Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21
Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune su...
Saved in:
Published in | Cell reports (Cambridge) Vol. 28; no. 12; pp. 3105 - 3119.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.09.2019
Elsevier |
Online Access | Get full text |
Cover
Loading…
Abstract | Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression.
[Display omitted]
•Extracellular vesicles (EVs) shed by glioma cells are taken up by microglia in vivo•miR-21 is functionally transferred from glioma to microglia through EVs in vivo•miR-21 mRNA targets in microglia are downregulated upon EV uptake•Microglia proliferation is increased after miR-21 target Btg2 downregulation
Abels et al. show miR-21 transfer from glioma to microglia by palmitoylated GFP-labeled extracellular vesicles in vivo. This transfer results in miR-21 target-specific mRNA downregulation. Following downregulation of Btg2, proliferation in microglia is increased, suggesting reprogramming of microglia in the tumor microenvironment through extracellular vesicles shed by glioma cells. |
---|---|
AbstractList | Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression.
[Display omitted]
•Extracellular vesicles (EVs) shed by glioma cells are taken up by microglia in vivo•miR-21 is functionally transferred from glioma to microglia through EVs in vivo•miR-21 mRNA targets in microglia are downregulated upon EV uptake•Microglia proliferation is increased after miR-21 target Btg2 downregulation
Abels et al. show miR-21 transfer from glioma to microglia by palmitoylated GFP-labeled extracellular vesicles in vivo. This transfer results in miR-21 target-specific mRNA downregulation. Following downregulation of Btg2, proliferation in microglia is increased, suggesting reprogramming of microglia in the tumor microenvironment through extracellular vesicles shed by glioma cells. Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo -based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression. Abels et al. show miR-21 transfer from glioma to microglia by palmitoylated GFP-labeled extracellular vesicles in vivo . This transfer results in miR-21 target-specific mRNA downregulation. Following downregulation of Btg2 , proliferation in microglia is increased, suggesting reprogramming of microglia in the tumor microenvironment through extracellular vesicles shed by glioma cells. Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression. : Abels et al. show miR-21 transfer from glioma to microglia by palmitoylated GFP-labeled extracellular vesicles in vivo. This transfer results in miR-21 target-specific mRNA downregulation. Following downregulation of Btg2, proliferation in microglia is increased, suggesting reprogramming of microglia in the tumor microenvironment through extracellular vesicles shed by glioma cells. Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression.Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression. Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass. Glioma cells shape their microenvironment, communicating with and reprogramming surrounding cells, resulting in enhanced angiogenesis, immune suppression, and remodeling of the extracellular matrix. Glioma cells communicate with microglia, in part by releasing extracellular vesicles (EVs). Mouse glioma cells stably expressing a palmitoylated GFP to label EVs were implanted intracranially into syngeneic miR-21-null mice. Here, we demonstrate functional delivery of miR-21, regulating specific downstream mRNA targets in microglia after uptake of tumor-derived EVs. These findings attest to EV-dependent microRNA delivery as studied in an in vivo-based model and provide insight into the reprograming of microglial cells by tumor cells to create a favorable microenvironment for cancer progression. |
Author | Krichevsky, Anna M. Kolsteeg, Christy-Joy Dusoswa, Sophie A. El Khoury, Joseph Maas, Sybren L.N. Breakefield, Xandra O. Nieland, Lisa Abels, Erik R. Ting, David T. Hickman, Suzanne Wei, Zhiyun Tai, Eric Cheah, Pike See Broekman, Marike L.D. |
AuthorAffiliation | 9 Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands 11 Lead Contact 2 Department of Neurosurgery, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 CX Utrecht, the Netherlands 3 Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 7 Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA 1 Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA 6 Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunology Institute and Cancer Center Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, the Netherlands 8 Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands 4 Department of Human Anatomy, Faculty of Medicine and Health Scienc |
AuthorAffiliation_xml | – name: 1 Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA – name: 7 Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA – name: 9 Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, the Netherlands – name: 2 Department of Neurosurgery, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 CX Utrecht, the Netherlands – name: 10 Senior author – name: 6 Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunology Institute and Cancer Center Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, the Netherlands – name: 8 Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands – name: 3 Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – name: 4 Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia – name: 5 Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA – name: 11 Lead Contact |
Author_xml | – sequence: 1 givenname: Erik R. surname: Abels fullname: Abels, Erik R. email: eabels@mgh.harvard.edu organization: Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA – sequence: 2 givenname: Sybren L.N. surname: Maas fullname: Maas, Sybren L.N. organization: Department of Neurosurgery, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 CX Utrecht, the Netherlands – sequence: 3 givenname: Lisa surname: Nieland fullname: Nieland, Lisa organization: Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA – sequence: 4 givenname: Zhiyun surname: Wei fullname: Wei, Zhiyun organization: Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 5 givenname: Pike See surname: Cheah fullname: Cheah, Pike See organization: Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA – sequence: 6 givenname: Eric surname: Tai fullname: Tai, Eric organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA – sequence: 7 givenname: Christy-Joy surname: Kolsteeg fullname: Kolsteeg, Christy-Joy organization: Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA – sequence: 8 givenname: Sophie A. surname: Dusoswa fullname: Dusoswa, Sophie A. organization: Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunology Institute and Cancer Center Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, the Netherlands – sequence: 9 givenname: David T. surname: Ting fullname: Ting, David T. organization: Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA – sequence: 10 givenname: Suzanne surname: Hickman fullname: Hickman, Suzanne organization: Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA – sequence: 11 givenname: Joseph surname: El Khoury fullname: El Khoury, Joseph organization: Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA – sequence: 12 givenname: Anna M. surname: Krichevsky fullname: Krichevsky, Anna M. organization: Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 13 givenname: Marike L.D. surname: Broekman fullname: Broekman, Marike L.D. organization: Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, the Netherlands – sequence: 14 givenname: Xandra O. surname: Breakefield fullname: Breakefield, Xandra O. email: breakefield@hms.harvard.edu organization: Departments of Neurology and Radiology, Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02129, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31533034$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstq3TAUFCWleTR_UIqX3djVW3YXhRDyuJBQCOlayLJ8KyNLt5Idkr-vXN-UpItWGwlpzszRnDkGBz54A8AHBCsEEf88VNq4aHYVhqipYF1Bwt-AI4wRKhGm4uDF-RCcpjTAvDhEqKHvwCFBjBBI6BEYrpwNrVNpCqMqz1IK2qrJdMWt1TFsnVXFndnlU1TjaP222KTi1nQrpn0qLmevJxu8csV9VD71JhahLy4ep6hyi252KhajvSsxeg_e9solc7rfT8D3y4v78-vy5tvV5vzsptSsYVPJBaW66QXpGeM95zXBDNe0obzHjCtISC2MFprgnpGOw1Y0HcEKIigU46gmJ2Cz8nZBDXIX7ajikwzKyt8XIW6lipPVzkgh-rYzdCGllHOqWE2F1q3Ikryru8z1deXaze1oOm18_pd7Rfr6xdsfchseJK-RaMTSzKc9QQw_Z5MmOdq0GKO8CXOSGDekEQxxlqEfX2r9EXkeVgZ8WQF5MilF00ttJ7W4n6WtkwjKJRxykGs45BIOCWuZw5GL6V_Fz_z_KdsbYPLEHqyJMmlrvM4RiEZP2VL7b4JfUJjU3w |
CitedBy_id | crossref_primary_10_3390_cancers15143628 crossref_primary_10_3389_fcell_2022_996805 crossref_primary_10_1016_j_nbd_2023_106327 crossref_primary_10_3389_fimmu_2024_1423232 crossref_primary_10_1016_j_expneurol_2020_113394 crossref_primary_10_18632_oncotarget_28039 crossref_primary_10_1016_j_semcancer_2022_05_003 crossref_primary_10_1002_adbi_201900312 crossref_primary_10_1186_s12964_021_00777_0 crossref_primary_10_2144_btn_2020_0094 crossref_primary_10_3389_fnmol_2021_763610 crossref_primary_10_3389_fimmu_2021_609762 crossref_primary_10_1038_s41419_023_05555_z crossref_primary_10_1371_journal_pbio_3002074 crossref_primary_10_1039_D4BM01394H crossref_primary_10_3390_cells9010096 crossref_primary_10_1016_j_onano_2022_100085 crossref_primary_10_3389_fphar_2022_1044115 crossref_primary_10_1002_adhm_202101557 crossref_primary_10_3389_fonc_2023_1236268 crossref_primary_10_1186_s40779_023_00468_6 crossref_primary_10_1002_adhm_202101956 crossref_primary_10_1186_s12943_020_01189_3 crossref_primary_10_3389_fimmu_2024_1419660 crossref_primary_10_1186_s12974_024_03015_9 crossref_primary_10_3390_ijms22020924 crossref_primary_10_1016_j_prp_2024_155121 crossref_primary_10_1038_s41586_021_04234_3 crossref_primary_10_1016_j_ymthe_2024_11_023 crossref_primary_10_1042_BST20210202 crossref_primary_10_1111_imr_13027 crossref_primary_10_1016_j_isci_2020_101420 crossref_primary_10_1016_j_it_2021_02_004 crossref_primary_10_1016_j_ymthe_2023_05_012 crossref_primary_10_3389_fonc_2021_682129 crossref_primary_10_3390_ijms22179211 crossref_primary_10_1093_brain_awac222 crossref_primary_10_3390_cancers13040856 crossref_primary_10_1038_s41418_020_00679_7 crossref_primary_10_1007_s11427_021_1999_2 crossref_primary_10_3390_ijms23158398 crossref_primary_10_1016_j_bbrc_2022_03_006 crossref_primary_10_1002_cbf_3921 crossref_primary_10_3389_fonc_2021_638357 crossref_primary_10_3389_fimmu_2022_900155 crossref_primary_10_1016_j_addr_2021_113999 crossref_primary_10_1016_j_nbd_2024_106700 crossref_primary_10_1016_j_bbamem_2021_183826 crossref_primary_10_3389_fcell_2021_734720 crossref_primary_10_3389_fncel_2021_695899 crossref_primary_10_1002_jex2_70001 crossref_primary_10_1016_j_ebiom_2020_102736 crossref_primary_10_1111_jcmm_18217 crossref_primary_10_1186_s12974_020_01797_2 crossref_primary_10_3390_ijms20246109 crossref_primary_10_1002_jev2_70041 crossref_primary_10_1111_cns_70333 crossref_primary_10_3389_fimmu_2021_715311 crossref_primary_10_3389_fcell_2023_1275755 crossref_primary_10_3389_fncel_2023_1352130 crossref_primary_10_3389_fimmu_2021_670131 crossref_primary_10_3390_cancers13010084 crossref_primary_10_3390_plants10030484 crossref_primary_10_1186_s12974_020_02026_6 crossref_primary_10_1002_jev2_12369 crossref_primary_10_18632_aging_103653 crossref_primary_10_1038_s41388_020_1308_2 crossref_primary_10_3389_fbioe_2022_876151 crossref_primary_10_1016_j_pnpbp_2024_111153 crossref_primary_10_3390_biomedicines10010151 crossref_primary_10_1097_CCO_0000000000000679 crossref_primary_10_3390_ijms21176097 crossref_primary_10_1096_fba_2021_00035 crossref_primary_10_3390_cells10050965 crossref_primary_10_1002_adfm_202418016 crossref_primary_10_1021_acsomega_2c00816 crossref_primary_10_1002_jex2_40 crossref_primary_10_1038_s41419_023_05753_9 crossref_primary_10_3390_life11020153 crossref_primary_10_1016_j_lfs_2024_123150 crossref_primary_10_1016_j_xcrm_2023_101246 crossref_primary_10_1186_s12935_021_02434_5 crossref_primary_10_3390_cancers12082111 crossref_primary_10_1016_j_tins_2020_10_014 crossref_primary_10_1016_j_celrep_2020_01_089 crossref_primary_10_1038_s42003_022_03440_7 crossref_primary_10_1016_j_semcancer_2024_04_003 crossref_primary_10_1186_s40779_024_00521_y crossref_primary_10_3389_fnmol_2022_842288 crossref_primary_10_3390_brainsci11020200 crossref_primary_10_1016_j_ymthe_2022_01_046 crossref_primary_10_1002_jcb_70002 crossref_primary_10_1038_s41592_021_01206_3 crossref_primary_10_1016_j_celrep_2022_111417 crossref_primary_10_1038_s41576_023_00662_1 crossref_primary_10_1002_agm2_12241 crossref_primary_10_1016_j_celrep_2023_112582 crossref_primary_10_3390_cancers13112693 crossref_primary_10_3389_fimmu_2021_679954 crossref_primary_10_3390_cancers14010257 crossref_primary_10_1002_pmic_202300094 crossref_primary_10_1038_s41392_022_01298_z crossref_primary_10_3390_cancers13174255 crossref_primary_10_1002_glia_24154 crossref_primary_10_1080_14737159_2020_1688144 crossref_primary_10_1016_j_isci_2024_108807 crossref_primary_10_1016_j_expneurol_2022_114183 crossref_primary_10_3389_fimmu_2019_03137 crossref_primary_10_1093_molehr_gaab057 crossref_primary_10_3390_jcm12103430 crossref_primary_10_1002_adfm_202404900 crossref_primary_10_1016_j_jconrel_2023_03_009 crossref_primary_10_1016_j_toxrep_2020_11_001 crossref_primary_10_3390_genes14040853 crossref_primary_10_3389_fphar_2022_878058 crossref_primary_10_3892_ol_2021_12888 crossref_primary_10_3390_ijms22147294 crossref_primary_10_1016_j_cytogfr_2024_10_009 crossref_primary_10_1111_jcmm_17152 crossref_primary_10_3390_pharmaceutics13070988 crossref_primary_10_3390_pharmaceutics13111931 crossref_primary_10_1038_s41580_020_0251_y crossref_primary_10_3389_fimmu_2022_869307 crossref_primary_10_1002_jev2_70005 crossref_primary_10_1093_neuonc_noab229 crossref_primary_10_1016_j_omto_2022_04_001 crossref_primary_10_3389_fmolb_2020_554649 crossref_primary_10_1007_s12035_022_02752_3 crossref_primary_10_1002_glia_23846 crossref_primary_10_1186_s12964_023_01089_1 crossref_primary_10_3390_cells11111823 crossref_primary_10_3389_fonc_2023_1291177 crossref_primary_10_1016_j_devcel_2022_03_012 crossref_primary_10_1186_s40824_022_00325_y crossref_primary_10_1021_acs_nanolett_1c00094 crossref_primary_10_1038_s41576_021_00346_8 crossref_primary_10_1016_j_cris_2022_100041 crossref_primary_10_1016_j_ebiom_2020_102788 crossref_primary_10_2139_ssrn_3985157 crossref_primary_10_3390_app10196961 crossref_primary_10_1021_acsnano_0c10240 crossref_primary_10_3390_ijms24119559 crossref_primary_10_1002_adbi_202000035 crossref_primary_10_1038_s41419_020_03088_3 crossref_primary_10_3390_ijms21061950 |
Cites_doi | 10.1158/0008-5472.CAN-07-1045 10.1093/neuonc/nos116 10.1186/s13059-014-0550-8 10.1371/journal.ppat.1004070 10.1186/s12974-015-0386-5 10.1002/hep.23547 10.1038/srep24516 10.1128/MCB.20.5.1797-1815.2000 10.1080/20013078.2017.1286095 10.3389/fcimb.2017.00201 10.1016/j.immuni.2018.11.004 10.1016/j.ccr.2010.08.013 10.1038/nmeth.3485 10.1016/j.trecan.2019.05.006 10.1111/j.1582-4934.2008.00556.x 10.1371/journal.pone.0066814 10.1182/blood-2010-10-311415 10.1038/onc.2008.72 10.1038/ncb0309-228 10.1080/20013078.2018.1535750 10.1007/s11060-013-1084-8 10.1074/jbc.M114.561845 10.1074/jbc.M111.285098 10.1007/s00592-013-0492-8 10.1002/ijc.29521 10.1016/j.tcb.2015.01.004 10.1093/nar/gks658 10.1038/s41582-018-0025-8 10.1016/j.jbi.2011.05.002 10.1093/eurheartj/ehv109 10.1073/pnas.1525528113 10.1038/cddis.2014.47 10.1016/S1470-2045(09)70025-7 10.1038/ncomms8029 10.1038/ncb2210 10.3171/jns.1979.50.3.0305 10.1093/neuonc/nos074 10.1016/S0014-5793(01)02436-X 10.1016/j.stem.2007.10.002 10.1016/j.ccell.2017.02.009 10.1186/1471-2105-12-35 10.1091/mbc.10.11.3771 10.1038/ncb1596 10.1093/cvr/cvp015 10.1074/jbc.M800406200 10.1186/s12974-017-1011-6 10.1007/s12013-013-9539-2 10.1038/s41467-017-01196-x 10.1186/1471-2407-12-378 10.1016/j.molimm.2013.01.006 10.3171/jns.1979.50.3.0298 10.1096/fj.06-7548com 10.1016/j.celrep.2018.03.037 10.1073/pnas.1521230113 10.1016/j.ymthe.2016.08.001 10.1093/eurheartj/eht105 10.1074/jbc.M110.109207 10.1016/j.celrep.2016.10.052 10.1016/j.bbrc.2016.03.066 10.1002/stem.2081 10.3390/ijms17070959 10.1172/JCI46039 10.1093/neuonc/noy131 10.1128/MCB.00479-08 10.1371/journal.pone.0115855 10.1007/s00380-016-0808-z 10.7150/ijbs.7.347 10.1158/0008-5472.CAN-05-0137 10.1016/j.jviromet.2004.08.017 10.1016/j.scr.2015.05.003 10.1038/ncb1800 10.1074/jbc.M114.593863 10.18632/oncotarget.4699 10.1016/j.tcb.2016.11.003 10.1242/jcs.074088 10.12659/MSM.896157 10.1038/nn.4185 10.1093/bioinformatics/bts635 10.1128/mBio.02344-17 10.1093/neuonc/nov244 10.1093/bioinformatics/btx364 10.1016/j.ymthe.2016.11.004 10.1016/j.cell.2016.01.043 10.1038/nature07511 10.1038/s41419-018-0805-5 10.1073/pnas.1103735108 10.1093/nar/gkx1067 10.1016/j.jmb.2008.03.015 10.1091/mbc.e08-02-0159 10.1038/s41418-017-0019-x 10.14715/cmb/2016.62.12.24 10.1038/ncb1725 10.1242/jcs.086710 10.1074/jbc.M116.772392 10.1038/nri.2017.125 10.1093/neuonc/not151 10.1152/ajpgi.00338.2009 10.1038/nrdp.2015.17 10.1016/j.biocel.2012.08.019 10.4049/jimmunol.0803560 10.4161/rna.8.5.16154 10.1186/1752-0509-8-82 10.1016/j.febslet.2012.06.004 10.1038/srep02038 10.1038/s41598-017-16720-8 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2019.08.036 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 3119.e7 |
ExternalDocumentID | oai_doaj_org_article_77fbde4a03344664a5847ccb72526d8d PMC6817978 31533034 10_1016_j_celrep_2019_08_036 S2211124719310769 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG051506 – fundername: NCI NIH HHS grantid: P01 CA069246 – fundername: NCRR NIH HHS grantid: S10 RR020936 – fundername: NCI NIH HHS grantid: U19 CA179563 – fundername: NCI NIH HHS grantid: R01 CA215072 – fundername: NINDS NIH HHS grantid: R21 NS098051 – fundername: NIH HHS grantid: S10 OD016372 – fundername: NINDS NIH HHS grantid: P30 NS045776 – fundername: NCI NIH HHS grantid: R35 CA232103 – fundername: NCRR NIH HHS grantid: S10 RR023440 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-6744c9f73f556f668325284946f256a03387ec7c32f53d60b79d32a0107a56183 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:31:06 EDT 2025 Thu Aug 21 14:12:14 EDT 2025 Fri Jul 11 09:21:03 EDT 2025 Thu Apr 03 07:07:03 EDT 2025 Tue Jul 01 02:59:04 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Wed May 17 00:05:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-6744c9f73f556f668325284946f256a03387ec7c32f53d60b79d32a0107a56183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS E.R.A., S.L.N.M., X.O.B., M.L.D.B., and A.M.K. conceived the study. E.R.A., S.L.N.M., and X.O.B. designed the experiments. E.R.A., Z.W., L.N., P.S.C., and C.-J.K. performed and analyzed experiments. S.A.D. assisted during animal experiments. D.T.T. and E.T. assisted and performed RNA sequencing (RNA-seq) experiments. S.L.N.M. and E.T. performed the computational and statistical analysis of RNA-seq data. S.H. and J.E.K. provided advice on microglial isolation. X.O.B., M.L.D.B., and A.M.K. supervised the project. E.R.A. prepared figures. E.R.A. wrote the manuscript. All authors edited or commented on the manuscript. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2019.08.036 |
PMID | 31533034 |
PQID | 2293975165 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_77fbde4a03344664a5847ccb72526d8d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6817978 proquest_miscellaneous_2293975165 pubmed_primary_31533034 crossref_citationtrail_10_1016_j_celrep_2019_08_036 crossref_primary_10_1016_j_celrep_2019_08_036 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_08_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-17 |
PublicationDateYYYYMMDD | 2019-09-17 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Conway, Lex, Gehlenborg (bib15) 2017; 33 Dweep, Gretz (bib19) 2015; 12 van der Vos, Abels, Zhang, Lai, Carrizosa, Oakley, Prabhakar, Mardini, Crommentuijn, Skog (bib90) 2016; 18 Abels, Broekman, Breakefield, Maas (bib1) 2019; 5 Lu, Liu, Stribinskis, Klinge, Ramos, Colburn, Li (bib49) 2008; 27 Põlajeva, Swartling, Jiang, Singh, Pietras, Uhrbom, Westermark, Roswall (bib68) 2012; 12 Al-Nedawi, Meehan, Micallef, Lhotak, May, Guha, Rak (bib5) 2008; 10 Sugatani, Vacher, Hruska (bib83) 2011; 117 Belter, Rolle, Piwecka, Fedoruk-Wyszomirska, Naskręt-Barciszewska, Barciszewski (bib6) 2016; 6 Théry, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina, Antoniou, Arab, Archer, Atkin-Smith (bib86) 2018; 7 Ahmed, Mardaryev, Lewis, Sharov, Botchkareva (bib3) 2011; 124 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib18) 2013; 29 Fitzner, Schnaars, van Rossum, Krishnamoorthy, Dibaj, Bakhti, Regen, Hanisch, Simons (bib25) 2011; 124 Kölling, Kaucsar, Schauerte, Hübner, Dettling, Park, Busch, Wulff, Meier, Scherf (bib37) 2017; 25 McCabe, Berthiaume (bib57) 1999; 10 Welm, Dijkgraaf, Bledau, Welm, Werb (bib98) 2008; 2 Kumarswamy, Volkmann, Thum (bib40) 2011; 8 Fiorentino, Cavalera, Mavilio, Conserva, Menghini, Gesualdo, Federici (bib24) 2013; 50 Johnston, Kearney, Zasłona, Williams, O’Neill, Corr (bib36) 2017; 7 Broekman, Maas, Abels, Mempel, Krichevsky, Breakefield (bib9) 2018; 14 Chen, Song, Chen, Dimitrova-Shumkovska, Zhao, Cao, Song, Yang, Wang, Xiang, Yang (bib12) 2016; 22 Wei, Batagov, Schinelli, Wang, Wang, El Fatimy, Rabinovsky, Balaj, Chen, Hochberg (bib96) 2017; 8 Febinger, Thomasy, Pavlova, Ringgold, Barf, George, Grillo, Bachstetter, Garcia, Cardona (bib23) 2015; 12 Bennett, Bennett, Liddelow, Ajami, Zamanian, Fernhoff, Mulinyawe, Bohlen, Adil, Tucker (bib7) 2016; 113 Sawant, Wu, Kaplan, Dent (bib72) 2013; 54 Singh, Marisetty, Sathyan, Kagalwala, Zhao, Majumder (bib78) 2015; 15 Sayed, He, Hong, Gao, Rane, Yang, Abdellatif (bib74) 2010; 285 Cocucci, Meldolesi (bib14) 2015; 25 Marquez, Wendlandt, Galle, Keck, McCaffrey (bib54) 2010; 298 Weller, Wick, Aldape, Brada, Berger, Pfister, Nishikawa, Rosenthal, Wen, Stupp, Reifenberger (bib97) 2015; 1 Teplyuk, Mollenhauer, Gabriely, Giese, Kim, Smolsky, Kim, Saria, Pastorino, Kesari, Krichevsky (bib85) 2012; 14 Wei, Yang, Guo, Zhang, Ren, Lv, Xu (bib95) 2017; 7 Tamashiro, Dalgard, Byrnes (bib84) 2012 Thum, Gross, Fiedler, Fischer, Kissler, Bussen, Galuppo, Just, Rottbauer, Frantz (bib87) 2008; 456 Quail, Joyce (bib69) 2017; 31 Luo, Gu, Zhu, Feng, Zhu, Li, Fei (bib51) 2014; 8 Ruan, Wang, Wang, Qi, Wei, Wang, Fan, Johnson, Wan, Shi (bib71) 2014; 5 Lu, Munitz, Rothenberg (bib50) 2009; 182 Xie, Song, Li (bib102) 2016; 473 Yang, Yue, Pfeffer, Fan, Paulus, Hosni-Ahmed, Sims, Qayyum, Davidoff, Handorf, Pfeffer (bib104) 2014; 289 Chou, Shrestha, Yang, Chang, Lin, Liao, Huang, Sun, Tu, Lee (bib13) 2018; 46 Liang, Zhang, Ban, Liu, Mei, Piao, Zhao, Lu, Chu, Yang (bib45) 2012; 44 Morantz, Wood, Foster, Clark, Gollahon (bib61) 1979; 50 Liu, Li, Cheng, Lin, Hao, Zhang, Mitchel, Sun, Ni, Zhao (bib46) 2011; 7 Soares, Cagnin, Chemello, Silvestrin, Musaro, De Pitta, Lanfranchi, Sandri (bib80) 2014; 289 Sena-Esteves, Tebbets, Steffens, Crombleholme, Flake (bib75) 2004; 122 Hambardzumyan, Gutmann, Kettenmann (bib30) 2016; 19 Lorenzen, Schauerte, Hübner, Kölling, Martino, Scherf, Batkai, Zimmer, Foinquinos, Kaucsar (bib47) 2015; 36 Wang, Zhao, Fan, Chen, Dong (bib94) 2016; 17 Gao, Li, Qian, Li, Zhang, Dang, Xiao, Liu, Li, Zhang (bib28) 2016; 62 Pepe, De Maglie, Minoli, Villa, Maggi, Vegeto (bib67) 2017; 14 Winter, Jung, Keller, Gregory, Diederichs (bib99) 2009; 11 Akers, Gonda, Kim, Carter, Chen (bib4) 2013; 113 Roy, Khanna, Hussain, Biswas, Azad, Rink, Gnyawali, Shilo, Nuovo, Sen (bib70) 2009; 82 Wang, Brandt, Medeiros, Wang, Wu, Dent, Serezani (bib93) 2015; 10 Maas, Breakefield, Weaver (bib53) 2017; 27 Gabriely, Wurdinger, Kesari, Esau, Burchard, Linsley, Krichevsky (bib27) 2008; 28 Bowman, Klemm, Akkari, Pyonteck, Sevenich, Quail, Dhara, Simpson, Gardner, Iacobuzio-Donahue (bib8) 2016; 17 Corsten, Miranda, Kasmieh, Krichevsky, Weissleder, Shah (bib16) 2007; 67 Hatley, Patrick, Garcia, Richardson, Bassel-Duby, van Rooij, Olson (bib32) 2010; 18 El Fatimy, Subramanian, Uhlmann, Krichevsky (bib21) 2017; 25 He, Zhang, Gao, Li, Tan, Chen, Zhou (bib33) 2016; 31 Nolte-’t Hoen, Buermans, Waasdorp, Stoorvogel, Wauben, t Hoen (bib64) 2012; 40 Love, Huber, Anders (bib48) 2014; 15 Matsuda, Rouault, Magaud, Berthet (bib56) 2001; 497 Hu, Wang, Hu, Ying, Wang, Zhang, Wang, Wang, Wang (bib35) 2017; 292 Shi, Wang, Li, Chen, Li, Zhang, Zhang, Jiang, Li, Ding, Cheng (bib77) 2015; 6 Farioli-Vecchioli, Tanori, Micheli, Mancuso, Leonardi, Saran, Ciotti, Ferretti, Gulino, Pazzaglia, Tirone (bib22) 2007; 21 Chen, Boutros (bib11) 2011; 12 Guardavaccaro, Corrente, Covone, Micheli, D’Agnano, Starace, Caruso, Tirone (bib29) 2000; 20 McDonald, White, Wu, Cooley, Robertson, Halliday, McClure, Francis, Lu, Kennedy (bib58) 2013; 34 de Vrij, Maas, Kwappenberg, Schnoor, Kleijn, Dekker, Luider, de Witte, Litjens, van Strien (bib17) 2015; 137 Shi, Liang, Yang, Xia, Chen, Han, Yang, Wu, Gao, Qin (bib76) 2013; 8 Li, Barres (bib42) 2018; 18 McNamara, Costantini, Myers, Schouest, Maness, Griffith, Damania, MacLean, Dittmer (bib59) 2018; 9 Morton, Neckles, Seluzicki, Holmberg, Feliciano (bib62) 2018; 23 Wu, Lu, Sheng, Li (bib100) 2012; 586 Wu, Liu, Fan, Xu, Jin, Gao, Wu, Hu, Wang, Zhang (bib101) 2015; 33 Ostrom, Gittleman, Farah, Ondracek, Chen, Wolinsky, Stroup, Kruchko, Barnholtz-Sloan (bib65) 2013; 15 Stupp, Hegi, Mason, van den Bent, Taphoorn, Janzer, Ludwin, Allgeier, Fisher, Belanger (bib82) 2009; 10 Morantz, Wood, Foster, Clark, Gollahon (bib60) 1979; 50 Dweep, Sticht, Pandey, Gretz (bib20) 2011; 44 Vickers, Palmisano, Shoucri, Shamburek, Remaley (bib91) 2011; 13 Ma, Kumar, Choudhury, Becker Buscaglia, Barker, Kanakamedala, Liu, Li (bib52) 2011; 108 Valadi, Ekström, Bossios, Sjöstrand, Lee, Lötvall (bib89) 2007; 9 Ng, Song, Roll, Frandsen, Willenbring (bib63) 2012; 122 Wang, Gao, Ma, Li, Zou, Yang, Zhu, Zhao (bib92) 2013; 67 Afonso, Rodrigues, Simão, Gaspar, Carvalho, Borralho, Bañales, Castro, Rodrigues (bib2) 2018; 25 Yang, Yue, Pfeffer, Handorf, Pfeffer (bib103) 2011; 286 Li, Zhang, Wang, Sun, Hou, Larner, Xiong, Mi (bib44) 2013; 3 Mateescu, Kowal, van Balkom, Bartel, Bhattacharyya, Buzás, Buck, de Candia, Chow, Das (bib55) 2017; 6 Fujita, Ito, Mizutani, Minoguchi, Yamamichi, Sakurai, Iba (bib26) 2008; 378 Lai, Kim, Badr, Weissleder, Mempel, Tannous, Breakefield (bib41) 2015; 6 Hu, Ren, Liu, Zhao, Yu, Su, Ma, Ni, Lei, Yang (bib34) 2008; 283 Kowal, Arras, Colombo, Jouve, Morath, Primdal-Bengtson, Dingli, Loew, Tkach, Théry (bib38) 2016; 113 Skog, Würdinger, van Rijn, Meijer, Gainche, Sena-Esteves, Curry, Carter, Krichevsky, Breakefield (bib79) 2008; 10 Sayed, Rane, Lypowy, He, Chen, Vashistha, Yan, Malhotra, Vatner, Abdellatif (bib73) 2008; 19 Ye, Zhang, Qiu, Hanson, Hemida, Wei, Hoodless, Chu, Yang (bib106) 2014; 10 Chan, Krichevsky, Kosik (bib10) 2005; 65 Ostrom, Gittleman, Truitt, Boscia, Kruchko, Barnholtz-Sloan (bib66) 2018; 20 Tkach, Théry (bib88) 2016; 164 Yang, Wang, Zhou, Wang, Liu, Liu, Zhan (bib105) 2018; 9 Krichevsky, Gabriely (bib39) 2009; 13 Li, Graeber (bib43) 2012; 14 Song, Sharma, Roll, Ng, Lee, Blelloch, Frandsen, Willenbring (bib81) 2010; 51 Hammond, Dufort, Dissing-Olesen, Giera, Young, Wysoker, Walker, Gergits, Segel, Nemesh (bib31) 2019; 50 Weller (10.1016/j.celrep.2019.08.036_bib97) 2015; 1 McDonald (10.1016/j.celrep.2019.08.036_bib58) 2013; 34 Gao (10.1016/j.celrep.2019.08.036_bib28) 2016; 62 Abels (10.1016/j.celrep.2019.08.036_bib1) 2019; 5 Hatley (10.1016/j.celrep.2019.08.036_bib32) 2010; 18 Conway (10.1016/j.celrep.2019.08.036_bib15) 2017; 33 Wang (10.1016/j.celrep.2019.08.036_bib92) 2013; 67 Akers (10.1016/j.celrep.2019.08.036_bib4) 2013; 113 Corsten (10.1016/j.celrep.2019.08.036_bib16) 2007; 67 Ye (10.1016/j.celrep.2019.08.036_bib106) 2014; 10 Teplyuk (10.1016/j.celrep.2019.08.036_bib85) 2012; 14 Ng (10.1016/j.celrep.2019.08.036_bib63) 2012; 122 Li (10.1016/j.celrep.2019.08.036_bib44) 2013; 3 Valadi (10.1016/j.celrep.2019.08.036_bib89) 2007; 9 Sugatani (10.1016/j.celrep.2019.08.036_bib83) 2011; 117 Mateescu (10.1016/j.celrep.2019.08.036_bib55) 2017; 6 Wei (10.1016/j.celrep.2019.08.036_bib96) 2017; 8 Hambardzumyan (10.1016/j.celrep.2019.08.036_bib30) 2016; 19 Johnston (10.1016/j.celrep.2019.08.036_bib36) 2017; 7 Xie (10.1016/j.celrep.2019.08.036_bib102) 2016; 473 Sayed (10.1016/j.celrep.2019.08.036_bib74) 2010; 285 Roy (10.1016/j.celrep.2019.08.036_bib70) 2009; 82 Ruan (10.1016/j.celrep.2019.08.036_bib71) 2014; 5 Chen (10.1016/j.celrep.2019.08.036_bib11) 2011; 12 Lorenzen (10.1016/j.celrep.2019.08.036_bib47) 2015; 36 Fitzner (10.1016/j.celrep.2019.08.036_bib25) 2011; 124 Gabriely (10.1016/j.celrep.2019.08.036_bib27) 2008; 28 Li (10.1016/j.celrep.2019.08.036_bib43) 2012; 14 Love (10.1016/j.celrep.2019.08.036_bib48) 2014; 15 Quail (10.1016/j.celrep.2019.08.036_bib69) 2017; 31 Song (10.1016/j.celrep.2019.08.036_bib81) 2010; 51 Al-Nedawi (10.1016/j.celrep.2019.08.036_bib5) 2008; 10 Pepe (10.1016/j.celrep.2019.08.036_bib67) 2017; 14 Lai (10.1016/j.celrep.2019.08.036_bib41) 2015; 6 Morton (10.1016/j.celrep.2019.08.036_bib62) 2018; 23 Welm (10.1016/j.celrep.2019.08.036_bib98) 2008; 2 Dobin (10.1016/j.celrep.2019.08.036_bib18) 2013; 29 Sena-Esteves (10.1016/j.celrep.2019.08.036_bib75) 2004; 122 Farioli-Vecchioli (10.1016/j.celrep.2019.08.036_bib22) 2007; 21 McCabe (10.1016/j.celrep.2019.08.036_bib57) 1999; 10 Shi (10.1016/j.celrep.2019.08.036_bib76) 2013; 8 Ostrom (10.1016/j.celrep.2019.08.036_bib66) 2018; 20 He (10.1016/j.celrep.2019.08.036_bib33) 2016; 31 Yang (10.1016/j.celrep.2019.08.036_bib105) 2018; 9 Skog (10.1016/j.celrep.2019.08.036_bib79) 2008; 10 Lu (10.1016/j.celrep.2019.08.036_bib49) 2008; 27 Lu (10.1016/j.celrep.2019.08.036_bib50) 2009; 182 Singh (10.1016/j.celrep.2019.08.036_bib78) 2015; 15 Hammond (10.1016/j.celrep.2019.08.036_bib31) 2019; 50 Krichevsky (10.1016/j.celrep.2019.08.036_bib39) 2009; 13 Sawant (10.1016/j.celrep.2019.08.036_bib72) 2013; 54 Tamashiro (10.1016/j.celrep.2019.08.036_bib84) 2012 Vickers (10.1016/j.celrep.2019.08.036_bib91) 2011; 13 Li (10.1016/j.celrep.2019.08.036_bib42) 2018; 18 Morantz (10.1016/j.celrep.2019.08.036_bib61) 1979; 50 Wei (10.1016/j.celrep.2019.08.036_bib95) 2017; 7 Ma (10.1016/j.celrep.2019.08.036_bib52) 2011; 108 Nolte-’t Hoen (10.1016/j.celrep.2019.08.036_bib64) 2012; 40 McNamara (10.1016/j.celrep.2019.08.036_bib59) 2018; 9 Wu (10.1016/j.celrep.2019.08.036_bib101) 2015; 33 Wang (10.1016/j.celrep.2019.08.036_bib93) 2015; 10 Sayed (10.1016/j.celrep.2019.08.036_bib73) 2008; 19 Hu (10.1016/j.celrep.2019.08.036_bib34) 2008; 283 Matsuda (10.1016/j.celrep.2019.08.036_bib56) 2001; 497 Dweep (10.1016/j.celrep.2019.08.036_bib20) 2011; 44 Fujita (10.1016/j.celrep.2019.08.036_bib26) 2008; 378 Liu (10.1016/j.celrep.2019.08.036_bib46) 2011; 7 Théry (10.1016/j.celrep.2019.08.036_bib86) 2018; 7 Yang (10.1016/j.celrep.2019.08.036_bib103) 2011; 286 Guardavaccaro (10.1016/j.celrep.2019.08.036_bib29) 2000; 20 Wu (10.1016/j.celrep.2019.08.036_bib100) 2012; 586 de Vrij (10.1016/j.celrep.2019.08.036_bib17) 2015; 137 Soares (10.1016/j.celrep.2019.08.036_bib80) 2014; 289 Belter (10.1016/j.celrep.2019.08.036_bib6) 2016; 6 Ostrom (10.1016/j.celrep.2019.08.036_bib65) 2013; 15 Cocucci (10.1016/j.celrep.2019.08.036_bib14) 2015; 25 Chen (10.1016/j.celrep.2019.08.036_bib12) 2016; 22 Kölling (10.1016/j.celrep.2019.08.036_bib37) 2017; 25 Afonso (10.1016/j.celrep.2019.08.036_bib2) 2018; 25 Ahmed (10.1016/j.celrep.2019.08.036_bib3) 2011; 124 Kowal (10.1016/j.celrep.2019.08.036_bib38) 2016; 113 Kumarswamy (10.1016/j.celrep.2019.08.036_bib40) 2011; 8 Wang (10.1016/j.celrep.2019.08.036_bib94) 2016; 17 Winter (10.1016/j.celrep.2019.08.036_bib99) 2009; 11 Broekman (10.1016/j.celrep.2019.08.036_bib9) 2018; 14 Shi (10.1016/j.celrep.2019.08.036_bib77) 2015; 6 Bennett (10.1016/j.celrep.2019.08.036_bib7) 2016; 113 Hu (10.1016/j.celrep.2019.08.036_bib35) 2017; 292 Stupp (10.1016/j.celrep.2019.08.036_bib82) 2009; 10 Maas (10.1016/j.celrep.2019.08.036_bib53) 2017; 27 Morantz (10.1016/j.celrep.2019.08.036_bib60) 1979; 50 Bowman (10.1016/j.celrep.2019.08.036_bib8) 2016; 17 Fiorentino (10.1016/j.celrep.2019.08.036_bib24) 2013; 50 Liang (10.1016/j.celrep.2019.08.036_bib45) 2012; 44 Febinger (10.1016/j.celrep.2019.08.036_bib23) 2015; 12 Tkach (10.1016/j.celrep.2019.08.036_bib88) 2016; 164 Marquez (10.1016/j.celrep.2019.08.036_bib54) 2010; 298 Chan (10.1016/j.celrep.2019.08.036_bib10) 2005; 65 van der Vos (10.1016/j.celrep.2019.08.036_bib90) 2016; 18 Põlajeva (10.1016/j.celrep.2019.08.036_bib68) 2012; 12 Yang (10.1016/j.celrep.2019.08.036_bib104) 2014; 289 Luo (10.1016/j.celrep.2019.08.036_bib51) 2014; 8 Thum (10.1016/j.celrep.2019.08.036_bib87) 2008; 456 Chou (10.1016/j.celrep.2019.08.036_bib13) 2018; 46 Dweep (10.1016/j.celrep.2019.08.036_bib19) 2015; 12 El Fatimy (10.1016/j.celrep.2019.08.036_bib21) 2017; 25 |
References_xml | – volume: 7 start-page: 347 year: 2011 end-page: 363 ident: bib46 article-title: MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3 publication-title: Int. J. Biol. Sci. – volume: 15 start-page: 550 year: 2014 ident: bib48 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 298 start-page: G535 year: 2010 end-page: G541 ident: bib54 article-title: MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 473 start-page: 140 year: 2016 end-page: 146 ident: bib102 article-title: MiR-21a-5p suppresses bisphenol A-induced pre-adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK publication-title: Biochem. Biophys. Res. Commun. – volume: 25 start-page: 857 year: 2018 end-page: 872 ident: bib2 article-title: miRNA-21 ablation protects against liver injury and necroptosis in cholestasis publication-title: Cell Death Differ. – volume: 8 start-page: e66814 year: 2013 ident: bib76 article-title: MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury publication-title: PLoS ONE – volume: 5 start-page: 393 year: 2019 end-page: 396 ident: bib1 article-title: Glioma EVs contribute to immune privilege in the brain publication-title: Trends Cancer – volume: 497 start-page: 67 year: 2001 end-page: 72 ident: bib56 article-title: In search of a function for the TIS21/PC3/BTG1/TOB family publication-title: FEBS Lett. – volume: 82 start-page: 21 year: 2009 end-page: 29 ident: bib70 article-title: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue publication-title: Cardiovasc. Res. – volume: 9 start-page: 559 year: 2018 ident: bib59 article-title: Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses publication-title: MBio – volume: 18 start-page: 282 year: 2010 end-page: 293 ident: bib32 article-title: Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21 publication-title: Cancer Cell – volume: 10 start-page: 459 year: 2009 end-page: 466 ident: bib82 article-title: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial publication-title: Lancet Oncol. – volume: 11 start-page: 228 year: 2009 end-page: 234 ident: bib99 article-title: Many roads to maturity: microRNA biogenesis pathways and their regulation publication-title: Nat. Cell Biol. – volume: 8 start-page: 82 year: 2014 ident: bib51 article-title: Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine publication-title: BMC Syst. Biol. – volume: 62 start-page: 144 year: 2016 end-page: 149 ident: bib28 article-title: MiR-21 functions oppositely in proliferation and differentiation of neural stem/precursor cells via regulating AKT and GSK-3β publication-title: Cell. Mol. Biol. – volume: 10 start-page: e0115855 year: 2015 ident: bib93 article-title: MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation publication-title: PLoS ONE – volume: 18 start-page: 58 year: 2016 end-page: 69 ident: bib90 article-title: Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain publication-title: Neuro-oncol. – volume: 25 start-page: 368 year: 2017 end-page: 378 ident: bib21 article-title: Genome editing reveals glioblastoma addiction to microRNA-10b publication-title: Mol. Ther. – volume: 27 start-page: 172 year: 2017 end-page: 188 ident: bib53 article-title: Extracellular vesicles: unique intercellular delivery vehicles publication-title: Trends Cell Biol. – volume: 33 start-page: 2938 year: 2017 end-page: 2940 ident: bib15 article-title: UpSetR: an R package for the visualization of intersecting sets and their properties publication-title: Bioinformatics – volume: 283 start-page: 23473 year: 2008 end-page: 23484 ident: bib34 article-title: MicroRNA expression and regulation in mouse uterus during embryo implantation publication-title: J. Biol. Chem. – volume: 12 start-page: 378 year: 2012 ident: bib68 article-title: miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma publication-title: BMC Cancer – volume: 28 start-page: 5369 year: 2008 end-page: 5380 ident: bib27 article-title: MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators publication-title: Mol. Cell. Biol. – volume: 54 start-page: 435 year: 2013 end-page: 442 ident: bib72 article-title: The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway publication-title: Mol. Immunol. – volume: 17 start-page: 2445 year: 2016 end-page: 2459 ident: bib8 article-title: Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies publication-title: Cell Rep. – volume: 50 start-page: 965 year: 2013 end-page: 969 ident: bib24 article-title: Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs publication-title: Acta Diabetol. – volume: 378 start-page: 492 year: 2008 end-page: 504 ident: bib26 article-title: miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism publication-title: J. Mol. Biol. – volume: 31 start-page: 1696 year: 2016 end-page: 1708 ident: bib33 article-title: Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit publication-title: Heart Vessels – volume: 13 start-page: 423 year: 2011 end-page: 433 ident: bib91 article-title: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins publication-title: Nat. Cell Biol. – volume: 10 start-page: 3771 year: 1999 end-page: 3786 ident: bib57 article-title: Functional roles for fatty acylated amino-terminal domains in subcellular localization publication-title: Mol. Biol. Cell – volume: 15 start-page: 305 year: 2015 end-page: 311 ident: bib78 article-title: REST-miR-21-SOX2 axis maintains pluripotency in E14Tg2a.4 embryonic stem cells publication-title: Stem Cell Res. (Amst.) – volume: 1 start-page: 15017 year: 2015 ident: bib97 article-title: Glioma publication-title: Nat. Rev. Dis. Primers – volume: 34 start-page: 1636 year: 2013 end-page: 1643 ident: bib58 article-title: miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation publication-title: Eur. Heart J. – volume: 67 start-page: 537 year: 2013 end-page: 546 ident: bib92 article-title: Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice publication-title: Cell Biochem. Biophys. – volume: 289 start-page: 25079 year: 2014 end-page: 25087 ident: bib104 article-title: MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3) publication-title: J. Biol. Chem. – volume: 292 start-page: 3531 year: 2017 end-page: 3540 ident: bib35 article-title: miR-21-mediated radioresistance occurs via promoting repair of DNA double strand breaks publication-title: J. Biol. Chem. – volume: 117 start-page: 3648 year: 2011 end-page: 3657 ident: bib83 article-title: A microRNA expression signature of osteoclastogenesis publication-title: Blood – volume: 50 start-page: 305 year: 1979 end-page: 311 ident: bib61 article-title: Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors publication-title: J. Neurosurg. – volume: 14 start-page: 236 year: 2017 ident: bib67 article-title: Selective proliferative response of microglia to alternative polarization signals publication-title: J. Neuroinflammation – volume: 12 start-page: 697 year: 2015 ident: bib19 article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions publication-title: Nat. Methods – volume: 7 start-page: 1535750 year: 2018 ident: bib86 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles – volume: 25 start-page: 364 year: 2015 end-page: 372 ident: bib14 article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles publication-title: Trends Cell Biol. – volume: 46 start-page: D296 year: 2018 end-page: D302 ident: bib13 article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions publication-title: Nucleic Acids Res. – volume: 20 start-page: iv1 year: 2018 end-page: iv86 ident: bib66 article-title: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015 publication-title: Neuro-oncol. – volume: 10 start-page: 1470 year: 2008 end-page: 1476 ident: bib79 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat. Cell Biol. – volume: 19 start-page: 20 year: 2016 end-page: 27 ident: bib30 article-title: The role of microglia and macrophages in glioma maintenance and progression publication-title: Nat. Neurosci. – volume: 164 start-page: 1226 year: 2016 end-page: 1232 ident: bib88 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell – volume: 113 start-page: E1738 year: 2016 end-page: E1746 ident: bib7 article-title: New tools for studying microglia in the mouse and human CNS publication-title: Proc. Natl. Acad. Sci. U S A – volume: 124 start-page: 3399 year: 2011 end-page: 3404 ident: bib3 article-title: MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes publication-title: J. Cell Sci. – volume: 285 start-page: 20281 year: 2010 end-page: 20290 ident: bib74 article-title: MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand publication-title: J. Biol. Chem. – volume: 21 start-page: 2215 year: 2007 end-page: 2225 ident: bib22 article-title: Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3 publication-title: FASEB J. – volume: 19 start-page: 3272 year: 2008 end-page: 3282 ident: bib73 article-title: MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths publication-title: Mol. Biol. Cell – volume: 14 start-page: 958 year: 2012 end-page: 978 ident: bib43 article-title: The molecular profile of microglia under the influence of glioma publication-title: Neuro-oncol. – volume: 31 start-page: 326 year: 2017 end-page: 341 ident: bib69 article-title: The microenvironmental landscape of brain tumors publication-title: Cancer Cell – volume: 12 start-page: 154 year: 2015 ident: bib23 article-title: Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury publication-title: J. Neuroinflammation – volume: 6 start-page: 7029 year: 2015 ident: bib41 article-title: Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters publication-title: Nat. Commun. – volume: 5 start-page: e1095 year: 2014 ident: bib71 article-title: MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2 publication-title: Cell Death Dis. – volume: 182 start-page: 4994 year: 2009 end-page: 5002 ident: bib50 article-title: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression publication-title: J. Immunol. – volume: 18 start-page: 225 year: 2018 end-page: 242 ident: bib42 article-title: Microglia and macrophages in brain homeostasis and disease publication-title: Nat. Rev. Immunol. – volume: 8 start-page: 1145 year: 2017 ident: bib96 article-title: Coding and noncoding landscape of extracellular RNA released by human glioma stem cells publication-title: Nat. Commun. – volume: 50 start-page: 253 year: 2019 end-page: 271.e6 ident: bib31 article-title: Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes publication-title: Immunity – volume: 20 start-page: 1797 year: 2000 end-page: 1815 ident: bib29 article-title: Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription publication-title: Mol. Cell. Biol. – volume: 14 start-page: 482 year: 2018 end-page: 495 ident: bib9 article-title: Multidimensional communication in the microenvirons of glioblastoma publication-title: Nat. Rev. Neurol. – volume: 9 start-page: 654 year: 2007 end-page: 659 ident: bib89 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. – volume: 289 start-page: 21909 year: 2014 end-page: 21925 ident: bib80 article-title: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions publication-title: J. Biol. Chem. – volume: 6 start-page: 26971 year: 2015 end-page: 26981 ident: bib77 article-title: Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients publication-title: Oncotarget – volume: 122 start-page: 131 year: 2004 end-page: 139 ident: bib75 article-title: Optimized large-scale production of high titer lentivirus vector pseudotypes publication-title: J. Virol. Methods – volume: 10 start-page: 619 year: 2008 end-page: 624 ident: bib5 article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells publication-title: Nat. Cell Biol. – volume: 7 start-page: 201 year: 2017 ident: bib36 article-title: MicroRNA-21 limits uptake of publication-title: Front. Cell. Infect. Microbiol. – volume: 8 start-page: 706 year: 2011 end-page: 713 ident: bib40 article-title: Regulation and function of miRNA-21 in health and disease publication-title: RNA Biol. – volume: 44 start-page: 2152 year: 2012 end-page: 2160 ident: bib45 article-title: A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis publication-title: Int. J. Biochem. Cell Biol. – volume: 40 start-page: 9272 year: 2012 end-page: 9285 ident: bib64 article-title: Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions publication-title: Nucleic Acids Res. – volume: 2 start-page: 90 year: 2008 end-page: 102 ident: bib98 article-title: Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer publication-title: Cell Stem Cell – volume: 124 start-page: 447 year: 2011 end-page: 458 ident: bib25 article-title: Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis publication-title: J. Cell Sci. – volume: 14 start-page: 689 year: 2012 end-page: 700 ident: bib85 article-title: MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity publication-title: Neuro-oncol. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib18 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 10 start-page: e1004070 year: 2014 ident: bib106 article-title: Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components publication-title: PLoS Pathog. – volume: 6 start-page: 1286095 year: 2017 ident: bib55 article-title: Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper publication-title: J. Extracell. Vesicles – volume: 108 start-page: 10144 year: 2011 end-page: 10149 ident: bib52 article-title: Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis publication-title: Proc. Natl. Acad. Sci. U S A – volume: 286 start-page: 39172 year: 2011 end-page: 39178 ident: bib103 article-title: MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells publication-title: J. Biol. Chem. – volume: 9 start-page: 769 year: 2018 ident: bib105 article-title: MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7 publication-title: Cell Death Dis. – volume: 50 start-page: 298 year: 1979 end-page: 304 ident: bib60 article-title: Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity publication-title: J. Neurosurg. – volume: 22 start-page: 83 year: 2016 end-page: 91 ident: bib12 article-title: MicroRNA-21 contributes to liver regeneration by targeting PTEN publication-title: Med. Sci. Monit. – volume: 36 start-page: 2184 year: 2015 end-page: 2196 ident: bib47 article-title: Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis publication-title: Eur. Heart J. – volume: 27 start-page: 4373 year: 2008 end-page: 4379 ident: bib49 article-title: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene publication-title: Oncogene – volume: 65 start-page: 6029 year: 2005 end-page: 6033 ident: bib10 article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells publication-title: Cancer Res. – volume: 33 start-page: 3281 year: 2015 end-page: 3290 ident: bib101 article-title: miR-21 modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF-β1 pathway publication-title: Stem Cells – volume: 122 start-page: 1097 year: 2012 end-page: 1108 ident: bib63 article-title: A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration publication-title: J. Clin. Invest. – volume: 25 start-page: 165 year: 2017 end-page: 180 ident: bib37 article-title: Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice publication-title: Mol. Ther. – volume: 137 start-page: 1630 year: 2015 end-page: 1642 ident: bib17 article-title: Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells publication-title: Int. J. Cancer – volume: 44 start-page: 839 year: 2011 end-page: 847 ident: bib20 article-title: miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes publication-title: J. Biomed. Inform. – volume: 113 start-page: E968 year: 2016 end-page: E977 ident: bib38 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc. Natl. Acad. Sci. U S A – volume: 12 start-page: 35 year: 2011 ident: bib11 article-title: VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R publication-title: BMC Bioinformatics – start-page: e3814 year: 2012 ident: bib84 article-title: Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue publication-title: J. Vis. Exp. – volume: 7 start-page: 16608 year: 2017 ident: bib95 article-title: MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5 publication-title: Sci. Rep. – volume: 6 start-page: 24516 year: 2016 ident: bib6 article-title: Inhibition of miR-21 in glioma cells using catalytic nucleic acids publication-title: Sci. Rep. – volume: 67 start-page: 8994 year: 2007 end-page: 9000 ident: bib16 article-title: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas publication-title: Cancer Res. – volume: 113 start-page: 1 year: 2013 end-page: 11 ident: bib4 article-title: Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies publication-title: J. Neurooncol. – volume: 23 start-page: 78 year: 2018 end-page: 89 ident: bib62 article-title: Neonatal subventricular zone neural stem cells release extracellular vesicles that act as a microglial morphogen publication-title: Cell Rep. – volume: 456 start-page: 980 year: 2008 end-page: 984 ident: bib87 article-title: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts publication-title: Nature – volume: 17 start-page: 959 year: 2016 ident: bib94 article-title: MicroRNA-21a-5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes publication-title: Int. J. Mol. Sci. – volume: 51 start-page: 1735 year: 2010 end-page: 1743 ident: bib81 article-title: MicroRNAs control hepatocyte proliferation during liver regeneration publication-title: Hepatology – volume: 13 start-page: 39 year: 2009 end-page: 53 ident: bib39 article-title: miR-21: a small multi-faceted RNA publication-title: J. Cell. Mol. Med. – volume: 3 start-page: 2038 year: 2013 ident: bib44 article-title: MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation publication-title: Sci. Rep. – volume: 15 start-page: ii1 year: 2013 end-page: ii56 ident: bib65 article-title: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010 publication-title: Neuro-oncol. – volume: 586 start-page: 2459 year: 2012 end-page: 2467 ident: bib100 article-title: Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2 publication-title: FEBS Lett. – volume: 67 start-page: 8994 year: 2007 ident: 10.1016/j.celrep.2019.08.036_bib16 article-title: MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-1045 – volume: 14 start-page: 958 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib43 article-title: The molecular profile of microglia under the influence of glioma publication-title: Neuro-oncol. doi: 10.1093/neuonc/nos116 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.celrep.2019.08.036_bib48 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 10 start-page: e1004070 year: 2014 ident: 10.1016/j.celrep.2019.08.036_bib106 article-title: Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004070 – volume: 12 start-page: 154 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib23 article-title: Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury publication-title: J. Neuroinflammation doi: 10.1186/s12974-015-0386-5 – volume: 51 start-page: 1735 year: 2010 ident: 10.1016/j.celrep.2019.08.036_bib81 article-title: MicroRNAs control hepatocyte proliferation during liver regeneration publication-title: Hepatology doi: 10.1002/hep.23547 – volume: 6 start-page: 24516 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib6 article-title: Inhibition of miR-21 in glioma cells using catalytic nucleic acids publication-title: Sci. Rep. doi: 10.1038/srep24516 – volume: 20 start-page: 1797 year: 2000 ident: 10.1016/j.celrep.2019.08.036_bib29 article-title: Arrest of G(1)-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.5.1797-1815.2000 – volume: 6 start-page: 1286095 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib55 article-title: Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2017.1286095 – volume: 7 start-page: 201 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib36 article-title: MicroRNA-21 limits uptake of Listeria monocytogenes by macrophages to reduce the intracellular niche and control infection publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00201 – volume: 50 start-page: 253 year: 2019 ident: 10.1016/j.celrep.2019.08.036_bib31 article-title: Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes publication-title: Immunity doi: 10.1016/j.immuni.2018.11.004 – volume: 18 start-page: 282 year: 2010 ident: 10.1016/j.celrep.2019.08.036_bib32 article-title: Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21 publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.08.013 – volume: 12 start-page: 697 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib19 article-title: miRWalk2.0: a comprehensive atlas of microRNA-target interactions publication-title: Nat. Methods doi: 10.1038/nmeth.3485 – volume: 5 start-page: 393 year: 2019 ident: 10.1016/j.celrep.2019.08.036_bib1 article-title: Glioma EVs contribute to immune privilege in the brain publication-title: Trends Cancer doi: 10.1016/j.trecan.2019.05.006 – volume: 13 start-page: 39 year: 2009 ident: 10.1016/j.celrep.2019.08.036_bib39 article-title: miR-21: a small multi-faceted RNA publication-title: J. Cell. Mol. Med. doi: 10.1111/j.1582-4934.2008.00556.x – volume: 8 start-page: e66814 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib76 article-title: MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury publication-title: PLoS ONE doi: 10.1371/journal.pone.0066814 – volume: 117 start-page: 3648 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib83 article-title: A microRNA expression signature of osteoclastogenesis publication-title: Blood doi: 10.1182/blood-2010-10-311415 – volume: 27 start-page: 4373 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib49 article-title: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene publication-title: Oncogene doi: 10.1038/onc.2008.72 – volume: 11 start-page: 228 year: 2009 ident: 10.1016/j.celrep.2019.08.036_bib99 article-title: Many roads to maturity: microRNA biogenesis pathways and their regulation publication-title: Nat. Cell Biol. doi: 10.1038/ncb0309-228 – volume: 7 start-page: 1535750 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib86 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J. Extracell. Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 113 start-page: 1 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib4 article-title: Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies publication-title: J. Neurooncol. doi: 10.1007/s11060-013-1084-8 – volume: 289 start-page: 21909 year: 2014 ident: 10.1016/j.celrep.2019.08.036_bib80 article-title: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.561845 – volume: 286 start-page: 39172 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib103 article-title: MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.285098 – volume: 50 start-page: 965 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib24 article-title: Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs publication-title: Acta Diabetol. doi: 10.1007/s00592-013-0492-8 – volume: 137 start-page: 1630 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib17 article-title: Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells publication-title: Int. J. Cancer doi: 10.1002/ijc.29521 – volume: 25 start-page: 364 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib14 article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.01.004 – volume: 40 start-page: 9272 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib64 article-title: Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks658 – volume: 14 start-page: 482 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib9 article-title: Multidimensional communication in the microenvirons of glioblastoma publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-018-0025-8 – volume: 44 start-page: 839 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib20 article-title: miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2011.05.002 – volume: 36 start-page: 2184 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib47 article-title: Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehv109 – volume: 113 start-page: E1738 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib7 article-title: New tools for studying microglia in the mouse and human CNS publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1525528113 – volume: 5 start-page: e1095 year: 2014 ident: 10.1016/j.celrep.2019.08.036_bib71 article-title: MicroRNA-21 regulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2 publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.47 – volume: 10 start-page: 459 year: 2009 ident: 10.1016/j.celrep.2019.08.036_bib82 article-title: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(09)70025-7 – volume: 6 start-page: 7029 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib41 article-title: Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters publication-title: Nat. Commun. doi: 10.1038/ncomms8029 – volume: 13 start-page: 423 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib91 article-title: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins publication-title: Nat. Cell Biol. doi: 10.1038/ncb2210 – volume: 50 start-page: 305 year: 1979 ident: 10.1016/j.celrep.2019.08.036_bib61 article-title: Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors publication-title: J. Neurosurg. doi: 10.3171/jns.1979.50.3.0305 – volume: 14 start-page: 689 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib85 article-title: MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity publication-title: Neuro-oncol. doi: 10.1093/neuonc/nos074 – volume: 497 start-page: 67 year: 2001 ident: 10.1016/j.celrep.2019.08.036_bib56 article-title: In search of a function for the TIS21/PC3/BTG1/TOB family publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02436-X – volume: 2 start-page: 90 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib98 article-title: Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.10.002 – volume: 31 start-page: 326 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib69 article-title: The microenvironmental landscape of brain tumors publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.009 – volume: 12 start-page: 35 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib11 article-title: VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-35 – volume: 10 start-page: 3771 year: 1999 ident: 10.1016/j.celrep.2019.08.036_bib57 article-title: Functional roles for fatty acylated amino-terminal domains in subcellular localization publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.11.3771 – volume: 9 start-page: 654 year: 2007 ident: 10.1016/j.celrep.2019.08.036_bib89 article-title: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1596 – volume: 82 start-page: 21 year: 2009 ident: 10.1016/j.celrep.2019.08.036_bib70 article-title: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvp015 – volume: 283 start-page: 23473 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib34 article-title: MicroRNA expression and regulation in mouse uterus during embryo implantation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800406200 – volume: 14 start-page: 236 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib67 article-title: Selective proliferative response of microglia to alternative polarization signals publication-title: J. Neuroinflammation doi: 10.1186/s12974-017-1011-6 – volume: 67 start-page: 537 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib92 article-title: Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-013-9539-2 – volume: 8 start-page: 1145 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib96 article-title: Coding and noncoding landscape of extracellular RNA released by human glioma stem cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01196-x – volume: 12 start-page: 378 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib68 article-title: miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma publication-title: BMC Cancer doi: 10.1186/1471-2407-12-378 – volume: 54 start-page: 435 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib72 article-title: The Bcl6 target gene microRNA-21 promotes Th2 differentiation by a T cell intrinsic pathway publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2013.01.006 – volume: 50 start-page: 298 year: 1979 ident: 10.1016/j.celrep.2019.08.036_bib60 article-title: Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity publication-title: J. Neurosurg. doi: 10.3171/jns.1979.50.3.0298 – volume: 21 start-page: 2215 year: 2007 ident: 10.1016/j.celrep.2019.08.036_bib22 article-title: Inhibition of medulloblastoma tumorigenesis by the antiproliferative and pro-differentiative gene PC3 publication-title: FASEB J. doi: 10.1096/fj.06-7548com – volume: 23 start-page: 78 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib62 article-title: Neonatal subventricular zone neural stem cells release extracellular vesicles that act as a microglial morphogen publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.03.037 – volume: 113 start-page: E968 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib38 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1521230113 – volume: 25 start-page: 165 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib37 article-title: Therapeutic miR-21 silencing ameliorates diabetic kidney disease in mice publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2016.08.001 – start-page: e3814 issue: 66 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib84 article-title: Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue publication-title: J. Vis. Exp. – volume: 34 start-page: 1636 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib58 article-title: miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation publication-title: Eur. Heart J. doi: 10.1093/eurheartj/eht105 – volume: 285 start-page: 20281 year: 2010 ident: 10.1016/j.celrep.2019.08.036_bib74 article-title: MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.109207 – volume: 17 start-page: 2445 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib8 article-title: Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.10.052 – volume: 473 start-page: 140 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib102 article-title: MiR-21a-5p suppresses bisphenol A-induced pre-adipocyte differentiation by targeting map2k3 through MKK3/p38/MAPK publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.03.066 – volume: 33 start-page: 3281 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib101 article-title: miR-21 modulates the immunoregulatory function of bone marrow mesenchymal stem cells through the PTEN/Akt/TGF-β1 pathway publication-title: Stem Cells doi: 10.1002/stem.2081 – volume: 17 start-page: 959 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib94 article-title: MicroRNA-21a-5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17070959 – volume: 122 start-page: 1097 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib63 article-title: A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration publication-title: J. Clin. Invest. doi: 10.1172/JCI46039 – volume: 20 start-page: iv1 issue: suppl_4 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib66 article-title: CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015 publication-title: Neuro-oncol. doi: 10.1093/neuonc/noy131 – volume: 28 start-page: 5369 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib27 article-title: MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00479-08 – volume: 10 start-page: e0115855 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib93 article-title: MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation publication-title: PLoS ONE doi: 10.1371/journal.pone.0115855 – volume: 31 start-page: 1696 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib33 article-title: Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit publication-title: Heart Vessels doi: 10.1007/s00380-016-0808-z – volume: 7 start-page: 347 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib46 article-title: MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3 publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.7.347 – volume: 65 start-page: 6029 year: 2005 ident: 10.1016/j.celrep.2019.08.036_bib10 article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0137 – volume: 122 start-page: 131 year: 2004 ident: 10.1016/j.celrep.2019.08.036_bib75 article-title: Optimized large-scale production of high titer lentivirus vector pseudotypes publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2004.08.017 – volume: 15 start-page: 305 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib78 article-title: REST-miR-21-SOX2 axis maintains pluripotency in E14Tg2a.4 embryonic stem cells publication-title: Stem Cell Res. (Amst.) doi: 10.1016/j.scr.2015.05.003 – volume: 10 start-page: 1470 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib79 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat. Cell Biol. doi: 10.1038/ncb1800 – volume: 289 start-page: 25079 year: 2014 ident: 10.1016/j.celrep.2019.08.036_bib104 article-title: MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.593863 – volume: 6 start-page: 26971 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib77 article-title: Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients publication-title: Oncotarget doi: 10.18632/oncotarget.4699 – volume: 27 start-page: 172 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib53 article-title: Extracellular vesicles: unique intercellular delivery vehicles publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.11.003 – volume: 124 start-page: 447 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib25 article-title: Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis publication-title: J. Cell Sci. doi: 10.1242/jcs.074088 – volume: 22 start-page: 83 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib12 article-title: MicroRNA-21 contributes to liver regeneration by targeting PTEN publication-title: Med. Sci. Monit. doi: 10.12659/MSM.896157 – volume: 19 start-page: 20 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib30 article-title: The role of microglia and macrophages in glioma maintenance and progression publication-title: Nat. Neurosci. doi: 10.1038/nn.4185 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib18 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 9 start-page: 559 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib59 article-title: Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses publication-title: MBio doi: 10.1128/mBio.02344-17 – volume: 18 start-page: 58 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib90 article-title: Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain publication-title: Neuro-oncol. doi: 10.1093/neuonc/nov244 – volume: 33 start-page: 2938 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib15 article-title: UpSetR: an R package for the visualization of intersecting sets and their properties publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx364 – volume: 25 start-page: 368 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib21 article-title: Genome editing reveals glioblastoma addiction to microRNA-10b publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2016.11.004 – volume: 164 start-page: 1226 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib88 article-title: Communication by extracellular vesicles: where we are and where we need to go publication-title: Cell doi: 10.1016/j.cell.2016.01.043 – volume: 456 start-page: 980 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib87 article-title: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts publication-title: Nature doi: 10.1038/nature07511 – volume: 9 start-page: 769 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib105 article-title: MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7 publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0805-5 – volume: 108 start-page: 10144 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib52 article-title: Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1103735108 – volume: 46 start-page: D296 issue: D1 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib13 article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1067 – volume: 378 start-page: 492 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib26 article-title: miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.03.015 – volume: 19 start-page: 3272 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib73 article-title: MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-02-0159 – volume: 25 start-page: 857 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib2 article-title: miRNA-21 ablation protects against liver injury and necroptosis in cholestasis publication-title: Cell Death Differ. doi: 10.1038/s41418-017-0019-x – volume: 62 start-page: 144 year: 2016 ident: 10.1016/j.celrep.2019.08.036_bib28 article-title: MiR-21 functions oppositely in proliferation and differentiation of neural stem/precursor cells via regulating AKT and GSK-3β publication-title: Cell. Mol. Biol. doi: 10.14715/cmb/2016.62.12.24 – volume: 10 start-page: 619 year: 2008 ident: 10.1016/j.celrep.2019.08.036_bib5 article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb1725 – volume: 124 start-page: 3399 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib3 article-title: MicroRNA-21 is an important downstream component of BMP signalling in epidermal keratinocytes publication-title: J. Cell Sci. doi: 10.1242/jcs.086710 – volume: 292 start-page: 3531 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib35 article-title: miR-21-mediated radioresistance occurs via promoting repair of DNA double strand breaks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.772392 – volume: 18 start-page: 225 year: 2018 ident: 10.1016/j.celrep.2019.08.036_bib42 article-title: Microglia and macrophages in brain homeostasis and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.125 – volume: 15 start-page: ii1 issue: Suppl 2 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib65 article-title: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010 publication-title: Neuro-oncol. doi: 10.1093/neuonc/not151 – volume: 298 start-page: G535 year: 2010 ident: 10.1016/j.celrep.2019.08.036_bib54 article-title: MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00338.2009 – volume: 1 start-page: 15017 year: 2015 ident: 10.1016/j.celrep.2019.08.036_bib97 article-title: Glioma publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2015.17 – volume: 44 start-page: 2152 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib45 article-title: A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2012.08.019 – volume: 182 start-page: 4994 year: 2009 ident: 10.1016/j.celrep.2019.08.036_bib50 article-title: MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression publication-title: J. Immunol. doi: 10.4049/jimmunol.0803560 – volume: 8 start-page: 706 year: 2011 ident: 10.1016/j.celrep.2019.08.036_bib40 article-title: Regulation and function of miRNA-21 in health and disease publication-title: RNA Biol. doi: 10.4161/rna.8.5.16154 – volume: 8 start-page: 82 year: 2014 ident: 10.1016/j.celrep.2019.08.036_bib51 article-title: Integrative analysis of differential miRNA and functional study of miR-21 by seed-targeting inhibition in multiple myeloma cells in response to berberine publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-8-82 – volume: 586 start-page: 2459 year: 2012 ident: 10.1016/j.celrep.2019.08.036_bib100 article-title: Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.06.004 – volume: 3 start-page: 2038 year: 2013 ident: 10.1016/j.celrep.2019.08.036_bib44 article-title: MiR-21/Smad 7 signaling determines TGF-β1-induced CAF formation publication-title: Sci. Rep. doi: 10.1038/srep02038 – volume: 7 start-page: 16608 year: 2017 ident: 10.1016/j.celrep.2019.08.036_bib95 article-title: MicroRNA-21 regulates Osteogenic Differentiation of Periodontal Ligament Stem Cells by targeting Smad5 publication-title: Sci. Rep. doi: 10.1038/s41598-017-16720-8 |
SSID | ssj0000601194 |
Score | 2.590966 |
Snippet | Gliomas are primary, diffusely infiltrating brain tumors. Microglia are innate immune cells in the CNS and make up a substantial portion of the tumor mass.... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3105 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG_KwspIXC1aP-MjoO0uSOWAWGlvlu3YkFWboG5X2v33zMRJaeHQC9fEiR8z9nyOv3xDyDsdc_IicRZDtkzq4JlPuWIqcphaWcjK4t_Ii6_6_EJ-uVSXO6m-kBNW5IHLwL03Joc6ST8VAo8epcdzvRiD4Yrruqpx9YWYt7OZKmswapnhkTLnyNni0oz_zfXkrpiW64RylTPbK3j2Cs1_4lIv378Xnv6Fn3-zKHfC0vwReTjgSfqh9OMxuZfaJ-R-yTB595RcnS2bLgBC3nQrz0ZbpJoukIj3Y9l4ChC8cLRWEMXo52u66LN3QJlwR-cQ9srXQtpHtZzWtMv09Bbagt_8kcRKV803xmfPyMX89PunczakV2BRWbVh2kgZbTYiK6Wz1jC3FQQrK3UGHIQDXpkUTRQ8K1HraTC2FtzDBs54QF2VeE6O2q5NLwk1mGezspkbbaXxISiAwdGn2usgjFUTIsbBdXHQHscUGEs3ksyuXDGJQ5M4zIwp9ISw7VO_ivbGgfIf0W7bsqic3V8Af3KDP7lD_jQhZrS6G0BIARfwquZA9W9HJ3EwR9EIvk3dzbXjgKmsUTMNA_GiOM22kQIB91RIqHfPnfZ6sX-nbX72OuC6gtXUVK_-R7ePyQPsCjJhZuY1Odqsb9IbgFubcNLPrN8KuCa- priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N3tCxV6FbtrvaxjErJNC9tD28DehCRLqcOuHTYbaP59ZmR7W7eHQI-2ZVvSjDSfpJlvCPmoQoqOx4IFnwwTyjvmYiqZDAUMrcRFaTAaeflVnZ2LLyu5OiAnQywMulX2c383p-fZur8z7XtzelXX0-8FrF3AOmmAILCGURjEB5_OQXyr4_0-C_KNzHM-RCzP8IUhgi67eYW43kYkrpybzOWZuZp_W6hM5D8yVP8C0b_9Kf8wUIvH5FGPLOlRV_kn5CA2T8mDLtfk7TNy-Wldtx6w8q7dODZIJVZ0iS55F-vaUQDjnbfWBuwZ_XxNlzmPB5Txt3QBBrDbN6TZvqW4pW2ip7-gLrj7j-6sdFN_Y8X8OTlfnP44OWN9ogUWpJE7prQQwSTNk5QqKQWjXILZMkIlQERuBstYHYMOvEiSV2rmtal44WAppx3gr5K_IIdN28RXhGrMuFmaVIBAhHbeSwDEwcXKKc-1kRPCh861oWchx2QYazu4m13aTiQWRWIxRyZXE8L2b111LBz3lD9Gue3LIod2vtFuL2yvRFbr5KsosHl4qC0cnhiH4DU0XlVlNSF6kLodqSR8qr7n9x8GJbEwWlEIrontzbUtAF0ZLecKOuJlpzT7SnKE3jMu4L8jdRq1YvykqX9mRnBVwryqy9f_XeM35CFeoSPMXL8lh7vtTXwHaGvn3-fhdAf7oCg4 priority: 102 providerName: Elsevier |
Title | Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21 |
URI | https://dx.doi.org/10.1016/j.celrep.2019.08.036 https://www.ncbi.nlm.nih.gov/pubmed/31533034 https://www.proquest.com/docview/2293975165 https://pubmed.ncbi.nlm.nih.gov/PMC6817978 https://doaj.org/article/77fbde4a03344664a5847ccb72526d8d |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELaWRUi8IG7KsTISr0FtfMUPCLFoyy5SeUBU6ptlO_aSVZpA2pW2_56ZHIVwaMVLpCROfIzH89kez0fIK-ljsCykiXdRJ1w6m9gQs0T4FFQrMp5pPI28-CRPl_zjSqwOyMDZ2jfg5q9TO-STWjbl66vvu7eg8G9--mr5UDYBo0_OdBuQk8kb5CbYJoWcBose8HdjM8Y4w63mNEVfrpSr4TzdP340sldtWP-R2foTlv7uXfmLuZrfJXd6nEnfdR3jHjkI1X1yq2Oe3D0gFx_KonaAnLf12iaDjEJOF-igd14WlgI073y31mDd6NmGLlpWD0jjdnQO5rBbRaSttYuhoXWkJ1dQFtwLQOdWui4-J-nsIVnOT768P0162oXECy22iVScex0Vi0LIKCXovAAjprmMgI_sFCa1KnjlWRoFy-XUKZ2z1MLETllAYxl7RA6rugpPCFXIv5npmCqpubLOCYDH3obcSseUFhPChsY1vo9JjtQYpRmczy5MJxKDIjHImMnkhCT7r751MTmuSX-MctunxYja7YO6OTe9ghqlossDx-rhFje3uH_svVNQeZln-YSoQeqmBycd6IBfFddk_3LoJAZ0F4Vgq1BfbkwKWEsrMZPQEI-7TrMvJEMgPmUc8h11p1Etxm-q4msbH1xmMMqq7Ol_NtMzchvv0Blmpp6Tw21zGV4A4tq6o3alAq5nq-OjVqF-AAO7Ks8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9sgEEddp2l7mfa97JNJe0VJjAHzuFbNkq3pw9ZKeUOAoXOV2FWaSut_vztsZ8v2UGmvNtjA3XE_4PgdIR-lj8HykDHvoma5dJbZEAsmfAamFXleaLyNPD-R07P8y0Is9shhfxcGwyq7ub-d09Ns3T0ZdqM5vKyq4fcM1i7gnRRAEFjDSH2H3AU0oNA6Z4uD7UYLEo6MU0JErMCwRn-FLsV5-bBcB2SuHOtE5pnImn-7qMTkv-Op_kWifwdU_uGhJo_Iww5a0k9t6x-TvVA_IffaZJM3T8nF52XVOADLm2ZlWS-WUNI5xuSdLytLAY234VorcGh0dkXnKZEHlHE3dAIesN04pMnBxbCmTaRHP6EtuP2P8ax0VX1j2fgZOZscnR5OWZdpgXmhxYZJledeR8WjEDJKCWYuwG_pXEaARHYE61gVvPI8i4KXcuSULnlmYS2nLACwgj8n-3VTh5eEKky5WeiYgURyZZ0TgIi9DaWVjistBoT3g2t8R0OO2TCWpo83uzCtSAyKxGCSTC4HhG1rXbY0HLeUP0C5bcsiiXZ60KzPTadFRqnoypBj9_BUO7d4ZOy9U9B5WRblgKhe6mZHJ-FT1S2__9AriQFzRSHYOjTXVyYDeKWVGEsYiBet0mwbyRF7j3gO_91Rp51e7L6pqx-JElwWMLGq4tV_t_g9uT89nR-b49nJ19fkAb7BqJixekP2N-vr8Bag18a9S6b1C9nKK1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glioblastoma-Associated+Microglia+Reprogramming+Is+Mediated+by+Functional+Transfer+of+Extracellular+miR-21&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Abels%2C+Erik+R.&rft.au=Maas%2C+Sybren+L.N.&rft.au=Nieland%2C+Lisa&rft.au=Wei%2C+Zhiyun&rft.date=2019-09-17&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=12&rft.spage=3105&rft.epage=3119.e7&rft_id=info:doi/10.1016%2Fj.celrep.2019.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2019_08_036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |