Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD+ Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures
Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether...
Saved in:
Published in | Cell reports (Cambridge) Vol. 28; no. 7; pp. 1717 - 1728.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.08.2019
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.
[Display omitted]
•NR supplementation in aged subjects augments the skeletal muscle NAD+ metabolome•NR supplementation does not affect skeletal muscle mitochondrial bioenergetics•NR supplementation reduces levels of circulating inflammatory cytokines
Elhassan et al. show that oral nicotinamide riboside increases the NAD+ metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted. |
---|---|
AbstractList | Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.
[Display omitted]
•NR supplementation in aged subjects augments the skeletal muscle NAD+ metabolome•NR supplementation does not affect skeletal muscle mitochondrial bioenergetics•NR supplementation reduces levels of circulating inflammatory cytokines
Elhassan et al. show that oral nicotinamide riboside increases the NAD+ metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted. Nicotinamide adenine dinucleotide (NAD ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. Nicotinamide adenine dinucleotide (NAD + ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD + metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD + metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. • NR supplementation in aged subjects augments the skeletal muscle NAD + metabolome • NR supplementation does not affect skeletal muscle mitochondrial bioenergetics • NR supplementation reduces levels of circulating inflammatory cytokines Elhassan et al. show that oral nicotinamide riboside increases the NAD + metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted. Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. : Elhassan et al. show that oral nicotinamide riboside increases the NAD+ metabolome in aged human skeletal muscle, without apparently altering mitochondrial bioenergetics. Measures of muscle and whole-body metabolism are also unchanged. Nicotinamide riboside reduces the levels of circulating inflammatory cytokines. Studies in relevant human disease models are warranted. Keywords: nicotinamide adenine dinucleotide, metabolism, aging, inflammation, cell adhesion Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR.Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but human data are sparse. Nicotinamide riboside (NR) supplementation ameliorates metabolic dysfunction in rodents. We aimed to establish whether oral NR supplementation in aged participants can increase the skeletal muscle NAD+ metabolome and if it can alter muscle mitochondrial bioenergetics. We supplemented 12 aged men with 1 g NR per day for 21 days in a placebo-controlled, randomized, double-blind, crossover trial. Targeted metabolomics showed that NR elevated the muscle NAD+ metabolome, evident by increased nicotinic acid adenine dinucleotide and nicotinamide clearance products. Muscle RNA sequencing revealed NR-mediated downregulation of energy metabolism and mitochondria pathways, without altering mitochondrial bioenergetics. NR also depressed levels of circulating inflammatory cytokines. Our data establish that oral NR is available to aged human muscle and identify anti-inflammatory effects of NR. |
Author | Tennant, Daniel A. Cartwright, David M. Lavery, Gareth G. Oakey, Lucy Manolopoulos, Konstantinos N. Kluckova, Katarina Jenkinson, Ned Akerman, Ildem Wallis, Gareth A. Philp, Andrew Wilson, Martin Garten, Antje Lucas, Samuel J.E. Seabright, Alex Elhassan, Yasir S. Doig, Craig L. Burley, Claire V. Fletcher, Rachel S. Lai, Yu-Chiang Schmidt, Mark S. Nightingale, Peter Brenner, Charles |
AuthorAffiliation | 6 Centre for Human Brain Health, University of Birmingham, Birmingham, UK 2 Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK 3 MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK 4 Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA 8 Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK 9 Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia 7 School of Psychology, University of Birmingham, Birmingham, UK 10 Faculty of Medicine, St. Vincent’s Clinical School, Sydney, UNSW, Australia 5 School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK 1 Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK |
AuthorAffiliation_xml | – name: 4 Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA – name: 2 Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK – name: 7 School of Psychology, University of Birmingham, Birmingham, UK – name: 1 Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – name: 9 Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia – name: 8 Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK – name: 5 School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – name: 10 Faculty of Medicine, St. Vincent’s Clinical School, Sydney, UNSW, Australia – name: 3 MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK – name: 6 Centre for Human Brain Health, University of Birmingham, Birmingham, UK |
Author_xml | – sequence: 1 givenname: Yasir S. surname: Elhassan fullname: Elhassan, Yasir S. organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 2 givenname: Katarina surname: Kluckova fullname: Kluckova, Katarina organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 3 givenname: Rachel S. surname: Fletcher fullname: Fletcher, Rachel S. organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 4 givenname: Mark S. surname: Schmidt fullname: Schmidt, Mark S. organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA – sequence: 5 givenname: Antje surname: Garten fullname: Garten, Antje organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 6 givenname: Craig L. surname: Doig fullname: Doig, Craig L. organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 7 givenname: David M. surname: Cartwright fullname: Cartwright, David M. organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 8 givenname: Lucy surname: Oakey fullname: Oakey, Lucy organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 9 givenname: Claire V. surname: Burley fullname: Burley, Claire V. organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 10 givenname: Ned surname: Jenkinson fullname: Jenkinson, Ned organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 11 givenname: Martin surname: Wilson fullname: Wilson, Martin organization: Centre for Human Brain Health, University of Birmingham, Birmingham, UK – sequence: 12 givenname: Samuel J.E. surname: Lucas fullname: Lucas, Samuel J.E. organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 13 givenname: Ildem surname: Akerman fullname: Akerman, Ildem organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 14 givenname: Alex surname: Seabright fullname: Seabright, Alex organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 15 givenname: Yu-Chiang surname: Lai fullname: Lai, Yu-Chiang organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 16 givenname: Daniel A. surname: Tennant fullname: Tennant, Daniel A. organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 17 givenname: Peter surname: Nightingale fullname: Nightingale, Peter organization: Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK – sequence: 18 givenname: Gareth A. surname: Wallis fullname: Wallis, Gareth A. organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 19 givenname: Konstantinos N. surname: Manolopoulos fullname: Manolopoulos, Konstantinos N. organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK – sequence: 20 givenname: Charles surname: Brenner fullname: Brenner, Charles organization: Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA – sequence: 21 givenname: Andrew surname: Philp fullname: Philp, Andrew organization: School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK – sequence: 22 givenname: Gareth G. surname: Lavery fullname: Lavery, Gareth G. email: g.g.lavery@bham.ac.uk organization: Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31412242$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1uEzEQx1eoiH7QN0DIRySUYHu96ywHpKgUGqktEs3dmvWOU4ddO9jeSn0E3hqnSVHLAXzxeGb-v5Fn5rg4cN5hUbxhdMooqz-spxr7gJspp6yZUjmlonxRHHHO2IRxIQ-e2IfFaYxrmk9NGWvEq-KwZIJxLvhR8evaap-sg8F2SL7b1setMR9XA7oUSbrNjxV25GIcwJGbH9hjgp5cjVH3SK7nn9-Tq-xpfe8HJOA6snDdqDGSZQAXdbCb5AerH0Jzl-zEOtPDMEDy4Z7c2JWDNAaMr4uXBvqIp_v7pFh-OV-eXUwuv31dnM0vJ7pqqjSpWl1XnArUAGwGXVkao2c1M6xjUjJuyrJq6q0PpMyK2mjUmmtKZ6ahUJ4Uix2287BWm2AHCPfKg1UPDh9WCkKy-XNKNrpB0zHaQiOgKaGEmeQAYGrRipnMrE871mZsB-x07liA_hn0ecTZW7Xyd6qWlDNBM-DdHhD8zxFjUoONebI9OPRjVJzLUlaSCp5T3z6t9afI4yhzwsddgg4-xoBGaZsgWb8tbXvFqNqujlqr3eqo7eooKlVenSwWf4kf-f-R7RuAeWB3FoOK2qLT2NmAOuWW2n8DfgMPZeJY |
CitedBy_id | crossref_primary_10_1172_JCI185054 crossref_primary_10_2139_ssrn_4064493 crossref_primary_10_1002_crt2_56 crossref_primary_10_1073_pnas_2011226118 crossref_primary_10_1152_physrev_00046_2020 crossref_primary_10_1038_s41580_020_00313_x crossref_primary_10_3390_ph13090247 crossref_primary_10_1007_s11357_025_01606_9 crossref_primary_10_29328_journal_jnnd_1001101 crossref_primary_10_3389_fnut_2021_758058 crossref_primary_10_1042_BSR20230595 crossref_primary_10_1016_j_cmet_2022_02_001 crossref_primary_10_1093_jn_nxab193 crossref_primary_10_1016_j_gendis_2021_04_001 crossref_primary_10_3389_fcell_2022_841523 crossref_primary_10_1007_s12035_020_02188_7 crossref_primary_10_1016_j_bbrc_2024_149590 crossref_primary_10_1007_s10753_024_02171_7 crossref_primary_10_1002_advs_202101222 crossref_primary_10_1167_tvst_13_3_24 crossref_primary_10_1021_acs_chemrestox_3c00312 crossref_primary_10_1002_agm2_12184 crossref_primary_10_1007_s40279_024_02072_7 crossref_primary_10_1007_s11914_023_00820_8 crossref_primary_10_1080_19390211_2021_1881686 crossref_primary_10_3390_biomedicines9081000 crossref_primary_10_1016_j_cmet_2021_04_003 crossref_primary_10_1242_dmm_049279 crossref_primary_10_3390_cells11101654 crossref_primary_10_3389_fragi_2021_708918 crossref_primary_10_1126_science_abj1696 crossref_primary_10_1111_phpp_12961 crossref_primary_10_3389_fphys_2021_702276 crossref_primary_10_1055_a_2382_6829 crossref_primary_10_1167_iovs_61_10_47 crossref_primary_10_1038_s41467_019_13694_1 crossref_primary_10_3390_cimb46020082 crossref_primary_10_1016_j_canlet_2021_05_014 crossref_primary_10_1161_CIRCULATIONAHA_121_056589 crossref_primary_10_1080_21623945_2024_2313297 crossref_primary_10_3389_fnut_2022_868640 crossref_primary_10_1186_s13578_023_01031_5 crossref_primary_10_3390_ijms21197182 crossref_primary_10_1016_j_smim_2023_101834 crossref_primary_10_1038_s43587_022_00191_2 crossref_primary_10_3390_ijms232416085 crossref_primary_10_1002_jcb_30522 crossref_primary_10_1016_j_tma_2020_04_002 crossref_primary_10_1097_QAD_0000000000003334 crossref_primary_10_3390_ijms23073652 crossref_primary_10_1016_j_jare_2024_07_010 crossref_primary_10_1007_s11357_023_00752_2 crossref_primary_10_1172_JCI138538 crossref_primary_10_4235_agmr_20_0092 crossref_primary_10_1038_s42255_021_00507_3 crossref_primary_10_1113_JP281428 crossref_primary_10_3143_geriatrics_57_213 crossref_primary_10_1002_hep4_1530 crossref_primary_10_1016_j_psj_2023_102762 crossref_primary_10_1039_D3NJ00488K crossref_primary_10_1016_j_envres_2021_111997 crossref_primary_10_1126_science_aax0860 crossref_primary_10_1101_cshperspect_a041193 crossref_primary_10_1177_1091581820927406 crossref_primary_10_1016_j_cbi_2022_110294 crossref_primary_10_1155_2020_8819627 crossref_primary_10_3390_antiox14010039 crossref_primary_10_1089_ars_2023_0354 crossref_primary_10_1186_s13578_021_00740_z crossref_primary_10_1038_s41580_024_00752_w crossref_primary_10_3389_fragi_2022_820215 crossref_primary_10_1038_s41420_023_01420_2 crossref_primary_10_1016_j_jphs_2023_04_001 crossref_primary_10_3390_ijms232113096 crossref_primary_10_1016_j_isci_2021_103635 crossref_primary_10_1016_j_mad_2021_111569 crossref_primary_10_1515_teb_2024_0030 crossref_primary_10_1093_ajcn_nqaa072 crossref_primary_10_1016_j_cbi_2024_111118 crossref_primary_10_1111_jdi_13303 crossref_primary_10_1038_s41573_020_0067_7 crossref_primary_10_3390_ijms22073709 crossref_primary_10_3390_jcm12216920 crossref_primary_10_3390_biom10030396 crossref_primary_10_1007_s00018_022_04499_5 crossref_primary_10_1007_s40279_022_01772_2 crossref_primary_10_1016_j_jbc_2025_108248 crossref_primary_10_1016_j_fbio_2023_103126 crossref_primary_10_1093_jas_skab186 crossref_primary_10_1177_0271678X21992625 crossref_primary_10_3390_nu15010174 crossref_primary_10_3389_fnagi_2024_1503336 crossref_primary_10_1007_s00011_024_01863_y crossref_primary_10_1016_j_lfs_2020_118596 crossref_primary_10_1002_art_42528 crossref_primary_10_1038_s44320_024_00027_8 crossref_primary_10_1016_j_arr_2023_102106 crossref_primary_10_1016_j_metabol_2021_154923 crossref_primary_10_18632_aging_102988 crossref_primary_10_1152_ajpendo_00242_2023 crossref_primary_10_18632_aging_202525 crossref_primary_10_3389_fnagi_2022_993615 crossref_primary_10_1161_CIRCRESAHA_121_319308 crossref_primary_10_1038_s43587_024_00758_1 crossref_primary_10_1016_j_bcp_2020_113905 crossref_primary_10_1021_acs_jmedchem_3c02112 crossref_primary_10_1016_j_expneurol_2020_113219 crossref_primary_10_1016_j_freeradbiomed_2022_04_004 crossref_primary_10_3390_metabo13010125 crossref_primary_10_1111_acel_13920 crossref_primary_10_1016_j_foodres_2023_112560 crossref_primary_10_3390_nu12061616 crossref_primary_10_1038_s41467_024_49092_5 crossref_primary_10_3390_metabo12070630 crossref_primary_10_1038_s41598_020_73984_3 crossref_primary_10_1016_j_freeradbiomed_2024_09_036 crossref_primary_10_1007_s12015_024_10747_x crossref_primary_10_1016_j_tibs_2020_05_010 crossref_primary_10_1089_jmf_2020_0105 crossref_primary_10_1186_s10020_021_00376_2 crossref_primary_10_1126_sciadv_adr1538 crossref_primary_10_3389_fendo_2021_815565 crossref_primary_10_3389_fnut_2021_648893 crossref_primary_10_1038_s41598_022_23446_9 crossref_primary_10_1002_fft2_511 crossref_primary_10_1038_s43587_022_00174_3 crossref_primary_10_17816_MAJ89964 crossref_primary_10_1016_j_bcp_2022_114946 crossref_primary_10_1097_PRS_0000000000009673 crossref_primary_10_1016_j_biopha_2020_110928 crossref_primary_10_1007_s13668_023_00475_y crossref_primary_10_1016_j_bcp_2020_114346 crossref_primary_10_1002_advs_202404753 crossref_primary_10_1016_j_tem_2024_08_004 crossref_primary_10_1074_jbc_RA120_015138 crossref_primary_10_1038_s41514_023_00106_4 crossref_primary_10_1038_s41514_021_00078_3 crossref_primary_10_1016_j_cmet_2020_04_008 crossref_primary_10_1016_j_jacbts_2022_06_012 crossref_primary_10_1016_j_fbio_2025_106322 crossref_primary_10_3390_biom14080909 crossref_primary_10_3389_fnut_2024_1359176 crossref_primary_10_7554_eLife_65443 crossref_primary_10_3390_nu15061494 crossref_primary_10_1111_jnc_15367 crossref_primary_10_1002_mog2_61 crossref_primary_10_1016_j_exger_2020_110831 crossref_primary_10_3389_fnut_2021_717343 crossref_primary_10_1007_s40256_024_00711_y crossref_primary_10_1016_j_drudis_2020_06_016 crossref_primary_10_1016_j_isci_2023_106278 crossref_primary_10_1007_s11010_022_04408_1 crossref_primary_10_26508_lsa_202302505 crossref_primary_10_1113_JP280825 crossref_primary_10_1002_pbc_31369 crossref_primary_10_1016_j_mad_2021_111499 crossref_primary_10_2215_CJN_0000000624 crossref_primary_10_1126_science_abe9985 crossref_primary_10_3390_antiox11091637 crossref_primary_10_1038_s42255_019_0161_5 crossref_primary_10_1016_j_cell_2020_11_034 crossref_primary_10_1093_gerona_glad106 crossref_primary_10_1093_noajnl_vdac101 crossref_primary_10_1016_j_mad_2019_111194 crossref_primary_10_3389_fcvm_2021_716989 crossref_primary_10_1002_1878_0261_13261 crossref_primary_10_3389_fcvm_2022_861442 crossref_primary_10_1016_j_heliyon_2024_e36470 crossref_primary_10_1113_JP278752 crossref_primary_10_1002_stem_3234 crossref_primary_10_1186_s12979_023_00398_w crossref_primary_10_1016_j_freeradbiomed_2020_05_003 crossref_primary_10_1113_JP279280 crossref_primary_10_1093_gerona_glac003 crossref_primary_10_1097_COH_0000000000000607 crossref_primary_10_1016_j_arr_2024_102400 crossref_primary_10_1016_j_xcrm_2022_100633 crossref_primary_10_3390_medicina61020254 crossref_primary_10_3390_ruminants4030024 crossref_primary_10_1016_j_athplu_2024_06_001 crossref_primary_10_1016_j_tcb_2023_02_004 crossref_primary_10_3803_EnM_2020_405 crossref_primary_10_1016_j_biopha_2022_113071 crossref_primary_10_3390_molecules28166078 crossref_primary_10_1038_s41514_023_00134_0 crossref_primary_10_1096_fj_202200369R crossref_primary_10_1016_j_neures_2023_01_004 crossref_primary_10_1007_s11892_024_01557_z crossref_primary_10_1007_s40520_022_02203_y crossref_primary_10_1016_j_bbadis_2024_167038 crossref_primary_10_1016_j_ajhg_2024_07_005 crossref_primary_10_3389_fcell_2024_1464815 crossref_primary_10_1210_endrev_bnad019 crossref_primary_10_3389_fphar_2022_805266 crossref_primary_10_3390_ijms25126793 crossref_primary_10_1093_ajcn_nqaa109 crossref_primary_10_1080_10717544_2021_1886198 crossref_primary_10_1016_j_nutres_2024_10_006 crossref_primary_10_1016_j_yjmcc_2024_07_008 crossref_primary_10_12997_jla_2022_11_2_111 crossref_primary_10_1007_s11357_023_00999_9 crossref_primary_10_1113_JP279749 crossref_primary_10_3390_cells9010082 crossref_primary_10_3389_fphys_2021_755060 crossref_primary_10_1016_j_bone_2025_117411 crossref_primary_10_1097_QAI_0000000000002852 crossref_primary_10_3390_nu14193889 crossref_primary_10_3390_antiox12101849 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_3389_fphys_2022_1097988 crossref_primary_10_1172_jci_insight_158314 crossref_primary_10_1016_j_cmet_2022_11_004 crossref_primary_10_1016_j_phymed_2023_154768 crossref_primary_10_1096_fj_202001826R crossref_primary_10_3389_fmolb_2021_697359 crossref_primary_10_1002_advs_202305927 crossref_primary_10_1002_mrm_30227 crossref_primary_10_1126_sciadv_adi4862 crossref_primary_10_15252_emmm_202113943 crossref_primary_10_1038_s41514_025_00192_6 crossref_primary_10_1016_j_tma_2021_09_001 crossref_primary_10_1016_j_arr_2024_102213 crossref_primary_10_1007_s00394_024_03425_8 crossref_primary_10_1016_j_mito_2024_101905 crossref_primary_10_1038_s42255_024_00997_x crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1038_s41467_021_27080_3 crossref_primary_10_3390_nu15214520 crossref_primary_10_3390_nu14153130 crossref_primary_10_1016_j_advnut_2023_08_008 crossref_primary_10_1016_j_exger_2020_110888 crossref_primary_10_1038_s41598_023_29607_8 crossref_primary_10_1167_iovs_63_1_38 crossref_primary_10_1186_s13395_019_0216_z crossref_primary_10_1111_apha_13551 crossref_primary_10_3390_nu14010101 crossref_primary_10_1111_jnc_16032 crossref_primary_10_1113_JP280908 crossref_primary_10_1172_jci_insight_167274 crossref_primary_10_3389_fphys_2021_693067 crossref_primary_10_1093_gerona_glac049 crossref_primary_10_1016_j_freeradbiomed_2021_12_008 crossref_primary_10_3390_nu14112259 crossref_primary_10_1172_jci_insight_145346 crossref_primary_10_1016_j_celrep_2024_114379 crossref_primary_10_1016_j_bbi_2024_11_004 crossref_primary_10_1016_j_exger_2020_110972 crossref_primary_10_18632_aging_103344 crossref_primary_10_1016_j_metabol_2023_155637 crossref_primary_10_1038_s41514_022_00084_z crossref_primary_10_1038_s41591_023_02793_8 crossref_primary_10_1016_j_arr_2024_102475 crossref_primary_10_1126_sciadv_add5163 crossref_primary_10_3390_biom14121556 crossref_primary_10_4049_jimmunol_2300693 crossref_primary_10_1016_j_xcrm_2023_101157 crossref_primary_10_1155_2022_4759963 crossref_primary_10_1097_HNP_0000000000000461 crossref_primary_10_1016_j_exger_2023_112109 crossref_primary_10_1186_s12885_022_09845_1 crossref_primary_10_3390_molecules30071437 crossref_primary_10_1016_j_freeradbiomed_2023_05_032 crossref_primary_10_1172_JCI139828 crossref_primary_10_3390_cells10020460 crossref_primary_10_1042_BSR20202856 crossref_primary_10_1186_s12970_021_00442_4 crossref_primary_10_3389_fragi_2023_1202152 crossref_primary_10_1016_j_biopha_2023_115519 crossref_primary_10_1016_j_isci_2022_103863 crossref_primary_10_1016_j_it_2022_02_001 crossref_primary_10_18632_aging_103218 crossref_primary_10_1093_cvr_cvab212 crossref_primary_10_3390_geriatrics6020037 crossref_primary_10_1210_clinem_dgad027 crossref_primary_10_1186_s12917_024_03945_9 crossref_primary_10_1038_s41467_023_43514_6 crossref_primary_10_1186_s12882_020_02006_1 crossref_primary_10_3390_cells11040710 crossref_primary_10_1093_gerona_glad034 crossref_primary_10_3390_nu15133064 |
Cites_doi | 10.1016/j.cell.2013.11.037 10.1186/s13728-015-0027-8 10.5936/csbj.201301012 10.1016/j.cels.2015.12.004 10.1016/j.cmet.2016.05.006 10.1038/ncomms13103 10.1016/j.cmet.2016.09.013 10.1093/oxfordjournals.bmb.a070026 10.1038/ejcn.2016.73 10.1016/j.cmet.2014.11.003 10.1126/scitranslmed.aaf5504 10.1093/ajcn/nqy132 10.1038/ng1180 10.1016/j.arr.2010.11.002 10.1021/jm701001c 10.1002/jlcr.617 10.1016/j.ydbio.2010.05.513 10.1016/j.cmet.2012.04.022 10.1016/j.cmet.2017.11.002 10.1002/hep.28245 10.1113/jphysiol.2012.230185 10.1007/s00125-014-3490-7 10.1093/ageing/afy169 10.1371/journal.pone.0042357 10.2337/db06-0822 10.1074/jbc.R200022200 10.1126/science.aaf2693 10.1016/j.molmet.2017.05.011 10.1073/pnas.1603023113 10.3389/fimmu.2018.01593 10.1038/s41467-018-03421-7 10.2337/db08-0391 10.1016/j.stem.2019.02.012 10.1016/j.cell.2013.06.016 10.1371/journal.pone.0186459 10.11005/jbm.2013.20.1.1 10.1007/s00394-019-01919-4 10.1016/j.neurobiolaging.2015.03.012 10.1146/annurev.nutr.28.061807.155443 10.1016/j.cell.2018.02.008 10.1016/j.cmet.2016.07.005 10.1111/dom.12171 10.1016/j.cger.2015.04.001 10.1093/ageing/afq034 10.1016/B978-0-12-381510-1.00081-8 10.1210/jc.2015-1732 10.1007/978-1-61779-382-0_3 10.1096/fj.201700221RR 10.1038/s41598-019-46120-z 10.1371/journal.pone.0138564 10.1016/j.exger.2010.12.001 10.1161/CIRCULATIONAHA.116.026099 10.1038/srep26933 10.3945/ajcn.113.068122 10.1111/bph.13513 10.1016/j.molmed.2017.08.001 10.1016/j.cmet.2018.03.018 10.1016/S0092-8674(04)00416-7 10.1152/japplphysiol.00246.2003 10.1016/j.ymgme.2011.12.016 10.3109/00365517509095787 10.1073/pnas.0506580102 10.1371/journal.pone.0113637 10.1186/s13395-018-0154-1 10.1152/ajpendo.00318.2009 10.1016/S0531-5565(02)00203-6 10.1210/js.2017-00092 10.1038/ncomms12948 10.2337/db14-0667 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2019.07.043 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1728.e6 |
ExternalDocumentID | oai_doaj_org_article_79c9efd10ba94a93a3a872aaaf64b487 PMC6702140 31412242 10_1016_j_celrep_2019_07_043 S2211124719309404 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL147545 – fundername: Medical Research Council grantid: MC_PC_15032 – fundername: Arthritis Research UK – fundername: Wellcome Trust grantid: 104612/Z/14/Z |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-5bc65204ecaa18ad33ffc861f1d17712f33596ffc8a775956fcecc2c008f90a3 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:25:45 EDT 2025 Thu Aug 21 18:00:08 EDT 2025 Fri Jul 11 09:47:01 EDT 2025 Mon Jul 21 05:42:11 EDT 2025 Tue Jul 01 02:59:03 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Wed May 17 00:05:52 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | nicotinamide adenine dinucleotide metabolism aging inflammation cell adhesion |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-5bc65204ecaa18ad33ffc861f1d17712f33596ffc8a775956fcecc2c008f90a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124719309404 |
PMID | 31412242 |
PQID | 2273757042 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79c9efd10ba94a93a3a872aaaf64b487 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6702140 proquest_miscellaneous_2273757042 pubmed_primary_31412242 crossref_citationtrail_10_1016_j_celrep_2019_07_043 crossref_primary_10_1016_j_celrep_2019_07_043 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_07_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-13 |
PublicationDateYYYYMMDD | 2019-08-13 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Cell Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
References | Trammell, Schmidt, Weidemann, Redpath, Jaksch, Dellinger, Li, Abel, Migaud, Brenner (bib63) 2016; 7 Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander, Mesirov (bib61) 2005; 102 Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib27) 2013; 155 Diguet, Trammell, Tannous, Deloux, Piquereau, Mougenot, Gouge, Gressette, Manoury, Blanc (bib18) 2018; 137 Dollerup, Christensen, Svart, Schmidt, Sulek, Ringgaard, Stødkilde-Jørgensen, Møller, Brenner, Treebak, Jessen (bib20) 2018; 108 Liu, Su, Quinn, Hui, Krukenberg, Frederick, Redpath, Zhan, Chellappa, White (bib45) 2018; 27 Mayer (bib48) 2003; 278 Martens, Denman, Mazzo, Armstrong, Reisdorph, McQueen, Chonchol, Seals (bib46) 2018; 9 Wythe, Davies, Martin, Feelisch, Gilbert-Kawai (bib69) 2015; 4 Bieganowski, Brenner (bib5) 2004; 117 Chaleckis, Murakami, Takada, Kondoh, Yanagida (bib10) 2016; 113 Yoshino, Baur, Imai (bib71) 2018; 27 Fletcher, Ratajczak, Doig, Oakey, Callingham, Da Silva Xavier, Garten, Elhassan, Redpath, Migaud (bib24) 2017; 6 Frederick, Loro, Liu, Davila, Chellappa, Silverman, Quinn, Gosai, Tichy, Davis (bib25) 2016; 24 Cantó, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose (bib9) 2012; 15 Conze, Brenner, Kruger (bib12) 2019 Zhang, Ryu, Wu, Gariani, Wang, Luan, D’Amico, Ropelle, Lutolf, Aebersold (bib72) 2016; 352 Horscroft, Burgess, Hu, Murray (bib32) 2015; 10 Imai, Yoshino (bib35) 2013; 15 Brown, Maqsood, Huang, Pan, Harkcom, Li, Sauve, Verdin, Jaffrey (bib7) 2014; 20 Phielix, Schrauwen-Hinderling, Mensink, Lenaers, Meex, Hoeks, Kooi, Moonen-Kornips, Sels, Hesselink, Schrauwen (bib54) 2008; 57 Bergstrom (bib3) 1975; 35 Das, Huang, Bonkowski, Longchamp, Li, Schultz, Kim, Osborne, Joshi, Lu (bib17) 2018; 173 Larsen, Nielsen, Hansen, Nielsen, Wibrand, Stride, Schroder, Boushel, Helge, Dela, Hey-Mogensen (bib40) 2012; 590 Cruz-Jentoft, Baeyens, Bauer, Boirie, Cederholm, Landi, Martin, Michel, Rolland, Schneider (bib15) 2010; 39 Vaur, Brugg, Mericskay, Li, Schmidt, Vivien, Orset, Jacotot, Brenner, Duplus (bib67) 2017; 31 Goody, Henry (bib28) 2018; 8 Liu, Li, Chu, Zhu, Zhang, Yin, Jiang, Dai, Ju, Wang (bib44) 2015; 100 Mills, Yoshida, Stein, Grozio, Kubota, Sasaki, Redpath, Migaud, Apte, Uchida, et al (bib50) 2016 Zhou, Yang, Hua, Liu, Fan, Li, Song, Xu, Li, Guan (bib73) 2016; 173 Kołodziejska-Huben, Kamiński, Paneth (bib39) 2002 Camacho-Pereira, Tarragó, Chini, Nin, Escande, Warner, Puranik, Schoon, Reid, Galina, Chini (bib8) 2016; 23 Mootha, Lindgren, Eriksson, Subramanian, Sihag, Lehar, Puigserver, Carlsson, Ridderstråle, Laurila (bib51) 2003; 34 Clement, Wong, Poljak, Sachdev, Braidy (bib11) 2018 Kannt, Pfenninger, Teichert, Tönjes, Dietrich, Schön, Klöting, Blüher (bib37) 2015; 58 Covarrubias, Lopez-Dominguez, Perrone, Kale, Newman, Iyer, Schmidt, Kasler, Shin, Lee (bib14) 2019 Dolopikou, Kourtzidis, Margaritelis, Vrabas, Koidou, Kyparos, Theodorou, Paschalis, Nikolaidis (bib21) 2019 Lauretani, Russo, Bandinelli, Bartali, Cavazzini, Di Iorio, Corsi, Rantanen, Guralnik, Ferrucci (bib41) 2003; 95 Ryu, Zhang, Ropelle, Sorrentino, Mázala, Mouchiroud, Marshall, Campbell, Ali, Knowels (bib58) 2016; 8 Fang, Lautrup, Hou, Demarest, Croteau, Mattson, Bohr (bib23) 2017; 23 Liberzon, Birger, Thorvaldsdóttir, Ghandi, Mesirov, Tamayo (bib42) 2015; 1 Dodds, Syddall, Cooper, Benzeval, Deary, Dennison, Der, Gale, Inskip, Jagger (bib19) 2014; 9 Polzonetti, Carpi, Micozzi, Pucciarelli, Vincenzetti, Napolioni (bib55) 2012; 105 Massudi, Grant, Braidy, Guest, Farnsworth, Guillemin (bib47) 2012; 7 Elhassan, Philp, Lavery (bib22) 2017; 1 Winter, MacInnis, Wattanapenpaiboon, Nowson (bib68) 2014; 99 Bogan, Brenner (bib6) 2008; 28 Greenfield, Whitney, Mowbray (bib30) 1963; 19 Ratajczak, Joffraud, Trammell, Ras, Canela, Boutant, Kulkarni, Rodrigues, Redpath, Migaud (bib57) 2016; 7 Hagopian, Ramsey, Weindruch (bib31) 2003; 38 van de Weijer, Phielix, Bilet, Williams, Ropelle, Bierwagen, Livingstone, Nowotny, Sparks, Paglialunga (bib65) 2015; 64 Porter Starr, Bales (bib56) 2015; 31 Vannini, Campos, Girotra, Trachsel, Rojas-Sutterlin, Tratwal, Ragusa, Stefanidis, Ryu, Rainer (bib66) 2019; 24 Amici, Young, Narvaez-Miranda, Jablonski, Arcos, Rosas, Papenfuss, Torrelles, Jarjour, Guerau-de-Arellano (bib2) 2018; 9 Yang, Chan, Sauve (bib70) 2007 Sousa, Guerra, Fonseca, Pichel, Ferreira, Amaral (bib60) 2016; 70 Ingram, Roth (bib36) 2011; 46 Trammell, Weidemann, Chadda, Yorek, Holmes, Coppey, Obrosov, Kardon, Yorek, Brenner (bib64) 2016; 6 Trammell, Brenner (bib62) 2013 Bickerton, Roberts, Fielding, Hodson, Blaak, Wagenmakers, Gilbert, Karpe, Frayn (bib4) 2007; 56 Lin, Zhang, Gao, Watts (bib43) 2015; 36 Airhart, Shireman, Risler, Anderson, Nagana Gowda, Raftery, Tian, Shen, O’Brien (bib1) 2017; 12 Goody, Kelly, Lessard, Khalil, Henry (bib29) 2010; 344 Cruz-Jentoft, Bahat, Bauer, Boirie, Bruyère, Cederholm, Cooper, Landi, Rolland, Sayer (bib16) 2019; 48 Costford, Bajpeyi, Pasarica, Albarado, Thomas, Xie, Church, Jubrias, Conley, Smith (bib13) 2010; 298 Singh, Newman (bib59) 2011; 10 McNally (bib49) 2012 Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos (bib26) 2016; 63 Kim, Choi (bib38) 2013; 20 Mouchiroud, Houtkooper, Moullan, Katsyuba, Ryu, Cantó, Mottis, Jo, Viswanathan, Schoonjans (bib52) 2013; 154 Pesta, Gnaiger (bib53) 2012 Cantó (10.1016/j.celrep.2019.07.043_bib9) 2012; 15 Cruz-Jentoft (10.1016/j.celrep.2019.07.043_bib15) 2010; 39 Liu (10.1016/j.celrep.2019.07.043_bib44) 2015; 100 Goody (10.1016/j.celrep.2019.07.043_bib28) 2018; 8 Frederick (10.1016/j.celrep.2019.07.043_bib25) 2016; 24 Martens (10.1016/j.celrep.2019.07.043_bib46) 2018; 9 Mayer (10.1016/j.celrep.2019.07.043_bib48) 2003; 278 Phielix (10.1016/j.celrep.2019.07.043_bib54) 2008; 57 Ratajczak (10.1016/j.celrep.2019.07.043_bib57) 2016; 7 Clement (10.1016/j.celrep.2019.07.043_bib11) 2018; 22 Bogan (10.1016/j.celrep.2019.07.043_bib6) 2008; 28 Das (10.1016/j.celrep.2019.07.043_bib17) 2018; 173 Gariani (10.1016/j.celrep.2019.07.043_bib26) 2016; 63 Chaleckis (10.1016/j.celrep.2019.07.043_bib10) 2016; 113 Singh (10.1016/j.celrep.2019.07.043_bib59) 2011; 10 Bergstrom (10.1016/j.celrep.2019.07.043_bib3) 1975; 35 Massudi (10.1016/j.celrep.2019.07.043_bib47) 2012; 7 Trammell (10.1016/j.celrep.2019.07.043_bib64) 2016; 6 Larsen (10.1016/j.celrep.2019.07.043_bib40) 2012; 590 Zhou (10.1016/j.celrep.2019.07.043_bib73) 2016; 173 Zhang (10.1016/j.celrep.2019.07.043_bib72) 2016; 352 Amici (10.1016/j.celrep.2019.07.043_bib2) 2018; 9 Covarrubias (10.1016/j.celrep.2019.07.043_bib14) 2019 Horscroft (10.1016/j.celrep.2019.07.043_bib32) 2015; 10 Dodds (10.1016/j.celrep.2019.07.043_bib19) 2014; 9 Mootha (10.1016/j.celrep.2019.07.043_bib51) 2003; 34 Bickerton (10.1016/j.celrep.2019.07.043_bib4) 2007; 56 Lauretani (10.1016/j.celrep.2019.07.043_bib41) 2003; 95 Lin (10.1016/j.celrep.2019.07.043_bib43) 2015; 36 van de Weijer (10.1016/j.celrep.2019.07.043_bib65) 2015; 64 Diguet (10.1016/j.celrep.2019.07.043_bib18) 2018; 137 Cruz-Jentoft (10.1016/j.celrep.2019.07.043_bib16) 2019; 48 Imai (10.1016/j.celrep.2019.07.043_bib35) 2013; 15 Liu (10.1016/j.celrep.2019.07.043_bib45) 2018; 27 Vaur (10.1016/j.celrep.2019.07.043_bib67) 2017; 31 Fletcher (10.1016/j.celrep.2019.07.043_bib24) 2017; 6 Porter Starr (10.1016/j.celrep.2019.07.043_bib56) 2015; 31 McNally (10.1016/j.celrep.2019.07.043_bib49) 2012; 2 Kannt (10.1016/j.celrep.2019.07.043_bib37) 2015; 58 Elhassan (10.1016/j.celrep.2019.07.043_bib22) 2017; 1 Yang (10.1016/j.celrep.2019.07.043_bib70) 2007; 50 Greenfield (10.1016/j.celrep.2019.07.043_bib30) 1963; 19 Airhart (10.1016/j.celrep.2019.07.043_bib1) 2017; 12 Vannini (10.1016/j.celrep.2019.07.043_bib66) 2019; 24 Kołodziejska-Huben (10.1016/j.celrep.2019.07.043_bib39) 2002; 45 Hagopian (10.1016/j.celrep.2019.07.043_bib31) 2003; 38 Bieganowski (10.1016/j.celrep.2019.07.043_bib5) 2004; 117 Ingram (10.1016/j.celrep.2019.07.043_bib36) 2011; 46 Camacho-Pereira (10.1016/j.celrep.2019.07.043_bib8) 2016; 23 Brown (10.1016/j.celrep.2019.07.043_bib7) 2014; 20 Conze (10.1016/j.celrep.2019.07.043_bib12) 2019; 9 Pesta (10.1016/j.celrep.2019.07.043_bib53) 2012; 810 Mills (10.1016/j.celrep.2019.07.043_bib50) 2016; 24 Polzonetti (10.1016/j.celrep.2019.07.043_bib55) 2012; 105 Subramanian (10.1016/j.celrep.2019.07.043_bib61) 2005; 102 Kim (10.1016/j.celrep.2019.07.043_bib38) 2013; 20 Liberzon (10.1016/j.celrep.2019.07.043_bib42) 2015; 1 Winter (10.1016/j.celrep.2019.07.043_bib68) 2014; 99 Yoshino (10.1016/j.celrep.2019.07.043_bib71) 2018; 27 Trammell (10.1016/j.celrep.2019.07.043_bib62) 2013; 4 Dollerup (10.1016/j.celrep.2019.07.043_bib20) 2018; 108 Dolopikou (10.1016/j.celrep.2019.07.043_bib21) 2019 Ryu (10.1016/j.celrep.2019.07.043_bib58) 2016; 8 Fang (10.1016/j.celrep.2019.07.043_bib23) 2017; 23 Gomes (10.1016/j.celrep.2019.07.043_bib27) 2013; 155 Mouchiroud (10.1016/j.celrep.2019.07.043_bib52) 2013; 154 Trammell (10.1016/j.celrep.2019.07.043_bib63) 2016; 7 Wythe (10.1016/j.celrep.2019.07.043_bib69) 2015; 4 Sousa (10.1016/j.celrep.2019.07.043_bib60) 2016; 70 Costford (10.1016/j.celrep.2019.07.043_bib13) 2010; 298 Goody (10.1016/j.celrep.2019.07.043_bib29) 2010; 344 |
References_xml | – volume: 7 start-page: 13103 year: 2016 ident: bib57 article-title: NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells publication-title: Nat. Commun. – volume: 36 start-page: 2296 year: 2015 end-page: 2303 ident: bib43 article-title: Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain publication-title: Neurobiol. Aging – volume: 56 start-page: 168 year: 2007 end-page: 176 ident: bib4 article-title: Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period publication-title: Diabetes – volume: 344 start-page: 809 year: 2010 end-page: 826 ident: bib29 article-title: Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis publication-title: Dev. Biol. – start-page: 25 year: 2012 end-page: 58 ident: bib53 article-title: High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle publication-title: Methods Mol. Biol. – volume: 12 start-page: e0186459 year: 2017 ident: bib1 article-title: An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers publication-title: PLoS ONE – start-page: 9772 year: 2019 ident: bib12 article-title: Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults publication-title: Sci. Rep. – volume: 95 start-page: 1851 year: 2003 end-page: 1860 ident: bib41 article-title: Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia publication-title: J. Appl. Physiol. – volume: 58 start-page: 799 year: 2015 end-page: 808 ident: bib37 article-title: Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance publication-title: Diabetologia – year: 2019 ident: bib21 article-title: Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study publication-title: Eur. J. Nutr. – volume: 64 start-page: 1193 year: 2015 end-page: 1201 ident: bib65 article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans publication-title: Diabetes – volume: 48 start-page: 16 year: 2019 end-page: 31 ident: bib16 article-title: Sarcopenia: revised European consensus on definition and diagnosis publication-title: Age Ageing – volume: 155 start-page: 1624 year: 2013 end-page: 1638 ident: bib27 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell – volume: 100 start-page: 3112 year: 2015 end-page: 3117 ident: bib44 article-title: Serum N(1)-Methylnicotinamide Is Associated With Obesity and Diabetes in Chinese publication-title: J. Clin. Endocrinol. Metab. – volume: 8 start-page: 361ra139 year: 2016 ident: bib58 article-title: NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation publication-title: Sci. Transl. Med. – volume: 15 start-page: 838 year: 2012 end-page: 847 ident: bib9 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity publication-title: Cell Metab. – start-page: 1095 year: 2012 end-page: 1103 ident: bib49 article-title: Novel Targets and Approaches to Treating Skeletal Muscle Disease publication-title: Muscle – volume: 46 start-page: 148 year: 2011 end-page: 154 ident: bib36 article-title: Glycolytic inhibition as a strategy for developing calorie restriction mimetics publication-title: Exp. Gerontol. – volume: 57 start-page: 2943 year: 2008 end-page: 2949 ident: bib54 article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients publication-title: Diabetes – volume: 24 start-page: 405 year: 2019 end-page: 418.e7 ident: bib66 article-title: The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance publication-title: Cell Stem Cell – volume: 4 start-page: 8 year: 2015 ident: bib69 article-title: Getting the most from venous occlusion plethysmography: proposed methods for the analysis of data with a rest/exercise protocol publication-title: Extrem. Physiol. Med. – volume: 10 start-page: e0138564 year: 2015 ident: bib32 article-title: Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia publication-title: PLoS ONE – volume: 154 start-page: 430 year: 2013 end-page: 441 ident: bib52 article-title: The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling publication-title: Cell – start-page: 6458 year: 2007 end-page: 6461 ident: bib70 article-title: Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells publication-title: J. Med. Chem. – volume: 8 start-page: 9 year: 2018 ident: bib28 article-title: A need for NAD+ in muscle development, homeostasis, and aging publication-title: Skelet. Muscle – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: bib61 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA – volume: 173 start-page: 2352 year: 2016 end-page: 2368 ident: bib73 article-title: Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing publication-title: Br. J. Pharmacol. – start-page: 121 year: 2018 end-page: 130 ident: bib11 article-title: The Plasma NAD+ Metabolome is Dysregulated in “Normal” Ageing. Rejuvenation Res – volume: 35 start-page: 609 year: 1975 end-page: 616 ident: bib3 article-title: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research publication-title: Scand. J. Clin. Lab. Invest. – volume: 108 start-page: 343 year: 2018 end-page: 353 ident: bib20 article-title: A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects publication-title: Am. J. Clin. Nutr. – volume: 9 start-page: 1286 year: 2018 ident: bib46 article-title: Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD publication-title: Nat. Commun. – volume: 9 start-page: e113637 year: 2014 ident: bib19 article-title: Grip strength across the life course: normative data from twelve British studies publication-title: PLoS ONE – volume: 590 start-page: 3349 year: 2012 end-page: 3360 ident: bib40 article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects publication-title: J. Physiol. – volume: 10 start-page: 319 year: 2011 end-page: 329 ident: bib59 article-title: Inflammatory markers in population studies of aging publication-title: Ageing Res. Rev. – volume: 31 start-page: 311 year: 2015 end-page: 326 ident: bib56 article-title: Excessive Body Weight in Older Adults publication-title: Clin. Geriatr. Med. – volume: 7 start-page: 12948 year: 2016 ident: bib63 article-title: Nicotinamide riboside is uniquely and orally bioavailable in mice and humans publication-title: Nat. Commun. – volume: 38 start-page: 253 year: 2003 end-page: 266 ident: bib31 article-title: Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice publication-title: Exp. Gerontol. – volume: 34 start-page: 267 year: 2003 end-page: 273 ident: bib51 article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. Genet. – volume: 117 start-page: 495 year: 2004 end-page: 502 ident: bib5 article-title: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans publication-title: Cell – volume: 7 start-page: e42357 year: 2012 ident: bib47 article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue publication-title: PLoS ONE – year: 2019 ident: bib14 article-title: Aging-related inflammation driven by cellular senescence enhances NAD consumption via activation of CD38 + macrophages publication-title: bioRxiv – volume: 6 start-page: 819 year: 2017 end-page: 832 ident: bib24 article-title: Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells publication-title: Mol. Metab. – volume: 105 start-page: 502 year: 2012 end-page: 507 ident: bib55 article-title: Population variability in CD38 activity: correlation with age and significant effect of TNF-α -308G>A and CD38 184C>G SNPs publication-title: Mol. Genet. Metab. – volume: 20 start-page: 1059 year: 2014 end-page: 1068 ident: bib7 article-title: Activation of SIRT3 by the NAD publication-title: Cell Metab. – volume: 1 start-page: 417 year: 2015 end-page: 425 ident: bib42 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. – volume: 27 start-page: 513 year: 2018 end-page: 528 ident: bib71 article-title: NAD publication-title: Cell Metab. – volume: 1 start-page: 816 year: 2017 end-page: 835 ident: bib22 article-title: Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule publication-title: J Endocr Soc – volume: 23 start-page: 899 year: 2017 end-page: 916 ident: bib23 article-title: NAD publication-title: Trends Mol. Med. – volume: 31 start-page: 5440 year: 2017 end-page: 5452 ident: bib67 article-title: Nicotinamide riboside, a form of vitamin B publication-title: FASEB J. – volume: 173 start-page: 74 year: 2018 end-page: 89.e20 ident: bib17 article-title: Impairment of an Endothelial NAD publication-title: Cell – volume: 19 start-page: 101 year: 1963 end-page: 109 ident: bib30 article-title: Methods for the investigation of peripheral blood flow publication-title: Br. Med. Bull. – start-page: 795 year: 2016 end-page: 806 ident: bib50 article-title: Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice publication-title: Cell Metab. – volume: 113 start-page: 4252 year: 2016 end-page: 4259 ident: bib10 article-title: Individual variability in human blood metabolites identifies age-related differences publication-title: Proc. Natl. Acad. Sci. USA – volume: 70 start-page: 1046 year: 2016 end-page: 1051 ident: bib60 article-title: Financial impact of sarcopenia on hospitalization costs publication-title: Eur. J. Clin. Nutr. – volume: 23 start-page: 1127 year: 2016 end-page: 1139 ident: bib8 article-title: CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism publication-title: Cell Metab. – volume: 24 start-page: 269 year: 2016 end-page: 282 ident: bib25 article-title: Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle publication-title: Cell Metab. – volume: 9 start-page: 1593 year: 2018 ident: bib2 article-title: CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions publication-title: Front. Immunol. – volume: 278 start-page: 14587 year: 2003 end-page: 14590 ident: bib48 article-title: Integrins: redundant or important players in skeletal muscle? publication-title: J. Biol. Chem. – volume: 352 start-page: 1436 year: 2016 end-page: 1443 ident: bib72 article-title: NAD publication-title: Science – volume: 63 start-page: 1190 year: 2016 end-page: 1204 ident: bib26 article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice publication-title: Hepatology – volume: 20 start-page: 1 year: 2013 end-page: 10 ident: bib38 article-title: Sarcopenia: definition, epidemiology, and pathophysiology publication-title: J. Bone Metab. – year: 2013 ident: bib62 article-title: Targeted, LCMS-based metabolomics for quantitative measurement of metabolites publication-title: Comput. Struct. Biotechnol. J. – volume: 137 start-page: 2256 year: 2018 end-page: 2273 ident: bib18 article-title: Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy publication-title: Circulation – start-page: 1005 year: 2002 end-page: 1010 ident: bib39 article-title: Preparation of 18O-labelled nicotinamide publication-title: Journal of Labelled Compounds – volume: 27 start-page: 1067 year: 2018 end-page: 1080.e5 ident: bib45 article-title: Quantitative Analysis of NAD Synthesis-Breakdown Fluxes publication-title: Cell Metab. – volume: 99 start-page: 875 year: 2014 end-page: 890 ident: bib68 article-title: BMI and all-cause mortality in older adults: a meta-analysis publication-title: Am. J. Clin. Nutr. – volume: 298 start-page: E117 year: 2010 end-page: E126 ident: bib13 article-title: Skeletal muscle NAMPT is induced by exercise in humans publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 6 start-page: 26933 year: 2016 ident: bib64 article-title: Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice publication-title: Sci. Rep. – volume: 28 start-page: 115 year: 2008 end-page: 130 ident: bib6 article-title: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition publication-title: Annu. Rev. Nutr. – volume: 39 start-page: 412 year: 2010 end-page: 423 ident: bib15 article-title: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People publication-title: Age Ageing – volume: 15 start-page: 26 year: 2013 end-page: 33 ident: bib35 article-title: The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing publication-title: Diabetes Obes. Metab. – volume: 155 start-page: 1624 year: 2013 ident: 10.1016/j.celrep.2019.07.043_bib27 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell doi: 10.1016/j.cell.2013.11.037 – volume: 4 start-page: 8 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib69 article-title: Getting the most from venous occlusion plethysmography: proposed methods for the analysis of data with a rest/exercise protocol publication-title: Extrem. Physiol. Med. doi: 10.1186/s13728-015-0027-8 – volume: 4 year: 2013 ident: 10.1016/j.celrep.2019.07.043_bib62 article-title: Targeted, LCMS-based metabolomics for quantitative measurement of metabolites publication-title: Comput. Struct. Biotechnol. J. doi: 10.5936/csbj.201301012 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib42 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 23 start-page: 1127 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib8 article-title: CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.006 – volume: 7 start-page: 13103 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib57 article-title: NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells publication-title: Nat. Commun. doi: 10.1038/ncomms13103 – volume: 24 start-page: 795 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib50 article-title: Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.013 – volume: 19 start-page: 101 year: 1963 ident: 10.1016/j.celrep.2019.07.043_bib30 article-title: Methods for the investigation of peripheral blood flow publication-title: Br. Med. Bull. doi: 10.1093/oxfordjournals.bmb.a070026 – volume: 22 start-page: 121 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib11 – volume: 70 start-page: 1046 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib60 article-title: Financial impact of sarcopenia on hospitalization costs publication-title: Eur. J. Clin. Nutr. doi: 10.1038/ejcn.2016.73 – year: 2019 ident: 10.1016/j.celrep.2019.07.043_bib14 article-title: Aging-related inflammation driven by cellular senescence enhances NAD consumption via activation of CD38 + macrophages publication-title: bioRxiv – volume: 20 start-page: 1059 year: 2014 ident: 10.1016/j.celrep.2019.07.043_bib7 article-title: Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.11.003 – volume: 8 start-page: 361ra139 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib58 article-title: NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaf5504 – volume: 108 start-page: 343 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib20 article-title: A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqy132 – volume: 34 start-page: 267 year: 2003 ident: 10.1016/j.celrep.2019.07.043_bib51 article-title: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nat. Genet. doi: 10.1038/ng1180 – volume: 10 start-page: 319 year: 2011 ident: 10.1016/j.celrep.2019.07.043_bib59 article-title: Inflammatory markers in population studies of aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2010.11.002 – volume: 50 start-page: 6458 year: 2007 ident: 10.1016/j.celrep.2019.07.043_bib70 article-title: Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells publication-title: J. Med. Chem. doi: 10.1021/jm701001c – volume: 45 start-page: 1005 year: 2002 ident: 10.1016/j.celrep.2019.07.043_bib39 article-title: Preparation of 18O-labelled nicotinamide publication-title: Journal of Labelled Compounds doi: 10.1002/jlcr.617 – volume: 344 start-page: 809 year: 2010 ident: 10.1016/j.celrep.2019.07.043_bib29 article-title: Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo: Nrk2b and NAD+ in muscle morphogenesis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.05.513 – volume: 15 start-page: 838 year: 2012 ident: 10.1016/j.celrep.2019.07.043_bib9 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.022 – volume: 27 start-page: 513 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib71 article-title: NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.11.002 – volume: 63 start-page: 1190 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib26 article-title: Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice publication-title: Hepatology doi: 10.1002/hep.28245 – volume: 590 start-page: 3349 year: 2012 ident: 10.1016/j.celrep.2019.07.043_bib40 article-title: Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.230185 – volume: 58 start-page: 799 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib37 article-title: Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance publication-title: Diabetologia doi: 10.1007/s00125-014-3490-7 – volume: 48 start-page: 16 year: 2019 ident: 10.1016/j.celrep.2019.07.043_bib16 article-title: Sarcopenia: revised European consensus on definition and diagnosis publication-title: Age Ageing doi: 10.1093/ageing/afy169 – volume: 7 start-page: e42357 year: 2012 ident: 10.1016/j.celrep.2019.07.043_bib47 article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue publication-title: PLoS ONE doi: 10.1371/journal.pone.0042357 – volume: 56 start-page: 168 year: 2007 ident: 10.1016/j.celrep.2019.07.043_bib4 article-title: Preferential uptake of dietary Fatty acids in adipose tissue and muscle in the postprandial period publication-title: Diabetes doi: 10.2337/db06-0822 – volume: 278 start-page: 14587 year: 2003 ident: 10.1016/j.celrep.2019.07.043_bib48 article-title: Integrins: redundant or important players in skeletal muscle? publication-title: J. Biol. Chem. doi: 10.1074/jbc.R200022200 – volume: 352 start-page: 1436 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib72 article-title: NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice publication-title: Science doi: 10.1126/science.aaf2693 – volume: 6 start-page: 819 year: 2017 ident: 10.1016/j.celrep.2019.07.043_bib24 article-title: Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.05.011 – volume: 113 start-page: 4252 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib10 article-title: Individual variability in human blood metabolites identifies age-related differences publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1603023113 – volume: 9 start-page: 1593 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib2 article-title: CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01593 – volume: 9 start-page: 1286 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib46 article-title: Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults publication-title: Nat. Commun. doi: 10.1038/s41467-018-03421-7 – volume: 57 start-page: 2943 year: 2008 ident: 10.1016/j.celrep.2019.07.043_bib54 article-title: Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients publication-title: Diabetes doi: 10.2337/db08-0391 – volume: 24 start-page: 405 year: 2019 ident: 10.1016/j.celrep.2019.07.043_bib66 article-title: The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.02.012 – volume: 154 start-page: 430 year: 2013 ident: 10.1016/j.celrep.2019.07.043_bib52 article-title: The NAD(+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling publication-title: Cell doi: 10.1016/j.cell.2013.06.016 – volume: 12 start-page: e0186459 year: 2017 ident: 10.1016/j.celrep.2019.07.043_bib1 article-title: An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers publication-title: PLoS ONE doi: 10.1371/journal.pone.0186459 – volume: 20 start-page: 1 year: 2013 ident: 10.1016/j.celrep.2019.07.043_bib38 article-title: Sarcopenia: definition, epidemiology, and pathophysiology publication-title: J. Bone Metab. doi: 10.11005/jbm.2013.20.1.1 – year: 2019 ident: 10.1016/j.celrep.2019.07.043_bib21 article-title: Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study publication-title: Eur. J. Nutr. doi: 10.1007/s00394-019-01919-4 – volume: 36 start-page: 2296 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib43 article-title: Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.03.012 – volume: 28 start-page: 115 year: 2008 ident: 10.1016/j.celrep.2019.07.043_bib6 article-title: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.28.061807.155443 – volume: 173 start-page: 74 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib17 article-title: Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging publication-title: Cell doi: 10.1016/j.cell.2018.02.008 – volume: 24 start-page: 269 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib25 article-title: Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.07.005 – volume: 15 start-page: 26 year: 2013 ident: 10.1016/j.celrep.2019.07.043_bib35 article-title: The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.12171 – volume: 31 start-page: 311 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib56 article-title: Excessive Body Weight in Older Adults publication-title: Clin. Geriatr. Med. doi: 10.1016/j.cger.2015.04.001 – volume: 39 start-page: 412 year: 2010 ident: 10.1016/j.celrep.2019.07.043_bib15 article-title: Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People publication-title: Age Ageing doi: 10.1093/ageing/afq034 – volume: 2 start-page: 1095 year: 2012 ident: 10.1016/j.celrep.2019.07.043_bib49 article-title: Novel Targets and Approaches to Treating Skeletal Muscle Disease publication-title: Muscle doi: 10.1016/B978-0-12-381510-1.00081-8 – volume: 100 start-page: 3112 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib44 article-title: Serum N(1)-Methylnicotinamide Is Associated With Obesity and Diabetes in Chinese publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2015-1732 – volume: 810 start-page: 25 year: 2012 ident: 10.1016/j.celrep.2019.07.043_bib53 article-title: High-Resolution Respirometry: OXPHOS Protocols for Human Cells and Permeabilized Fibers from Small Biopsies of Human Muscle publication-title: Methods Mol. Biol. doi: 10.1007/978-1-61779-382-0_3 – volume: 31 start-page: 5440 year: 2017 ident: 10.1016/j.celrep.2019.07.043_bib67 article-title: Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration publication-title: FASEB J. doi: 10.1096/fj.201700221RR – volume: 9 start-page: 9772 year: 2019 ident: 10.1016/j.celrep.2019.07.043_bib12 article-title: Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults publication-title: Sci. Rep. doi: 10.1038/s41598-019-46120-z – volume: 10 start-page: e0138564 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib32 article-title: Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia publication-title: PLoS ONE doi: 10.1371/journal.pone.0138564 – volume: 46 start-page: 148 year: 2011 ident: 10.1016/j.celrep.2019.07.043_bib36 article-title: Glycolytic inhibition as a strategy for developing calorie restriction mimetics publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2010.12.001 – volume: 137 start-page: 2256 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib18 article-title: Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.026099 – volume: 6 start-page: 26933 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib64 article-title: Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice publication-title: Sci. Rep. doi: 10.1038/srep26933 – volume: 99 start-page: 875 year: 2014 ident: 10.1016/j.celrep.2019.07.043_bib68 article-title: BMI and all-cause mortality in older adults: a meta-analysis publication-title: Am. J. Clin. Nutr. doi: 10.3945/ajcn.113.068122 – volume: 173 start-page: 2352 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib73 article-title: Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13513 – volume: 23 start-page: 899 year: 2017 ident: 10.1016/j.celrep.2019.07.043_bib23 article-title: NAD+ in Aging: Molecular Mechanisms and Translational Implications publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2017.08.001 – volume: 27 start-page: 1067 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib45 article-title: Quantitative Analysis of NAD Synthesis-Breakdown Fluxes publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.03.018 – volume: 117 start-page: 495 year: 2004 ident: 10.1016/j.celrep.2019.07.043_bib5 article-title: Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans publication-title: Cell doi: 10.1016/S0092-8674(04)00416-7 – volume: 95 start-page: 1851 year: 2003 ident: 10.1016/j.celrep.2019.07.043_bib41 article-title: Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00246.2003 – volume: 105 start-page: 502 year: 2012 ident: 10.1016/j.celrep.2019.07.043_bib55 article-title: Population variability in CD38 activity: correlation with age and significant effect of TNF-α -308G>A and CD38 184C>G SNPs publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2011.12.016 – volume: 35 start-page: 609 year: 1975 ident: 10.1016/j.celrep.2019.07.043_bib3 article-title: Percutaneous needle biopsy of skeletal muscle in physiological and clinical research publication-title: Scand. J. Clin. Lab. Invest. doi: 10.3109/00365517509095787 – volume: 102 start-page: 15545 year: 2005 ident: 10.1016/j.celrep.2019.07.043_bib61 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0506580102 – volume: 9 start-page: e113637 year: 2014 ident: 10.1016/j.celrep.2019.07.043_bib19 article-title: Grip strength across the life course: normative data from twelve British studies publication-title: PLoS ONE doi: 10.1371/journal.pone.0113637 – volume: 8 start-page: 9 year: 2018 ident: 10.1016/j.celrep.2019.07.043_bib28 article-title: A need for NAD+ in muscle development, homeostasis, and aging publication-title: Skelet. Muscle doi: 10.1186/s13395-018-0154-1 – volume: 298 start-page: E117 year: 2010 ident: 10.1016/j.celrep.2019.07.043_bib13 article-title: Skeletal muscle NAMPT is induced by exercise in humans publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00318.2009 – volume: 38 start-page: 253 year: 2003 ident: 10.1016/j.celrep.2019.07.043_bib31 article-title: Influence of age and caloric restriction on liver glycolytic enzyme activities and metabolite concentrations in mice publication-title: Exp. Gerontol. doi: 10.1016/S0531-5565(02)00203-6 – volume: 1 start-page: 816 year: 2017 ident: 10.1016/j.celrep.2019.07.043_bib22 article-title: Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule publication-title: J Endocr Soc doi: 10.1210/js.2017-00092 – volume: 7 start-page: 12948 year: 2016 ident: 10.1016/j.celrep.2019.07.043_bib63 article-title: Nicotinamide riboside is uniquely and orally bioavailable in mice and humans publication-title: Nat. Commun. doi: 10.1038/ncomms12948 – volume: 64 start-page: 1193 year: 2015 ident: 10.1016/j.celrep.2019.07.043_bib65 article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans publication-title: Diabetes doi: 10.2337/db14-0667 |
SSID | ssj0000601194 |
Score | 2.6420321 |
Snippet | Nicotinamide adenine dinucleotide (NAD+) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but... Nicotinamide adenine dinucleotide (NAD ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models, but... Nicotinamide adenine dinucleotide (NAD + ) is modulated by conditions of metabolic stress and has been reported to decline with aging in preclinical models,... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1717 |
SubjectTerms | Aged Aged, 80 and over aging Aging - drug effects Aging - metabolism Anti-Inflammatory Agents - blood cell adhesion Cross-Sectional Studies Cytokines - blood Cytokines - drug effects Double-Blind Method Humans inflammation Male metabolism Metabolome - drug effects Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism NAD - metabolism Niacinamide - analogs & derivatives Niacinamide - pharmacology nicotinamide adenine dinucleotide Pyridinium Compounds Transcriptome - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDfLS0bihiLi2LHjY3hUFdL2QIvUm-X4sQTaLOpmD_0J_dfMOMlqA4e9cLUTJ8588XyJZ74h5F0EN5Z7-CyJrsozIT3PrLM-c7LCvOvABcdE4eWpPPkuvl6UF3ulvjAmbJAHHh7cB6WdDtGzvLFaWM0tt5UqrLVRigbYNq6-4PP2PqaGNRi1zHBLuSgwZqsQasqbS8FdLlxeB5SrZDppdwo-80tJvn_mnv6ln39HUe65peMH5P7IJ2k9zOMhuRO6R-TuUGHy5jG5RUv3LVad94F-a5s1luek9XaVUtso0D9ar4Kn6Wc-PfsFXgjoOF1uNzAcPa0_v6dLaGlgvKtAbecpFvuAxYUmL5fWHExsTl1117cZQBZQdpV27-lZuxqkQzdPyPnxl_NPJ9lYfSFzpS77rGycLItcBGctq6znPII9JYvMM6VYETkvtcQ2qxScIaMDOBQOSEXUueVPyVG37sJzQpWKkjmti-iUcEI0Wvuc66ZwZQUMp1wQPj1640ZlciyQcWmmELSfZjCYQYOZXBkw2IJku7N-D8ocB47_iFbdHYu62qkB0GZGtJlDaFsQNWHCjBRloB4wVHvg8m8nCBl4g3FbxnZhvd2YAhikKhWsngvybIDU7iY5E7j1CT1qBrbZLOY9XfsjqYRLhXJ4-Yv_Me2X5B5OBf-lM_6KHPXX2_AayFjfvEnv3R8VNjQr priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXxJvlJSNxQ0FJ7NjxAaHwqCqk7YG2Um-W48c2sM22u1mJ_gT-NTNOsrA8VInj2ok38Yw9n2PP9xHyMkAYSx0sS4It04QLxxJjjUusKDHv2jPOMFF4eiD2j_mnk-Jkh4yarUMHrv66tEM9qePl_PW3i8u3MODf_DyrZf186ZF9MlORipOza-Q6xCaJmgbTAfD3czNynOFWc57jWa6cyzGf7h8NbcWrSOu_Fbb-hKW_n678JVzt3Sa3BpxJq94x7pAd394lN3rlyct75Dt6QNegGr3z9HNTL1C2k1brWUx5owALaTXzjsaP_PTwK0Qn6CE6Xa-gOXpQfXhFp1BSQ3tnnprWURQBgUmHxugX5yJMeI5VVds1CXQueN9Z3NWnh82spxRd3SdHex-P3u8ngypDYgtVdElRW1HkKffWmKw0jrEAdhZZyFwmZZYHxgolsMxICXeIYMFNcgtgI6jUsAdkt120_hGhUgaRWaXyYCW3nNdKuZSpOrdFCcinmBA2dr22A2M5CmfM9Xg07YvuDabRYDqVGgw2IcnmrvOeseOK69-hVTfXIt92LFgsZ3oYvloqq3xwWVobxY1ihplS5saYIHgNa74JkaNP6AG69JAEmmqu-PsXowtpGNm4XWNav1ivdA7IUhYSZtUJedi71OYhWcZxSxRq5Jazbb3Fdk3bnEb2cCGRJi99_N9P_ITcxF_4YT1jT8lut1z7Z4DMuvp5HGw_AH4cOQ8 priority: 102 providerName: Scholars Portal |
Title | Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD+ Metabolome and Induces Transcriptomic and Anti-inflammatory Signatures |
URI | https://dx.doi.org/10.1016/j.celrep.2019.07.043 https://www.ncbi.nlm.nih.gov/pubmed/31412242 https://www.proquest.com/docview/2273757042 https://pubmed.ncbi.nlm.nih.gov/PMC6702140 https://doaj.org/article/79c9efd10ba94a93a3a872aaaf64b487 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWKyFxQbzpAisjcUNR49ix42N2YbVC6h7oIvVmOY5dArvpqk0P_AT-NTNOUhE4rMSlUv2qm_kyM37MN4S8D2DG0hqWJcEVaSJkzRPrbJ04WWDcteeCY6Dw4kpefhWfV_nqiJyPsTB4rXLQ_b1Oj9p6KJkPT3N-1zTzZQZrF7BOClwQJIFDTlAuihjEtzo77LMg3wiL-RCxfYIdxgi6eM3L-ZutR-JKpiOLp-ATCxWJ_CeG6l9H9O_7lH8YqIvH5NHgWdKyn_wTcuTbp-RBn2vy5zPyC2XeNZh_vvb0S1NtMFEnLffrGORGwRGk5drXNG7r0-UPsEfgmNPFfgfD0avy4we6gJIKxrv11LY1xbQfoGZotHdR-2CIc6wq265JALyAt9t4jk-XzbonEd09J9cXn67PL5MhD0Picp13SV45mWep8M5aVtia8wCSlSywminFssB5riWWWaWghwwOgJE5cC-CTi1_QY7bTetfEapUkMxpnQWnhBOi0rpOua4ylxfg6-QzwsdHb9zAUY6pMm7MeBntu-kFZlBgJlUGBDYjyaHXXc_RcU_7M5TqoS0ybMeCzXZtBogZpZ32oWZpZbWwmltuC5VZa4MUFazyZkSNmDATwMJQzT0__26EkIF3GQ9obOs3-53JwJdUuQI9OiMve0gdJsmZwENQqFETsE3-xbSmbb5FvnCpkBgvPfnvGb8mD_EbbqUz_oYcd9u9fwu-WFedxj2M0_jKwedCFL8BVrw2Tw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiOdSnkaCE4oax05cHzhkWVYtu-2BFqk3y3GcEthNV30I7U_g7_ALmXGSisBhJaS92onjeMbzsGe-IeRNAWoszMEtKewgDESS88BYkwc2GWDeteOCY6LweJIMv4hP83i-R361uTAYVtnI_lqme2ndtPSb1exflGV_GoHvAtpJggmCIHCiiaw8cZc_wG9bvx8dAZHfRtHxx9mHYdCUFghsrOJNEGc2iaNQOGsMG5ic8wImm7CC5UxKFhWcxyrBNiMlvJEUFv41sqAxCxUaDsPeIDfB-JAoDEbzw925DuKbMF9_EecX4ATbjD0fVmbd2cohUCZTHjVU8I5G9IUDOorxX8P37_jNPxTi8T1yt7FkaVov1n2y56oH5FZd2_LyIfmJPLYpsd597ujnMltiYVCabhc-qY6C4UnThcupv0ag0--g_8ARoOPtGoajk_ToHR1DSwbjnTtqqpximREQa9TrVy_tMKXad6XVpgxgswB_n_u4ATotFzVo6foRmV0HcR6T_WpZuSeESlkkzCoVFVYKK0SmVB5ylUU2HoBtFfcIb5de2wYTHUtznOk2-O2brgmmkWA6lBoI1iPB7q2LGhPkiucPkaq7ZxHR2zcsVwvdsLSWyipX5CzMjBJGccPNQEbGmCIRGXiVPSJbntCdDQJDlVd8_nXLQhpkB14Imcott2sdge0qYwlyu0cOapbaTZIzgZeu0CM7zNb5i25PVX71-OSJRCC-8Ol_z_gVuT2cjU_16Why8ozcwR48xmf8OdnfrLbuBdiBm-yl33iU6Gve6L8BbENx4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nicotinamide+Riboside+Augments+the+Aged+Human+Skeletal+Muscle+NAD%2B+Metabolome+and+Induces+Transcriptomic+and+Anti-inflammatory+Signatures&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Elhassan%2C+Yasir+S.&rft.au=Kluckova%2C+Katarina&rft.au=Fletcher%2C+Rachel+S.&rft.au=Schmidt%2C+Mark+S.&rft.date=2019-08-13&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=28&rft.issue=7&rft.spage=1717&rft.epage=1728.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.07.043&rft.externalDocID=S2211124719309404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |