bone Miner Res. 2014;29(5):1170-82 – reference: 19833725 - J Biol Chem. 2009 Dec 4;284(49):33719-28 – reference: 17218256 - Cell. 2007 Jan 12;128(1):71-83 – reference: 22640988 - Orphanet J Rare Dis. 2012 May 24;7 Suppl 1:S5 – reference: 9697844 - Immunity. 1998 Jul;9(1):143-50 – reference: 21088683 - Nat Rev Immunol. 2010 Dec;10(12):826-37 – reference: 23332208 - Arch Oral Biol. 2013 Jun;58(6):731-9 – reference: 10077632 - Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3035-40 – reference: 16025156 - J Clin Invest. 2005 Aug;115(8):2223-33 – reference: 20016507 - Nat Immunol. 2010 Jan;11(1):28-35 – reference: 22153068 - Cell. 2011 Dec 9;147(6):1222-3 – reference: 16497588 - Cell. 2006 Feb 24;124(4):783-801 – reference: 18669862 - Science. 2008 Aug 1;321(5889):691-6 – reference: 8438166 - Science. 1993 Feb 19;259(5098):1157-61 – reference: 12709437 - J Biol Chem. 2003 Jul 4;278(27):24912-20 – reference: 23159225 - Immunity. 2012 Nov 16;37(5):771-83 – reference: 10549626 - Immunity. 1999 Oct;11(4):443-51 – reference: 16491077 - Nat Immunol. 2006 Apr;7(4):375-81 – reference: 20045303 - Curr Opin Cell Biol. 2010 Apr;22(2):263-8 – reference: 18340345 - Nat Rev Immunol. 2008 Apr;8(4):279-89 – reference: 22153076 - Cell. 2011 Dec 9;147(6):1324-39 – reference: 15811961 - Blood. 2005 Jul 15;106(2):635-40 – reference: 21757573 - J Appl Physiol (1985). 2011 Dec;111(6):1575-83 – reference: 20706656 - Mediators Inflamm. 2010;2010. pii: 672395. doi: 10.1155/2010/672395 – reference: 17762617 - Curr Opin Rheumatol. 2007 Sep;19(5):492-8 – reference: 19302049 - Annu Rev Immunol. 2009;27:621-68 – reference: 18458337 - Proc Natl Acad Sci U S A. 2008 May 13;105(19):6987-92 – reference: 15751964 - Biochemistry. 2005 Mar 15;44(10):3891-8 – reference: 18161744 - J Pathol. 2008 Jan;214(2):161-78 – reference: 23201354 - Pharmacol Res. 2013 Mar;69(1):137-43 – reference: 9846481 - Immunity. 1998 Nov;9(5):595-605 – reference: 22828911 - Nat Rev Immunol. 2012 Aug;12(8):570-80 – reference: 22153077 - Cell. 2011 Dec 9;147(6):1340-54 – reference: 17893200 - J Exp Med. 2007 Oct 1;204(10):2407-22 – reference: 21057262 - Medicine (Baltimore). 2010 Nov;89(6):403-25 – reference: 11390470 - J Immunol. 2001 Jun 15;166(12):7219-28 – reference: 17142724 - J Immunol. 2006 Dec 15;177(12):8296-300 |
SSID | ssj0000601194 |
Score | 2.2826228 |
Snippet | Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause... Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that tumor necrosis factor α (TNF-α)-dependent autoinflammation is a major cause... Cherubism is caused by mutations in SH3BP2. Studies of cherubism mice showed that TNF-α-dependent autoinflammation is a major cause for the disorder, but... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1752 |
SubjectTerms | Adaptor Proteins, Signal Transducing - deficiency Adaptor Proteins, Signal Transducing - genetics Adaptor Proteins, Signal Transducing - metabolism Animals Cells, Cultured Cherubism - etiology Disease Models, Animal Inflammation Intracellular Signaling Peptides and Proteins - deficiency Intracellular Signaling Peptides and Proteins - genetics Intracellular Signaling Peptides and Proteins - metabolism Jaw - diagnostic imaging Liver - pathology Macrophages - cytology Macrophages - metabolism Mice Mice, Inbred C57BL Mice, Knockout Myeloid Differentiation Factor 88 - deficiency Myeloid Differentiation Factor 88 - genetics Myeloid Differentiation Factor 88 - metabolism NF-kappa B - metabolism Protein-Tyrosine Kinases - deficiency Protein-Tyrosine Kinases - genetics Protein-Tyrosine Kinases - metabolism Radiography RNA, Messenger - metabolism Signal Transduction Syk Kinase Toll-Like Receptor 2 - chemistry Toll-Like Receptor 2 - metabolism Toll-Like Receptor 4 - chemistry Toll-Like Receptor 4 - metabolism Tumor Necrosis Factor-alpha - blood Tumor Necrosis Factor-alpha - genetics Tumor Necrosis Factor-alpha - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG_KS0biGtH4leS4j64qRBGiu9JysvzczWo3RdtUiH_PTJyUBg69cE0cO7Y_z3yWx98Q8kE4JYsgiwzsgMwEMISsskFmjleBRyD4sbsht_ii5ufi04W82En1hTFhSR44DdxH8PDcO-u98EqY4EtbCWXyaC1sXbh1aH3B5-1sppINRi0zPFJmDGO2mCiGe3NdcJcLN3cB5Spz0Sl4Mj7yS518_8g9_Us__46i3HFLp4_Iw55P0sPUj8fkXmiekPspw-Svp-TnrLnqzvjp2edv2eL7SVnSZX2J7Lu5pMu2vsX0XWFNDzftCsAG-Eh3GWnd0OWcH31l9BimdWPr9S1dgFWhpvH0JEQMl6fAHumsTY3RVfxT9Bk5P52dHc-zPtdC5mQl2wz8PM9dXuSRKWcNi1WpPG62jDAw0sYXNg8mRi5jkE4E6Uvwa6z0ltmCucCfk4Nm1YSXhAbPlfK8sEJNhQtTm0enKgNEzkDVbjohfBhp7XohcsyHcaOHiLNrneZH4_xoTJPJ-IRk269-JCGOPeWPcBK3ZVFGu3sA4NI9uPQ-cE1IMUBA94wkMQ2oqt7T_PsBMRoWLJ7CmCasNmuNG2b0U2UxIS8SgrY_yYANT4WS0O4IW6NejN809VUnCi7yAow1e_U_uv2aPMCuYFgMk2_IQXu3CW-Be7X2XbfMfgNbGy2f priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CoNBL6btu07KFXoW9T0nH2HEwpS6lTsA9iX06CokUbJmSf9_ZleRW7SHQo6RZ7Uo7O_OtNPMNQp-4kSJ1Ik3ADoiEA0JIcu1EYljumAeA72OG3PKrXFzyz2uxPkKzPhcmhFV2tr-16dFad2fG3dsc35XleEVh7wLeKTDOhTyHNdhhxrOYxLeeHr6zBL4REushBvkkNOgz6GKYl3E3WxeIKwmPXJ6UDTxUJPIfOKp_gejf8ZR_OKjzp-hJhyzxaTv4Z-jIVc_Ro7bW5P0L9HNeXcW__fjiy_dk-eMsy_Cq3AQcXm3wqilvQyEvt8On-6YGtQNNabMacVnh1YJNv1E8gwne63J3i5dgX7CqLD5zPgTOY8CReN60neHa_xZ9iS7P5xezRdJVXUiMyEWTgMdnxJCUeCqNVtTnmbRh26W40pQom2rilPdMeCcMd8Jm4OFoZjXVKTWOvULHVV25Nwg7y6S0LNVcTrhxE028kbkCSKfg1mYyQqx_04XpKMlDZYyboo89uy7a-SnC_BShYCZlI5QcWt21lBwPyE_DJB5kA6F2PFFvN0WnUQUASWaNtpZbyZWzmc65VMRreGTCtBmhtFeBYqCfcKvyge4_9hpTwNIN_2NU5er9rghb5-CxsnSEXrcadBgkBVw84VJAvwPdGjzF8EpVXkV6cE5SMNv07X-P-B16HI5CVAwVJ-i42e7de4Bejf4Q19Yvg74teQ priority: 102 providerName: Elsevier |
Title | Enhanced TLR-MYD88 Signaling Stimulates Autoinflammation in SH3BP2 Cherubism Mice and Defines the Etiology of Cherubism |
URI | https://dx.doi.org/10.1016/j.celrep.2014.08.023 https://www.ncbi.nlm.nih.gov/pubmed/25220465 https://www.proquest.com/docview/1566111187 https://pubmed.ncbi.nlm.nih.gov/PMC4177302 https://doaj.org/article/5453dcbdd4d64aed8b946a1fbb2113bc |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Zb9NAEF6VIiReEDfhqBaJV6N4L9sPCBFoFRBBCBopPK32pEGpDYkj6L9nxkeKgaovfrD33pmdb72z3xDyTDglsyCzBNYBmQhACElhg0wcLwKPAPBjc0Nu9kFN5-LdQi72SB-ztRvAzX-3dhhPar5ePf_14-wlKPyLc18tF1brgOyTqWgIORm_Qq6CbcpQVWcd4G_XZuQ4E_0dugsyI0Mw4BLYOsqBuWpY_QdW619U-rdz5R_W6ugmudHBTPqqlYtbZC-Ut8m1NvDk2R3y87A8aY7-6fH7T8nsy5s8p-jJYfByOgWtP8WoXmFDzbauYFRAbNorjnRZ0s9TPvnIKM721i43pxQj2lNTeupDRC96CqCShrqtjFbxPOldMj86PH49TboQDImThawTMP88dTCOkSlnDYtFrjzuwYwwlqXGZzYNJkYuY5BOBOlzMHcs95bZjLnA75H9sirDA0KD50p5nlmhxsKFsU2jU4UBfGegaDceEd6PtHYdPzmGyVjp3hHtm26nSuNUaYyeyfiIJLtc31t-jkvST3ASd2mRXbt5Ua2_6k5ZNaBK7p31XnglTPC5LYQyabTQ5ZRbNyJZLwK6AyotAIGilpdU_7SXGA16jIczpgzVdqNxH43mK89G5H4rQbtG9sII9Q5ka9CL4ZdyedJwhYMOwBrOHl5Y5iNyHduHLjBMPib79XobngDOqu1B838Cnm8Xk4NGjX4DmT0pUw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VIgSXijcpr0XiaiXel-1jk6ZKIakQSaVwWu0zNWqdKnGE-PfM-hEwHCpxtXe9u57xzLfemW8Q-siM4InjSQR2gEcMEEKUaccjQzNHPQB8X2XIzS7E5JJ9WvLlARq1uTAhrLKx_bVNr6x1c6XfvM3-bZ735wT2LuCdAuNcyHNY3kP3AQ0koX7D-XK4_9ESCEfiqiBi6BCFHm0KXRXnZdz1xgXmyphVZJ6EdlxUxeTf8VT_ItG_Ayr_8FBnj9FRAy3xST37J-jAFU_Rg7rY5M9n6Me4uKqO-_Fi-jWafTtNUzzPVwGIFys8L_ObUMnLbfHJrlyD3oGq1GmNOC_wfEKHXwgegYR3Ot_e4BkYGKwKi0-dD5HzGIAkHpf1YHjtfzd9ji7PxovRJGrKLkSGZ7yMwOXT2MRJ7IkwWhGfpcKGfZdiSpNY2UTHTnlPuXfcMMdtCi6OpFYTnRDj6At0WKwL9wphZ6kQliaaiQEzbqBjb0SmANMpeLQZ9BBt37Q0DSd5KI1xLdvgs--ylo8M8pGhYiahPRTte93WnBx3tB8GIe7bBkbt6sJ6s5KNSklAktQabS2zgilnU50xoWKvYckx1aaHklYFZEdB4VH5HcN_aDVGwrcbDmRU4da7rQx75-Cy0qSHXtYatJ8kAWA8YILDuB3d6qyie6fIryp-cBYnYLfJ8X_P-D16OFnMpnJ6fvH5NXoU7oQQGcLfoMNys3NvAYeV-l31nf0Cn6wwmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+TLR-MYD88+signaling+stimulates+autoinflammation+in+SH3BP2+cherubism+mice+and+defines+the+etiology+of+cherubism&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Yoshitaka%2C+Teruhito&rft.au=Mukai%2C+Tomoyuki&rft.au=Kittaka%2C+Mizuho&rft.au=Alford%2C+Lisa+M&rft.date=2014-09-25&rft.eissn=2211-1247&rft.volume=8&rft.issue=6&rft.spage=1752&rft_id=info:doi/10.1016%2Fj.celrep.2014.08.023&rft_id=info%3Apmid%2F25220465&rft.externalDocID=25220465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |