Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD+ Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures

Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 28; no. 7; pp. 1717 - 1728.e6
Main Authors Elhassan, Yasir S., Kluckova, Katarina, Fletcher, Rachel S., Schmidt, Mark S., Garten, Antje, Doig, Craig L., Cartwright, David M., Oakey, Lucy, Burley, Claire V., Jenkinson, Ned, Wilson, Martin, Lucas, Samuel J.E., Akerman, Ildem, Seabright, Alex, Lai, Yu-Chiang, Tennant, Daniel A., Nightingale, Peter, Wallis, Gareth A., Manolopoulos, Konstantinos N., Brenner, Charles, Philp, Andrew, Lavery, Gareth G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.08.2019
Cell Press
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. [Display omitted] •NR supplementation in aged subjects augments the skeletal muscle NAD+ metabolome•NR supplementation does not affect skeletal muscle mitochondrial bioenergetics•NR supplementation reduces levels of circulating inflammatory cytokines Elhassan et al. show that oral nicotinamide riboside increases the NAD+ metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted.
AbstractList Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. [Display omitted] •NR supplementation in aged subjects augments the skeletal muscle NAD+ metabolome•NR supplementation does not affect skeletal muscle mitochondrial bioenergetics•NR supplementation reduces levels of circulating inflammatory cytokines Elhassan et al. show that oral nicotinamide riboside increases the NAD+ metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted.
Nicotinamide adenine dinucleotide (NAD ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.
Nicotinamide adenine dinucleotide (NAD + ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD + metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD + metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. • NR supplementation in aged subjects augments the skeletal muscle NAD + metabolome • NR supplementation does not affect skeletal muscle mitochondrial bioenergetics • NR supplementation reduces levels of circulating inflammatory cytokines Elhassan et al. show that oral nicotinamide riboside increases the NAD + metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted.
Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. : Elhassan et al. show that oral nicotinamide riboside increases the NAD+ metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted. Keywords: nicotinamide adenine dinucleotide, metabolism, aging, inflammation, cell adhesion
Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.
Author Tennant, Daniel A.
Cartwright, David M.
Lavery, Gareth G.
Oakey, Lucy
Manolopoulos, Konstantinos N.
Kluckova, Katarina
Jenkinson, Ned
Akerman, Ildem
Wallis, Gareth A.
Philp, Andrew
Wilson, Martin
Garten, Antje
Lucas, Samuel J.E.
Seabright, Alex
Elhassan, Yasir S.
Doig, Craig L.
Burley, Claire V.
Fletcher, Rachel S.
Lai, Yu-Chiang
Schmidt, Mark S.
Nightingale, Peter
Brenner, Charles
AuthorAffiliation 6 Centre for Human Brain Health, University of Birmingham, Birmingham, UK
2 Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
3 MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
4 Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
8 Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
9 Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
7 School of Psychology, University of Birmingham, Birmingham, UK
10 Faculty of Medicine, St. Vincent’s Clinical School, Sydney, UNSW, Australia
5 School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
1 Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
AuthorAffiliation_xml – name: 4 Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
– name: 2 Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
– name: 7 School of Psychology, University of Birmingham, Birmingham, UK
– name: 1 Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– name: 9 Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
– name: 8 Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
– name: 5 School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– name: 10 Faculty of Medicine, St. Vincent’s Clinical School, Sydney, UNSW, Australia
– name: 3 MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
– name: 6 Centre for Human Brain Health, University of Birmingham, Birmingham, UK
Author_xml – sequence: 1
  givenname: Yasir S.
  surname: Elhassan
  fullname: Elhassan, Yasir S.
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 2
  givenname: Katarina
  surname: Kluckova
  fullname: Kluckova, Katarina
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 3
  givenname: Rachel S.
  surname: Fletcher
  fullname: Fletcher, Rachel S.
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 4
  givenname: Mark S.
  surname: Schmidt
  fullname: Schmidt, Mark S.
  organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
– sequence: 5
  givenname: Antje
  surname: Garten
  fullname: Garten, Antje
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 6
  givenname: Craig L.
  surname: Doig
  fullname: Doig, Craig L.
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 7
  givenname: David M.
  surname: Cartwright
  fullname: Cartwright, David M.
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 8
  givenname: Lucy
  surname: Oakey
  fullname: Oakey, Lucy
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 9
  givenname: Claire V.
  surname: Burley
  fullname: Burley, Claire V.
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 10
  givenname: Ned
  surname: Jenkinson
  fullname: Jenkinson, Ned
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 11
  givenname: Martin
  surname: Wilson
  fullname: Wilson, Martin
  organization: Centre for Human Brain Health, University of Birmingham, Birmingham, UK
– sequence: 12
  givenname: Samuel J.E.
  surname: Lucas
  fullname: Lucas, Samuel J.E.
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 13
  givenname: Ildem
  surname: Akerman
  fullname: Akerman, Ildem
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 14
  givenname: Alex
  surname: Seabright
  fullname: Seabright, Alex
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 15
  givenname: Yu-Chiang
  surname: Lai
  fullname: Lai, Yu-Chiang
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 16
  givenname: Daniel A.
  surname: Tennant
  fullname: Tennant, Daniel A.
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 17
  givenname: Peter
  surname: Nightingale
  fullname: Nightingale, Peter
  organization: Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
– sequence: 18
  givenname: Gareth A.
  surname: Wallis
  fullname: Wallis, Gareth A.
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 19
  givenname: Konstantinos N.
  surname: Manolopoulos
  fullname: Manolopoulos, Konstantinos N.
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
– sequence: 20
  givenname: Charles
  surname: Brenner
  fullname: Brenner, Charles
  organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
– sequence: 21
  givenname: Andrew
  surname: Philp
  fullname: Philp, Andrew
  organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
– sequence: 22
  givenname: Gareth G.
  surname: Lavery
  fullname: Lavery, Gareth G.
  email: g.g.lavery@bham.ac.uk
  organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31412242$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEQx1eoiH7QN0DIRySUYHu96ywHpKgUGqktEs3dmvWOU4ddO9jeSn0E3hqnSVHLAXzxeGb-v5Fn5rg4cN5hUbxhdMooqz-spxr7gJspp6yZUjmlonxRHHHO2IRxIQ-e2IfFaYxrmk9NGWvEq-KwZIJxLvhR8evaap-sg8F2SL7b1setMR9XA7oUSbrNjxV25GIcwJGbH9hjgp5cjVH3SK7nn9-Tq-xpfe8HJOA6snDdqDGSZQAXdbCb5AerH0Jzl-zEOtPDMEDy4Z7c2JWDNAaMr4uXBvqIp_v7pFh-OV-eXUwuv31dnM0vJ7pqqjSpWl1XnArUAGwGXVkao2c1M6xjUjJuyrJq6q0PpMyK2mjUmmtKZ6ahUJ4Uix2287BWm2AHCPfKg1UPDh9WCkKy-XNKNrpB0zHaQiOgKaGEmeQAYGrRipnMrE871mZsB-x07liA_hn0ecTZW7Xyd6qWlDNBM-DdHhD8zxFjUoONebI9OPRjVJzLUlaSCp5T3z6t9afI4yhzwsddgg4-xoBGaZsgWb8tbXvFqNqujlqr3eqo7eooKlVenSwWf4kf-f-R7RuAeWB3FoOK2qLT2NmAOuWW2n8DfgMPZeJY
CitedBy_id crossref_primary_10_1172_JCI185054
crossref_primary_10_2139_ssrn_4064493
crossref_primary_10_1002_crt2_56
crossref_primary_10_1073_pnas_2011226118
crossref_primary_10_1152_physrev_00046_2020
crossref_primary_10_1038_s41580_020_00313_x
crossref_primary_10_3390_ph13090247
crossref_primary_10_1007_s11357_025_01606_9
crossref_primary_10_29328_journal_jnnd_1001101
crossref_primary_10_3389_fnut_2021_758058
crossref_primary_10_1042_BSR20230595
crossref_primary_10_1016_j_cmet_2022_02_001
crossref_primary_10_1093_jn_nxab193
crossref_primary_10_1016_j_gendis_2021_04_001
crossref_primary_10_3389_fcell_2022_841523
crossref_primary_10_1007_s12035_020_02188_7
crossref_primary_10_1016_j_bbrc_2024_149590
crossref_primary_10_1007_s10753_024_02171_7
crossref_primary_10_1002_advs_202101222
crossref_primary_10_1167_tvst_13_3_24
crossref_primary_10_1021_acs_chemrestox_3c00312
crossref_primary_10_1002_agm2_12184
crossref_primary_10_1007_s40279_024_02072_7
crossref_primary_10_1007_s11914_023_00820_8
crossref_primary_10_1080_19390211_2021_1881686
crossref_primary_10_3390_biomedicines9081000
crossref_primary_10_1016_j_cmet_2021_04_003
crossref_primary_10_1242_dmm_049279
crossref_primary_10_3390_cells11101654
crossref_primary_10_3389_fragi_2021_708918
crossref_primary_10_1126_science_abj1696
crossref_primary_10_1111_phpp_12961
crossref_primary_10_3389_fphys_2021_702276
crossref_primary_10_1055_a_2382_6829
crossref_primary_10_1167_iovs_61_10_47
crossref_primary_10_1038_s41467_019_13694_1
crossref_primary_10_3390_cimb46020082
crossref_primary_10_1016_j_canlet_2021_05_014
crossref_primary_10_1161_CIRCULATIONAHA_121_056589
crossref_primary_10_1080_21623945_2024_2313297
crossref_primary_10_3389_fnut_2022_868640
crossref_primary_10_1186_s13578_023_01031_5
crossref_primary_10_3390_ijms21197182
crossref_primary_10_1016_j_smim_2023_101834
crossref_primary_10_1038_s43587_022_00191_2
crossref_primary_10_3390_ijms232416085
crossref_primary_10_1002_jcb_30522
crossref_primary_10_1016_j_tma_2020_04_002
crossref_primary_10_1097_QAD_0000000000003334
crossref_primary_10_3390_ijms23073652
crossref_primary_10_1016_j_jare_2024_07_010
crossref_primary_10_1007_s11357_023_00752_2
crossref_primary_10_1172_JCI138538
crossref_primary_10_4235_agmr_20_0092
crossref_primary_10_1038_s42255_021_00507_3
crossref_primary_10_1113_JP281428
crossref_primary_10_3143_geriatrics_57_213
crossref_primary_10_1002_hep4_1530
crossref_primary_10_1016_j_psj_2023_102762
crossref_primary_10_1039_D3NJ00488K
crossref_primary_10_1016_j_envres_2021_111997
crossref_primary_10_1126_science_aax0860
crossref_primary_10_1101_cshperspect_a041193
crossref_primary_10_1177_1091581820927406
crossref_primary_10_1016_j_cbi_2022_110294
crossref_primary_10_1155_2020_8819627
crossref_primary_10_3390_antiox14010039
crossref_primary_10_1089_ars_2023_0354
crossref_primary_10_1186_s13578_021_00740_z
crossref_primary_10_1038_s41580_024_00752_w
crossref_primary_10_3389_fragi_2022_820215
crossref_primary_10_1038_s41420_023_01420_2
crossref_primary_10_1016_j_jphs_2023_04_001
crossref_primary_10_3390_ijms232113096
crossref_primary_10_1016_j_isci_2021_103635
crossref_primary_10_1016_j_mad_2021_111569
crossref_primary_10_1515_teb_2024_0030
crossref_primary_10_1093_ajcn_nqaa072
crossref_primary_10_1016_j_cbi_2024_111118
crossref_primary_10_1111_jdi_13303
crossref_primary_10_1038_s41573_020_0067_7
crossref_primary_10_3390_ijms22073709
crossref_primary_10_3390_jcm12216920
crossref_primary_10_3390_biom10030396
crossref_primary_10_1007_s00018_022_04499_5
crossref_primary_10_1007_s40279_022_01772_2
crossref_primary_10_1016_j_jbc_2025_108248
crossref_primary_10_1016_j_fbio_2023_103126
crossref_primary_10_1093_jas_skab186
crossref_primary_10_1177_0271678X21992625
crossref_primary_10_3390_nu15010174
crossref_primary_10_3389_fnagi_2024_1503336
crossref_primary_10_1007_s00011_024_01863_y
crossref_primary_10_1016_j_lfs_2020_118596
crossref_primary_10_1002_art_42528
crossref_primary_10_1038_s44320_024_00027_8
crossref_primary_10_1016_j_arr_2023_102106
crossref_primary_10_1016_j_metabol_2021_154923
crossref_primary_10_18632_aging_102988
crossref_primary_10_1152_ajpendo_00242_2023
crossref_primary_10_18632_aging_202525
crossref_primary_10_3389_fnagi_2022_993615
crossref_primary_10_1161_CIRCRESAHA_121_319308
crossref_primary_10_1038_s43587_024_00758_1
crossref_primary_10_1016_j_bcp_2020_113905
crossref_primary_10_1021_acs_jmedchem_3c02112
crossref_primary_10_1016_j_expneurol_2020_113219
crossref_primary_10_1016_j_freeradbiomed_2022_04_004
crossref_primary_10_3390_metabo13010125
crossref_primary_10_1111_acel_13920
crossref_primary_10_1016_j_foodres_2023_112560
crossref_primary_10_3390_nu12061616
crossref_primary_10_1038_s41467_024_49092_5
crossref_primary_10_3390_metabo12070630
crossref_primary_10_1038_s41598_020_73984_3
crossref_primary_10_1016_j_freeradbiomed_2024_09_036
crossref_primary_10_1007_s12015_024_10747_x
crossref_primary_10_1016_j_tibs_2020_05_010
crossref_primary_10_1089_jmf_2020_0105
crossref_primary_10_1186_s10020_021_00376_2
crossref_primary_10_1126_sciadv_adr1538
crossref_primary_10_3389_fendo_2021_815565
crossref_primary_10_3389_fnut_2021_648893
crossref_primary_10_1038_s41598_022_23446_9
crossref_primary_10_1002_fft2_511
crossref_primary_10_1038_s43587_022_00174_3
crossref_primary_10_17816_MAJ89964
crossref_primary_10_1016_j_bcp_2022_114946
crossref_primary_10_1097_PRS_0000000000009673
crossref_primary_10_1016_j_biopha_2020_110928
crossref_primary_10_1007_s13668_023_00475_y
crossref_primary_10_1016_j_bcp_2020_114346
crossref_primary_10_1002_advs_202404753
crossref_primary_10_1016_j_tem_2024_08_004
crossref_primary_10_1074_jbc_RA120_015138
crossref_primary_10_1038_s41514_023_00106_4
crossref_primary_10_1038_s41514_021_00078_3
crossref_primary_10_1016_j_cmet_2020_04_008
crossref_primary_10_1016_j_jacbts_2022_06_012
crossref_primary_10_1016_j_fbio_2025_106322
crossref_primary_10_3390_biom14080909
crossref_primary_10_3389_fnut_2024_1359176
crossref_primary_10_7554_eLife_65443
crossref_primary_10_3390_nu15061494
crossref_primary_10_1111_jnc_15367
crossref_primary_10_1002_mog2_61
crossref_primary_10_1016_j_exger_2020_110831
crossref_primary_10_3389_fnut_2021_717343
crossref_primary_10_1007_s40256_024_00711_y
crossref_primary_10_1016_j_drudis_2020_06_016
crossref_primary_10_1016_j_isci_2023_106278
crossref_primary_10_1007_s11010_022_04408_1
crossref_primary_10_26508_lsa_202302505
crossref_primary_10_1113_JP280825
crossref_primary_10_1002_pbc_31369
crossref_primary_10_1016_j_mad_2021_111499
crossref_primary_10_2215_CJN_0000000624
crossref_primary_10_1126_science_abe9985
crossref_primary_10_3390_antiox11091637
crossref_primary_10_1038_s42255_019_0161_5
crossref_primary_10_1016_j_cell_2020_11_034
crossref_primary_10_1093_gerona_glad106
crossref_primary_10_1093_noajnl_vdac101
crossref_primary_10_1016_j_mad_2019_111194
crossref_primary_10_3389_fcvm_2021_716989
crossref_primary_10_1002_1878_0261_13261
crossref_primary_10_3389_fcvm_2022_861442
crossref_primary_10_1016_j_heliyon_2024_e36470
crossref_primary_10_1113_JP278752
crossref_primary_10_1002_stem_3234
crossref_primary_10_1186_s12979_023_00398_w
crossref_primary_10_1016_j_freeradbiomed_2020_05_003
crossref_primary_10_1113_JP279280
crossref_primary_10_1093_gerona_glac003
crossref_primary_10_1097_COH_0000000000000607
crossref_primary_10_1016_j_arr_2024_102400
crossref_primary_10_1016_j_xcrm_2022_100633
crossref_primary_10_3390_medicina61020254
crossref_primary_10_3390_ruminants4030024
crossref_primary_10_1016_j_athplu_2024_06_001
crossref_primary_10_1016_j_tcb_2023_02_004
crossref_primary_10_3803_EnM_2020_405
crossref_primary_10_1016_j_biopha_2022_113071
crossref_primary_10_3390_molecules28166078
crossref_primary_10_1038_s41514_023_00134_0
crossref_primary_10_1096_fj_202200369R
crossref_primary_10_1016_j_neures_2023_01_004
crossref_primary_10_1007_s11892_024_01557_z
crossref_primary_10_1007_s40520_022_02203_y
crossref_primary_10_1016_j_bbadis_2024_167038
crossref_primary_10_1016_j_ajhg_2024_07_005
crossref_primary_10_3389_fcell_2024_1464815
crossref_primary_10_1210_endrev_bnad019
crossref_primary_10_3389_fphar_2022_805266
crossref_primary_10_3390_ijms25126793
crossref_primary_10_1093_ajcn_nqaa109
crossref_primary_10_1080_10717544_2021_1886198
crossref_primary_10_1016_j_nutres_2024_10_006
crossref_primary_10_1016_j_yjmcc_2024_07_008
crossref_primary_10_12997_jla_2022_11_2_111
crossref_primary_10_1007_s11357_023_00999_9
crossref_primary_10_1113_JP279749
crossref_primary_10_3390_cells9010082
crossref_primary_10_3389_fphys_2021_755060
crossref_primary_10_1016_j_bone_2025_117411
crossref_primary_10_1097_QAI_0000000000002852
crossref_primary_10_3390_nu14193889
crossref_primary_10_3390_antiox12101849
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_3389_fphys_2022_1097988
crossref_primary_10_1172_jci_insight_158314
crossref_primary_10_1016_j_cmet_2022_11_004
crossref_primary_10_1016_j_phymed_2023_154768
crossref_primary_10_1096_fj_202001826R
crossref_primary_10_3389_fmolb_2021_697359
crossref_primary_10_1002_advs_202305927
crossref_primary_10_1002_mrm_30227
crossref_primary_10_1126_sciadv_adi4862
crossref_primary_10_15252_emmm_202113943
crossref_primary_10_1038_s41514_025_00192_6
crossref_primary_10_1016_j_tma_2021_09_001
crossref_primary_10_1016_j_arr_2024_102213
crossref_primary_10_1007_s00394_024_03425_8
crossref_primary_10_1016_j_mito_2024_101905
crossref_primary_10_1038_s42255_024_00997_x
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1038_s41467_021_27080_3
crossref_primary_10_3390_nu15214520
crossref_primary_10_3390_nu14153130
crossref_primary_10_1016_j_advnut_2023_08_008
crossref_primary_10_1016_j_exger_2020_110888
crossref_primary_10_1038_s41598_023_29607_8
crossref_primary_10_1167_iovs_63_1_38
crossref_primary_10_1186_s13395_019_0216_z
crossref_primary_10_1111_apha_13551
crossref_primary_10_3390_nu14010101
crossref_primary_10_1111_jnc_16032
crossref_primary_10_1113_JP280908
crossref_primary_10_1172_jci_insight_167274
crossref_primary_10_3389_fphys_2021_693067
crossref_primary_10_1093_gerona_glac049
crossref_primary_10_1016_j_freeradbiomed_2021_12_008
crossref_primary_10_3390_nu14112259
crossref_primary_10_1172_jci_insight_145346
crossref_primary_10_1016_j_celrep_2024_114379
crossref_primary_10_1016_j_bbi_2024_11_004
crossref_primary_10_1016_j_exger_2020_110972
crossref_primary_10_18632_aging_103344
crossref_primary_10_1016_j_metabol_2023_155637
crossref_primary_10_1038_s41514_022_00084_z
crossref_primary_10_1038_s41591_023_02793_8
crossref_primary_10_1016_j_arr_2024_102475
crossref_primary_10_1126_sciadv_add5163
crossref_primary_10_3390_biom14121556
crossref_primary_10_4049_jimmunol_2300693
crossref_primary_10_1016_j_xcrm_2023_101157
crossref_primary_10_1155_2022_4759963
crossref_primary_10_1097_HNP_0000000000000461
crossref_primary_10_1016_j_exger_2023_112109
crossref_primary_10_1186_s12885_022_09845_1
crossref_primary_10_3390_molecules30071437
crossref_primary_10_1016_j_freeradbiomed_2023_05_032
crossref_primary_10_1172_JCI139828
crossref_primary_10_3390_cells10020460
crossref_primary_10_1042_BSR20202856
crossref_primary_10_1186_s12970_021_00442_4
crossref_primary_10_3389_fragi_2023_1202152
crossref_primary_10_1016_j_biopha_2023_115519
crossref_primary_10_1016_j_isci_2022_103863
crossref_primary_10_1016_j_it_2022_02_001
crossref_primary_10_18632_aging_103218
crossref_primary_10_1093_cvr_cvab212
crossref_primary_10_3390_geriatrics6020037
crossref_primary_10_1210_clinem_dgad027
crossref_primary_10_1186_s12917_024_03945_9
crossref_primary_10_1038_s41467_023_43514_6
crossref_primary_10_1186_s12882_020_02006_1
crossref_primary_10_3390_cells11040710
crossref_primary_10_1093_gerona_glad034
crossref_primary_10_3390_nu15133064
Cites_doi 10.1016/j.cell.2013.11.037
10.1186/s13728-015-0027-8
10.5936/csbj.201301012
10.1016/j.cels.2015.12.004
10.1016/j.cmet.2016.05.006
10.1038/ncomms13103
10.1016/j.cmet.2016.09.013
10.1093/oxfordjournals.bmb.a070026
10.1038/ejcn.2016.73
10.1016/j.cmet.2014.11.003
10.1126/scitranslmed.aaf5504
10.1093/ajcn/nqy132
10.1038/ng1180
10.1016/j.arr.2010.11.002
10.1021/jm701001c
10.1002/jlcr.617
10.1016/j.ydbio.2010.05.513
10.1016/j.cmet.2012.04.022
10.1016/j.cmet.2017.11.002
10.1002/hep.28245
10.1113/jphysiol.2012.230185
10.1007/s00125-014-3490-7
10.1093/ageing/afy169
10.1371/journal.pone.0042357
10.2337/db06-0822
10.1074/jbc.R200022200
10.1126/science.aaf2693
10.1016/j.molmet.2017.05.011
10.1073/pnas.1603023113
10.3389/fimmu.2018.01593
10.1038/s41467-018-03421-7
10.2337/db08-0391
10.1016/j.stem.2019.02.012
10.1016/j.cell.2013.06.016
10.1371/journal.pone.0186459
10.11005/jbm.2013.20.1.1
10.1007/s00394-019-01919-4
10.1016/j.neurobiolaging.2015.03.012
10.1146/annurev.nutr.28.061807.155443
10.1016/j.cell.2018.02.008
10.1016/j.cmet.2016.07.005
10.1111/dom.12171
10.1016/j.cger.2015.04.001
10.1093/ageing/afq034
10.1016/B978-0-12-381510-1.00081-8
10.1210/jc.2015-1732
10.1007/978-1-61779-382-0_3
10.1096/fj.201700221RR
10.1038/s41598-019-46120-z
10.1371/journal.pone.0138564
10.1016/j.exger.2010.12.001
10.1161/CIRCULATIONAHA.116.026099
10.1038/srep26933
10.3945/ajcn.113.068122
10.1111/bph.13513
10.1016/j.molmed.2017.08.001
10.1016/j.cmet.2018.03.018
10.1016/S0092-8674(04)00416-7
10.1152/japplphysiol.00246.2003
10.1016/j.ymgme.2011.12.016
10.3109/00365517509095787
10.1073/pnas.0506580102
10.1371/journal.pone.0113637
10.1186/s13395-018-0154-1
10.1152/ajpendo.00318.2009
10.1016/S0531-5565(02)00203-6
10.1210/js.2017-00092
10.1038/ncomms12948
10.2337/db14-0667
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Author(s) 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2019.07.043
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1728.e6
ExternalDocumentID oai_doaj_org_article_79c9efd10ba94a93a3a872aaaf64b487
PMC6702140
31412242
10_1016_j_celrep_2019_07_043
S2211124719309404
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL147545
– fundername: Medical Research Council
  grantid: MC_PC_15032
– fundername: Arthritis Research UK
– fundername: Wellcome Trust
  grantid: 104612/Z/14/Z
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-5bc65204ecaa18ad33ffc861f1d17712f33596ffc8a775956fcecc2c008f90a3
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:25:45 EDT 2025
Thu Aug 21 18:00:08 EDT 2025
Fri Jul 11 09:47:01 EDT 2025
Mon Jul 21 05:42:11 EDT 2025
Tue Jul 01 02:59:03 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Wed May 17 00:05:52 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords nicotinamide adenine dinucleotide
metabolism
aging
inflammation
cell adhesion
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-5bc65204ecaa18ad33ffc861f1d17712f33596ffc8a775956fcecc2c008f90a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124719309404
PMID 31412242
PQID 2273757042
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_79c9efd10ba94a93a3a872aaaf64b487
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6702140
proquest_miscellaneous_2273757042
pubmed_primary_31412242
crossref_citationtrail_10_1016_j_celrep_2019_07_043
crossref_primary_10_1016_j_celrep_2019_07_043
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_07_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-13
PublicationDateYYYYMMDD 2019-08-13
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Cell Press
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Cell Press
– name: Elsevier
References Trammell, Schmidt, Weidemann, Redpath, Jaksch, Dellinger, Li, Abel, Migaud, Brenner (bib63) 2016; 7
Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander, Mesirov (bib61) 2005; 102
Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib27) 2013; 155
Diguet, Trammell, Tannous, Deloux, Piquereau, Mougenot, Gouge, Gressette, Manoury, Blanc (bib18) 2018; 137
Dollerup, Christensen, Svart, Schmidt, Sulek, Ringgaard, Stødkilde-Jørgensen, Møller, Brenner, Treebak, Jessen (bib20) 2018; 108
Liu, Su, Quinn, Hui, Krukenberg, Frederick, Redpath, Zhan, Chellappa, White (bib45) 2018; 27
Mayer (bib48) 2003; 278
Martens, Denman, Mazzo, Armstrong, Reisdorph, McQueen, Chonchol, Seals (bib46) 2018; 9
Wythe, Davies, Martin, Feelisch, Gilbert-Kawai (bib69) 2015; 4
Bieganowski, Brenner (bib5) 2004; 117
Chaleckis, Murakami, Takada, Kondoh, Yanagida (bib10) 2016; 113
Yoshino, Baur, Imai (bib71) 2018; 27
Fletcher, Ratajczak, Doig, Oakey, Callingham, Da Silva Xavier, Garten, Elhassan, Redpath, Migaud (bib24) 2017; 6
Frederick, Loro, Liu, Davila, Chellappa, Silverman, Quinn, Gosai, Tichy, Davis (bib25) 2016; 24
Cantó, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose (bib9) 2012; 15
Conze, Brenner, Kruger (bib12) 2019
Zhang, Ryu, Wu, Gariani, Wang, Luan, D’Amico, Ropelle, Lutolf, Aebersold (bib72) 2016; 352
Horscroft, Burgess, Hu, Murray (bib32) 2015; 10
Imai, Yoshino (bib35) 2013; 15
Brown, Maqsood, Huang, Pan, Harkcom, Li, Sauve, Verdin, Jaffrey (bib7) 2014; 20
Phielix, Schrauwen-Hinderling, Mensink, Lenaers, Meex, Hoeks, Kooi, Moonen-Kornips, Sels, Hesselink, Schrauwen (bib54) 2008; 57
Bergstrom (bib3) 1975; 35
Das, Huang, Bonkowski, Longchamp, Li, Schultz, Kim, Osborne, Joshi, Lu (bib17) 2018; 173
Larsen, Nielsen, Hansen, Nielsen, Wibrand, Stride, Schroder, Boushel, Helge, Dela, Hey-Mogensen (bib40) 2012; 590
Cruz-Jentoft, Baeyens, Bauer, Boirie, Cederholm, Landi, Martin, Michel, Rolland, Schneider (bib15) 2010; 39
Vaur, Brugg, Mericskay, Li, Schmidt, Vivien, Orset, Jacotot, Brenner, Duplus (bib67) 2017; 31
Goody, Henry (bib28) 2018; 8
Liu, Li, Chu, Zhu, Zhang, Yin, Jiang, Dai, Ju, Wang (bib44) 2015; 100
Mills, Yoshida, Stein, Grozio, Kubota, Sasaki, Redpath, Migaud, Apte, Uchida, et al (bib50) 2016
Zhou, Yang, Hua, Liu, Fan, Li, Song, Xu, Li, Guan (bib73) 2016; 173
Kołodziejska-Huben, Kamiński, Paneth (bib39) 2002
Camacho-Pereira, Tarragó, Chini, Nin, Escande, Warner, Puranik, Schoon, Reid, Galina, Chini (bib8) 2016; 23
Mootha, Lindgren, Eriksson, Subramanian, Sihag, Lehar, Puigserver, Carlsson, Ridderstråle, Laurila (bib51) 2003; 34
Clement, Wong, Poljak, Sachdev, Braidy (bib11) 2018
Kannt, Pfenninger, Teichert, Tönjes, Dietrich, Schön, Klöting, Blüher (bib37) 2015; 58
Covarrubias, Lopez-Dominguez, Perrone, Kale, Newman, Iyer, Schmidt, Kasler, Shin, Lee (bib14) 2019
Dolopikou, Kourtzidis, Margaritelis, Vrabas, Koidou, Kyparos, Theodorou, Paschalis, Nikolaidis (bib21) 2019
Lauretani, Russo, Bandinelli, Bartali, Cavazzini, Di Iorio, Corsi, Rantanen, Guralnik, Ferrucci (bib41) 2003; 95
Ryu, Zhang, Ropelle, Sorrentino, Mázala, Mouchiroud, Marshall, Campbell, Ali, Knowels (bib58) 2016; 8
Fang, Lautrup, Hou, Demarest, Croteau, Mattson, Bohr (bib23) 2017; 23
Liberzon, Birger, Thorvaldsdóttir, Ghandi, Mesirov, Tamayo (bib42) 2015; 1
Dodds, Syddall, Cooper, Benzeval, Deary, Dennison, Der, Gale, Inskip, Jagger (bib19) 2014; 9
Polzonetti, Carpi, Micozzi, Pucciarelli, Vincenzetti, Napolioni (bib55) 2012; 105
Massudi, Grant, Braidy, Guest, Farnsworth, Guillemin (bib47) 2012; 7
Elhassan, Philp, Lavery (bib22) 2017; 1
Winter, MacInnis, Wattanapenpaiboon, Nowson (bib68) 2014; 99
Bogan, Brenner (bib6) 2008; 28
Greenfield, Whitney, Mowbray (bib30) 1963; 19
Ratajczak, Joffraud, Trammell, Ras, Canela, Boutant, Kulkarni, Rodrigues, Redpath, Migaud (bib57) 2016; 7
Hagopian, Ramsey, Weindruch (bib31) 2003; 38
van de Weijer, Phielix, Bilet, Williams, Ropelle, Bierwagen, Livingstone, Nowotny, Sparks, Paglialunga (bib65) 2015; 64
Porter Starr, Bales (bib56) 2015; 31
Vannini, Campos, Girotra, Trachsel, Rojas-Sutterlin, Tratwal, Ragusa, Stefanidis, Ryu, Rainer (bib66) 2019; 24
Amici, Young, Narvaez-Miranda, Jablonski, Arcos, Rosas, Papenfuss, Torrelles, Jarjour, Guerau-de-Arellano (bib2) 2018; 9
Yang, Chan, Sauve (bib70) 2007
Sousa, Guerra, Fonseca, Pichel, Ferreira, Amaral (bib60) 2016; 70
Ingram, Roth (bib36) 2011; 46
Trammell, Weidemann, Chadda, Yorek, Holmes, Coppey, Obrosov, Kardon, Yorek, Brenner (bib64) 2016; 6
Trammell, Brenner (bib62) 2013
Bickerton, Roberts, Fielding, Hodson, Blaak, Wagenmakers, Gilbert, Karpe, Frayn (bib4) 2007; 56
Lin, Zhang, Gao, Watts (bib43) 2015; 36
Airhart, Shireman, Risler, Anderson, Nagana Gowda, Raftery, Tian, Shen, O’Brien (bib1) 2017; 12
Goody, Kelly, Lessard, Khalil, Henry (bib29) 2010; 344
Cruz-Jentoft, Bahat, Bauer, Boirie, Bruyère, Cederholm, Cooper, Landi, Rolland, Sayer (bib16) 2019; 48
Costford, Bajpeyi, Pasarica, Albarado, Thomas, Xie, Church, Jubrias, Conley, Smith (bib13) 2010; 298
Singh, Newman (bib59) 2011; 10
McNally (bib49) 2012
Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos (bib26) 2016; 63
Kim, Choi (bib38) 2013; 20
Mouchiroud, Houtkooper, Moullan, Katsyuba, Ryu, Cantó, Mottis, Jo, Viswanathan, Schoonjans (bib52) 2013; 154
Pesta, Gnaiger (bib53) 2012
Cantó (10.1016/j.celrep.2019.07.043_bib9) 2012; 15
Cruz-Jentoft (10.1016/j.celrep.2019.07.043_bib15) 2010; 39
Liu (10.1016/j.celrep.2019.07.043_bib44) 2015; 100
Goody (10.1016/j.celrep.2019.07.043_bib28) 2018; 8
Frederick (10.1016/j.celrep.2019.07.043_bib25) 2016; 24
Martens (10.1016/j.celrep.2019.07.043_bib46) 2018; 9
Mayer (10.1016/j.celrep.2019.07.043_bib48) 2003; 278
Phielix (10.1016/j.celrep.2019.07.043_bib54) 2008; 57
Ratajczak (10.1016/j.celrep.2019.07.043_bib57) 2016; 7
Clement (10.1016/j.celrep.2019.07.043_bib11) 2018; 22
Bogan (10.1016/j.celrep.2019.07.043_bib6) 2008; 28
Das (10.1016/j.celrep.2019.07.043_bib17) 2018; 173
Gariani (10.1016/j.celrep.2019.07.043_bib26) 2016; 63
Chaleckis (10.1016/j.celrep.2019.07.043_bib10) 2016; 113
Singh (10.1016/j.celrep.2019.07.043_bib59) 2011; 10
Bergstrom (10.1016/j.celrep.2019.07.043_bib3) 1975; 35
Massudi (10.1016/j.celrep.2019.07.043_bib47) 2012; 7
Trammell (10.1016/j.celrep.2019.07.043_bib64) 2016; 6
Larsen (10.1016/j.celrep.2019.07.043_bib40) 2012; 590
Zhou (10.1016/j.celrep.2019.07.043_bib73) 2016; 173
Zhang (10.1016/j.celrep.2019.07.043_bib72) 2016; 352
Amici (10.1016/j.celrep.2019.07.043_bib2) 2018; 9
Covarrubias (10.1016/j.celrep.2019.07.043_bib14) 2019
Horscroft (10.1016/j.celrep.2019.07.043_bib32) 2015; 10
Dodds (10.1016/j.celrep.2019.07.043_bib19) 2014; 9
Mootha (10.1016/j.celrep.2019.07.043_bib51) 2003; 34
Bickerton (10.1016/j.celrep.2019.07.043_bib4) 2007; 56
Lauretani (10.1016/j.celrep.2019.07.043_bib41) 2003; 95
Lin (10.1016/j.celrep.2019.07.043_bib43) 2015; 36
van de Weijer (10.1016/j.celrep.2019.07.043_bib65) 2015; 64
Diguet (10.1016/j.celrep.2019.07.043_bib18) 2018; 137
Cruz-Jentoft (10.1016/j.celrep.2019.07.043_bib16) 2019; 48
Imai (10.1016/j.celrep.2019.07.043_bib35) 2013; 15
Liu (10.1016/j.celrep.2019.07.043_bib45) 2018; 27
Vaur (10.1016/j.celrep.2019.07.043_bib67) 2017; 31
Fletcher (10.1016/j.celrep.2019.07.043_bib24) 2017; 6
Porter Starr (10.1016/j.celrep.2019.07.043_bib56) 2015; 31
McNally (10.1016/j.celrep.2019.07.043_bib49) 2012; 2
Kannt (10.1016/j.celrep.2019.07.043_bib37) 2015; 58
Elhassan (10.1016/j.celrep.2019.07.043_bib22) 2017; 1
Yang (10.1016/j.celrep.2019.07.043_bib70) 2007; 50
Greenfield (10.1016/j.celrep.2019.07.043_bib30) 1963; 19
Airhart (10.1016/j.celrep.2019.07.043_bib1) 2017; 12
Vannini (10.1016/j.celrep.2019.07.043_bib66) 2019; 24
Kołodziejska-Huben (10.1016/j.celrep.2019.07.043_bib39) 2002; 45
Hagopian (10.1016/j.celrep.2019.07.043_bib31) 2003; 38
Bieganowski (10.1016/j.celrep.2019.07.043_bib5) 2004; 117
Ingram (10.1016/j.celrep.2019.07.043_bib36) 2011; 46
Camacho-Pereira (10.1016/j.celrep.2019.07.043_bib8) 2016; 23
Brown (10.1016/j.celrep.2019.07.043_bib7) 2014; 20
Conze (10.1016/j.celrep.2019.07.043_bib12) 2019; 9
Pesta (10.1016/j.celrep.2019.07.043_bib53) 2012; 810
Mills (10.1016/j.celrep.2019.07.043_bib50) 2016; 24
Polzonetti (10.1016/j.celrep.2019.07.043_bib55) 2012; 105
Subramanian (10.1016/j.celrep.2019.07.043_bib61) 2005; 102
Kim (10.1016/j.celrep.2019.07.043_bib38) 2013; 20
Liberzon (10.1016/j.celrep.2019.07.043_bib42) 2015; 1
Winter (10.1016/j.celrep.2019.07.043_bib68) 2014; 99
Yoshino (10.1016/j.celrep.2019.07.043_bib71) 2018; 27
Trammell (10.1016/j.celrep.2019.07.043_bib62) 2013; 4
Dollerup (10.1016/j.celrep.2019.07.043_bib20) 2018; 108
Dolopikou (10.1016/j.celrep.2019.07.043_bib21) 2019
Ryu (10.1016/j.celrep.2019.07.043_bib58) 2016; 8
Fang (10.1016/j.celrep.2019.07.043_bib23) 2017; 23
Gomes (10.1016/j.celrep.2019.07.043_bib27) 2013; 155
Mouchiroud (10.1016/j.celrep.2019.07.043_bib52) 2013; 154
Trammell (10.1016/j.celrep.2019.07.043_bib63) 2016; 7
Wythe (10.1016/j.celrep.2019.07.043_bib69) 2015; 4
Sousa (10.1016/j.celrep.2019.07.043_bib60) 2016; 70
Costford (10.1016/j.celrep.2019.07.043_bib13) 2010; 298
Goody (10.1016/j.celrep.2019.07.043_bib29) 2010; 344
References_xml – volume: 7
  start-page: 13103
  year: 2016
  ident: bib57
  article-title: NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
  publication-title: Nat. Commun.
– volume: 36
  start-page: 2296
  year: 2015
  end-page: 2303
  ident: bib43
  article-title: Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain
  publication-title: Neurobiol. Aging
– volume: 56
  start-page: 168
  year: 2007
  end-page: 176
  ident: bib4
  article-title: Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period
  publication-title: Diabetes
– volume: 344
  start-page: 809
  year: 2010
  end-page: 826
  ident: bib29
  article-title: Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis
  publication-title: Dev. Biol.
– start-page: 25
  year: 2012
  end-page: 58
  ident: bib53
  article-title: High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle
  publication-title: Methods Mol. Biol.
– volume: 12
  start-page: e0186459
  year: 2017
  ident: bib1
  article-title: An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers
  publication-title: PLoS ONE
– start-page: 9772
  year: 2019
  ident: bib12
  article-title: Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults
  publication-title: Sci. Rep.
– volume: 95
  start-page: 1851
  year: 2003
  end-page: 1860
  ident: bib41
  article-title: Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia
  publication-title: J. Appl. Physiol.
– volume: 58
  start-page: 799
  year: 2015
  end-page: 808
  ident: bib37
  article-title: Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance
  publication-title: Diabetologia
– year: 2019
  ident: bib21
  article-title: Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study
  publication-title: Eur. J. Nutr.
– volume: 64
  start-page: 1193
  year: 2015
  end-page: 1201
  ident: bib65
  article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans
  publication-title: Diabetes
– volume: 48
  start-page: 16
  year: 2019
  end-page: 31
  ident: bib16
  article-title: Sarcopenia: revised European consensus on definition and diagnosis
  publication-title: Age Ageing
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  ident: bib27
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
– volume: 100
  start-page: 3112
  year: 2015
  end-page: 3117
  ident: bib44
  article-title: Serum N(1)-Methylnicotinamide Is Associated With Obesity and Diabetes in Chinese
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 8
  start-page: 361ra139
  year: 2016
  ident: bib58
  article-title: NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation
  publication-title: Sci. Transl. Med.
– volume: 15
  start-page: 838
  year: 2012
  end-page: 847
  ident: bib9
  article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
  publication-title: Cell Metab.
– start-page: 1095
  year: 2012
  end-page: 1103
  ident: bib49
  article-title: Novel Targets and Approaches to Treating Skeletal Muscle Disease
  publication-title: Muscle
– volume: 46
  start-page: 148
  year: 2011
  end-page: 154
  ident: bib36
  article-title: Glycolytic inhibition as a strategy for developing calorie restriction mimetics
  publication-title: Exp. Gerontol.
– volume: 57
  start-page: 2943
  year: 2008
  end-page: 2949
  ident: bib54
  article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients
  publication-title: Diabetes
– volume: 24
  start-page: 405
  year: 2019
  end-page: 418.e7
  ident: bib66
  article-title: The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance
  publication-title: Cell Stem Cell
– volume: 4
  start-page: 8
  year: 2015
  ident: bib69
  article-title: Getting the most from venous occlusion plethysmography: proposed methods for the analysis of data with a rest/exercise protocol
  publication-title: Extrem. Physiol. Med.
– volume: 10
  start-page: e0138564
  year: 2015
  ident: bib32
  article-title: Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia
  publication-title: PLoS ONE
– volume: 154
  start-page: 430
  year: 2013
  end-page: 441
  ident: bib52
  article-title: The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling
  publication-title: Cell
– start-page: 6458
  year: 2007
  end-page: 6461
  ident: bib70
  article-title: Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells
  publication-title: J. Med. Chem.
– volume: 8
  start-page: 9
  year: 2018
  ident: bib28
  article-title: A need for NAD+ in muscle development, homeostasis, and aging
  publication-title: Skelet. Muscle
– volume: 102
  start-page: 15545
  year: 2005
  end-page: 15550
  ident: bib61
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 173
  start-page: 2352
  year: 2016
  end-page: 2368
  ident: bib73
  article-title: Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing
  publication-title: Br. J. Pharmacol.
– start-page: 121
  year: 2018
  end-page: 130
  ident: bib11
  article-title: The Plasma NAD+ Metabolome is Dysregulated in “Normal” Ageing. Rejuvenation Res
– volume: 35
  start-page: 609
  year: 1975
  end-page: 616
  ident: bib3
  article-title: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research
  publication-title: Scand. J. Clin. Lab. Invest.
– volume: 108
  start-page: 343
  year: 2018
  end-page: 353
  ident: bib20
  article-title: A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects
  publication-title: Am. J. Clin. Nutr.
– volume: 9
  start-page: 1286
  year: 2018
  ident: bib46
  article-title: Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD
  publication-title: Nat. Commun.
– volume: 9
  start-page: e113637
  year: 2014
  ident: bib19
  article-title: Grip strength across the life course: normative data from twelve British studies
  publication-title: PLoS ONE
– volume: 590
  start-page: 3349
  year: 2012
  end-page: 3360
  ident: bib40
  article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects
  publication-title: J. Physiol.
– volume: 10
  start-page: 319
  year: 2011
  end-page: 329
  ident: bib59
  article-title: Inflammatory markers in population studies of aging
  publication-title: Ageing Res. Rev.
– volume: 31
  start-page: 311
  year: 2015
  end-page: 326
  ident: bib56
  article-title: Excessive Body Weight in Older Adults
  publication-title: Clin. Geriatr. Med.
– volume: 7
  start-page: 12948
  year: 2016
  ident: bib63
  article-title: Nicotinamide riboside is uniquely and orally bioavailable in mice and humans
  publication-title: Nat. Commun.
– volume: 38
  start-page: 253
  year: 2003
  end-page: 266
  ident: bib31
  article-title: Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice
  publication-title: Exp. Gerontol.
– volume: 34
  start-page: 267
  year: 2003
  end-page: 273
  ident: bib51
  article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet.
– volume: 117
  start-page: 495
  year: 2004
  end-page: 502
  ident: bib5
  article-title: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
  publication-title: Cell
– volume: 7
  start-page: e42357
  year: 2012
  ident: bib47
  article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue
  publication-title: PLoS ONE
– year: 2019
  ident: bib14
  article-title: Aging-related inflammation driven by cellular senescence enhances NAD consumption via activation of CD38 + macrophages
  publication-title: bioRxiv
– volume: 6
  start-page: 819
  year: 2017
  end-page: 832
  ident: bib24
  article-title: Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells
  publication-title: Mol. Metab.
– volume: 105
  start-page: 502
  year: 2012
  end-page: 507
  ident: bib55
  article-title: Population variability in CD38 activity: correlation with age and significant effect of TNF-α -308G>A and CD38 184C>G SNPs
  publication-title: Mol. Genet. Metab.
– volume: 20
  start-page: 1059
  year: 2014
  end-page: 1068
  ident: bib7
  article-title: Activation of SIRT3 by the NAD
  publication-title: Cell Metab.
– volume: 1
  start-page: 417
  year: 2015
  end-page: 425
  ident: bib42
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst.
– volume: 27
  start-page: 513
  year: 2018
  end-page: 528
  ident: bib71
  article-title: NAD
  publication-title: Cell Metab.
– volume: 1
  start-page: 816
  year: 2017
  end-page: 835
  ident: bib22
  article-title: Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule
  publication-title: J Endocr Soc
– volume: 23
  start-page: 899
  year: 2017
  end-page: 916
  ident: bib23
  article-title: NAD
  publication-title: Trends Mol. Med.
– volume: 31
  start-page: 5440
  year: 2017
  end-page: 5452
  ident: bib67
  article-title: Nicotinamide riboside, a form of vitamin B
  publication-title: FASEB J.
– volume: 173
  start-page: 74
  year: 2018
  end-page: 89.e20
  ident: bib17
  article-title: Impairment of an Endothelial NAD
  publication-title: Cell
– volume: 19
  start-page: 101
  year: 1963
  end-page: 109
  ident: bib30
  article-title: Methods for the investigation of peripheral blood flow
  publication-title: Br. Med. Bull.
– start-page: 795
  year: 2016
  end-page: 806
  ident: bib50
  article-title: Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice
  publication-title: Cell Metab.
– volume: 113
  start-page: 4252
  year: 2016
  end-page: 4259
  ident: bib10
  article-title: Individual variability in human blood metabolites identifies age-related differences
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 70
  start-page: 1046
  year: 2016
  end-page: 1051
  ident: bib60
  article-title: Financial impact of sarcopenia on hospitalization costs
  publication-title: Eur. J. Clin. Nutr.
– volume: 23
  start-page: 1127
  year: 2016
  end-page: 1139
  ident: bib8
  article-title: CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism
  publication-title: Cell Metab.
– volume: 24
  start-page: 269
  year: 2016
  end-page: 282
  ident: bib25
  article-title: Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle
  publication-title: Cell Metab.
– volume: 9
  start-page: 1593
  year: 2018
  ident: bib2
  article-title: CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions
  publication-title: Front. Immunol.
– volume: 278
  start-page: 14587
  year: 2003
  end-page: 14590
  ident: bib48
  article-title: Integrins: redundant or important players in skeletal muscle?
  publication-title: J. Biol. Chem.
– volume: 352
  start-page: 1436
  year: 2016
  end-page: 1443
  ident: bib72
  article-title: NAD
  publication-title: Science
– volume: 63
  start-page: 1190
  year: 2016
  end-page: 1204
  ident: bib26
  article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
– volume: 20
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib38
  article-title: Sarcopenia: definition, epidemiology, and pathophysiology
  publication-title: J. Bone Metab.
– year: 2013
  ident: bib62
  article-title: Targeted, LCMS-based metabolomics for quantitative measurement of metabolites
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 137
  start-page: 2256
  year: 2018
  end-page: 2273
  ident: bib18
  article-title: Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy
  publication-title: Circulation
– start-page: 1005
  year: 2002
  end-page: 1010
  ident: bib39
  article-title: Preparation of 18O-labelled nicotinamide
  publication-title: Journal of Labelled Compounds
– volume: 27
  start-page: 1067
  year: 2018
  end-page: 1080.e5
  ident: bib45
  article-title: Quantitative Analysis of NAD Synthesis-Breakdown Fluxes
  publication-title: Cell Metab.
– volume: 99
  start-page: 875
  year: 2014
  end-page: 890
  ident: bib68
  article-title: BMI and all-cause mortality in older adults: a meta-analysis
  publication-title: Am. J. Clin. Nutr.
– volume: 298
  start-page: E117
  year: 2010
  end-page: E126
  ident: bib13
  article-title: Skeletal muscle NAMPT is induced by exercise in humans
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 6
  start-page: 26933
  year: 2016
  ident: bib64
  article-title: Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice
  publication-title: Sci. Rep.
– volume: 28
  start-page: 115
  year: 2008
  end-page: 130
  ident: bib6
  article-title: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition
  publication-title: Annu. Rev. Nutr.
– volume: 39
  start-page: 412
  year: 2010
  end-page: 423
  ident: bib15
  article-title: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People
  publication-title: Age Ageing
– volume: 15
  start-page: 26
  year: 2013
  end-page: 33
  ident: bib35
  article-title: The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing
  publication-title: Diabetes Obes. Metab.
– volume: 155
  start-page: 1624
  year: 2013
  ident: 10.1016/j.celrep.2019.07.043_bib27
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.037
– volume: 4
  start-page: 8
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib69
  article-title: Getting the most from venous occlusion plethysmography: proposed methods for the analysis of data with a rest/exercise protocol
  publication-title: Extrem. Physiol. Med.
  doi: 10.1186/s13728-015-0027-8
– volume: 4
  year: 2013
  ident: 10.1016/j.celrep.2019.07.043_bib62
  article-title: Targeted, LCMS-based metabolomics for quantitative measurement of metabolites
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.5936/csbj.201301012
– volume: 1
  start-page: 417
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib42
  article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2015.12.004
– volume: 23
  start-page: 1127
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib8
  article-title: CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.006
– volume: 7
  start-page: 13103
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib57
  article-title: NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13103
– volume: 24
  start-page: 795
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib50
  article-title: Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.09.013
– volume: 19
  start-page: 101
  year: 1963
  ident: 10.1016/j.celrep.2019.07.043_bib30
  article-title: Methods for the investigation of peripheral blood flow
  publication-title: Br. Med. Bull.
  doi: 10.1093/oxfordjournals.bmb.a070026
– volume: 22
  start-page: 121
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib11
– volume: 70
  start-page: 1046
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib60
  article-title: Financial impact of sarcopenia on hospitalization costs
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/ejcn.2016.73
– year: 2019
  ident: 10.1016/j.celrep.2019.07.043_bib14
  article-title: Aging-related inflammation driven by cellular senescence enhances NAD consumption via activation of CD38 + macrophages
  publication-title: bioRxiv
– volume: 20
  start-page: 1059
  year: 2014
  ident: 10.1016/j.celrep.2019.07.043_bib7
  article-title: Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.11.003
– volume: 8
  start-page: 361ra139
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib58
  article-title: NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaf5504
– volume: 108
  start-page: 343
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib20
  article-title: A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/nqy132
– volume: 34
  start-page: 267
  year: 2003
  ident: 10.1016/j.celrep.2019.07.043_bib51
  article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nat. Genet.
  doi: 10.1038/ng1180
– volume: 10
  start-page: 319
  year: 2011
  ident: 10.1016/j.celrep.2019.07.043_bib59
  article-title: Inflammatory markers in population studies of aging
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2010.11.002
– volume: 50
  start-page: 6458
  year: 2007
  ident: 10.1016/j.celrep.2019.07.043_bib70
  article-title: Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells
  publication-title: J. Med. Chem.
  doi: 10.1021/jm701001c
– volume: 45
  start-page: 1005
  year: 2002
  ident: 10.1016/j.celrep.2019.07.043_bib39
  article-title: Preparation of 18O-labelled nicotinamide
  publication-title: Journal of Labelled Compounds
  doi: 10.1002/jlcr.617
– volume: 344
  start-page: 809
  year: 2010
  ident: 10.1016/j.celrep.2019.07.043_bib29
  article-title: Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.05.513
– volume: 15
  start-page: 838
  year: 2012
  ident: 10.1016/j.celrep.2019.07.043_bib9
  article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.022
– volume: 27
  start-page: 513
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib71
  article-title: NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.11.002
– volume: 63
  start-page: 1190
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib26
  article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
  doi: 10.1002/hep.28245
– volume: 590
  start-page: 3349
  year: 2012
  ident: 10.1016/j.celrep.2019.07.043_bib40
  article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.230185
– volume: 58
  start-page: 799
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib37
  article-title: Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3490-7
– volume: 48
  start-page: 16
  year: 2019
  ident: 10.1016/j.celrep.2019.07.043_bib16
  article-title: Sarcopenia: revised European consensus on definition and diagnosis
  publication-title: Age Ageing
  doi: 10.1093/ageing/afy169
– volume: 7
  start-page: e42357
  year: 2012
  ident: 10.1016/j.celrep.2019.07.043_bib47
  article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042357
– volume: 56
  start-page: 168
  year: 2007
  ident: 10.1016/j.celrep.2019.07.043_bib4
  article-title: Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period
  publication-title: Diabetes
  doi: 10.2337/db06-0822
– volume: 278
  start-page: 14587
  year: 2003
  ident: 10.1016/j.celrep.2019.07.043_bib48
  article-title: Integrins: redundant or important players in skeletal muscle?
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R200022200
– volume: 352
  start-page: 1436
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib72
  article-title: NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice
  publication-title: Science
  doi: 10.1126/science.aaf2693
– volume: 6
  start-page: 819
  year: 2017
  ident: 10.1016/j.celrep.2019.07.043_bib24
  article-title: Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2017.05.011
– volume: 113
  start-page: 4252
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib10
  article-title: Individual variability in human blood metabolites identifies age-related differences
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1603023113
– volume: 9
  start-page: 1593
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib2
  article-title: CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01593
– volume: 9
  start-page: 1286
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib46
  article-title: Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03421-7
– volume: 57
  start-page: 2943
  year: 2008
  ident: 10.1016/j.celrep.2019.07.043_bib54
  article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db08-0391
– volume: 24
  start-page: 405
  year: 2019
  ident: 10.1016/j.celrep.2019.07.043_bib66
  article-title: The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.02.012
– volume: 154
  start-page: 430
  year: 2013
  ident: 10.1016/j.celrep.2019.07.043_bib52
  article-title: The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.016
– volume: 12
  start-page: e0186459
  year: 2017
  ident: 10.1016/j.celrep.2019.07.043_bib1
  article-title: An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0186459
– volume: 20
  start-page: 1
  year: 2013
  ident: 10.1016/j.celrep.2019.07.043_bib38
  article-title: Sarcopenia: definition, epidemiology, and pathophysiology
  publication-title: J. Bone Metab.
  doi: 10.11005/jbm.2013.20.1.1
– year: 2019
  ident: 10.1016/j.celrep.2019.07.043_bib21
  article-title: Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-019-01919-4
– volume: 36
  start-page: 2296
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib43
  article-title: Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2015.03.012
– volume: 28
  start-page: 115
  year: 2008
  ident: 10.1016/j.celrep.2019.07.043_bib6
  article-title: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.28.061807.155443
– volume: 173
  start-page: 74
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib17
  article-title: Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.008
– volume: 24
  start-page: 269
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib25
  article-title: Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.07.005
– volume: 15
  start-page: 26
  year: 2013
  ident: 10.1016/j.celrep.2019.07.043_bib35
  article-title: The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.12171
– volume: 31
  start-page: 311
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib56
  article-title: Excessive Body Weight in Older Adults
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2015.04.001
– volume: 39
  start-page: 412
  year: 2010
  ident: 10.1016/j.celrep.2019.07.043_bib15
  article-title: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People
  publication-title: Age Ageing
  doi: 10.1093/ageing/afq034
– volume: 2
  start-page: 1095
  year: 2012
  ident: 10.1016/j.celrep.2019.07.043_bib49
  article-title: Novel Targets and Approaches to Treating Skeletal Muscle Disease
  publication-title: Muscle
  doi: 10.1016/B978-0-12-381510-1.00081-8
– volume: 100
  start-page: 3112
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib44
  article-title: Serum N(1)-Methylnicotinamide Is Associated With Obesity and Diabetes in Chinese
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2015-1732
– volume: 810
  start-page: 25
  year: 2012
  ident: 10.1016/j.celrep.2019.07.043_bib53
  article-title: High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-382-0_3
– volume: 31
  start-page: 5440
  year: 2017
  ident: 10.1016/j.celrep.2019.07.043_bib67
  article-title: Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration
  publication-title: FASEB J.
  doi: 10.1096/fj.201700221RR
– volume: 9
  start-page: 9772
  year: 2019
  ident: 10.1016/j.celrep.2019.07.043_bib12
  article-title: Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46120-z
– volume: 10
  start-page: e0138564
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib32
  article-title: Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0138564
– volume: 46
  start-page: 148
  year: 2011
  ident: 10.1016/j.celrep.2019.07.043_bib36
  article-title: Glycolytic inhibition as a strategy for developing calorie restriction mimetics
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2010.12.001
– volume: 137
  start-page: 2256
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib18
  article-title: Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.026099
– volume: 6
  start-page: 26933
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib64
  article-title: Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice
  publication-title: Sci. Rep.
  doi: 10.1038/srep26933
– volume: 99
  start-page: 875
  year: 2014
  ident: 10.1016/j.celrep.2019.07.043_bib68
  article-title: BMI and all-cause mortality in older adults: a meta-analysis
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.113.068122
– volume: 173
  start-page: 2352
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib73
  article-title: Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13513
– volume: 23
  start-page: 899
  year: 2017
  ident: 10.1016/j.celrep.2019.07.043_bib23
  article-title: NAD+ in Aging: Molecular Mechanisms and Translational Implications
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2017.08.001
– volume: 27
  start-page: 1067
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib45
  article-title: Quantitative Analysis of NAD Synthesis-Breakdown Fluxes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.03.018
– volume: 117
  start-page: 495
  year: 2004
  ident: 10.1016/j.celrep.2019.07.043_bib5
  article-title: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00416-7
– volume: 95
  start-page: 1851
  year: 2003
  ident: 10.1016/j.celrep.2019.07.043_bib41
  article-title: Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00246.2003
– volume: 105
  start-page: 502
  year: 2012
  ident: 10.1016/j.celrep.2019.07.043_bib55
  article-title: Population variability in CD38 activity: correlation with age and significant effect of TNF-α -308G>A and CD38 184C>G SNPs
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2011.12.016
– volume: 35
  start-page: 609
  year: 1975
  ident: 10.1016/j.celrep.2019.07.043_bib3
  article-title: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research
  publication-title: Scand. J. Clin. Lab. Invest.
  doi: 10.3109/00365517509095787
– volume: 102
  start-page: 15545
  year: 2005
  ident: 10.1016/j.celrep.2019.07.043_bib61
  article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
– volume: 9
  start-page: e113637
  year: 2014
  ident: 10.1016/j.celrep.2019.07.043_bib19
  article-title: Grip strength across the life course: normative data from twelve British studies
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113637
– volume: 8
  start-page: 9
  year: 2018
  ident: 10.1016/j.celrep.2019.07.043_bib28
  article-title: A need for NAD+ in muscle development, homeostasis, and aging
  publication-title: Skelet. Muscle
  doi: 10.1186/s13395-018-0154-1
– volume: 298
  start-page: E117
  year: 2010
  ident: 10.1016/j.celrep.2019.07.043_bib13
  article-title: Skeletal muscle NAMPT is induced by exercise in humans
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00318.2009
– volume: 38
  start-page: 253
  year: 2003
  ident: 10.1016/j.celrep.2019.07.043_bib31
  article-title: Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice
  publication-title: Exp. Gerontol.
  doi: 10.1016/S0531-5565(02)00203-6
– volume: 1
  start-page: 816
  year: 2017
  ident: 10.1016/j.celrep.2019.07.043_bib22
  article-title: Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule
  publication-title: J Endocr Soc
  doi: 10.1210/js.2017-00092
– volume: 7
  start-page: 12948
  year: 2016
  ident: 10.1016/j.celrep.2019.07.043_bib63
  article-title: Nicotinamide riboside is uniquely and orally bioavailable in mice and humans
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12948
– volume: 64
  start-page: 1193
  year: 2015
  ident: 10.1016/j.celrep.2019.07.043_bib65
  article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans
  publication-title: Diabetes
  doi: 10.2337/db14-0667
SSID ssj0000601194
Score 2.6420321
Snippet Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but...
Nicotinamide adenine dinucleotide (NAD ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but...
Nicotinamide adenine dinucleotide (NAD + ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1717
SubjectTerms Aged
Aged, 80 and over
aging
Aging - drug effects
Aging - metabolism
Anti-Inflammatory Agents - blood
cell adhesion
Cross-Sectional Studies
Cytokines - blood
Cytokines - drug effects
Double-Blind Method
Humans
inflammation
Male
metabolism
Metabolome - drug effects
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
NAD - metabolism
Niacinamide - analogs & derivatives
Niacinamide - pharmacology
nicotinamide adenine dinucleotide
Pyridinium Compounds
Transcriptome - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfLS0bihiLi2LHjY3hUFdL2QIvUm-X4sQTaLOpmD_0J_dfMOMlqA4e9cLUTJ8588XyJZ74h5F0EN5Z7-CyJrsozIT3PrLM-c7LCvOvABcdE4eWpPPkuvl6UF3ulvjAmbJAHHh7cB6WdDtGzvLFaWM0tt5UqrLVRigbYNq6-4PP2PqaGNRi1zHBLuSgwZqsQasqbS8FdLlxeB5SrZDppdwo-80tJvn_mnv6ln39HUe65peMH5P7IJ2k9zOMhuRO6R-TuUGHy5jG5RUv3LVad94F-a5s1luek9XaVUtso0D9ar4Kn6Wc-PfsFXgjoOF1uNzAcPa0_v6dLaGlgvKtAbecpFvuAxYUmL5fWHExsTl1117cZQBZQdpV27-lZuxqkQzdPyPnxl_NPJ9lYfSFzpS77rGycLItcBGctq6znPII9JYvMM6VYETkvtcQ2qxScIaMDOBQOSEXUueVPyVG37sJzQpWKkjmti-iUcEI0Wvuc66ZwZQUMp1wQPj1640ZlciyQcWmmELSfZjCYQYOZXBkw2IJku7N-D8ocB47_iFbdHYu62qkB0GZGtJlDaFsQNWHCjBRloB4wVHvg8m8nCBl4g3FbxnZhvd2YAhikKhWsngvybIDU7iY5E7j1CT1qBrbZLOY9XfsjqYRLhXJ4-Yv_Me2X5B5OBf-lM_6KHPXX2_AayFjfvEnv3R8VNjQr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXxJvlJSNxQ0FJ7NjxAaHwqCqk7YG2Um-W48c2sM22u1mJ_gT-NTNOsrA8VInj2ok38Yw9n2PP9xHyMkAYSx0sS4It04QLxxJjjUusKDHv2jPOMFF4eiD2j_mnk-Jkh4yarUMHrv66tEM9qePl_PW3i8u3MODf_DyrZf186ZF9MlORipOza-Q6xCaJmgbTAfD3czNynOFWc57jWa6cyzGf7h8NbcWrSOu_Fbb-hKW_n678JVzt3Sa3BpxJq94x7pAd394lN3rlyct75Dt6QNegGr3z9HNTL1C2k1brWUx5owALaTXzjsaP_PTwK0Qn6CE6Xa-gOXpQfXhFp1BSQ3tnnprWURQBgUmHxugX5yJMeI5VVds1CXQueN9Z3NWnh82spxRd3SdHex-P3u8ngypDYgtVdElRW1HkKffWmKw0jrEAdhZZyFwmZZYHxgolsMxICXeIYMFNcgtgI6jUsAdkt120_hGhUgaRWaXyYCW3nNdKuZSpOrdFCcinmBA2dr22A2M5CmfM9Xg07YvuDabRYDqVGgw2IcnmrvOeseOK69-hVTfXIt92LFgsZ3oYvloqq3xwWVobxY1ihplS5saYIHgNa74JkaNP6AG69JAEmmqu-PsXowtpGNm4XWNav1ivdA7IUhYSZtUJedi71OYhWcZxSxRq5Jazbb3Fdk3bnEb2cCGRJi99_N9P_ITcxF_4YT1jT8lut1z7Z4DMuvp5HGw_AH4cOQ8
  priority: 102
  providerName: Scholars Portal
Title Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD+ Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures
URI https://dx.doi.org/10.1016/j.celrep.2019.07.043
https://www.ncbi.nlm.nih.gov/pubmed/31412242
https://www.proquest.com/docview/2273757042
https://pubmed.ncbi.nlm.nih.gov/PMC6702140
https://doaj.org/article/79c9efd10ba94a93a3a872aaaf64b487
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQbzpAisjcUNR49ix42N2YbVC6h7oIvVmOY5dArvpqk0P_AT-NTNOUhE4rMSlUv2qm_kyM37MN4S8D2DG0hqWJcEVaSJkzRPrbJ04WWDcteeCY6Dw4kpefhWfV_nqiJyPsTB4rXLQ_b1Oj9p6KJkPT3N-1zTzZQZrF7BOClwQJIFDTlAuihjEtzo77LMg3wiL-RCxfYIdxgi6eM3L-ZutR-JKpiOLp-ATCxWJ_CeG6l9H9O_7lH8YqIvH5NHgWdKyn_wTcuTbp-RBn2vy5zPyC2XeNZh_vvb0S1NtMFEnLffrGORGwRGk5drXNG7r0-UPsEfgmNPFfgfD0avy4we6gJIKxrv11LY1xbQfoGZotHdR-2CIc6wq265JALyAt9t4jk-XzbonEd09J9cXn67PL5MhD0Picp13SV45mWep8M5aVtia8wCSlSywminFssB5riWWWaWghwwOgJE5cC-CTi1_QY7bTetfEapUkMxpnQWnhBOi0rpOua4ylxfg6-QzwsdHb9zAUY6pMm7MeBntu-kFZlBgJlUGBDYjyaHXXc_RcU_7M5TqoS0ybMeCzXZtBogZpZ32oWZpZbWwmltuC5VZa4MUFazyZkSNmDATwMJQzT0__26EkIF3GQ9obOs3-53JwJdUuQI9OiMve0gdJsmZwENQqFETsE3-xbSmbb5FvnCpkBgvPfnvGb8mD_EbbqUz_oYcd9u9fwu-WFedxj2M0_jKwedCFL8BVrw2Tw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiOdSnkaCE4oax05cHzhkWVYtu-2BFqk3y3GcEthNV30I7U_g7_ALmXGSisBhJaS92onjeMbzsGe-IeRNAWoszMEtKewgDESS88BYkwc2GWDeteOCY6LweJIMv4hP83i-R361uTAYVtnI_lqme2ndtPSb1exflGV_GoHvAtpJggmCIHCiiaw8cZc_wG9bvx8dAZHfRtHxx9mHYdCUFghsrOJNEGc2iaNQOGsMG5ic8wImm7CC5UxKFhWcxyrBNiMlvJEUFv41sqAxCxUaDsPeIDfB-JAoDEbzw925DuKbMF9_EecX4ATbjD0fVmbd2cohUCZTHjVU8I5G9IUDOorxX8P37_jNPxTi8T1yt7FkaVov1n2y56oH5FZd2_LyIfmJPLYpsd597ujnMltiYVCabhc-qY6C4UnThcupv0ag0--g_8ARoOPtGoajk_ToHR1DSwbjnTtqqpximREQa9TrVy_tMKXad6XVpgxgswB_n_u4ATotFzVo6foRmV0HcR6T_WpZuSeESlkkzCoVFVYKK0SmVB5ylUU2HoBtFfcIb5de2wYTHUtznOk2-O2brgmmkWA6lBoI1iPB7q2LGhPkiucPkaq7ZxHR2zcsVwvdsLSWyipX5CzMjBJGccPNQEbGmCIRGXiVPSJbntCdDQJDlVd8_nXLQhpkB14Imcott2sdge0qYwlyu0cOapbaTZIzgZeu0CM7zNb5i25PVX71-OSJRCC-8Ol_z_gVuT2cjU_16Why8ozcwR48xmf8OdnfrLbuBdiBm-yl33iU6Gve6L8BbENx4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nicotinamide+Riboside+Augments+the+Aged+Human+Skeletal+Muscle+NAD%2B+Metabolome+and+Induces+Transcriptomic+and+Anti-inflammatory+Signatures&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Elhassan%2C+Yasir+S.&rft.au=Kluckova%2C+Katarina&rft.au=Fletcher%2C+Rachel+S.&rft.au=Schmidt%2C+Mark+S.&rft.date=2019-08-13&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=7&rft.spage=1717&rft.epage=1728.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.07.043&rft.externalDocID=S2211124719309404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon