SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination

DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We s...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 20; no. 8; pp. 1921 - 1935
Main Authors Daddacha, Waaqo, Koyen, Allyson E., Bastien, Amanda J., Head, PamelaSara E., Dhere, Vishal R., Nabeta, Geraldine N., Connolly, Erin C., Werner, Erica, Madden, Matthew Z., Daly, Michele B., Minten, Elizabeth V., Whelan, Donna R., Schlafstein, Ashley J., Zhang, Hui, Anand, Roopesh, Doronio, Christine, Withers, Allison E., Shepard, Caitlin, Sundaram, Ranjini K., Deng, Xingming, Dynan, William S., Wang, Ya, Bindra, Ranjit S., Cejka, Petr, Rothenberg, Eli, Doetsch, Paul W., Kim, Baek, Yu, David S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 22.08.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. [Display omitted] •SAMHD1 deficiency or Vpx-mediated degradation sensitizes cells to DSB-inducing agents•SAMHD1 localizes to DNA double-strand breaks in response to DNA damage•SAMHD1 promotes HR and DNA end resection independent of its dNTPase activity•SAMHD1 complexes with CtIP and facilitates its recruitment to DNA damage sites SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection and is dysregulated in Aicardi-Goutières syndrome and cancer. Daddacha et al. define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
AbstractList DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. [Display omitted] •SAMHD1 deficiency or Vpx-mediated degradation sensitizes cells to DSB-inducing agents•SAMHD1 localizes to DNA double-strand breaks in response to DNA damage•SAMHD1 promotes HR and DNA end resection independent of its dNTPase activity•SAMHD1 complexes with CtIP and facilitates its recruitment to DNA damage sites SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection and is dysregulated in Aicardi-Goutières syndrome and cancer. Daddacha et al. define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Gouti è res syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved carboxyl-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction but not dNTPase-inactive SAMHD1 fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity and prevents disease, including cancer.
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
Author Zhang, Hui
Shepard, Caitlin
Koyen, Allyson E.
Cejka, Petr
Wang, Ya
Rothenberg, Eli
Schlafstein, Ashley J.
Nabeta, Geraldine N.
Whelan, Donna R.
Kim, Baek
Bastien, Amanda J.
Sundaram, Ranjini K.
Daly, Michele B.
Werner, Erica
Withers, Allison E.
Anand, Roopesh
Bindra, Ranjit S.
Daddacha, Waaqo
Doetsch, Paul W.
Yu, David S.
Madden, Matthew Z.
Deng, Xingming
Doronio, Christine
Head, PamelaSara E.
Minten, Elizabeth V.
Dhere, Vishal R.
Dynan, William S.
Connolly, Erin C.
AuthorAffiliation 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
6 Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520 USA
4 Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016
5 Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland
1 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322 USA
3 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
AuthorAffiliation_xml – name: 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
– name: 4 Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016
– name: 5 Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland
– name: 6 Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520 USA
– name: 3 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
– name: 1 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322 USA
Author_xml – sequence: 1
  givenname: Waaqo
  surname: Daddacha
  fullname: Daddacha, Waaqo
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 2
  givenname: Allyson E.
  surname: Koyen
  fullname: Koyen, Allyson E.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 3
  givenname: Amanda J.
  surname: Bastien
  fullname: Bastien, Amanda J.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 4
  givenname: PamelaSara E.
  surname: Head
  fullname: Head, PamelaSara E.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 5
  givenname: Vishal R.
  surname: Dhere
  fullname: Dhere, Vishal R.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 6
  givenname: Geraldine N.
  surname: Nabeta
  fullname: Nabeta, Geraldine N.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 7
  givenname: Erin C.
  surname: Connolly
  fullname: Connolly, Erin C.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 8
  givenname: Erica
  surname: Werner
  fullname: Werner, Erica
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 9
  givenname: Matthew Z.
  surname: Madden
  fullname: Madden, Matthew Z.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 10
  givenname: Michele B.
  surname: Daly
  fullname: Daly, Michele B.
  organization: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 11
  givenname: Elizabeth V.
  surname: Minten
  fullname: Minten, Elizabeth V.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 12
  givenname: Donna R.
  surname: Whelan
  fullname: Whelan, Donna R.
  organization: Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
– sequence: 13
  givenname: Ashley J.
  surname: Schlafstein
  fullname: Schlafstein, Ashley J.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 14
  givenname: Hui
  surname: Zhang
  fullname: Zhang, Hui
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 15
  givenname: Roopesh
  surname: Anand
  fullname: Anand, Roopesh
  organization: Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland
– sequence: 16
  givenname: Christine
  surname: Doronio
  fullname: Doronio, Christine
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 17
  givenname: Allison E.
  surname: Withers
  fullname: Withers, Allison E.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 18
  givenname: Caitlin
  surname: Shepard
  fullname: Shepard, Caitlin
  organization: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 19
  givenname: Ranjini K.
  surname: Sundaram
  fullname: Sundaram, Ranjini K.
  organization: Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 20
  givenname: Xingming
  surname: Deng
  fullname: Deng, Xingming
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 21
  givenname: William S.
  surname: Dynan
  fullname: Dynan, William S.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 22
  givenname: Ya
  surname: Wang
  fullname: Wang, Ya
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 23
  givenname: Ranjit S.
  surname: Bindra
  fullname: Bindra, Ranjit S.
  organization: Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520, USA
– sequence: 24
  givenname: Petr
  surname: Cejka
  fullname: Cejka, Petr
  organization: Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland
– sequence: 25
  givenname: Eli
  surname: Rothenberg
  fullname: Rothenberg, Eli
  organization: Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
– sequence: 26
  givenname: Paul W.
  surname: Doetsch
  fullname: Doetsch, Paul W.
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 27
  givenname: Baek
  surname: Kim
  fullname: Kim, Baek
  organization: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 28
  givenname: David S.
  surname: Yu
  fullname: Yu, David S.
  email: dsyu@emory.edu
  organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28834754$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1rHCEUlZLSpGn-QSnz2JedqqOO04fCko9uIP0g_XgVda5bl5lxo24g_75udlOSPrQiKNd7zpFzz0t0MIUJEHpNcE0wEe9WtYUhwrqmmLQ1ljXG8hk6opSQGaGsPXh0P0QnKa1wWQIT0rEX6JBK2bCWsyP089v80-KMVF9jGEOGVJ19nlfnU19dQwKbfZiqHKoLbf3gs85w_34Na-1jZe6qRUENYRk2qRRtGI2f9Bb0Cj13ekhwsj-P0Y-L8--ni9nVl4-Xp_OrmeUdzzMuhJS4fJITqg0zknIDYLveYpC4oVJwbBk23DSus4K0TmqiOQjiLGsobY7R5Y63D3ql1tGPOt6poL26L4S4VDpmbwdQ2DlHSZFtjGOGtZq32gnBXUOMtdoVrg87rvXGjNBbmHLUwxPSpy-T_6WW4VZx3oqyC8HbPUEMNxtIWY0-lTkNeoLikCJdQ4kQLW5K65vHWn9EHgZTGt7vGmwMKUVwym79L9YWaT8ogtU2CGqldkFQ2yAoLFUJQgGzv8AP_P-B7Q2AMrFbD1El62Gy0PtYslAs9f8m-A2PLc2m
CitedBy_id crossref_primary_10_1016_j_dnarep_2022_103406
crossref_primary_10_3390_v14081622
crossref_primary_10_1016_j_antiviral_2020_104824
crossref_primary_10_1038_s41586_018_0050_1
crossref_primary_10_1096_fj_202300122R
crossref_primary_10_1186_s13578_021_00636_y
crossref_primary_10_3390_biom15020168
crossref_primary_10_1016_j_heliyon_2024_e41019
crossref_primary_10_1128_mSphere_00448_19
crossref_primary_10_3390_genes11070730
crossref_primary_10_1016_j_celrep_2018_06_090
crossref_primary_10_1016_j_molcel_2022_08_031
crossref_primary_10_2139_ssrn_3990832
crossref_primary_10_3390_cancers12061617
crossref_primary_10_1038_s41419_022_05023_0
crossref_primary_10_3390_genes11040409
crossref_primary_10_1242_dmm_050775
crossref_primary_10_1084_jem_20220829
crossref_primary_10_1007_s00109_021_02131_w
crossref_primary_10_1186_s13148_024_01719_6
crossref_primary_10_1186_s12969_024_01050_7
crossref_primary_10_1007_s00296_021_04906_3
crossref_primary_10_1038_s42003_020_1052_8
crossref_primary_10_1038_s41467_020_16983_2
crossref_primary_10_1016_j_celrep_2020_107640
crossref_primary_10_1038_s41417_025_00893_w
crossref_primary_10_1016_j_gendis_2022_06_001
crossref_primary_10_1038_s41564_022_01158_0
crossref_primary_10_1186_s12977_023_00620_z
crossref_primary_10_1016_j_jmgm_2024_108748
crossref_primary_10_1016_j_celrep_2021_110236
crossref_primary_10_1038_s41588_023_01339_5
crossref_primary_10_1038_s41467_018_06435_3
crossref_primary_10_15252_embr_201847528
crossref_primary_10_1128_jvi_00826_24
crossref_primary_10_1021_acsinfecdis_0c00551
crossref_primary_10_1021_acs_biochem_0c00944
crossref_primary_10_1038_s41467_021_21023_8
crossref_primary_10_1128_mSphere_00858_20
crossref_primary_10_1002_1878_0261_13227
crossref_primary_10_1042_EBC20200007
crossref_primary_10_3390_cancers14184490
crossref_primary_10_1073_pnas_1719771115
crossref_primary_10_3389_fcimb_2023_1241305
crossref_primary_10_1146_annurev_genet_120116_024745
crossref_primary_10_1002_advs_202411988
crossref_primary_10_1038_s41467_022_34578_x
crossref_primary_10_1073_pnas_2021963118
crossref_primary_10_1002_bies_202100157
crossref_primary_10_1530_EJE_21_1183
crossref_primary_10_1016_j_leukres_2021_106608
crossref_primary_10_1128_mbio_02252_23
crossref_primary_10_1016_j_isci_2024_108907
crossref_primary_10_1038_s41580_025_00841_4
crossref_primary_10_3390_v12040382
crossref_primary_10_1038_s41467_018_07799_2
crossref_primary_10_1080_17460441_2020_1811672
crossref_primary_10_1038_s41467_024_48237_w
crossref_primary_10_1093_nar_gkab051
crossref_primary_10_1038_s41408_018_0134_z
crossref_primary_10_1007_s11262_020_01813_w
crossref_primary_10_1016_j_coi_2018_09_017
crossref_primary_10_1038_s41598_018_22432_4
crossref_primary_10_1186_s12967_022_03844_3
crossref_primary_10_15252_embj_2019102931
crossref_primary_10_4049_jimmunol_2001389
crossref_primary_10_26508_lsa_201900355
crossref_primary_10_1080_15384101_2018_1480218
crossref_primary_10_1371_journal_pgen_1009256
crossref_primary_10_1007_s42764_019_00002_w
crossref_primary_10_1088_2050_6120_abf239
crossref_primary_10_3390_v12080839
crossref_primary_10_1002_bies_202400066
crossref_primary_10_1128_mBio_00940_20
crossref_primary_10_1016_j_tim_2018_09_009
crossref_primary_10_1038_s41388_023_02667_w
crossref_primary_10_1007_s00430_019_00593_x
crossref_primary_10_1038_s44298_024_00087_5
crossref_primary_10_1016_j_tig_2017_09_007
crossref_primary_10_3390_v13030395
crossref_primary_10_3389_fonc_2021_763151
crossref_primary_10_1093_nar_gkad447
crossref_primary_10_1371_journal_ppat_1008855
crossref_primary_10_3390_pathogens9060467
crossref_primary_10_1016_j_jbc_2021_101170
crossref_primary_10_3389_fimmu_2018_01811
crossref_primary_10_3390_cancers14030641
crossref_primary_10_1021_acschembio_3c00118
crossref_primary_10_1038_s41467_018_04671_1
crossref_primary_10_1371_journal_pgen_1009523
crossref_primary_10_1038_s41467_019_11413_4
crossref_primary_10_1016_j_dnarep_2018_12_001
crossref_primary_10_3390_ijms24010551
crossref_primary_10_3390_vaccines9101050
crossref_primary_10_1016_j_bbrc_2018_03_225
crossref_primary_10_1016_j_bmt_2025_100069
crossref_primary_10_1146_annurev_genet_071719_020312
crossref_primary_10_1093_nar_gkad971
crossref_primary_10_1186_s12943_024_02046_3
crossref_primary_10_1002_eji_201948491
crossref_primary_10_1080_15384101_2018_1550955
crossref_primary_10_1111_sji_13314
crossref_primary_10_1016_j_celrep_2019_04_020
crossref_primary_10_1096_fj_201902508R
crossref_primary_10_1021_jacs_5c00521
crossref_primary_10_1016_j_dnarep_2020_102894
crossref_primary_10_1038_s41586_024_07931_x
crossref_primary_10_1093_narcan_zcae007
crossref_primary_10_1128_JVI_00620_21
crossref_primary_10_1016_j_jmb_2021_167327
crossref_primary_10_1371_journal_pone_0235998
crossref_primary_10_18663_tjcl_542346
crossref_primary_10_1371_journal_pgen_1008701
crossref_primary_10_26508_lsa_201800121
crossref_primary_10_1016_j_jbc_2023_105148
crossref_primary_10_1038_s41564_019_0585_4
crossref_primary_10_1093_nar_gkac573
crossref_primary_10_1042_BST20180348
crossref_primary_10_2139_ssrn_3255560
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_1021_acs_biochem_8b01038
crossref_primary_10_1186_s13046_023_02829_4
crossref_primary_10_1080_08916934_2018_1454912
crossref_primary_10_1074_jbc_TM118_000371
crossref_primary_10_3389_fimmu_2021_629922
crossref_primary_10_1080_15384101_2019_1638192
crossref_primary_10_1016_j_clon_2019_02_007
crossref_primary_10_3390_cells9112430
crossref_primary_10_1016_j_jbc_2023_104866
crossref_primary_10_1007_s13402_023_00862_1
Cites_doi 10.1038/nrm3047
10.1101/cshperspect.a016600
10.1038/nature08467
10.1074/jbc.M112.355354
10.1038/ni.2236
10.1074/jbc.M109.023424
10.1038/nature07312
10.1093/nar/gkv633
10.1002/pro.5560060128
10.1101/gad.1431006
10.1158/0008-5472.CAN-13-1996
10.1038/ng.373
10.1016/S0968-0004(98)01293-6
10.1038/nm.4265
10.1158/2159-8290.CD-12-0095
10.1074/jbc.C111.317628
10.1038/nature06337
10.1093/nar/gku840
10.1007/s00109-013-0995-3
10.1016/j.virol.2015.11.022
10.1038/nature10117
10.1101/gad.13.20.2633
10.1074/jbc.M800881200
10.1038/nature10195
10.4161/cc.4.9.2031
10.1017/S1431927616005924
10.1126/science.1083430
10.1002/humu.22087
10.1038/ncb3260
10.1038/nature09318
10.1038/nm.4163
10.1073/pnas.0400726101
10.1186/1742-4690-10-131
10.1186/s12943-015-0446-6
10.1146/annurev-genet-110410-132435
10.1038/nature10515
10.1038/nsmb.1957
10.1016/j.celrep.2016.01.018
10.1074/jbc.C112.374843
10.1073/pnas.1519128113
10.1038/nature13771
10.1016/j.molcel.2009.12.002
10.1021/acs.biochem.6b00986
10.1182/blood-2013-04-490847
10.1038/onc.2013.488
10.1038/nsmb.2692
10.1091/mbc.e05-05-0427
10.1074/jbc.M112.443796
10.1101/gad.503108
10.1371/journal.pone.0169052
10.1038/ncomms3722
10.1038/nm.4255
10.1016/j.molcel.2014.04.012
10.1038/nm.3626
10.1074/jbc.M909494199
10.1038/embor.2010.153
10.1038/nprot.2011.327
10.1136/annrheumdis-2013-204845
10.1073/pnas.1412289111
10.1101/gad.2003811
10.1016/j.molcel.2007.09.009
10.1073/pnas.1312033110
10.1073/pnas.1401706111
10.1016/S1097-2765(00)80097-0
10.1016/j.molcel.2016.10.017
10.1074/jbc.M112.431148
10.1016/j.cell.2008.08.037
10.1016/j.molcel.2014.04.011
10.1038/nm.2964
10.1038/nsmb.1919
10.1038/nature10623
10.1073/pnas.1301463110
ContentType Journal Article
Copyright 2017 The Author(s)
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 The Author(s)
– notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2017.08.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 1935
ExternalDocumentID oai_doaj_org_article_0fff215953bf4b47a57af665f31bccaf
PMC5576576
28834754
10_1016_j_celrep_2017_08_008
S2211124717310963
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA136534
– fundername: NIAID NIH HHS
  grantid: R01 AI049781
– fundername: NCI NIH HHS
  grantid: R21 CA187612
– fundername: NIGMS NIH HHS
  grantid: R01 GM104198
– fundername: NCI NIH HHS
  grantid: R01 CA193828
– fundername: NCI NIH HHS
  grantid: R01 CA160771
– fundername: NCI NIH HHS
  grantid: R01 CA178999
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NIGMS NIH HHS
  grantid: F32 GM121071
– fundername: NIGMS NIH HHS
  grantid: R01 GM108119
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c595t-566880124512ab4b825beec9dc0e80328650c40b5b3f9c617f8a1a5e61fc43223
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:30:30 EDT 2025
Thu Aug 21 14:10:58 EDT 2025
Fri Jul 11 14:01:41 EDT 2025
Thu Apr 03 07:04:08 EDT 2025
Tue Jul 01 03:07:41 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Wed May 17 00:03:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords CLL
HIV
homologous recombination
autoimmune
DNA damage response
CtIP
dNTP
DNA repair
DNA end resection
AGS
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c595t-566880124512ab4b825beec9dc0e80328650c40b5b3f9c617f8a1a5e61fc43223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact: David S. Yu, M.D., Ph.D., Department of Radiation Oncology, Emory University School of Medicine, 1365 Clifton Rd NE, C3008, Phone: 404-778-1758, Fax: 404-778-5520, dsyu@emory.edu
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2017.08.008
PMID 28834754
PQID 1932166703
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_0fff215953bf4b47a57af665f31bccaf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576576
proquest_miscellaneous_1932166703
pubmed_primary_28834754
crossref_citationtrail_10_1016_j_celrep_2017_08_008
crossref_primary_10_1016_j_celrep_2017_08_008
elsevier_sciencedirect_doi_10_1016_j_celrep_2017_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-22
PublicationDateYYYYMMDD 2017-08-22
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kretschmer, Wolf, König, Staroske, Guck, Häusler, Luksch, Nguyen, Kim, Alexopoulou (bib31) 2015; 74
Prakash, Zhang, Feng, Jasin (bib43) 2015; 7
Pierce, Johnson, Thompson, Jasin (bib41) 1999; 13
Sartori, Lukas, Coates, Mistrik, Fu, Bartek, Baer, Lukas, Jackson (bib47) 2007; 450
Brandariz-Nuñez, Valle-Casuso, White, Nguyen, Bhattacharya, Wang, Demeler, Amie, Knowlton, Kim (bib7) 2013; 10
Clifford, Louis, Robbe, Ackroyd, Burns, Timbs, Wright Colopy, Dreau, Sigaux, Judde (bib11) 2014; 123
Colbert, Petrova, Fisher, Pantazides, Madden, Hardy, Warren, Pan, Nagaraju, Liu (bib12) 2014; 74
Ji, Tang, Zhao, Wang, Xiong (bib28) 2014; 111
Powell, Holland, Hollis, Perrino (bib42) 2011; 286
Hansen, Seamon, Cravens, Stivers (bib19) 2014; 111
Seamon, Bumpus, Stivers (bib52) 2016; 55
Symington, Gautier (bib56) 2011; 45
Wang, Shao, Shi, Hwang, Truong, Berns, Chen, Wu (bib58) 2012; 287
Berger, Durand, Goujon, Nguyen, Cordeil, Darlix, Cimarelli (bib6) 2011; 6
Hall, Petrova, Colbert, Hardy, Fisher, Saka, Shelton, Warren, Pantazides, Gandhi (bib18) 2014; 33
Lahouassa, Daddacha, Hofmann, Ayinde, Logue, Dragin, Bloch, Maudet, Bertrand, Gramberg (bib33) 2012; 13
Yu, Baer (bib64) 2000; 275
Hollenbaugh, Shelton, Tao, Amiralaei, Liu, Lu, Goetze, Zhou, Nettles, Schinazi, Kim (bib23) 2017; 12
Nicolette, Lee, Guo, Rani, Chow, Lee, Paull (bib37) 2010; 17
Zhang, Head, Daddacha, Park, Li, Pan, Madden, Duong, Xie, Yu (bib69) 2016; 14
Zhu, Gao, Zhao, Qin, Zhang, Peng, Zhang, Dong, Zhang, Li (bib71) 2013; 4
Smith, Petrova, Madden, Wang, Pan, Warren, Hardy, Liang, Liu, Robinson (bib54) 2014; 42
Rentoft, Lindell, Tran, Chabes, Buckland, Watt, Marjavaara, Nilsson, Melin, Trygg (bib44) 2016; 113
Cannavo, Cejka (bib8) 2014; 514
Kohnken, Kodigepalli, Wu (bib30) 2015; 14
Wang, Li, Truong, Shi, Hwang, He, Do, Cho, Li, Negrete (bib59) 2014; 54
Schneider, Oellerich, Baldauf, Schwarz, Thomas, Flick, Bohnenberger, Kaderali, Stegmann, Cremer (bib49) 2017; 23
Mimitou, Symington (bib36) 2008; 455
Zhang, Park, Pantazides, Karpiuk, Warren, Hardy, Duong, Park, Kim, Vassilopoulos (bib68) 2013; 110
Laguette, Sobhian, Casartelli, Ringeard, Chable-Bessia, Ségéral, Yatim, Emiliani, Schwartz, Benkirane (bib32) 2011; 474
Baldauf, Pan, Erikson, Schmidt, Daddacha, Burggraf, Schenkova, Ambiel, Wabnitz, Gramberg (bib4) 2012; 18
Tüngler, Staroske, Kind, Dobrick, Kretschmer, Schmidt, Krug, Lorenz, Chara, Schwille, Lee-Kirsch (bib57) 2013; 91
Seamon, Sun, Shlyakhtenko, Lyubchenko, Stivers (bib51) 2015; 43
Antonucci, St Gelais, de Silva, Yount, Tang, Ji, Shepard, Xiong, Kim, Wu (bib2) 2016; 22
Goncalves, Karayel, Rice, Bennett, Crow, Superti-Furga, Bürckstümmer (bib16) 2012; 33
Herold, Rudd, Ljungblad, Sanjiv, Myrberg, Paulin, Heshmati, Hagenkort, Kutzner, Page (bib22) 2017; 23
Welbourn, Strebel (bib60) 2016; 488
Makharashvili, Tubbs, Yang, Wang, Barton, Zhou, Deshpande, Lee, Lobrich, Sleckman (bib35) 2014; 54
Yu, Zhao, Hsu, Cayer, Ye, Guo, Shyr, Cortez (bib66) 2010; 11
Yan, Kaur, DeLucia, Hao, Mehrens, Wang, Golczak, Palczewski, Gronenborn, Ahn, Skowronski (bib62) 2013; 288
Cerami, Gao, Dogrusoz, Gross, Sumer, Aksoy, Jacobsen, Byrne, Heuer, Larsson (bib10) 2012; 2
Ryoo, Choi, Oh, Kim, Seo, Kim, Seo, Kim, White, Brandariz-Nuñez (bib46) 2014; 20
Yu, Fu, Lai, Baer, Chen (bib65) 2006; 20
Goldstone, Ennis-Adeniran, Hedden, Groom, Rice, Christodoulou, Walker, Kelly, Haire, Yap (bib15) 2011; 480
Kim, Nguyen, Daddacha, Hollenbaugh (bib29) 2012; 287
Ji, Wu, Yan, Mehrens, Yang, DeLucia, Hao, Gronenborn, Skowronski, Ahn, Xiong (bib27) 2013; 20
Beloglazova, Flick, Tchigvintsev, Brown, Popovic, Nocek, Yakunin (bib5) 2013; 288
Niu, Chung, Zhu, Kwon, Zhao, Chi, Prakash, Seong, Liu, Lu (bib39) 2010; 467
Zou, Elledge (bib72) 2003; 300
Anand, Ranjha, Cannavo, Cejka (bib1) 2016; 64
Helleday, Bryant, Schultz (bib21) 2005; 4
Schmidt, Galanty, Sczaniecka-Clift, Coates, Jhujh, Demir, Cornwell, Beli, Jackson (bib48) 2015; 17
Franzolin, Pontarin, Rampazzo, Miazzi, Ferraro, Palumbo, Reichard, Bianchi (bib13) 2013; 110
Stracker, Petrini (bib55) 2011; 12
Paull, Gellert (bib40) 1998; 1
Hrecka, Hao, Gierszewska, Swanson, Kesik-Brodacka, Srivastava, Florens, Washburn, Skowronski (bib24) 2011; 474
Schultz, Ponting, Hofmann, Bork (bib50) 1997; 6
Jackson, Bartek (bib26) 2009; 461
Limbo, Chahwan, Yamada, de Bruin, Wittenberg, Russell (bib34) 2007; 28
Whelan, Yin, Bermudez-Hernandez, Keegan, Fenyö, Rothenberg (bib61) 2016; 22
Cejka, Plank, Bachrati, Hickson, Kowalczykowski (bib9) 2010; 17
Zhu, Chung, Shim, Lee, Ira (bib70) 2008; 134
Gravel, Chapman, Magill, Jackson (bib17) 2008; 22
Haring, Mason, Binz, Wold (bib20) 2008; 283
Itakura, Sawada, Matsuura (bib25) 2005; 16
Yuan, Chen (bib67) 2009; 284
Nimonkar, Genschel, Kinoshita, Polaczek, Campbell, Wyman, Modrich, Kowalczykowski (bib38) 2011; 25
Aravind, Koonin (bib3) 1998; 23
Seluanov, Mittelman, Pereira-Smith, Wilson, Gorbunova (bib53) 2004; 101
Garcia, Phelps, Gray, Neale (bib14) 2011; 479
Rice, Bond, Asipu, Brunette, Manfield, Carr, Fuller, Jackson, Lamb, Briggs (bib45) 2009; 41
You, Shi, Zhu, Wu, Zhang, Basilio, Tonnu, Verma, Berns, Hunter (bib63) 2009; 36
Wang (10.1016/j.celrep.2017.08.008_bib59) 2014; 54
Helleday (10.1016/j.celrep.2017.08.008_bib21) 2005; 4
Hollenbaugh (10.1016/j.celrep.2017.08.008_bib23) 2017; 12
Zou (10.1016/j.celrep.2017.08.008_bib72) 2003; 300
Aravind (10.1016/j.celrep.2017.08.008_bib3) 1998; 23
Powell (10.1016/j.celrep.2017.08.008_bib42) 2011; 286
Rentoft (10.1016/j.celrep.2017.08.008_bib44) 2016; 113
Cannavo (10.1016/j.celrep.2017.08.008_bib8) 2014; 514
Makharashvili (10.1016/j.celrep.2017.08.008_bib35) 2014; 54
Ji (10.1016/j.celrep.2017.08.008_bib28) 2014; 111
Limbo (10.1016/j.celrep.2017.08.008_bib34) 2007; 28
Seluanov (10.1016/j.celrep.2017.08.008_bib53) 2004; 101
Ji (10.1016/j.celrep.2017.08.008_bib27) 2013; 20
Stracker (10.1016/j.celrep.2017.08.008_bib55) 2011; 12
Kohnken (10.1016/j.celrep.2017.08.008_bib30) 2015; 14
Schneider (10.1016/j.celrep.2017.08.008_bib49) 2017; 23
You (10.1016/j.celrep.2017.08.008_bib63) 2009; 36
Sartori (10.1016/j.celrep.2017.08.008_bib47) 2007; 450
Rice (10.1016/j.celrep.2017.08.008_bib45) 2009; 41
Itakura (10.1016/j.celrep.2017.08.008_bib25) 2005; 16
Welbourn (10.1016/j.celrep.2017.08.008_bib60) 2016; 488
Gravel (10.1016/j.celrep.2017.08.008_bib17) 2008; 22
Tüngler (10.1016/j.celrep.2017.08.008_bib57) 2013; 91
Hrecka (10.1016/j.celrep.2017.08.008_bib24) 2011; 474
Niu (10.1016/j.celrep.2017.08.008_bib39) 2010; 467
Seamon (10.1016/j.celrep.2017.08.008_bib52) 2016; 55
Smith (10.1016/j.celrep.2017.08.008_bib54) 2014; 42
Yuan (10.1016/j.celrep.2017.08.008_bib67) 2009; 284
Anand (10.1016/j.celrep.2017.08.008_bib1) 2016; 64
Goldstone (10.1016/j.celrep.2017.08.008_bib15) 2011; 480
Zhang (10.1016/j.celrep.2017.08.008_bib68) 2013; 110
Paull (10.1016/j.celrep.2017.08.008_bib40) 1998; 1
Yan (10.1016/j.celrep.2017.08.008_bib62) 2013; 288
Ryoo (10.1016/j.celrep.2017.08.008_bib46) 2014; 20
Schultz (10.1016/j.celrep.2017.08.008_bib50) 1997; 6
Haring (10.1016/j.celrep.2017.08.008_bib20) 2008; 283
Cejka (10.1016/j.celrep.2017.08.008_bib9) 2010; 17
Zhu (10.1016/j.celrep.2017.08.008_bib71) 2013; 4
Kretschmer (10.1016/j.celrep.2017.08.008_bib31) 2015; 74
Garcia (10.1016/j.celrep.2017.08.008_bib14) 2011; 479
Beloglazova (10.1016/j.celrep.2017.08.008_bib5) 2013; 288
Pierce (10.1016/j.celrep.2017.08.008_bib41) 1999; 13
Laguette (10.1016/j.celrep.2017.08.008_bib32) 2011; 474
Yu (10.1016/j.celrep.2017.08.008_bib64) 2000; 275
Schmidt (10.1016/j.celrep.2017.08.008_bib48) 2015; 17
Baldauf (10.1016/j.celrep.2017.08.008_bib4) 2012; 18
Colbert (10.1016/j.celrep.2017.08.008_bib12) 2014; 74
Symington (10.1016/j.celrep.2017.08.008_bib56) 2011; 45
Prakash (10.1016/j.celrep.2017.08.008_bib43) 2015; 7
Zhang (10.1016/j.celrep.2017.08.008_bib69) 2016; 14
Jackson (10.1016/j.celrep.2017.08.008_bib26) 2009; 461
Nimonkar (10.1016/j.celrep.2017.08.008_bib38) 2011; 25
Wang (10.1016/j.celrep.2017.08.008_bib58) 2012; 287
Cerami (10.1016/j.celrep.2017.08.008_bib10) 2012; 2
Berger (10.1016/j.celrep.2017.08.008_bib6) 2011; 6
Yu (10.1016/j.celrep.2017.08.008_bib66) 2010; 11
Lahouassa (10.1016/j.celrep.2017.08.008_bib33) 2012; 13
Goncalves (10.1016/j.celrep.2017.08.008_bib16) 2012; 33
Kim (10.1016/j.celrep.2017.08.008_bib29) 2012; 287
Yu (10.1016/j.celrep.2017.08.008_bib65) 2006; 20
Herold (10.1016/j.celrep.2017.08.008_bib22) 2017; 23
Antonucci (10.1016/j.celrep.2017.08.008_bib2) 2016; 22
Franzolin (10.1016/j.celrep.2017.08.008_bib13) 2013; 110
Brandariz-Nuñez (10.1016/j.celrep.2017.08.008_bib7) 2013; 10
Whelan (10.1016/j.celrep.2017.08.008_bib61) 2016; 22
Clifford (10.1016/j.celrep.2017.08.008_bib11) 2014; 123
Hall (10.1016/j.celrep.2017.08.008_bib18) 2014; 33
Nicolette (10.1016/j.celrep.2017.08.008_bib37) 2010; 17
Hansen (10.1016/j.celrep.2017.08.008_bib19) 2014; 111
Mimitou (10.1016/j.celrep.2017.08.008_bib36) 2008; 455
Zhu (10.1016/j.celrep.2017.08.008_bib70) 2008; 134
Seamon (10.1016/j.celrep.2017.08.008_bib51) 2015; 43
25038827 - Nat Med. 2014 Aug;20(8):936-41
22589553 - J Biol Chem. 2012 Jun 22;287(26):21570-4
17936710 - Mol Cell. 2007 Oct 12;28(1):134-46
18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72
26101257 - Nucleic Acids Res. 2015 Jul 27;43(13):6486-99
23858451 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14272-7
24276239 - Oncogene. 2014 Nov 20;33(47):5450-6
24335234 - Blood. 2014 Feb 13;123(7):1021-31
24445253 - Ann Rheum Dis. 2015 Mar;74(3):e17
25267621 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4305-14
23371319 - J Mol Med (Berl). 2013 Jun;91(6):759-70
18469000 - J Biol Chem. 2008 Jul 4;283(27):19095-111
17965729 - Nature. 2007 Nov 22;450(7169):509-14
10764811 - J Biol Chem. 2000 Jun 16;275(24):18541-9
26854234 - Cell Rep. 2016 Feb 16;14 (6):1435-47
18806779 - Nature. 2008 Oct 9;455(7214):770-4
16176973 - Mol Biol Cell. 2005 Dec;16(12):5551-62
27775344 - Biochemistry. 2016 Nov 8;55(44):6087-6099
27071091 - Proc Natl Acad Sci U S A. 2016 Apr 26;113(17 ):4723-8
21252998 - Nat Rev Mol Cell Biol. 2011 Feb;12(2):90-103
19759395 - J Biol Chem. 2009 Nov 13;284(46):31746-52
9868367 - Trends Biochem Sci. 1998 Dec;23 (12 ):469-72
26655245 - Virology. 2016 Jan 15;488:271-7
12791985 - Science. 2003 Jun 6;300(5625):1542-8
21613998 - Nature. 2011 May 25;474(7353):654-7
9007998 - Protein Sci. 1997 Jan;6(1):249-53
22544744 - J Biol Chem. 2012 Jun 15;287(25):21471-80
21325134 - Genes Dev. 2011 Feb 15;25(4):350-62
10541549 - Genes Dev. 1999 Oct 15;13(20):2633-8
25217585 - Nucleic Acids Res. 2014 Oct;42(18):11517-27
22069334 - J Biol Chem. 2011 Dec 23;286(51):43596-600
21720370 - Nature. 2011 Jun 29;474(7353):658-61
23898190 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13546-51
27889449 - Mol Cell. 2016 Dec 1;64(5):940-950
21102445 - Nat Struct Mol Biol. 2010 Dec;17(12):1478-85
9651580 - Mol Cell. 1998 Jun;1(7):969-79
22002605 - Nature. 2011 Oct 16;479(7372):241-4
21637200 - Nat Protoc. 2011 Jun;6(6):806-16
20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82
24141705 - Nat Struct Mol Biol. 2013 Nov;20(11):1304-9
15123826 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7624-9
27991919 - Nat Med. 2017 Feb;23 (2):250-255
16123586 - Cell Cycle. 2005 Sep;4(9):1176-8
24626090 - Cancer Res. 2014 May 15;74(10):2677-87
28067901 - Nat Med. 2017 Feb;23 (2):256-263
28239291 - Microsc Microanal. 2016 Jul;22(Suppl 3):1016-1017
25231868 - Nature. 2014 Oct 2;514(7520):122-5
19525956 - Nat Genet. 2009 Jul;41(7):829-32
22056990 - Nature. 2011 Nov 06;480(7377):379-82
22588877 - Cancer Discov. 2012 May;2(5):401-4
22327569 - Nat Immunol. 2012 Feb 12;13(3):223-228
24217394 - Nat Commun. 2013;4:2722
18805091 - Cell. 2008 Sep 19;134(6):981-94
25833843 - Cold Spring Harb Perspect Biol. 2015 Apr 01;7(4):a016600
28046007 - PLoS One. 2017 Jan 3;12 (1):e0169052
19847258 - Nature. 2009 Oct 22;461(7267):1071-8
20811460 - Nature. 2010 Sep 2;467(7311):108-11
24837675 - Mol Cell. 2014 Jun 19;54(6):1012-21
24219908 - Retrovirology. 2013 Nov 12;10:131
16818604 - Genes Dev. 2006 Jul 1;20(13):1721-6
23364794 - J Biol Chem. 2013 Mar 22;288(12):8101-10
27711056 - Nat Med. 2016 Oct 6;22(10 ):1072-1074
24753578 - Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1843-51
22461318 - Hum Mutat. 2012 Jul;33(7):1116-22
26502057 - Nat Cell Biol. 2015 Nov;17 (11):1458-1470
24837676 - Mol Cell. 2014 Jun 19;54(6):1022-33
20064462 - Mol Cell. 2009 Dec 25;36(6):954-69
26416562 - Mol Cancer. 2015 Sep 29;14:176
21910633 - Annu Rev Genet. 2011;45:247-71
20930849 - EMBO Rep. 2010 Nov;11(11):876-82
22972397 - Nat Med. 2012 Nov;18(11):1682-7
23426366 - J Biol Chem. 2013 Apr 12;288(15):10406-17
References_xml – volume: 6
  start-page: 806
  year: 2011
  end-page: 816
  ident: bib6
  article-title: A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors
  publication-title: Nat. Protoc.
– volume: 16
  start-page: 5551
  year: 2005
  end-page: 5562
  ident: bib25
  article-title: Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks
  publication-title: Mol. Biol. Cell
– volume: 23
  start-page: 469
  year: 1998
  end-page: 472
  ident: bib3
  article-title: The HD domain defines a new superfamily of metal-dependent phosphohydrolases
  publication-title: Trends Biochem. Sci.
– volume: 474
  start-page: 658
  year: 2011
  end-page: 661
  ident: bib24
  article-title: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein
  publication-title: Nature
– volume: 25
  start-page: 350
  year: 2011
  end-page: 362
  ident: bib38
  article-title: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
  publication-title: Genes Dev.
– volume: 275
  start-page: 18541
  year: 2000
  end-page: 18549
  ident: bib64
  article-title: Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor
  publication-title: J. Biol. Chem.
– volume: 288
  start-page: 8101
  year: 2013
  end-page: 8110
  ident: bib5
  article-title: Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction
  publication-title: J. Biol. Chem.
– volume: 283
  start-page: 19095
  year: 2008
  end-page: 19111
  ident: bib20
  article-title: Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints
  publication-title: J. Biol. Chem.
– volume: 514
  start-page: 122
  year: 2014
  end-page: 125
  ident: bib8
  article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
  publication-title: Nature
– volume: 28
  start-page: 134
  year: 2007
  end-page: 146
  ident: bib34
  article-title: Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination
  publication-title: Mol. Cell
– volume: 450
  start-page: 509
  year: 2007
  end-page: 514
  ident: bib47
  article-title: Human CtIP promotes DNA end resection
  publication-title: Nature
– volume: 123
  start-page: 1021
  year: 2014
  end-page: 1031
  ident: bib11
  article-title: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
  publication-title: Blood
– volume: 113
  start-page: 4723
  year: 2016
  end-page: 4728
  ident: bib44
  article-title: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 936
  year: 2014
  end-page: 941
  ident: bib46
  article-title: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction
  publication-title: Nat. Med.
– volume: 101
  start-page: 7624
  year: 2004
  end-page: 7629
  ident: bib53
  article-title: DNA end joining becomes less efficient and more error-prone during cellular senescence
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 1478
  year: 2010
  end-page: 1485
  ident: bib37
  article-title: Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks
  publication-title: Nat. Struct. Mol. Biol.
– volume: 287
  start-page: 21471
  year: 2012
  end-page: 21480
  ident: bib58
  article-title: CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks
  publication-title: J. Biol. Chem.
– volume: 54
  start-page: 1022
  year: 2014
  end-page: 1033
  ident: bib35
  article-title: Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection
  publication-title: Mol. Cell
– volume: 55
  start-page: 6087
  year: 2016
  end-page: 6099
  ident: bib52
  article-title: Single-stranded nucleic acids bind to the tetramer interface of SAMHD1 and prevent formation of the catalytic homotetramer
  publication-title: Biochemistry
– volume: 45
  start-page: 247
  year: 2011
  end-page: 271
  ident: bib56
  article-title: Double-strand break end resection and repair pathway choice
  publication-title: Annu. Rev. Genet.
– volume: 17
  start-page: 1458
  year: 2015
  end-page: 1470
  ident: bib48
  article-title: Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: a016600
  year: 2015
  ident: bib43
  article-title: Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 2
  start-page: 401
  year: 2012
  end-page: 404
  ident: bib10
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov.
– volume: 23
  start-page: 256
  year: 2017
  end-page: 263
  ident: bib22
  article-title: Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies
  publication-title: Nat. Med.
– volume: 43
  start-page: 6486
  year: 2015
  end-page: 6499
  ident: bib51
  article-title: SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity
  publication-title: Nucleic Acids Res.
– volume: 134
  start-page: 981
  year: 2008
  end-page: 994
  ident: bib70
  article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
  publication-title: Cell
– volume: 91
  start-page: 759
  year: 2013
  end-page: 770
  ident: bib57
  article-title: Single-stranded nucleic acids promote SAMHD1 complex formation
  publication-title: J. Mol. Med. (Berl.)
– volume: 300
  start-page: 1542
  year: 2003
  end-page: 1548
  ident: bib72
  article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
  publication-title: Science
– volume: 488
  start-page: 271
  year: 2016
  end-page: 277
  ident: bib60
  article-title: Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1
  publication-title: Virology
– volume: 12
  start-page: e0169052
  year: 2017
  ident: bib23
  article-title: Substrates and inhibitors of SAMHD1
  publication-title: PLoS ONE
– volume: 111
  start-page: E1843
  year: 2014
  end-page: E1851
  ident: bib19
  article-title: GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 1176
  year: 2005
  end-page: 1178
  ident: bib21
  article-title: Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy
  publication-title: Cell Cycle
– volume: 467
  start-page: 108
  year: 2010
  end-page: 111
  ident: bib39
  article-title: Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
  publication-title: Nature
– volume: 14
  start-page: 176
  year: 2015
  ident: bib30
  article-title: Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications
  publication-title: Mol. Cancer
– volume: 22
  start-page: 1016
  year: 2016
  end-page: 1017
  ident: bib61
  article-title: Single molecule localization microscopy of DNA damage response pathways in cancer
  publication-title: Microsc. Microanal.
– volume: 284
  start-page: 31746
  year: 2009
  end-page: 31752
  ident: bib67
  article-title: N terminus of CtIP is critical for homologous recombination-mediated double-strand break repair
  publication-title: J. Biol. Chem.
– volume: 64
  start-page: 940
  year: 2016
  end-page: 950
  ident: bib1
  article-title: Phosphorylated CtIP functions as a Co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection
  publication-title: Mol. Cell
– volume: 18
  start-page: 1682
  year: 2012
  end-page: 1687
  ident: bib4
  article-title: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells
  publication-title: Nat. Med.
– volume: 22
  start-page: 1072
  year: 2016
  end-page: 1074
  ident: bib2
  article-title: SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity
  publication-title: Nat. Med.
– volume: 1
  start-page: 969
  year: 1998
  end-page: 979
  ident: bib40
  article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks
  publication-title: Mol. Cell
– volume: 54
  start-page: 1012
  year: 2014
  end-page: 1021
  ident: bib59
  article-title: CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity
  publication-title: Mol. Cell
– volume: 11
  start-page: 876
  year: 2010
  end-page: 882
  ident: bib66
  article-title: Cyclin-dependent kinase 9-cyclin K functions in the replication stress response
  publication-title: EMBO Rep.
– volume: 480
  start-page: 379
  year: 2011
  end-page: 382
  ident: bib15
  article-title: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase
  publication-title: Nature
– volume: 6
  start-page: 249
  year: 1997
  end-page: 253
  ident: bib50
  article-title: SAM as a protein interaction domain involved in developmental regulation
  publication-title: Protein Sci.
– volume: 110
  start-page: 13546
  year: 2013
  end-page: 13551
  ident: bib68
  article-title: SIRT2 directs the replication stress response through CDK9 deacetylation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 250
  year: 2017
  end-page: 255
  ident: bib49
  article-title: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
  publication-title: Nat. Med.
– volume: 110
  start-page: 14272
  year: 2013
  end-page: 14277
  ident: bib13
  article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 1721
  year: 2006
  end-page: 1726
  ident: bib65
  article-title: BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP
  publication-title: Genes Dev.
– volume: 474
  start-page: 654
  year: 2011
  end-page: 657
  ident: bib32
  article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx
  publication-title: Nature
– volume: 12
  start-page: 90
  year: 2011
  end-page: 103
  ident: bib55
  article-title: The MRE11 complex: starting from the ends
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 42
  start-page: 11517
  year: 2014
  end-page: 11527
  ident: bib54
  article-title: A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response
  publication-title: Nucleic Acids Res.
– volume: 286
  start-page: 43596
  year: 2011
  end-page: 43600
  ident: bib42
  article-title: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 223
  year: 2012
  end-page: 228
  ident: bib33
  article-title: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates
  publication-title: Nat. Immunol.
– volume: 41
  start-page: 829
  year: 2009
  end-page: 832
  ident: bib45
  article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response
  publication-title: Nat. Genet.
– volume: 22
  start-page: 2767
  year: 2008
  end-page: 2772
  ident: bib17
  article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection
  publication-title: Genes Dev.
– volume: 111
  start-page: E4305
  year: 2014
  end-page: E4314
  ident: bib28
  article-title: Structural basis of cellular dNTP regulation by SAMHD1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 287
  start-page: 21570
  year: 2012
  end-page: 21574
  ident: bib29
  article-title: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 1435
  year: 2016
  end-page: 1447
  ident: bib69
  article-title: ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA
  publication-title: Cell Rep.
– volume: 17
  start-page: 1377
  year: 2010
  end-page: 1382
  ident: bib9
  article-title: Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3
  publication-title: Nat. Struct. Mol. Biol.
– volume: 10
  start-page: 131
  year: 2013
  ident: bib7
  article-title: Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1
  publication-title: Retrovirology
– volume: 74
  start-page: 2677
  year: 2014
  end-page: 2687
  ident: bib12
  article-title: CHD7 expression predicts survival outcomes in patients with resected pancreatic cancer
  publication-title: Cancer Res.
– volume: 33
  start-page: 5450
  year: 2014
  end-page: 5456
  ident: bib18
  article-title: Low CHD5 expression activates the DNA damage response and predicts poor outcome in patients undergoing adjuvant therapy for resected pancreatic cancer
  publication-title: Oncogene
– volume: 36
  start-page: 954
  year: 2009
  end-page: 969
  ident: bib63
  article-title: CtIP links DNA double-strand break sensing to resection
  publication-title: Mol. Cell
– volume: 479
  start-page: 241
  year: 2011
  end-page: 244
  ident: bib14
  article-title: Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1
  publication-title: Nature
– volume: 13
  start-page: 2633
  year: 1999
  end-page: 2638
  ident: bib41
  article-title: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells
  publication-title: Genes Dev.
– volume: 461
  start-page: 1071
  year: 2009
  end-page: 1078
  ident: bib26
  article-title: The DNA-damage response in human biology and disease
  publication-title: Nature
– volume: 33
  start-page: 1116
  year: 2012
  end-page: 1122
  ident: bib16
  article-title: SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations
  publication-title: Hum. Mutat.
– volume: 20
  start-page: 1304
  year: 2013
  end-page: 1309
  ident: bib27
  article-title: Mechanism of allosteric activation of SAMHD1 by dGTP
  publication-title: Nat. Struct. Mol. Biol.
– volume: 4
  start-page: 2722
  year: 2013
  ident: bib71
  article-title: Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase
  publication-title: Nat. Commun.
– volume: 74
  start-page: e17
  year: 2015
  ident: bib31
  article-title: SAMHD1 prevents autoimmunity by maintaining genome stability
  publication-title: Ann. Rheum. Dis.
– volume: 288
  start-page: 10406
  year: 2013
  end-page: 10417
  ident: bib62
  article-title: Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection
  publication-title: J. Biol. Chem.
– volume: 455
  start-page: 770
  year: 2008
  end-page: 774
  ident: bib36
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
  publication-title: Nature
– volume: 12
  start-page: 90
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib55
  article-title: The MRE11 complex: starting from the ends
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3047
– volume: 7
  start-page: a016600
  year: 2015
  ident: 10.1016/j.celrep.2017.08.008_bib43
  article-title: Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016600
– volume: 461
  start-page: 1071
  year: 2009
  ident: 10.1016/j.celrep.2017.08.008_bib26
  article-title: The DNA-damage response in human biology and disease
  publication-title: Nature
  doi: 10.1038/nature08467
– volume: 287
  start-page: 21471
  year: 2012
  ident: 10.1016/j.celrep.2017.08.008_bib58
  article-title: CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.355354
– volume: 13
  start-page: 223
  year: 2012
  ident: 10.1016/j.celrep.2017.08.008_bib33
  article-title: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2236
– volume: 284
  start-page: 31746
  year: 2009
  ident: 10.1016/j.celrep.2017.08.008_bib67
  article-title: N terminus of CtIP is critical for homologous recombination-mediated double-strand break repair
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.023424
– volume: 455
  start-page: 770
  year: 2008
  ident: 10.1016/j.celrep.2017.08.008_bib36
  article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
  publication-title: Nature
  doi: 10.1038/nature07312
– volume: 43
  start-page: 6486
  year: 2015
  ident: 10.1016/j.celrep.2017.08.008_bib51
  article-title: SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv633
– volume: 6
  start-page: 249
  year: 1997
  ident: 10.1016/j.celrep.2017.08.008_bib50
  article-title: SAM as a protein interaction domain involved in developmental regulation
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560060128
– volume: 20
  start-page: 1721
  year: 2006
  ident: 10.1016/j.celrep.2017.08.008_bib65
  article-title: BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP
  publication-title: Genes Dev.
  doi: 10.1101/gad.1431006
– volume: 74
  start-page: 2677
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib12
  article-title: CHD7 expression predicts survival outcomes in patients with resected pancreatic cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1996
– volume: 41
  start-page: 829
  year: 2009
  ident: 10.1016/j.celrep.2017.08.008_bib45
  article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response
  publication-title: Nat. Genet.
  doi: 10.1038/ng.373
– volume: 23
  start-page: 469
  year: 1998
  ident: 10.1016/j.celrep.2017.08.008_bib3
  article-title: The HD domain defines a new superfamily of metal-dependent phosphohydrolases
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(98)01293-6
– volume: 23
  start-page: 256
  year: 2017
  ident: 10.1016/j.celrep.2017.08.008_bib22
  article-title: Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies
  publication-title: Nat. Med.
  doi: 10.1038/nm.4265
– volume: 2
  start-page: 401
  year: 2012
  ident: 10.1016/j.celrep.2017.08.008_bib10
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0095
– volume: 286
  start-page: 43596
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib42
  article-title: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.317628
– volume: 450
  start-page: 509
  year: 2007
  ident: 10.1016/j.celrep.2017.08.008_bib47
  article-title: Human CtIP promotes DNA end resection
  publication-title: Nature
  doi: 10.1038/nature06337
– volume: 42
  start-page: 11517
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib54
  article-title: A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku840
– volume: 91
  start-page: 759
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib57
  article-title: Single-stranded nucleic acids promote SAMHD1 complex formation
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-013-0995-3
– volume: 488
  start-page: 271
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib60
  article-title: Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1
  publication-title: Virology
  doi: 10.1016/j.virol.2015.11.022
– volume: 474
  start-page: 654
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib32
  article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx
  publication-title: Nature
  doi: 10.1038/nature10117
– volume: 13
  start-page: 2633
  year: 1999
  ident: 10.1016/j.celrep.2017.08.008_bib41
  article-title: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.20.2633
– volume: 283
  start-page: 19095
  year: 2008
  ident: 10.1016/j.celrep.2017.08.008_bib20
  article-title: Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800881200
– volume: 474
  start-page: 658
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib24
  article-title: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein
  publication-title: Nature
  doi: 10.1038/nature10195
– volume: 4
  start-page: 1176
  year: 2005
  ident: 10.1016/j.celrep.2017.08.008_bib21
  article-title: Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy
  publication-title: Cell Cycle
  doi: 10.4161/cc.4.9.2031
– volume: 22
  start-page: 1016
  issue: Suppl 3
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib61
  article-title: Single molecule localization microscopy of DNA damage response pathways in cancer
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927616005924
– volume: 300
  start-page: 1542
  year: 2003
  ident: 10.1016/j.celrep.2017.08.008_bib72
  article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
  publication-title: Science
  doi: 10.1126/science.1083430
– volume: 33
  start-page: 1116
  year: 2012
  ident: 10.1016/j.celrep.2017.08.008_bib16
  article-title: SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22087
– volume: 17
  start-page: 1458
  year: 2015
  ident: 10.1016/j.celrep.2017.08.008_bib48
  article-title: Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3260
– volume: 467
  start-page: 108
  year: 2010
  ident: 10.1016/j.celrep.2017.08.008_bib39
  article-title: Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae
  publication-title: Nature
  doi: 10.1038/nature09318
– volume: 22
  start-page: 1072
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib2
  article-title: SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity
  publication-title: Nat. Med.
  doi: 10.1038/nm.4163
– volume: 101
  start-page: 7624
  year: 2004
  ident: 10.1016/j.celrep.2017.08.008_bib53
  article-title: DNA end joining becomes less efficient and more error-prone during cellular senescence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0400726101
– volume: 10
  start-page: 131
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib7
  article-title: Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-10-131
– volume: 14
  start-page: 176
  year: 2015
  ident: 10.1016/j.celrep.2017.08.008_bib30
  article-title: Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-015-0446-6
– volume: 45
  start-page: 247
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib56
  article-title: Double-strand break end resection and repair pathway choice
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110410-132435
– volume: 479
  start-page: 241
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib14
  article-title: Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1
  publication-title: Nature
  doi: 10.1038/nature10515
– volume: 17
  start-page: 1478
  year: 2010
  ident: 10.1016/j.celrep.2017.08.008_bib37
  article-title: Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1957
– volume: 14
  start-page: 1435
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib69
  article-title: ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.018
– volume: 287
  start-page: 21570
  year: 2012
  ident: 10.1016/j.celrep.2017.08.008_bib29
  article-title: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C112.374843
– volume: 113
  start-page: 4723
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib44
  article-title: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519128113
– volume: 514
  start-page: 122
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib8
  article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks
  publication-title: Nature
  doi: 10.1038/nature13771
– volume: 36
  start-page: 954
  year: 2009
  ident: 10.1016/j.celrep.2017.08.008_bib63
  article-title: CtIP links DNA double-strand break sensing to resection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.002
– volume: 55
  start-page: 6087
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib52
  article-title: Single-stranded nucleic acids bind to the tetramer interface of SAMHD1 and prevent formation of the catalytic homotetramer
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00986
– volume: 123
  start-page: 1021
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib11
  article-title: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
  publication-title: Blood
  doi: 10.1182/blood-2013-04-490847
– volume: 33
  start-page: 5450
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib18
  article-title: Low CHD5 expression activates the DNA damage response and predicts poor outcome in patients undergoing adjuvant therapy for resected pancreatic cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2013.488
– volume: 20
  start-page: 1304
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib27
  article-title: Mechanism of allosteric activation of SAMHD1 by dGTP
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2692
– volume: 16
  start-page: 5551
  year: 2005
  ident: 10.1016/j.celrep.2017.08.008_bib25
  article-title: Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-05-0427
– volume: 288
  start-page: 10406
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib62
  article-title: Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.443796
– volume: 22
  start-page: 2767
  year: 2008
  ident: 10.1016/j.celrep.2017.08.008_bib17
  article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection
  publication-title: Genes Dev.
  doi: 10.1101/gad.503108
– volume: 12
  start-page: e0169052
  year: 2017
  ident: 10.1016/j.celrep.2017.08.008_bib23
  article-title: Substrates and inhibitors of SAMHD1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169052
– volume: 4
  start-page: 2722
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib71
  article-title: Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3722
– volume: 23
  start-page: 250
  year: 2017
  ident: 10.1016/j.celrep.2017.08.008_bib49
  article-title: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
  publication-title: Nat. Med.
  doi: 10.1038/nm.4255
– volume: 54
  start-page: 1012
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib59
  article-title: CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.012
– volume: 20
  start-page: 936
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib46
  article-title: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction
  publication-title: Nat. Med.
  doi: 10.1038/nm.3626
– volume: 275
  start-page: 18541
  year: 2000
  ident: 10.1016/j.celrep.2017.08.008_bib64
  article-title: Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M909494199
– volume: 11
  start-page: 876
  year: 2010
  ident: 10.1016/j.celrep.2017.08.008_bib66
  article-title: Cyclin-dependent kinase 9-cyclin K functions in the replication stress response
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2010.153
– volume: 6
  start-page: 806
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib6
  article-title: A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.327
– volume: 74
  start-page: e17
  year: 2015
  ident: 10.1016/j.celrep.2017.08.008_bib31
  article-title: SAMHD1 prevents autoimmunity by maintaining genome stability
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2013-204845
– volume: 111
  start-page: E4305
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib28
  article-title: Structural basis of cellular dNTP regulation by SAMHD1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1412289111
– volume: 25
  start-page: 350
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib38
  article-title: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair
  publication-title: Genes Dev.
  doi: 10.1101/gad.2003811
– volume: 28
  start-page: 134
  year: 2007
  ident: 10.1016/j.celrep.2017.08.008_bib34
  article-title: Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.09.009
– volume: 110
  start-page: 14272
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib13
  article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1312033110
– volume: 111
  start-page: E1843
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib19
  article-title: GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1401706111
– volume: 1
  start-page: 969
  year: 1998
  ident: 10.1016/j.celrep.2017.08.008_bib40
  article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80097-0
– volume: 64
  start-page: 940
  year: 2016
  ident: 10.1016/j.celrep.2017.08.008_bib1
  article-title: Phosphorylated CtIP functions as a Co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.10.017
– volume: 288
  start-page: 8101
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib5
  article-title: Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.431148
– volume: 134
  start-page: 981
  year: 2008
  ident: 10.1016/j.celrep.2017.08.008_bib70
  article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.037
– volume: 54
  start-page: 1022
  year: 2014
  ident: 10.1016/j.celrep.2017.08.008_bib35
  article-title: Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.011
– volume: 18
  start-page: 1682
  year: 2012
  ident: 10.1016/j.celrep.2017.08.008_bib4
  article-title: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.2964
– volume: 17
  start-page: 1377
  year: 2010
  ident: 10.1016/j.celrep.2017.08.008_bib9
  article-title: Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1919
– volume: 480
  start-page: 379
  year: 2011
  ident: 10.1016/j.celrep.2017.08.008_bib15
  article-title: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase
  publication-title: Nature
  doi: 10.1038/nature10623
– volume: 110
  start-page: 13546
  year: 2013
  ident: 10.1016/j.celrep.2017.08.008_bib68
  article-title: SIRT2 directs the replication stress response through CDK9 deacetylation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1301463110
– reference: 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72
– reference: 22972397 - Nat Med. 2012 Nov;18(11):1682-7
– reference: 22056990 - Nature. 2011 Nov 06;480(7377):379-82
– reference: 27775344 - Biochemistry. 2016 Nov 8;55(44):6087-6099
– reference: 24217394 - Nat Commun. 2013;4:2722
– reference: 12791985 - Science. 2003 Jun 6;300(5625):1542-8
– reference: 9007998 - Protein Sci. 1997 Jan;6(1):249-53
– reference: 27711056 - Nat Med. 2016 Oct 6;22(10 ):1072-1074
– reference: 16176973 - Mol Biol Cell. 2005 Dec;16(12):5551-62
– reference: 23364794 - J Biol Chem. 2013 Mar 22;288(12):8101-10
– reference: 20064462 - Mol Cell. 2009 Dec 25;36(6):954-69
– reference: 18469000 - J Biol Chem. 2008 Jul 4;283(27):19095-111
– reference: 17965729 - Nature. 2007 Nov 22;450(7169):509-14
– reference: 23371319 - J Mol Med (Berl). 2013 Jun;91(6):759-70
– reference: 9868367 - Trends Biochem Sci. 1998 Dec;23 (12 ):469-72
– reference: 9651580 - Mol Cell. 1998 Jun;1(7):969-79
– reference: 21637200 - Nat Protoc. 2011 Jun;6(6):806-16
– reference: 22327569 - Nat Immunol. 2012 Feb 12;13(3):223-228
– reference: 21613998 - Nature. 2011 May 25;474(7353):654-7
– reference: 18805091 - Cell. 2008 Sep 19;134(6):981-94
– reference: 24837675 - Mol Cell. 2014 Jun 19;54(6):1012-21
– reference: 20811460 - Nature. 2010 Sep 2;467(7311):108-11
– reference: 24753578 - Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1843-51
– reference: 26416562 - Mol Cancer. 2015 Sep 29;14:176
– reference: 28239291 - Microsc Microanal. 2016 Jul;22(Suppl 3):1016-1017
– reference: 24141705 - Nat Struct Mol Biol. 2013 Nov;20(11):1304-9
– reference: 25217585 - Nucleic Acids Res. 2014 Oct;42(18):11517-27
– reference: 26655245 - Virology. 2016 Jan 15;488:271-7
– reference: 20930849 - EMBO Rep. 2010 Nov;11(11):876-82
– reference: 19759395 - J Biol Chem. 2009 Nov 13;284(46):31746-52
– reference: 22461318 - Hum Mutat. 2012 Jul;33(7):1116-22
– reference: 26502057 - Nat Cell Biol. 2015 Nov;17 (11):1458-1470
– reference: 23858451 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14272-7
– reference: 22589553 - J Biol Chem. 2012 Jun 22;287(26):21570-4
– reference: 23898190 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13546-51
– reference: 16123586 - Cell Cycle. 2005 Sep;4(9):1176-8
– reference: 25038827 - Nat Med. 2014 Aug;20(8):936-41
– reference: 18806779 - Nature. 2008 Oct 9;455(7214):770-4
– reference: 25833843 - Cold Spring Harb Perspect Biol. 2015 Apr 01;7(4):a016600
– reference: 20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82
– reference: 24837676 - Mol Cell. 2014 Jun 19;54(6):1022-33
– reference: 22069334 - J Biol Chem. 2011 Dec 23;286(51):43596-600
– reference: 27071091 - Proc Natl Acad Sci U S A. 2016 Apr 26;113(17 ):4723-8
– reference: 16818604 - Genes Dev. 2006 Jul 1;20(13):1721-6
– reference: 26101257 - Nucleic Acids Res. 2015 Jul 27;43(13):6486-99
– reference: 17936710 - Mol Cell. 2007 Oct 12;28(1):134-46
– reference: 22544744 - J Biol Chem. 2012 Jun 15;287(25):21471-80
– reference: 22002605 - Nature. 2011 Oct 16;479(7372):241-4
– reference: 28046007 - PLoS One. 2017 Jan 3;12 (1):e0169052
– reference: 21325134 - Genes Dev. 2011 Feb 15;25(4):350-62
– reference: 21102445 - Nat Struct Mol Biol. 2010 Dec;17(12):1478-85
– reference: 21720370 - Nature. 2011 Jun 29;474(7353):658-61
– reference: 25267621 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4305-14
– reference: 19525956 - Nat Genet. 2009 Jul;41(7):829-32
– reference: 23426366 - J Biol Chem. 2013 Apr 12;288(15):10406-17
– reference: 24626090 - Cancer Res. 2014 May 15;74(10):2677-87
– reference: 15123826 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7624-9
– reference: 19847258 - Nature. 2009 Oct 22;461(7267):1071-8
– reference: 21252998 - Nat Rev Mol Cell Biol. 2011 Feb;12(2):90-103
– reference: 24219908 - Retrovirology. 2013 Nov 12;10:131
– reference: 22588877 - Cancer Discov. 2012 May;2(5):401-4
– reference: 21910633 - Annu Rev Genet. 2011;45:247-71
– reference: 24276239 - Oncogene. 2014 Nov 20;33(47):5450-6
– reference: 27889449 - Mol Cell. 2016 Dec 1;64(5):940-950
– reference: 25231868 - Nature. 2014 Oct 2;514(7520):122-5
– reference: 24445253 - Ann Rheum Dis. 2015 Mar;74(3):e17
– reference: 10764811 - J Biol Chem. 2000 Jun 16;275(24):18541-9
– reference: 10541549 - Genes Dev. 1999 Oct 15;13(20):2633-8
– reference: 24335234 - Blood. 2014 Feb 13;123(7):1021-31
– reference: 26854234 - Cell Rep. 2016 Feb 16;14 (6):1435-47
– reference: 27991919 - Nat Med. 2017 Feb;23 (2):250-255
– reference: 28067901 - Nat Med. 2017 Feb;23 (2):256-263
SSID ssj0000601194
Score 2.5392303
Snippet DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1921
SubjectTerms AGS
autoimmune
CLL
CtIP
DNA Breaks, Double-Stranded
DNA damage response
DNA end resection
DNA End-Joining Repair
DNA repair
dNTP
HCT116 Cells
HEK293 Cells
HeLa Cells
HIV
Homologous Recombination
Humans
MCF-7 Cells
SAM Domain and HD Domain-Containing Protein 1 - deficiency
SAM Domain and HD Domain-Containing Protein 1 - genetics
SAM Domain and HD Domain-Containing Protein 1 - metabolism
Transfection
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7Et_VFBK-Lu5tksz1WbSlCRfCBt5CkCVZ0K7Ue_PfOJLul1UMvwp72kWxmJplvNrPfEHKeOSYh-neJ0xwCFC5MYrS1iRSybcFdi2Fg1x_cFv1HfvMsnudKfWFOWKQHjoK7SL334JbaghnPDZdaSO2LQniWGejd4-oLPm8umIprMHKZ4ZZynmPOVs5l899cSO6y7m3ikK4yk4HBE6tLzvmlQN-_4J7-ws_fWZRzbqm3STZqPEk7cRxbZMVV22QtVpj83iFP951B_zqjdyHrzn3S69sO7VZDihl34ZcGOh3TnraRrNuF6wDK9WhCzTftw1PQ0Pjrk2Kc-g5hdNDkLnnsdR-u-kldSiGxILppAqCtRF_Ewb9rww3EhcY52x7a1JVIqQdAzfLUCMM86kj6UmdauCLzlsOcZ3tktRpX7oBQndm8YMx55j0vrS4hYMrTodc5tp_KFmGNIJWtecax3MWbahLKXlUUv0LxK6yCmZYtksye-og8G0vuv0Qdze5FluxwAmxH1bajltlOi8hGw6oGHBFIQFOjJd2fNQahYD7iJouuHGhDISDOigIW0hbZjwYye0ms7Myl4NDvguksjGLxSjV6CZzfAuJCOA7_Y9hHZB2Hgl_G8_yYrE4nX-4EoNXUnIZZ9APZSB_Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iCL7IeX7c6p1E8LVs0yRN93H9WBZBEfxg30KSTbwe2l3W9cH__mbSdrH6IAh9aZukaWaS-U07-Q0hJ8xzBd6_T7wR4KAIaRNrnEuUVAMH5lpOI7v-1XU-vheXEzlZI2ftXhgMq2zW_npNj6t1c6XfjGZ_Xpb92wx8F7BO-BuZARBHxk8uiriJb3K6-s6CfCMs5kPE8glWaHfQxTAv558WHokrmYpcnphn8p2FikT-HUP1GYh-jKd8Z6BGP8hWgyzpsO78Nlnz1U-yUeeafNshD7fDq_E5ozcx_s6_0PPrIb2ophRj7-LmBrqc0ZFxNW23j_cBnptyQe0bHUMtaGj2-kLRY30GhzrKdJfcjy7uzsZJk1QhcXIglwnAtwKtkgBLb6yw4CFa791g6lJfILkeQDYnUistDygtFQrDjPQ5C07A7Od7ZL2aVf4XoYa5LOfcBx6CKJwpwHXK0mkwGbafqh7h7UBq1zCOY-KLJ92Glv3T9fBrHH6N-TDTokeSVa15zbjxRflTlNGqLPJlxwuzxaNuFEanIQQANwPJbRBWKCOVCXkuA2cWdDj0iGolrDvqB02VXzz-uFUIDTMTf7eYyoM0NEJjluewpPbIfq0gq05ijmehpIDndlSn8xbdO1X5N7J_S_AQ4Tj4do8PySae4YfxLPtN1peLV_8HkNXSHsWp8x8gGR_P
  priority: 102
  providerName: Elsevier
Title SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination
URI https://dx.doi.org/10.1016/j.celrep.2017.08.008
https://www.ncbi.nlm.nih.gov/pubmed/28834754
https://www.proquest.com/docview/1932166703
https://pubmed.ncbi.nlm.nih.gov/PMC5576576
https://doaj.org/article/0fff215953bf4b47a57af665f31bccaf
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYQCGkvE-xnGUOexGumJLbj9GFCZVAVpKJJW6e-WbZrj05dCmmR6H_PnZN0BDaBFOUhTuzEd_Z9F5-_I-QwcUyC9-8ipzk4KFyYyGhrIylk14K5FpPArj-8yAYjfj4W4w3S5GytO3DxT9cO80mNytnn2-vVEQz4L39jtayblQ7ZJxMZCDlx9-8W2CaJOQ2GNeCv5mbkOMOl5jTFWK6Uy2Y_3X8qatmrQOvfMluPYenD6Mp75qq_Q17WOJP2KsXYJRuueEW2q8yTq9fk5_fecHCS0G8hGs8t6MlFj54WE4qReGGrA13OaV_bisTbhXIA63paUrOiA3gKKprfLCj6r3_AvQ4SfkNG_dMfXwdRnWIhsqIrlhGAuRxtFAe7rw034C8a52x3YmOXI9UeADjLYyMM8yg76XOdaOGyxFsOcwF7SzaLeeHeE6oTm2aMOc-857nVOThSaTzxOsX6Y9khrOlIZWv-cUyDMVNNoNlvVXW_wu5XmB0zzjskWj91VfFvPHH_McpofS-yZ4cL8_KXqgejir33AHW6ghnPDZdaSO2zTHiWGNBo3yGykbCqgUgFMKCq6RPNf2oUQsE4xcUXXTiQhkKgnGQZTLAd8q5SkPVLYsZnLgWHdluq0_qKdkkxvQxc4AL8RTj2ntHuB_IC3xR_iKfpPtlcljfuIyCqpTkIfyLgfDY-PggD5g703B7d
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIKXic_R8WUkeIwaJ3acPvDQ0VUtWyukbahvxnZtCBrp1HZC_bv4B7lzkmqBh0lIk_IUJ45zPt_dLzn_jpB3zKUS0L-LnOYAULgwkdHWRlLIngV3LeaBXX8yzUbn_NNMzHbI72YvDKZV1ra_sunBWtdnurU0u5dF0T1NALuAd8LfyAwC8aaC9bHb_ALctvowHsAkv0-S4dHZx1FUlxaIrOiJdQRBTI62mYO_04YbwEnGOdub29jlSDEHgYvlsREm9Thm6XPNtHAZ85bDGkih3zvkLkQfEq3BeHa4_bCDBCcsFGDEAUY4wmbLXsgrs-5i6ZApk8lAHoqFLa-5xFA5oOUZ_418_07gvOYRhw_JXh3K0n4lrUdkx5WPyb2quOXmCfly2p-MBox-Dgl_bkUH0z49KucUk_3Cbgq6XtChthVPuAvtgAd0saRmQ0dwF3S0uFpRhMg_AcEHJXpKzm9F1M_Ibrko3XNCNbNJlqbOp97z3OocsFoSz71OsP9YdkjaCFLZmuIcK21cqCaX7YeqxK9Q_AoLcMZ5h0Tbuy4rio8brj_EOdpeiwTd4cRi-U3VGqpi7z1EUz2RGs8Nl1pI7bNM-JQZWDS-Q2Qzw6ql79BVccPj3zYKocAU4P8dXTqYDYWxOMsysOEdsl8pyHaQWFSaS8HhuS3Vab1Fu6Usvge6cQGQFI6D_x7xG3J_dDY5USfj6fEL8gBb8Kt8krwku-vllXsFYd3avA7LiJKvt71u_wCmaFuV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAMHD1+Promotes+DNA+End+Resection+to+Facilitate+DNA+Repair+by+Homologous+Recombination&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Daddacha%2C+Waaqo&rft.au=Koyen%2C+Allyson+E&rft.au=Bastien%2C+Amanda+J&rft.au=Head%2C+PamelaSara+E&rft.date=2017-08-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=20&rft.issue=8&rft.spage=1921&rft_id=info:doi/10.1016%2Fj.celrep.2017.08.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon