SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We s...
Saved in:
Published in | Cell reports (Cambridge) Vol. 20; no. 8; pp. 1921 - 1935 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
22.08.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
[Display omitted]
•SAMHD1 deficiency or Vpx-mediated degradation sensitizes cells to DSB-inducing agents•SAMHD1 localizes to DNA double-strand breaks in response to DNA damage•SAMHD1 promotes HR and DNA end resection independent of its dNTPase activity•SAMHD1 complexes with CtIP and facilitates its recruitment to DNA damage sites
SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection and is dysregulated in Aicardi-Goutières syndrome and cancer. Daddacha et al. define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. |
---|---|
AbstractList | DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. [Display omitted] •SAMHD1 deficiency or Vpx-mediated degradation sensitizes cells to DSB-inducing agents•SAMHD1 localizes to DNA double-strand breaks in response to DNA damage•SAMHD1 promotes HR and DNA end resection independent of its dNTPase activity•SAMHD1 complexes with CtIP and facilitates its recruitment to DNA damage sites SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection and is dysregulated in Aicardi-Goutières syndrome and cancer. Daddacha et al. define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Gouti è res syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved carboxyl-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction but not dNTPase-inactive SAMHD1 fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity and prevents disease, including cancer. DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity. |
Author | Zhang, Hui Shepard, Caitlin Koyen, Allyson E. Cejka, Petr Wang, Ya Rothenberg, Eli Schlafstein, Ashley J. Nabeta, Geraldine N. Whelan, Donna R. Kim, Baek Bastien, Amanda J. Sundaram, Ranjini K. Daly, Michele B. Werner, Erica Withers, Allison E. Anand, Roopesh Bindra, Ranjit S. Daddacha, Waaqo Doetsch, Paul W. Yu, David S. Madden, Matthew Z. Deng, Xingming Doronio, Christine Head, PamelaSara E. Minten, Elizabeth V. Dhere, Vishal R. Dynan, William S. Connolly, Erin C. |
AuthorAffiliation | 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 6 Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520 USA 4 Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 5 Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland 1 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322 USA 3 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 – name: 4 Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 – name: 5 Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland – name: 6 Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520 USA – name: 3 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322 – name: 1 Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322 USA |
Author_xml | – sequence: 1 givenname: Waaqo surname: Daddacha fullname: Daddacha, Waaqo organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 2 givenname: Allyson E. surname: Koyen fullname: Koyen, Allyson E. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 3 givenname: Amanda J. surname: Bastien fullname: Bastien, Amanda J. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 4 givenname: PamelaSara E. surname: Head fullname: Head, PamelaSara E. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 5 givenname: Vishal R. surname: Dhere fullname: Dhere, Vishal R. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 6 givenname: Geraldine N. surname: Nabeta fullname: Nabeta, Geraldine N. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 7 givenname: Erin C. surname: Connolly fullname: Connolly, Erin C. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 8 givenname: Erica surname: Werner fullname: Werner, Erica organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 9 givenname: Matthew Z. surname: Madden fullname: Madden, Matthew Z. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 10 givenname: Michele B. surname: Daly fullname: Daly, Michele B. organization: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 11 givenname: Elizabeth V. surname: Minten fullname: Minten, Elizabeth V. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 12 givenname: Donna R. surname: Whelan fullname: Whelan, Donna R. organization: Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA – sequence: 13 givenname: Ashley J. surname: Schlafstein fullname: Schlafstein, Ashley J. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 14 givenname: Hui surname: Zhang fullname: Zhang, Hui organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 15 givenname: Roopesh surname: Anand fullname: Anand, Roopesh organization: Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland – sequence: 16 givenname: Christine surname: Doronio fullname: Doronio, Christine organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 17 givenname: Allison E. surname: Withers fullname: Withers, Allison E. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 18 givenname: Caitlin surname: Shepard fullname: Shepard, Caitlin organization: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 19 givenname: Ranjini K. surname: Sundaram fullname: Sundaram, Ranjini K. organization: Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 20 givenname: Xingming surname: Deng fullname: Deng, Xingming organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 21 givenname: William S. surname: Dynan fullname: Dynan, William S. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 22 givenname: Ya surname: Wang fullname: Wang, Ya organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 23 givenname: Ranjit S. surname: Bindra fullname: Bindra, Ranjit S. organization: Department of Radiation Oncology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 24 givenname: Petr surname: Cejka fullname: Cejka, Petr organization: Institute for Research in Biomedicine, Università della Svizzera italiana, Via Vela 6, 6500 Bellinzona, Switzerland – sequence: 25 givenname: Eli surname: Rothenberg fullname: Rothenberg, Eli organization: Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA – sequence: 26 givenname: Paul W. surname: Doetsch fullname: Doetsch, Paul W. organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 27 givenname: Baek surname: Kim fullname: Kim, Baek organization: Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 28 givenname: David S. surname: Yu fullname: Yu, David S. email: dsyu@emory.edu organization: Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28834754$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1rHCEUlZLSpGn-QSnz2JedqqOO04fCko9uIP0g_XgVda5bl5lxo24g_75udlOSPrQiKNd7zpFzz0t0MIUJEHpNcE0wEe9WtYUhwrqmmLQ1ljXG8hk6opSQGaGsPXh0P0QnKa1wWQIT0rEX6JBK2bCWsyP089v80-KMVF9jGEOGVJ19nlfnU19dQwKbfZiqHKoLbf3gs85w_34Na-1jZe6qRUENYRk2qRRtGI2f9Bb0Cj13ekhwsj-P0Y-L8--ni9nVl4-Xp_OrmeUdzzMuhJS4fJITqg0zknIDYLveYpC4oVJwbBk23DSus4K0TmqiOQjiLGsobY7R5Y63D3ql1tGPOt6poL26L4S4VDpmbwdQ2DlHSZFtjGOGtZq32gnBXUOMtdoVrg87rvXGjNBbmHLUwxPSpy-T_6WW4VZx3oqyC8HbPUEMNxtIWY0-lTkNeoLikCJdQ4kQLW5K65vHWn9EHgZTGt7vGmwMKUVwym79L9YWaT8ogtU2CGqldkFQ2yAoLFUJQgGzv8AP_P-B7Q2AMrFbD1El62Gy0PtYslAs9f8m-A2PLc2m |
CitedBy_id | crossref_primary_10_1016_j_dnarep_2022_103406 crossref_primary_10_3390_v14081622 crossref_primary_10_1016_j_antiviral_2020_104824 crossref_primary_10_1038_s41586_018_0050_1 crossref_primary_10_1096_fj_202300122R crossref_primary_10_1186_s13578_021_00636_y crossref_primary_10_3390_biom15020168 crossref_primary_10_1016_j_heliyon_2024_e41019 crossref_primary_10_1128_mSphere_00448_19 crossref_primary_10_3390_genes11070730 crossref_primary_10_1016_j_celrep_2018_06_090 crossref_primary_10_1016_j_molcel_2022_08_031 crossref_primary_10_2139_ssrn_3990832 crossref_primary_10_3390_cancers12061617 crossref_primary_10_1038_s41419_022_05023_0 crossref_primary_10_3390_genes11040409 crossref_primary_10_1242_dmm_050775 crossref_primary_10_1084_jem_20220829 crossref_primary_10_1007_s00109_021_02131_w crossref_primary_10_1186_s13148_024_01719_6 crossref_primary_10_1186_s12969_024_01050_7 crossref_primary_10_1007_s00296_021_04906_3 crossref_primary_10_1038_s42003_020_1052_8 crossref_primary_10_1038_s41467_020_16983_2 crossref_primary_10_1016_j_celrep_2020_107640 crossref_primary_10_1038_s41417_025_00893_w crossref_primary_10_1016_j_gendis_2022_06_001 crossref_primary_10_1038_s41564_022_01158_0 crossref_primary_10_1186_s12977_023_00620_z crossref_primary_10_1016_j_jmgm_2024_108748 crossref_primary_10_1016_j_celrep_2021_110236 crossref_primary_10_1038_s41588_023_01339_5 crossref_primary_10_1038_s41467_018_06435_3 crossref_primary_10_15252_embr_201847528 crossref_primary_10_1128_jvi_00826_24 crossref_primary_10_1021_acsinfecdis_0c00551 crossref_primary_10_1021_acs_biochem_0c00944 crossref_primary_10_1038_s41467_021_21023_8 crossref_primary_10_1128_mSphere_00858_20 crossref_primary_10_1002_1878_0261_13227 crossref_primary_10_1042_EBC20200007 crossref_primary_10_3390_cancers14184490 crossref_primary_10_1073_pnas_1719771115 crossref_primary_10_3389_fcimb_2023_1241305 crossref_primary_10_1146_annurev_genet_120116_024745 crossref_primary_10_1002_advs_202411988 crossref_primary_10_1038_s41467_022_34578_x crossref_primary_10_1073_pnas_2021963118 crossref_primary_10_1002_bies_202100157 crossref_primary_10_1530_EJE_21_1183 crossref_primary_10_1016_j_leukres_2021_106608 crossref_primary_10_1128_mbio_02252_23 crossref_primary_10_1016_j_isci_2024_108907 crossref_primary_10_1038_s41580_025_00841_4 crossref_primary_10_3390_v12040382 crossref_primary_10_1038_s41467_018_07799_2 crossref_primary_10_1080_17460441_2020_1811672 crossref_primary_10_1038_s41467_024_48237_w crossref_primary_10_1093_nar_gkab051 crossref_primary_10_1038_s41408_018_0134_z crossref_primary_10_1007_s11262_020_01813_w crossref_primary_10_1016_j_coi_2018_09_017 crossref_primary_10_1038_s41598_018_22432_4 crossref_primary_10_1186_s12967_022_03844_3 crossref_primary_10_15252_embj_2019102931 crossref_primary_10_4049_jimmunol_2001389 crossref_primary_10_26508_lsa_201900355 crossref_primary_10_1080_15384101_2018_1480218 crossref_primary_10_1371_journal_pgen_1009256 crossref_primary_10_1007_s42764_019_00002_w crossref_primary_10_1088_2050_6120_abf239 crossref_primary_10_3390_v12080839 crossref_primary_10_1002_bies_202400066 crossref_primary_10_1128_mBio_00940_20 crossref_primary_10_1016_j_tim_2018_09_009 crossref_primary_10_1038_s41388_023_02667_w crossref_primary_10_1007_s00430_019_00593_x crossref_primary_10_1038_s44298_024_00087_5 crossref_primary_10_1016_j_tig_2017_09_007 crossref_primary_10_3390_v13030395 crossref_primary_10_3389_fonc_2021_763151 crossref_primary_10_1093_nar_gkad447 crossref_primary_10_1371_journal_ppat_1008855 crossref_primary_10_3390_pathogens9060467 crossref_primary_10_1016_j_jbc_2021_101170 crossref_primary_10_3389_fimmu_2018_01811 crossref_primary_10_3390_cancers14030641 crossref_primary_10_1021_acschembio_3c00118 crossref_primary_10_1038_s41467_018_04671_1 crossref_primary_10_1371_journal_pgen_1009523 crossref_primary_10_1038_s41467_019_11413_4 crossref_primary_10_1016_j_dnarep_2018_12_001 crossref_primary_10_3390_ijms24010551 crossref_primary_10_3390_vaccines9101050 crossref_primary_10_1016_j_bbrc_2018_03_225 crossref_primary_10_1016_j_bmt_2025_100069 crossref_primary_10_1146_annurev_genet_071719_020312 crossref_primary_10_1093_nar_gkad971 crossref_primary_10_1186_s12943_024_02046_3 crossref_primary_10_1002_eji_201948491 crossref_primary_10_1080_15384101_2018_1550955 crossref_primary_10_1111_sji_13314 crossref_primary_10_1016_j_celrep_2019_04_020 crossref_primary_10_1096_fj_201902508R crossref_primary_10_1021_jacs_5c00521 crossref_primary_10_1016_j_dnarep_2020_102894 crossref_primary_10_1038_s41586_024_07931_x crossref_primary_10_1093_narcan_zcae007 crossref_primary_10_1128_JVI_00620_21 crossref_primary_10_1016_j_jmb_2021_167327 crossref_primary_10_1371_journal_pone_0235998 crossref_primary_10_18663_tjcl_542346 crossref_primary_10_1371_journal_pgen_1008701 crossref_primary_10_26508_lsa_201800121 crossref_primary_10_1016_j_jbc_2023_105148 crossref_primary_10_1038_s41564_019_0585_4 crossref_primary_10_1093_nar_gkac573 crossref_primary_10_1042_BST20180348 crossref_primary_10_2139_ssrn_3255560 crossref_primary_10_3389_fcell_2021_702584 crossref_primary_10_1021_acs_biochem_8b01038 crossref_primary_10_1186_s13046_023_02829_4 crossref_primary_10_1080_08916934_2018_1454912 crossref_primary_10_1074_jbc_TM118_000371 crossref_primary_10_3389_fimmu_2021_629922 crossref_primary_10_1080_15384101_2019_1638192 crossref_primary_10_1016_j_clon_2019_02_007 crossref_primary_10_3390_cells9112430 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_1007_s13402_023_00862_1 |
Cites_doi | 10.1038/nrm3047 10.1101/cshperspect.a016600 10.1038/nature08467 10.1074/jbc.M112.355354 10.1038/ni.2236 10.1074/jbc.M109.023424 10.1038/nature07312 10.1093/nar/gkv633 10.1002/pro.5560060128 10.1101/gad.1431006 10.1158/0008-5472.CAN-13-1996 10.1038/ng.373 10.1016/S0968-0004(98)01293-6 10.1038/nm.4265 10.1158/2159-8290.CD-12-0095 10.1074/jbc.C111.317628 10.1038/nature06337 10.1093/nar/gku840 10.1007/s00109-013-0995-3 10.1016/j.virol.2015.11.022 10.1038/nature10117 10.1101/gad.13.20.2633 10.1074/jbc.M800881200 10.1038/nature10195 10.4161/cc.4.9.2031 10.1017/S1431927616005924 10.1126/science.1083430 10.1002/humu.22087 10.1038/ncb3260 10.1038/nature09318 10.1038/nm.4163 10.1073/pnas.0400726101 10.1186/1742-4690-10-131 10.1186/s12943-015-0446-6 10.1146/annurev-genet-110410-132435 10.1038/nature10515 10.1038/nsmb.1957 10.1016/j.celrep.2016.01.018 10.1074/jbc.C112.374843 10.1073/pnas.1519128113 10.1038/nature13771 10.1016/j.molcel.2009.12.002 10.1021/acs.biochem.6b00986 10.1182/blood-2013-04-490847 10.1038/onc.2013.488 10.1038/nsmb.2692 10.1091/mbc.e05-05-0427 10.1074/jbc.M112.443796 10.1101/gad.503108 10.1371/journal.pone.0169052 10.1038/ncomms3722 10.1038/nm.4255 10.1016/j.molcel.2014.04.012 10.1038/nm.3626 10.1074/jbc.M909494199 10.1038/embor.2010.153 10.1038/nprot.2011.327 10.1136/annrheumdis-2013-204845 10.1073/pnas.1412289111 10.1101/gad.2003811 10.1016/j.molcel.2007.09.009 10.1073/pnas.1312033110 10.1073/pnas.1401706111 10.1016/S1097-2765(00)80097-0 10.1016/j.molcel.2016.10.017 10.1074/jbc.M112.431148 10.1016/j.cell.2008.08.037 10.1016/j.molcel.2014.04.011 10.1038/nm.2964 10.1038/nsmb.1919 10.1038/nature10623 10.1073/pnas.1301463110 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 The Author(s) – notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2017.08.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 1935 |
ExternalDocumentID | oai_doaj_org_article_0fff215953bf4b47a57af665f31bccaf PMC5576576 28834754 10_1016_j_celrep_2017_08_008 S2211124717310963 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA136534 – fundername: NIAID NIH HHS grantid: R01 AI049781 – fundername: NCI NIH HHS grantid: R21 CA187612 – fundername: NIGMS NIH HHS grantid: R01 GM104198 – fundername: NCI NIH HHS grantid: R01 CA193828 – fundername: NCI NIH HHS grantid: R01 CA160771 – fundername: NCI NIH HHS grantid: R01 CA178999 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NIGMS NIH HHS grantid: F32 GM121071 – fundername: NIGMS NIH HHS grantid: R01 GM108119 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c595t-566880124512ab4b825beec9dc0e80328650c40b5b3f9c617f8a1a5e61fc43223 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:30:30 EDT 2025 Thu Aug 21 14:10:58 EDT 2025 Fri Jul 11 14:01:41 EDT 2025 Thu Apr 03 07:04:08 EDT 2025 Tue Jul 01 03:07:41 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Wed May 17 00:03:04 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | CLL HIV homologous recombination autoimmune DNA damage response CtIP dNTP DNA repair DNA end resection AGS |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c595t-566880124512ab4b825beec9dc0e80328650c40b5b3f9c617f8a1a5e61fc43223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact: David S. Yu, M.D., Ph.D., Department of Radiation Oncology, Emory University School of Medicine, 1365 Clifton Rd NE, C3008, Phone: 404-778-1758, Fax: 404-778-5520, dsyu@emory.edu |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2017.08.008 |
PMID | 28834754 |
PQID | 1932166703 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fff215953bf4b47a57af665f31bccaf pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576576 proquest_miscellaneous_1932166703 pubmed_primary_28834754 crossref_citationtrail_10_1016_j_celrep_2017_08_008 crossref_primary_10_1016_j_celrep_2017_08_008 elsevier_sciencedirect_doi_10_1016_j_celrep_2017_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-22 |
PublicationDateYYYYMMDD | 2017-08-22 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Kretschmer, Wolf, König, Staroske, Guck, Häusler, Luksch, Nguyen, Kim, Alexopoulou (bib31) 2015; 74 Prakash, Zhang, Feng, Jasin (bib43) 2015; 7 Pierce, Johnson, Thompson, Jasin (bib41) 1999; 13 Sartori, Lukas, Coates, Mistrik, Fu, Bartek, Baer, Lukas, Jackson (bib47) 2007; 450 Brandariz-Nuñez, Valle-Casuso, White, Nguyen, Bhattacharya, Wang, Demeler, Amie, Knowlton, Kim (bib7) 2013; 10 Clifford, Louis, Robbe, Ackroyd, Burns, Timbs, Wright Colopy, Dreau, Sigaux, Judde (bib11) 2014; 123 Colbert, Petrova, Fisher, Pantazides, Madden, Hardy, Warren, Pan, Nagaraju, Liu (bib12) 2014; 74 Ji, Tang, Zhao, Wang, Xiong (bib28) 2014; 111 Powell, Holland, Hollis, Perrino (bib42) 2011; 286 Hansen, Seamon, Cravens, Stivers (bib19) 2014; 111 Seamon, Bumpus, Stivers (bib52) 2016; 55 Symington, Gautier (bib56) 2011; 45 Wang, Shao, Shi, Hwang, Truong, Berns, Chen, Wu (bib58) 2012; 287 Berger, Durand, Goujon, Nguyen, Cordeil, Darlix, Cimarelli (bib6) 2011; 6 Hall, Petrova, Colbert, Hardy, Fisher, Saka, Shelton, Warren, Pantazides, Gandhi (bib18) 2014; 33 Lahouassa, Daddacha, Hofmann, Ayinde, Logue, Dragin, Bloch, Maudet, Bertrand, Gramberg (bib33) 2012; 13 Yu, Baer (bib64) 2000; 275 Hollenbaugh, Shelton, Tao, Amiralaei, Liu, Lu, Goetze, Zhou, Nettles, Schinazi, Kim (bib23) 2017; 12 Nicolette, Lee, Guo, Rani, Chow, Lee, Paull (bib37) 2010; 17 Zhang, Head, Daddacha, Park, Li, Pan, Madden, Duong, Xie, Yu (bib69) 2016; 14 Zhu, Gao, Zhao, Qin, Zhang, Peng, Zhang, Dong, Zhang, Li (bib71) 2013; 4 Smith, Petrova, Madden, Wang, Pan, Warren, Hardy, Liang, Liu, Robinson (bib54) 2014; 42 Rentoft, Lindell, Tran, Chabes, Buckland, Watt, Marjavaara, Nilsson, Melin, Trygg (bib44) 2016; 113 Cannavo, Cejka (bib8) 2014; 514 Kohnken, Kodigepalli, Wu (bib30) 2015; 14 Wang, Li, Truong, Shi, Hwang, He, Do, Cho, Li, Negrete (bib59) 2014; 54 Schneider, Oellerich, Baldauf, Schwarz, Thomas, Flick, Bohnenberger, Kaderali, Stegmann, Cremer (bib49) 2017; 23 Mimitou, Symington (bib36) 2008; 455 Zhang, Park, Pantazides, Karpiuk, Warren, Hardy, Duong, Park, Kim, Vassilopoulos (bib68) 2013; 110 Laguette, Sobhian, Casartelli, Ringeard, Chable-Bessia, Ségéral, Yatim, Emiliani, Schwartz, Benkirane (bib32) 2011; 474 Baldauf, Pan, Erikson, Schmidt, Daddacha, Burggraf, Schenkova, Ambiel, Wabnitz, Gramberg (bib4) 2012; 18 Tüngler, Staroske, Kind, Dobrick, Kretschmer, Schmidt, Krug, Lorenz, Chara, Schwille, Lee-Kirsch (bib57) 2013; 91 Seamon, Sun, Shlyakhtenko, Lyubchenko, Stivers (bib51) 2015; 43 Antonucci, St Gelais, de Silva, Yount, Tang, Ji, Shepard, Xiong, Kim, Wu (bib2) 2016; 22 Goncalves, Karayel, Rice, Bennett, Crow, Superti-Furga, Bürckstümmer (bib16) 2012; 33 Herold, Rudd, Ljungblad, Sanjiv, Myrberg, Paulin, Heshmati, Hagenkort, Kutzner, Page (bib22) 2017; 23 Welbourn, Strebel (bib60) 2016; 488 Makharashvili, Tubbs, Yang, Wang, Barton, Zhou, Deshpande, Lee, Lobrich, Sleckman (bib35) 2014; 54 Yu, Zhao, Hsu, Cayer, Ye, Guo, Shyr, Cortez (bib66) 2010; 11 Yan, Kaur, DeLucia, Hao, Mehrens, Wang, Golczak, Palczewski, Gronenborn, Ahn, Skowronski (bib62) 2013; 288 Cerami, Gao, Dogrusoz, Gross, Sumer, Aksoy, Jacobsen, Byrne, Heuer, Larsson (bib10) 2012; 2 Ryoo, Choi, Oh, Kim, Seo, Kim, Seo, Kim, White, Brandariz-Nuñez (bib46) 2014; 20 Yu, Fu, Lai, Baer, Chen (bib65) 2006; 20 Goldstone, Ennis-Adeniran, Hedden, Groom, Rice, Christodoulou, Walker, Kelly, Haire, Yap (bib15) 2011; 480 Kim, Nguyen, Daddacha, Hollenbaugh (bib29) 2012; 287 Ji, Wu, Yan, Mehrens, Yang, DeLucia, Hao, Gronenborn, Skowronski, Ahn, Xiong (bib27) 2013; 20 Beloglazova, Flick, Tchigvintsev, Brown, Popovic, Nocek, Yakunin (bib5) 2013; 288 Niu, Chung, Zhu, Kwon, Zhao, Chi, Prakash, Seong, Liu, Lu (bib39) 2010; 467 Zou, Elledge (bib72) 2003; 300 Anand, Ranjha, Cannavo, Cejka (bib1) 2016; 64 Helleday, Bryant, Schultz (bib21) 2005; 4 Schmidt, Galanty, Sczaniecka-Clift, Coates, Jhujh, Demir, Cornwell, Beli, Jackson (bib48) 2015; 17 Franzolin, Pontarin, Rampazzo, Miazzi, Ferraro, Palumbo, Reichard, Bianchi (bib13) 2013; 110 Stracker, Petrini (bib55) 2011; 12 Paull, Gellert (bib40) 1998; 1 Hrecka, Hao, Gierszewska, Swanson, Kesik-Brodacka, Srivastava, Florens, Washburn, Skowronski (bib24) 2011; 474 Schultz, Ponting, Hofmann, Bork (bib50) 1997; 6 Jackson, Bartek (bib26) 2009; 461 Limbo, Chahwan, Yamada, de Bruin, Wittenberg, Russell (bib34) 2007; 28 Whelan, Yin, Bermudez-Hernandez, Keegan, Fenyö, Rothenberg (bib61) 2016; 22 Cejka, Plank, Bachrati, Hickson, Kowalczykowski (bib9) 2010; 17 Zhu, Chung, Shim, Lee, Ira (bib70) 2008; 134 Gravel, Chapman, Magill, Jackson (bib17) 2008; 22 Haring, Mason, Binz, Wold (bib20) 2008; 283 Itakura, Sawada, Matsuura (bib25) 2005; 16 Yuan, Chen (bib67) 2009; 284 Nimonkar, Genschel, Kinoshita, Polaczek, Campbell, Wyman, Modrich, Kowalczykowski (bib38) 2011; 25 Aravind, Koonin (bib3) 1998; 23 Seluanov, Mittelman, Pereira-Smith, Wilson, Gorbunova (bib53) 2004; 101 Garcia, Phelps, Gray, Neale (bib14) 2011; 479 Rice, Bond, Asipu, Brunette, Manfield, Carr, Fuller, Jackson, Lamb, Briggs (bib45) 2009; 41 You, Shi, Zhu, Wu, Zhang, Basilio, Tonnu, Verma, Berns, Hunter (bib63) 2009; 36 Wang (10.1016/j.celrep.2017.08.008_bib59) 2014; 54 Helleday (10.1016/j.celrep.2017.08.008_bib21) 2005; 4 Hollenbaugh (10.1016/j.celrep.2017.08.008_bib23) 2017; 12 Zou (10.1016/j.celrep.2017.08.008_bib72) 2003; 300 Aravind (10.1016/j.celrep.2017.08.008_bib3) 1998; 23 Powell (10.1016/j.celrep.2017.08.008_bib42) 2011; 286 Rentoft (10.1016/j.celrep.2017.08.008_bib44) 2016; 113 Cannavo (10.1016/j.celrep.2017.08.008_bib8) 2014; 514 Makharashvili (10.1016/j.celrep.2017.08.008_bib35) 2014; 54 Ji (10.1016/j.celrep.2017.08.008_bib28) 2014; 111 Limbo (10.1016/j.celrep.2017.08.008_bib34) 2007; 28 Seluanov (10.1016/j.celrep.2017.08.008_bib53) 2004; 101 Ji (10.1016/j.celrep.2017.08.008_bib27) 2013; 20 Stracker (10.1016/j.celrep.2017.08.008_bib55) 2011; 12 Kohnken (10.1016/j.celrep.2017.08.008_bib30) 2015; 14 Schneider (10.1016/j.celrep.2017.08.008_bib49) 2017; 23 You (10.1016/j.celrep.2017.08.008_bib63) 2009; 36 Sartori (10.1016/j.celrep.2017.08.008_bib47) 2007; 450 Rice (10.1016/j.celrep.2017.08.008_bib45) 2009; 41 Itakura (10.1016/j.celrep.2017.08.008_bib25) 2005; 16 Welbourn (10.1016/j.celrep.2017.08.008_bib60) 2016; 488 Gravel (10.1016/j.celrep.2017.08.008_bib17) 2008; 22 Tüngler (10.1016/j.celrep.2017.08.008_bib57) 2013; 91 Hrecka (10.1016/j.celrep.2017.08.008_bib24) 2011; 474 Niu (10.1016/j.celrep.2017.08.008_bib39) 2010; 467 Seamon (10.1016/j.celrep.2017.08.008_bib52) 2016; 55 Smith (10.1016/j.celrep.2017.08.008_bib54) 2014; 42 Yuan (10.1016/j.celrep.2017.08.008_bib67) 2009; 284 Anand (10.1016/j.celrep.2017.08.008_bib1) 2016; 64 Goldstone (10.1016/j.celrep.2017.08.008_bib15) 2011; 480 Zhang (10.1016/j.celrep.2017.08.008_bib68) 2013; 110 Paull (10.1016/j.celrep.2017.08.008_bib40) 1998; 1 Yan (10.1016/j.celrep.2017.08.008_bib62) 2013; 288 Ryoo (10.1016/j.celrep.2017.08.008_bib46) 2014; 20 Schultz (10.1016/j.celrep.2017.08.008_bib50) 1997; 6 Haring (10.1016/j.celrep.2017.08.008_bib20) 2008; 283 Cejka (10.1016/j.celrep.2017.08.008_bib9) 2010; 17 Zhu (10.1016/j.celrep.2017.08.008_bib71) 2013; 4 Kretschmer (10.1016/j.celrep.2017.08.008_bib31) 2015; 74 Garcia (10.1016/j.celrep.2017.08.008_bib14) 2011; 479 Beloglazova (10.1016/j.celrep.2017.08.008_bib5) 2013; 288 Pierce (10.1016/j.celrep.2017.08.008_bib41) 1999; 13 Laguette (10.1016/j.celrep.2017.08.008_bib32) 2011; 474 Yu (10.1016/j.celrep.2017.08.008_bib64) 2000; 275 Schmidt (10.1016/j.celrep.2017.08.008_bib48) 2015; 17 Baldauf (10.1016/j.celrep.2017.08.008_bib4) 2012; 18 Colbert (10.1016/j.celrep.2017.08.008_bib12) 2014; 74 Symington (10.1016/j.celrep.2017.08.008_bib56) 2011; 45 Prakash (10.1016/j.celrep.2017.08.008_bib43) 2015; 7 Zhang (10.1016/j.celrep.2017.08.008_bib69) 2016; 14 Jackson (10.1016/j.celrep.2017.08.008_bib26) 2009; 461 Nimonkar (10.1016/j.celrep.2017.08.008_bib38) 2011; 25 Wang (10.1016/j.celrep.2017.08.008_bib58) 2012; 287 Cerami (10.1016/j.celrep.2017.08.008_bib10) 2012; 2 Berger (10.1016/j.celrep.2017.08.008_bib6) 2011; 6 Yu (10.1016/j.celrep.2017.08.008_bib66) 2010; 11 Lahouassa (10.1016/j.celrep.2017.08.008_bib33) 2012; 13 Goncalves (10.1016/j.celrep.2017.08.008_bib16) 2012; 33 Kim (10.1016/j.celrep.2017.08.008_bib29) 2012; 287 Yu (10.1016/j.celrep.2017.08.008_bib65) 2006; 20 Herold (10.1016/j.celrep.2017.08.008_bib22) 2017; 23 Antonucci (10.1016/j.celrep.2017.08.008_bib2) 2016; 22 Franzolin (10.1016/j.celrep.2017.08.008_bib13) 2013; 110 Brandariz-Nuñez (10.1016/j.celrep.2017.08.008_bib7) 2013; 10 Whelan (10.1016/j.celrep.2017.08.008_bib61) 2016; 22 Clifford (10.1016/j.celrep.2017.08.008_bib11) 2014; 123 Hall (10.1016/j.celrep.2017.08.008_bib18) 2014; 33 Nicolette (10.1016/j.celrep.2017.08.008_bib37) 2010; 17 Hansen (10.1016/j.celrep.2017.08.008_bib19) 2014; 111 Mimitou (10.1016/j.celrep.2017.08.008_bib36) 2008; 455 Zhu (10.1016/j.celrep.2017.08.008_bib70) 2008; 134 Seamon (10.1016/j.celrep.2017.08.008_bib51) 2015; 43 25038827 - Nat Med. 2014 Aug;20(8):936-41 22589553 - J Biol Chem. 2012 Jun 22;287(26):21570-4 17936710 - Mol Cell. 2007 Oct 12;28(1):134-46 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72 26101257 - Nucleic Acids Res. 2015 Jul 27;43(13):6486-99 23858451 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14272-7 24276239 - Oncogene. 2014 Nov 20;33(47):5450-6 24335234 - Blood. 2014 Feb 13;123(7):1021-31 24445253 - Ann Rheum Dis. 2015 Mar;74(3):e17 25267621 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4305-14 23371319 - J Mol Med (Berl). 2013 Jun;91(6):759-70 18469000 - J Biol Chem. 2008 Jul 4;283(27):19095-111 17965729 - Nature. 2007 Nov 22;450(7169):509-14 10764811 - J Biol Chem. 2000 Jun 16;275(24):18541-9 26854234 - Cell Rep. 2016 Feb 16;14 (6):1435-47 18806779 - Nature. 2008 Oct 9;455(7214):770-4 16176973 - Mol Biol Cell. 2005 Dec;16(12):5551-62 27775344 - Biochemistry. 2016 Nov 8;55(44):6087-6099 27071091 - Proc Natl Acad Sci U S A. 2016 Apr 26;113(17 ):4723-8 21252998 - Nat Rev Mol Cell Biol. 2011 Feb;12(2):90-103 19759395 - J Biol Chem. 2009 Nov 13;284(46):31746-52 9868367 - Trends Biochem Sci. 1998 Dec;23 (12 ):469-72 26655245 - Virology. 2016 Jan 15;488:271-7 12791985 - Science. 2003 Jun 6;300(5625):1542-8 21613998 - Nature. 2011 May 25;474(7353):654-7 9007998 - Protein Sci. 1997 Jan;6(1):249-53 22544744 - J Biol Chem. 2012 Jun 15;287(25):21471-80 21325134 - Genes Dev. 2011 Feb 15;25(4):350-62 10541549 - Genes Dev. 1999 Oct 15;13(20):2633-8 25217585 - Nucleic Acids Res. 2014 Oct;42(18):11517-27 22069334 - J Biol Chem. 2011 Dec 23;286(51):43596-600 21720370 - Nature. 2011 Jun 29;474(7353):658-61 23898190 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13546-51 27889449 - Mol Cell. 2016 Dec 1;64(5):940-950 21102445 - Nat Struct Mol Biol. 2010 Dec;17(12):1478-85 9651580 - Mol Cell. 1998 Jun;1(7):969-79 22002605 - Nature. 2011 Oct 16;479(7372):241-4 21637200 - Nat Protoc. 2011 Jun;6(6):806-16 20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82 24141705 - Nat Struct Mol Biol. 2013 Nov;20(11):1304-9 15123826 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7624-9 27991919 - Nat Med. 2017 Feb;23 (2):250-255 16123586 - Cell Cycle. 2005 Sep;4(9):1176-8 24626090 - Cancer Res. 2014 May 15;74(10):2677-87 28067901 - Nat Med. 2017 Feb;23 (2):256-263 28239291 - Microsc Microanal. 2016 Jul;22(Suppl 3):1016-1017 25231868 - Nature. 2014 Oct 2;514(7520):122-5 19525956 - Nat Genet. 2009 Jul;41(7):829-32 22056990 - Nature. 2011 Nov 06;480(7377):379-82 22588877 - Cancer Discov. 2012 May;2(5):401-4 22327569 - Nat Immunol. 2012 Feb 12;13(3):223-228 24217394 - Nat Commun. 2013;4:2722 18805091 - Cell. 2008 Sep 19;134(6):981-94 25833843 - Cold Spring Harb Perspect Biol. 2015 Apr 01;7(4):a016600 28046007 - PLoS One. 2017 Jan 3;12 (1):e0169052 19847258 - Nature. 2009 Oct 22;461(7267):1071-8 20811460 - Nature. 2010 Sep 2;467(7311):108-11 24837675 - Mol Cell. 2014 Jun 19;54(6):1012-21 24219908 - Retrovirology. 2013 Nov 12;10:131 16818604 - Genes Dev. 2006 Jul 1;20(13):1721-6 23364794 - J Biol Chem. 2013 Mar 22;288(12):8101-10 27711056 - Nat Med. 2016 Oct 6;22(10 ):1072-1074 24753578 - Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1843-51 22461318 - Hum Mutat. 2012 Jul;33(7):1116-22 26502057 - Nat Cell Biol. 2015 Nov;17 (11):1458-1470 24837676 - Mol Cell. 2014 Jun 19;54(6):1022-33 20064462 - Mol Cell. 2009 Dec 25;36(6):954-69 26416562 - Mol Cancer. 2015 Sep 29;14:176 21910633 - Annu Rev Genet. 2011;45:247-71 20930849 - EMBO Rep. 2010 Nov;11(11):876-82 22972397 - Nat Med. 2012 Nov;18(11):1682-7 23426366 - J Biol Chem. 2013 Apr 12;288(15):10406-17 |
References_xml | – volume: 6 start-page: 806 year: 2011 end-page: 816 ident: bib6 article-title: A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors publication-title: Nat. Protoc. – volume: 16 start-page: 5551 year: 2005 end-page: 5562 ident: bib25 article-title: Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks publication-title: Mol. Biol. Cell – volume: 23 start-page: 469 year: 1998 end-page: 472 ident: bib3 article-title: The HD domain defines a new superfamily of metal-dependent phosphohydrolases publication-title: Trends Biochem. Sci. – volume: 474 start-page: 658 year: 2011 end-page: 661 ident: bib24 article-title: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein publication-title: Nature – volume: 25 start-page: 350 year: 2011 end-page: 362 ident: bib38 article-title: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair publication-title: Genes Dev. – volume: 275 start-page: 18541 year: 2000 end-page: 18549 ident: bib64 article-title: Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor publication-title: J. Biol. Chem. – volume: 288 start-page: 8101 year: 2013 end-page: 8110 ident: bib5 article-title: Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction publication-title: J. Biol. Chem. – volume: 283 start-page: 19095 year: 2008 end-page: 19111 ident: bib20 article-title: Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints publication-title: J. Biol. Chem. – volume: 514 start-page: 122 year: 2014 end-page: 125 ident: bib8 article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks publication-title: Nature – volume: 28 start-page: 134 year: 2007 end-page: 146 ident: bib34 article-title: Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination publication-title: Mol. Cell – volume: 450 start-page: 509 year: 2007 end-page: 514 ident: bib47 article-title: Human CtIP promotes DNA end resection publication-title: Nature – volume: 123 start-page: 1021 year: 2014 end-page: 1031 ident: bib11 article-title: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage publication-title: Blood – volume: 113 start-page: 4723 year: 2016 end-page: 4728 ident: bib44 article-title: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 936 year: 2014 end-page: 941 ident: bib46 article-title: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction publication-title: Nat. Med. – volume: 101 start-page: 7624 year: 2004 end-page: 7629 ident: bib53 article-title: DNA end joining becomes less efficient and more error-prone during cellular senescence publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 1478 year: 2010 end-page: 1485 ident: bib37 article-title: Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. – volume: 287 start-page: 21471 year: 2012 end-page: 21480 ident: bib58 article-title: CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks publication-title: J. Biol. Chem. – volume: 54 start-page: 1022 year: 2014 end-page: 1033 ident: bib35 article-title: Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection publication-title: Mol. Cell – volume: 55 start-page: 6087 year: 2016 end-page: 6099 ident: bib52 article-title: Single-stranded nucleic acids bind to the tetramer interface of SAMHD1 and prevent formation of the catalytic homotetramer publication-title: Biochemistry – volume: 45 start-page: 247 year: 2011 end-page: 271 ident: bib56 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu. Rev. Genet. – volume: 17 start-page: 1458 year: 2015 end-page: 1470 ident: bib48 article-title: Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair publication-title: Nat. Cell Biol. – volume: 7 start-page: a016600 year: 2015 ident: bib43 article-title: Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins publication-title: Cold Spring Harb. Perspect. Biol. – volume: 2 start-page: 401 year: 2012 end-page: 404 ident: bib10 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov. – volume: 23 start-page: 256 year: 2017 end-page: 263 ident: bib22 article-title: Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies publication-title: Nat. Med. – volume: 43 start-page: 6486 year: 2015 end-page: 6499 ident: bib51 article-title: SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity publication-title: Nucleic Acids Res. – volume: 134 start-page: 981 year: 2008 end-page: 994 ident: bib70 article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends publication-title: Cell – volume: 91 start-page: 759 year: 2013 end-page: 770 ident: bib57 article-title: Single-stranded nucleic acids promote SAMHD1 complex formation publication-title: J. Mol. Med. (Berl.) – volume: 300 start-page: 1542 year: 2003 end-page: 1548 ident: bib72 article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes publication-title: Science – volume: 488 start-page: 271 year: 2016 end-page: 277 ident: bib60 article-title: Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1 publication-title: Virology – volume: 12 start-page: e0169052 year: 2017 ident: bib23 article-title: Substrates and inhibitors of SAMHD1 publication-title: PLoS ONE – volume: 111 start-page: E1843 year: 2014 end-page: E1851 ident: bib19 article-title: GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 1176 year: 2005 end-page: 1178 ident: bib21 article-title: Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy publication-title: Cell Cycle – volume: 467 start-page: 108 year: 2010 end-page: 111 ident: bib39 article-title: Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae publication-title: Nature – volume: 14 start-page: 176 year: 2015 ident: bib30 article-title: Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications publication-title: Mol. Cancer – volume: 22 start-page: 1016 year: 2016 end-page: 1017 ident: bib61 article-title: Single molecule localization microscopy of DNA damage response pathways in cancer publication-title: Microsc. Microanal. – volume: 284 start-page: 31746 year: 2009 end-page: 31752 ident: bib67 article-title: N terminus of CtIP is critical for homologous recombination-mediated double-strand break repair publication-title: J. Biol. Chem. – volume: 64 start-page: 940 year: 2016 end-page: 950 ident: bib1 article-title: Phosphorylated CtIP functions as a Co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection publication-title: Mol. Cell – volume: 18 start-page: 1682 year: 2012 end-page: 1687 ident: bib4 article-title: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells publication-title: Nat. Med. – volume: 22 start-page: 1072 year: 2016 end-page: 1074 ident: bib2 article-title: SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity publication-title: Nat. Med. – volume: 1 start-page: 969 year: 1998 end-page: 979 ident: bib40 article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks publication-title: Mol. Cell – volume: 54 start-page: 1012 year: 2014 end-page: 1021 ident: bib59 article-title: CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity publication-title: Mol. Cell – volume: 11 start-page: 876 year: 2010 end-page: 882 ident: bib66 article-title: Cyclin-dependent kinase 9-cyclin K functions in the replication stress response publication-title: EMBO Rep. – volume: 480 start-page: 379 year: 2011 end-page: 382 ident: bib15 article-title: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase publication-title: Nature – volume: 6 start-page: 249 year: 1997 end-page: 253 ident: bib50 article-title: SAM as a protein interaction domain involved in developmental regulation publication-title: Protein Sci. – volume: 110 start-page: 13546 year: 2013 end-page: 13551 ident: bib68 article-title: SIRT2 directs the replication stress response through CDK9 deacetylation publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 250 year: 2017 end-page: 255 ident: bib49 article-title: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia publication-title: Nat. Med. – volume: 110 start-page: 14272 year: 2013 end-page: 14277 ident: bib13 article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 1721 year: 2006 end-page: 1726 ident: bib65 article-title: BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP publication-title: Genes Dev. – volume: 474 start-page: 654 year: 2011 end-page: 657 ident: bib32 article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx publication-title: Nature – volume: 12 start-page: 90 year: 2011 end-page: 103 ident: bib55 article-title: The MRE11 complex: starting from the ends publication-title: Nat. Rev. Mol. Cell Biol. – volume: 42 start-page: 11517 year: 2014 end-page: 11527 ident: bib54 article-title: A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response publication-title: Nucleic Acids Res. – volume: 286 start-page: 43596 year: 2011 end-page: 43600 ident: bib42 article-title: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase publication-title: J. Biol. Chem. – volume: 13 start-page: 223 year: 2012 end-page: 228 ident: bib33 article-title: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates publication-title: Nat. Immunol. – volume: 41 start-page: 829 year: 2009 end-page: 832 ident: bib45 article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response publication-title: Nat. Genet. – volume: 22 start-page: 2767 year: 2008 end-page: 2772 ident: bib17 article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection publication-title: Genes Dev. – volume: 111 start-page: E4305 year: 2014 end-page: E4314 ident: bib28 article-title: Structural basis of cellular dNTP regulation by SAMHD1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 287 start-page: 21570 year: 2012 end-page: 21574 ident: bib29 article-title: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages publication-title: J. Biol. Chem. – volume: 14 start-page: 1435 year: 2016 end-page: 1447 ident: bib69 article-title: ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA publication-title: Cell Rep. – volume: 17 start-page: 1377 year: 2010 end-page: 1382 ident: bib9 article-title: Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3 publication-title: Nat. Struct. Mol. Biol. – volume: 10 start-page: 131 year: 2013 ident: bib7 article-title: Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1 publication-title: Retrovirology – volume: 74 start-page: 2677 year: 2014 end-page: 2687 ident: bib12 article-title: CHD7 expression predicts survival outcomes in patients with resected pancreatic cancer publication-title: Cancer Res. – volume: 33 start-page: 5450 year: 2014 end-page: 5456 ident: bib18 article-title: Low CHD5 expression activates the DNA damage response and predicts poor outcome in patients undergoing adjuvant therapy for resected pancreatic cancer publication-title: Oncogene – volume: 36 start-page: 954 year: 2009 end-page: 969 ident: bib63 article-title: CtIP links DNA double-strand break sensing to resection publication-title: Mol. Cell – volume: 479 start-page: 241 year: 2011 end-page: 244 ident: bib14 article-title: Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1 publication-title: Nature – volume: 13 start-page: 2633 year: 1999 end-page: 2638 ident: bib41 article-title: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells publication-title: Genes Dev. – volume: 461 start-page: 1071 year: 2009 end-page: 1078 ident: bib26 article-title: The DNA-damage response in human biology and disease publication-title: Nature – volume: 33 start-page: 1116 year: 2012 end-page: 1122 ident: bib16 article-title: SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations publication-title: Hum. Mutat. – volume: 20 start-page: 1304 year: 2013 end-page: 1309 ident: bib27 article-title: Mechanism of allosteric activation of SAMHD1 by dGTP publication-title: Nat. Struct. Mol. Biol. – volume: 4 start-page: 2722 year: 2013 ident: bib71 article-title: Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase publication-title: Nat. Commun. – volume: 74 start-page: e17 year: 2015 ident: bib31 article-title: SAMHD1 prevents autoimmunity by maintaining genome stability publication-title: Ann. Rheum. Dis. – volume: 288 start-page: 10406 year: 2013 end-page: 10417 ident: bib62 article-title: Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection publication-title: J. Biol. Chem. – volume: 455 start-page: 770 year: 2008 end-page: 774 ident: bib36 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing publication-title: Nature – volume: 12 start-page: 90 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib55 article-title: The MRE11 complex: starting from the ends publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3047 – volume: 7 start-page: a016600 year: 2015 ident: 10.1016/j.celrep.2017.08.008_bib43 article-title: Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016600 – volume: 461 start-page: 1071 year: 2009 ident: 10.1016/j.celrep.2017.08.008_bib26 article-title: The DNA-damage response in human biology and disease publication-title: Nature doi: 10.1038/nature08467 – volume: 287 start-page: 21471 year: 2012 ident: 10.1016/j.celrep.2017.08.008_bib58 article-title: CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.355354 – volume: 13 start-page: 223 year: 2012 ident: 10.1016/j.celrep.2017.08.008_bib33 article-title: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates publication-title: Nat. Immunol. doi: 10.1038/ni.2236 – volume: 284 start-page: 31746 year: 2009 ident: 10.1016/j.celrep.2017.08.008_bib67 article-title: N terminus of CtIP is critical for homologous recombination-mediated double-strand break repair publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.023424 – volume: 455 start-page: 770 year: 2008 ident: 10.1016/j.celrep.2017.08.008_bib36 article-title: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing publication-title: Nature doi: 10.1038/nature07312 – volume: 43 start-page: 6486 year: 2015 ident: 10.1016/j.celrep.2017.08.008_bib51 article-title: SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv633 – volume: 6 start-page: 249 year: 1997 ident: 10.1016/j.celrep.2017.08.008_bib50 article-title: SAM as a protein interaction domain involved in developmental regulation publication-title: Protein Sci. doi: 10.1002/pro.5560060128 – volume: 20 start-page: 1721 year: 2006 ident: 10.1016/j.celrep.2017.08.008_bib65 article-title: BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP publication-title: Genes Dev. doi: 10.1101/gad.1431006 – volume: 74 start-page: 2677 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib12 article-title: CHD7 expression predicts survival outcomes in patients with resected pancreatic cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1996 – volume: 41 start-page: 829 year: 2009 ident: 10.1016/j.celrep.2017.08.008_bib45 article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response publication-title: Nat. Genet. doi: 10.1038/ng.373 – volume: 23 start-page: 469 year: 1998 ident: 10.1016/j.celrep.2017.08.008_bib3 article-title: The HD domain defines a new superfamily of metal-dependent phosphohydrolases publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(98)01293-6 – volume: 23 start-page: 256 year: 2017 ident: 10.1016/j.celrep.2017.08.008_bib22 article-title: Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies publication-title: Nat. Med. doi: 10.1038/nm.4265 – volume: 2 start-page: 401 year: 2012 ident: 10.1016/j.celrep.2017.08.008_bib10 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0095 – volume: 286 start-page: 43596 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib42 article-title: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.317628 – volume: 450 start-page: 509 year: 2007 ident: 10.1016/j.celrep.2017.08.008_bib47 article-title: Human CtIP promotes DNA end resection publication-title: Nature doi: 10.1038/nature06337 – volume: 42 start-page: 11517 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib54 article-title: A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku840 – volume: 91 start-page: 759 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib57 article-title: Single-stranded nucleic acids promote SAMHD1 complex formation publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-013-0995-3 – volume: 488 start-page: 271 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib60 article-title: Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1 publication-title: Virology doi: 10.1016/j.virol.2015.11.022 – volume: 474 start-page: 654 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib32 article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx publication-title: Nature doi: 10.1038/nature10117 – volume: 13 start-page: 2633 year: 1999 ident: 10.1016/j.celrep.2017.08.008_bib41 article-title: XRCC3 promotes homology-directed repair of DNA damage in mammalian cells publication-title: Genes Dev. doi: 10.1101/gad.13.20.2633 – volume: 283 start-page: 19095 year: 2008 ident: 10.1016/j.celrep.2017.08.008_bib20 article-title: Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800881200 – volume: 474 start-page: 658 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib24 article-title: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein publication-title: Nature doi: 10.1038/nature10195 – volume: 4 start-page: 1176 year: 2005 ident: 10.1016/j.celrep.2017.08.008_bib21 article-title: Poly(ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy publication-title: Cell Cycle doi: 10.4161/cc.4.9.2031 – volume: 22 start-page: 1016 issue: Suppl 3 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib61 article-title: Single molecule localization microscopy of DNA damage response pathways in cancer publication-title: Microsc. Microanal. doi: 10.1017/S1431927616005924 – volume: 300 start-page: 1542 year: 2003 ident: 10.1016/j.celrep.2017.08.008_bib72 article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes publication-title: Science doi: 10.1126/science.1083430 – volume: 33 start-page: 1116 year: 2012 ident: 10.1016/j.celrep.2017.08.008_bib16 article-title: SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations publication-title: Hum. Mutat. doi: 10.1002/humu.22087 – volume: 17 start-page: 1458 year: 2015 ident: 10.1016/j.celrep.2017.08.008_bib48 article-title: Systematic E2 screening reveals a UBE2D-RNF138-CtIP axis promoting DNA repair publication-title: Nat. Cell Biol. doi: 10.1038/ncb3260 – volume: 467 start-page: 108 year: 2010 ident: 10.1016/j.celrep.2017.08.008_bib39 article-title: Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae publication-title: Nature doi: 10.1038/nature09318 – volume: 22 start-page: 1072 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib2 article-title: SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity publication-title: Nat. Med. doi: 10.1038/nm.4163 – volume: 101 start-page: 7624 year: 2004 ident: 10.1016/j.celrep.2017.08.008_bib53 article-title: DNA end joining becomes less efficient and more error-prone during cellular senescence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0400726101 – volume: 10 start-page: 131 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib7 article-title: Contribution of oligomerization to the anti-HIV-1 properties of SAMHD1 publication-title: Retrovirology doi: 10.1186/1742-4690-10-131 – volume: 14 start-page: 176 year: 2015 ident: 10.1016/j.celrep.2017.08.008_bib30 article-title: Regulation of deoxynucleotide metabolism in cancer: novel mechanisms and therapeutic implications publication-title: Mol. Cancer doi: 10.1186/s12943-015-0446-6 – volume: 45 start-page: 247 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib56 article-title: Double-strand break end resection and repair pathway choice publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132435 – volume: 479 start-page: 241 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib14 article-title: Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1 publication-title: Nature doi: 10.1038/nature10515 – volume: 17 start-page: 1478 year: 2010 ident: 10.1016/j.celrep.2017.08.008_bib37 article-title: Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1957 – volume: 14 start-page: 1435 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib69 article-title: ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA-ssDNA publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.018 – volume: 287 start-page: 21570 year: 2012 ident: 10.1016/j.celrep.2017.08.008_bib29 article-title: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.C112.374843 – volume: 113 start-page: 4723 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib44 article-title: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519128113 – volume: 514 start-page: 122 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib8 article-title: Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks publication-title: Nature doi: 10.1038/nature13771 – volume: 36 start-page: 954 year: 2009 ident: 10.1016/j.celrep.2017.08.008_bib63 article-title: CtIP links DNA double-strand break sensing to resection publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.002 – volume: 55 start-page: 6087 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib52 article-title: Single-stranded nucleic acids bind to the tetramer interface of SAMHD1 and prevent formation of the catalytic homotetramer publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00986 – volume: 123 start-page: 1021 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib11 article-title: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage publication-title: Blood doi: 10.1182/blood-2013-04-490847 – volume: 33 start-page: 5450 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib18 article-title: Low CHD5 expression activates the DNA damage response and predicts poor outcome in patients undergoing adjuvant therapy for resected pancreatic cancer publication-title: Oncogene doi: 10.1038/onc.2013.488 – volume: 20 start-page: 1304 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib27 article-title: Mechanism of allosteric activation of SAMHD1 by dGTP publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2692 – volume: 16 start-page: 5551 year: 2005 ident: 10.1016/j.celrep.2017.08.008_bib25 article-title: Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-05-0427 – volume: 288 start-page: 10406 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib62 article-title: Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.443796 – volume: 22 start-page: 2767 year: 2008 ident: 10.1016/j.celrep.2017.08.008_bib17 article-title: DNA helicases Sgs1 and BLM promote DNA double-strand break resection publication-title: Genes Dev. doi: 10.1101/gad.503108 – volume: 12 start-page: e0169052 year: 2017 ident: 10.1016/j.celrep.2017.08.008_bib23 article-title: Substrates and inhibitors of SAMHD1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0169052 – volume: 4 start-page: 2722 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib71 article-title: Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase publication-title: Nat. Commun. doi: 10.1038/ncomms3722 – volume: 23 start-page: 250 year: 2017 ident: 10.1016/j.celrep.2017.08.008_bib49 article-title: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia publication-title: Nat. Med. doi: 10.1038/nm.4255 – volume: 54 start-page: 1012 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib59 article-title: CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.012 – volume: 20 start-page: 936 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib46 article-title: The ribonuclease activity of SAMHD1 is required for HIV-1 restriction publication-title: Nat. Med. doi: 10.1038/nm.3626 – volume: 275 start-page: 18541 year: 2000 ident: 10.1016/j.celrep.2017.08.008_bib64 article-title: Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M909494199 – volume: 11 start-page: 876 year: 2010 ident: 10.1016/j.celrep.2017.08.008_bib66 article-title: Cyclin-dependent kinase 9-cyclin K functions in the replication stress response publication-title: EMBO Rep. doi: 10.1038/embor.2010.153 – volume: 6 start-page: 806 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib6 article-title: A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.327 – volume: 74 start-page: e17 year: 2015 ident: 10.1016/j.celrep.2017.08.008_bib31 article-title: SAMHD1 prevents autoimmunity by maintaining genome stability publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2013-204845 – volume: 111 start-page: E4305 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib28 article-title: Structural basis of cellular dNTP regulation by SAMHD1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1412289111 – volume: 25 start-page: 350 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib38 article-title: BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair publication-title: Genes Dev. doi: 10.1101/gad.2003811 – volume: 28 start-page: 134 year: 2007 ident: 10.1016/j.celrep.2017.08.008_bib34 article-title: Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.09.009 – volume: 110 start-page: 14272 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib13 article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1312033110 – volume: 111 start-page: E1843 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib19 article-title: GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1401706111 – volume: 1 start-page: 969 year: 1998 ident: 10.1016/j.celrep.2017.08.008_bib40 article-title: The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80097-0 – volume: 64 start-page: 940 year: 2016 ident: 10.1016/j.celrep.2017.08.008_bib1 article-title: Phosphorylated CtIP functions as a Co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.017 – volume: 288 start-page: 8101 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib5 article-title: Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.431148 – volume: 134 start-page: 981 year: 2008 ident: 10.1016/j.celrep.2017.08.008_bib70 article-title: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends publication-title: Cell doi: 10.1016/j.cell.2008.08.037 – volume: 54 start-page: 1022 year: 2014 ident: 10.1016/j.celrep.2017.08.008_bib35 article-title: Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.011 – volume: 18 start-page: 1682 year: 2012 ident: 10.1016/j.celrep.2017.08.008_bib4 article-title: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells publication-title: Nat. Med. doi: 10.1038/nm.2964 – volume: 17 start-page: 1377 year: 2010 ident: 10.1016/j.celrep.2017.08.008_bib9 article-title: Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1919 – volume: 480 start-page: 379 year: 2011 ident: 10.1016/j.celrep.2017.08.008_bib15 article-title: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase publication-title: Nature doi: 10.1038/nature10623 – volume: 110 start-page: 13546 year: 2013 ident: 10.1016/j.celrep.2017.08.008_bib68 article-title: SIRT2 directs the replication stress response through CDK9 deacetylation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1301463110 – reference: 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72 – reference: 22972397 - Nat Med. 2012 Nov;18(11):1682-7 – reference: 22056990 - Nature. 2011 Nov 06;480(7377):379-82 – reference: 27775344 - Biochemistry. 2016 Nov 8;55(44):6087-6099 – reference: 24217394 - Nat Commun. 2013;4:2722 – reference: 12791985 - Science. 2003 Jun 6;300(5625):1542-8 – reference: 9007998 - Protein Sci. 1997 Jan;6(1):249-53 – reference: 27711056 - Nat Med. 2016 Oct 6;22(10 ):1072-1074 – reference: 16176973 - Mol Biol Cell. 2005 Dec;16(12):5551-62 – reference: 23364794 - J Biol Chem. 2013 Mar 22;288(12):8101-10 – reference: 20064462 - Mol Cell. 2009 Dec 25;36(6):954-69 – reference: 18469000 - J Biol Chem. 2008 Jul 4;283(27):19095-111 – reference: 17965729 - Nature. 2007 Nov 22;450(7169):509-14 – reference: 23371319 - J Mol Med (Berl). 2013 Jun;91(6):759-70 – reference: 9868367 - Trends Biochem Sci. 1998 Dec;23 (12 ):469-72 – reference: 9651580 - Mol Cell. 1998 Jun;1(7):969-79 – reference: 21637200 - Nat Protoc. 2011 Jun;6(6):806-16 – reference: 22327569 - Nat Immunol. 2012 Feb 12;13(3):223-228 – reference: 21613998 - Nature. 2011 May 25;474(7353):654-7 – reference: 18805091 - Cell. 2008 Sep 19;134(6):981-94 – reference: 24837675 - Mol Cell. 2014 Jun 19;54(6):1012-21 – reference: 20811460 - Nature. 2010 Sep 2;467(7311):108-11 – reference: 24753578 - Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1843-51 – reference: 26416562 - Mol Cancer. 2015 Sep 29;14:176 – reference: 28239291 - Microsc Microanal. 2016 Jul;22(Suppl 3):1016-1017 – reference: 24141705 - Nat Struct Mol Biol. 2013 Nov;20(11):1304-9 – reference: 25217585 - Nucleic Acids Res. 2014 Oct;42(18):11517-27 – reference: 26655245 - Virology. 2016 Jan 15;488:271-7 – reference: 20930849 - EMBO Rep. 2010 Nov;11(11):876-82 – reference: 19759395 - J Biol Chem. 2009 Nov 13;284(46):31746-52 – reference: 22461318 - Hum Mutat. 2012 Jul;33(7):1116-22 – reference: 26502057 - Nat Cell Biol. 2015 Nov;17 (11):1458-1470 – reference: 23858451 - Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14272-7 – reference: 22589553 - J Biol Chem. 2012 Jun 22;287(26):21570-4 – reference: 23898190 - Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13546-51 – reference: 16123586 - Cell Cycle. 2005 Sep;4(9):1176-8 – reference: 25038827 - Nat Med. 2014 Aug;20(8):936-41 – reference: 18806779 - Nature. 2008 Oct 9;455(7214):770-4 – reference: 25833843 - Cold Spring Harb Perspect Biol. 2015 Apr 01;7(4):a016600 – reference: 20935631 - Nat Struct Mol Biol. 2010 Nov;17(11):1377-82 – reference: 24837676 - Mol Cell. 2014 Jun 19;54(6):1022-33 – reference: 22069334 - J Biol Chem. 2011 Dec 23;286(51):43596-600 – reference: 27071091 - Proc Natl Acad Sci U S A. 2016 Apr 26;113(17 ):4723-8 – reference: 16818604 - Genes Dev. 2006 Jul 1;20(13):1721-6 – reference: 26101257 - Nucleic Acids Res. 2015 Jul 27;43(13):6486-99 – reference: 17936710 - Mol Cell. 2007 Oct 12;28(1):134-46 – reference: 22544744 - J Biol Chem. 2012 Jun 15;287(25):21471-80 – reference: 22002605 - Nature. 2011 Oct 16;479(7372):241-4 – reference: 28046007 - PLoS One. 2017 Jan 3;12 (1):e0169052 – reference: 21325134 - Genes Dev. 2011 Feb 15;25(4):350-62 – reference: 21102445 - Nat Struct Mol Biol. 2010 Dec;17(12):1478-85 – reference: 21720370 - Nature. 2011 Jun 29;474(7353):658-61 – reference: 25267621 - Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4305-14 – reference: 19525956 - Nat Genet. 2009 Jul;41(7):829-32 – reference: 23426366 - J Biol Chem. 2013 Apr 12;288(15):10406-17 – reference: 24626090 - Cancer Res. 2014 May 15;74(10):2677-87 – reference: 15123826 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7624-9 – reference: 19847258 - Nature. 2009 Oct 22;461(7267):1071-8 – reference: 21252998 - Nat Rev Mol Cell Biol. 2011 Feb;12(2):90-103 – reference: 24219908 - Retrovirology. 2013 Nov 12;10:131 – reference: 22588877 - Cancer Discov. 2012 May;2(5):401-4 – reference: 21910633 - Annu Rev Genet. 2011;45:247-71 – reference: 24276239 - Oncogene. 2014 Nov 20;33(47):5450-6 – reference: 27889449 - Mol Cell. 2016 Dec 1;64(5):940-950 – reference: 25231868 - Nature. 2014 Oct 2;514(7520):122-5 – reference: 24445253 - Ann Rheum Dis. 2015 Mar;74(3):e17 – reference: 10764811 - J Biol Chem. 2000 Jun 16;275(24):18541-9 – reference: 10541549 - Genes Dev. 1999 Oct 15;13(20):2633-8 – reference: 24335234 - Blood. 2014 Feb 13;123(7):1021-31 – reference: 26854234 - Cell Rep. 2016 Feb 16;14 (6):1435-47 – reference: 27991919 - Nat Med. 2017 Feb;23 (2):250-255 – reference: 28067901 - Nat Med. 2017 Feb;23 (2):256-263 |
SSID | ssj0000601194 |
Score | 2.5392303 |
Snippet | DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1921 |
SubjectTerms | AGS autoimmune CLL CtIP DNA Breaks, Double-Stranded DNA damage response DNA end resection DNA End-Joining Repair DNA repair dNTP HCT116 Cells HEK293 Cells HeLa Cells HIV Homologous Recombination Humans MCF-7 Cells SAM Domain and HD Domain-Containing Protein 1 - deficiency SAM Domain and HD Domain-Containing Protein 1 - genetics SAM Domain and HD Domain-Containing Protein 1 - metabolism Transfection |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCF7Et_VFBK-Lu5tksz1WbSlCRfCBt5CkCVZ0K7Ue_PfOJLul1UMvwp72kWxmJplvNrPfEHKeOSYh-neJ0xwCFC5MYrS1iRSybcFdi2Fg1x_cFv1HfvMsnudKfWFOWKQHjoK7SL334JbaghnPDZdaSO2LQniWGejd4-oLPm8umIprMHKZ4ZZynmPOVs5l899cSO6y7m3ikK4yk4HBE6tLzvmlQN-_4J7-ws_fWZRzbqm3STZqPEk7cRxbZMVV22QtVpj83iFP951B_zqjdyHrzn3S69sO7VZDihl34ZcGOh3TnraRrNuF6wDK9WhCzTftw1PQ0Pjrk2Kc-g5hdNDkLnnsdR-u-kldSiGxILppAqCtRF_Ewb9rww3EhcY52x7a1JVIqQdAzfLUCMM86kj6UmdauCLzlsOcZ3tktRpX7oBQndm8YMx55j0vrS4hYMrTodc5tp_KFmGNIJWtecax3MWbahLKXlUUv0LxK6yCmZYtksye-og8G0vuv0Qdze5FluxwAmxH1bajltlOi8hGw6oGHBFIQFOjJd2fNQahYD7iJouuHGhDISDOigIW0hbZjwYye0ms7Myl4NDvguksjGLxSjV6CZzfAuJCOA7_Y9hHZB2Hgl_G8_yYrE4nX-4EoNXUnIZZ9APZSB_Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iCL7IeX7c6p1E8LVs0yRN93H9WBZBEfxg30KSTbwe2l3W9cH__mbSdrH6IAh9aZukaWaS-U07-Q0hJ8xzBd6_T7wR4KAIaRNrnEuUVAMH5lpOI7v-1XU-vheXEzlZI2ftXhgMq2zW_npNj6t1c6XfjGZ_Xpb92wx8F7BO-BuZARBHxk8uiriJb3K6-s6CfCMs5kPE8glWaHfQxTAv558WHokrmYpcnphn8p2FikT-HUP1GYh-jKd8Z6BGP8hWgyzpsO78Nlnz1U-yUeeafNshD7fDq_E5ozcx_s6_0PPrIb2ophRj7-LmBrqc0ZFxNW23j_cBnptyQe0bHUMtaGj2-kLRY30GhzrKdJfcjy7uzsZJk1QhcXIglwnAtwKtkgBLb6yw4CFa791g6lJfILkeQDYnUistDygtFQrDjPQ5C07A7Od7ZL2aVf4XoYa5LOfcBx6CKJwpwHXK0mkwGbafqh7h7UBq1zCOY-KLJ92Glv3T9fBrHH6N-TDTokeSVa15zbjxRflTlNGqLPJlxwuzxaNuFEanIQQANwPJbRBWKCOVCXkuA2cWdDj0iGolrDvqB02VXzz-uFUIDTMTf7eYyoM0NEJjluewpPbIfq0gq05ijmehpIDndlSn8xbdO1X5N7J_S_AQ4Tj4do8PySae4YfxLPtN1peLV_8HkNXSHsWp8x8gGR_P priority: 102 providerName: Elsevier |
Title | SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination |
URI | https://dx.doi.org/10.1016/j.celrep.2017.08.008 https://www.ncbi.nlm.nih.gov/pubmed/28834754 https://www.proquest.com/docview/1932166703 https://pubmed.ncbi.nlm.nih.gov/PMC5576576 https://doaj.org/article/0fff215953bf4b47a57af665f31bccaf |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYQCGkvE-xnGUOexGumJLbj9GFCZVAVpKJJW6e-WbZrj05dCmmR6H_PnZN0BDaBFOUhTuzEd_Z9F5-_I-QwcUyC9-8ipzk4KFyYyGhrIylk14K5FpPArj-8yAYjfj4W4w3S5GytO3DxT9cO80mNytnn2-vVEQz4L39jtayblQ7ZJxMZCDlx9-8W2CaJOQ2GNeCv5mbkOMOl5jTFWK6Uy2Y_3X8qatmrQOvfMluPYenD6Mp75qq_Q17WOJP2KsXYJRuueEW2q8yTq9fk5_fecHCS0G8hGs8t6MlFj54WE4qReGGrA13OaV_bisTbhXIA63paUrOiA3gKKprfLCj6r3_AvQ4SfkNG_dMfXwdRnWIhsqIrlhGAuRxtFAe7rw034C8a52x3YmOXI9UeADjLYyMM8yg76XOdaOGyxFsOcwF7SzaLeeHeE6oTm2aMOc-857nVOThSaTzxOsX6Y9khrOlIZWv-cUyDMVNNoNlvVXW_wu5XmB0zzjskWj91VfFvPHH_McpofS-yZ4cL8_KXqgejir33AHW6ghnPDZdaSO2zTHiWGNBo3yGykbCqgUgFMKCq6RPNf2oUQsE4xcUXXTiQhkKgnGQZTLAd8q5SkPVLYsZnLgWHdluq0_qKdkkxvQxc4AL8RTj2ntHuB_IC3xR_iKfpPtlcljfuIyCqpTkIfyLgfDY-PggD5g703B7d |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIKXic_R8WUkeIwaJ3acPvDQ0VUtWyukbahvxnZtCBrp1HZC_bv4B7lzkmqBh0lIk_IUJ45zPt_dLzn_jpB3zKUS0L-LnOYAULgwkdHWRlLIngV3LeaBXX8yzUbn_NNMzHbI72YvDKZV1ra_sunBWtdnurU0u5dF0T1NALuAd8LfyAwC8aaC9bHb_ALctvowHsAkv0-S4dHZx1FUlxaIrOiJdQRBTI62mYO_04YbwEnGOdub29jlSDEHgYvlsREm9Thm6XPNtHAZ85bDGkih3zvkLkQfEq3BeHa4_bCDBCcsFGDEAUY4wmbLXsgrs-5i6ZApk8lAHoqFLa-5xFA5oOUZ_418_07gvOYRhw_JXh3K0n4lrUdkx5WPyb2quOXmCfly2p-MBox-Dgl_bkUH0z49KucUk_3Cbgq6XtChthVPuAvtgAd0saRmQ0dwF3S0uFpRhMg_AcEHJXpKzm9F1M_Ibrko3XNCNbNJlqbOp97z3OocsFoSz71OsP9YdkjaCFLZmuIcK21cqCaX7YeqxK9Q_AoLcMZ5h0Tbuy4rio8brj_EOdpeiwTd4cRi-U3VGqpi7z1EUz2RGs8Nl1pI7bNM-JQZWDS-Q2Qzw6ql79BVccPj3zYKocAU4P8dXTqYDYWxOMsysOEdsl8pyHaQWFSaS8HhuS3Vab1Fu6Usvge6cQGQFI6D_x7xG3J_dDY5USfj6fEL8gBb8Kt8krwku-vllXsFYd3avA7LiJKvt71u_wCmaFuV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAMHD1+Promotes+DNA+End+Resection+to+Facilitate+DNA+Repair+by+Homologous+Recombination&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Daddacha%2C+Waaqo&rft.au=Koyen%2C+Allyson+E&rft.au=Bastien%2C+Amanda+J&rft.au=Head%2C+PamelaSara+E&rft.date=2017-08-22&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=20&rft.issue=8&rft.spage=1921&rft_id=info:doi/10.1016%2Fj.celrep.2017.08.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |