Controlling Ligand Substitution Reactions of Organometallic Complexes: Tuning Cancer Cell Cytotoxicity

Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 102; no. 51; pp. 18269 - 18274
Main Authors Wang, Fuyi, Abraha Habtemariam, Erwin P. L. van der Geer, Fernández, Rafael, Michael Melchart, Robert J. Deeth, Rhona Aird, Sylvie Guichard, Francesca P. A. Fabbiani, Patricia Lozano-Casal, Iain D. H. Oswald, Duncan I. Jodrell, Parsons, Simon, Sadler, Peter J., Halpern, Jack
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.12.2005
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type $[(\eta^6-arene)Ru(ethylenediamine)(X)]^{n+}$. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
AbstractList Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [({eta}6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.[PUBLICATION ABSTRACT]
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional “piano-stool” ruthenium(II) arene complexes of the type [(η 6 -arene)Ru(ethylenediamine)(X)] n + . A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H 2 O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional “piano-stool” ruthenium(II) arene complexes of the type [(η 6 -arene)Ru(ethylenediamine)(X)] n + . A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H 2 O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. anticancer bioorganometallic hydrolysis kinetics ruthenium complexes
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type $[(\eta^6-arene)Ru(ethylenediamine)(X)]^{n+}$. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [( eta super(6)-arene)Ru(ethylenediamine)(X)] super(n) super(+). A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H sub(2)O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.
Author Iain D. H. Oswald
Parsons, Simon
Halpern, Jack
Patricia Lozano-Casal
Rhona Aird
Robert J. Deeth
Francesca P. A. Fabbiani
Fernández, Rafael
Michael Melchart
Duncan I. Jodrell
Sadler, Peter J.
Sylvie Guichard
Wang, Fuyi
Erwin P. L. van der Geer
Abraha Habtemariam
AuthorAffiliation School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, United Kingdom; † Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and ‡ CRUK Pharmacology and Drug Development Team, University of Edinburgh Cancer Research Centre, Cancer Research UK Oncology Unit, Crewe Road South, EH4 2XR Edinburgh, United Kingdom
AuthorAffiliation_xml – name: School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, United Kingdom; † Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and ‡ CRUK Pharmacology and Drug Development Team, University of Edinburgh Cancer Research Centre, Cancer Research UK Oncology Unit, Crewe Road South, EH4 2XR Edinburgh, United Kingdom
Author_xml – sequence: 1
  givenname: Fuyi
  surname: Wang
  fullname: Wang, Fuyi
– sequence: 2
  fullname: Abraha Habtemariam
– sequence: 3
  fullname: Erwin P. L. van der Geer
– sequence: 4
  givenname: Rafael
  surname: Fernández
  fullname: Fernández, Rafael
– sequence: 5
  fullname: Michael Melchart
– sequence: 6
  fullname: Robert J. Deeth
– sequence: 7
  fullname: Rhona Aird
– sequence: 8
  fullname: Sylvie Guichard
– sequence: 9
  fullname: Francesca P. A. Fabbiani
– sequence: 10
  fullname: Patricia Lozano-Casal
– sequence: 11
  fullname: Iain D. H. Oswald
– sequence: 12
  fullname: Duncan I. Jodrell
– sequence: 13
  givenname: Simon
  surname: Parsons
  fullname: Parsons, Simon
– sequence: 14
  givenname: Peter J.
  surname: Sadler
  fullname: Sadler, Peter J.
– sequence: 15
  givenname: Jack
  surname: Halpern
  fullname: Halpern, Jack
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16352726$$D View this record in MEDLINE/PubMed
BookMark eNqFks2L1DAYxoOsuLOrZy8iwYPgobtv2iRNPAhS_IKBBV3PIW3TMUMnGZNUZv57U2ac1QXZU17y_p6H9-sCnTnvDELPCVwRqKvrrdPxChiwWgoC5SO0ICBJwamEM7QAKOtC0JKeo4sY1wAgmYAn6JzwipV1yRdoaLxLwY-jdSu8tCvtevxtamOyaUrWO_zV6G4OIvYDvgkZ8BuTdBZ0uPGb7Wh2Jr7Ft5ObHRrtOhNwY8YRN_vkk9_Zzqb9U_R40GM0z47vJfr-8cNt87lY3nz60rxfFh2TLBVEDoz1VcsN0F50VWtaJsUwcA5GyHrg-ZMaaGkneNvWVDPIworLFojoNa8u0buD73ZqN6bvTG5Oj2ob7EaHvfLaqn8zzv5QK_9LkYrUkohs8PpoEPzPycSkNjZ2uR3tjJ-i4kKChIo_CJKaVlADzeCre-DaT8HlKagSCIVSytnt5d91nwr-s6gMsAPQBR9jMIPKY9XzYnIbdlQE1HwQaj4IdXcQWXd9T3ey_q8CH0uZE3d0qRhRRJRcZuTNA4gapnFMZpcy--LArmPy4QRTwkoOvPoNCZvcEw
CitedBy_id crossref_primary_10_1021_jm2000932
crossref_primary_10_1021_ic501865h
crossref_primary_10_1021_jm3000906
crossref_primary_10_1021_jm500455p
crossref_primary_10_1002_open_201700166
crossref_primary_10_1039_b805358h
crossref_primary_10_1002_ange_200602873
crossref_primary_10_1021_acs_chemrev_8b00271
crossref_primary_10_1002_cbic_201900676
crossref_primary_10_1021_jm100560f
crossref_primary_10_1039_D4DT00245H
crossref_primary_10_1039_C6DT00668J
crossref_primary_10_1016_j_jinorgbio_2016_02_020
crossref_primary_10_1039_C5DT04781A
crossref_primary_10_1016_j_inoche_2024_113547
crossref_primary_10_1002_chem_201605960
crossref_primary_10_1021_om100517p
crossref_primary_10_1016_j_jinorgbio_2015_07_016
crossref_primary_10_1016_j_ica_2016_04_031
crossref_primary_10_1038_srep31973
crossref_primary_10_1002_chem_200601152
crossref_primary_10_1039_C8DT02947D
crossref_primary_10_1016_j_jinorgbio_2016_05_008
crossref_primary_10_1016_j_ccr_2021_214104
crossref_primary_10_1016_j_chemphys_2022_111587
crossref_primary_10_1002_anie_201814532
crossref_primary_10_1002_chem_200900699
crossref_primary_10_1021_acs_inorgchem_0c03820
crossref_primary_10_1039_C3DT52584H
crossref_primary_10_1016_j_inoche_2023_110662
crossref_primary_10_1021_acs_inorgchem_9b01882
crossref_primary_10_1073_pnas_0800076105
crossref_primary_10_1016_j_surfin_2024_105670
crossref_primary_10_1002_ange_201311161
crossref_primary_10_3390_molecules20047276
crossref_primary_10_1002_anie_200705342
crossref_primary_10_1016_j_jelechem_2020_113882
crossref_primary_10_1039_C5DT01430A
crossref_primary_10_1021_acs_inorgchem_8b00346
crossref_primary_10_1515_revic_2023_0007
crossref_primary_10_1002_chem_201001573
crossref_primary_10_1016_j_ccr_2024_216252
crossref_primary_10_1016_j_jinorgbio_2017_07_027
crossref_primary_10_1016_j_jinorgbio_2013_07_029
crossref_primary_10_1039_c1dt11043h
crossref_primary_10_3390_molecules180910829
crossref_primary_10_1002_cmdc_200800311
crossref_primary_10_1016_j_ejmech_2018_03_015
crossref_primary_10_1021_acs_organomet_1c00006
crossref_primary_10_1002_ejic_201402205
crossref_primary_10_1007_s11426_016_0178_7
crossref_primary_10_1016_j_jmgm_2012_08_004
crossref_primary_10_1080_00958972_2016_1243238
crossref_primary_10_1002_asia_202100917
crossref_primary_10_1039_D0SC04082G
crossref_primary_10_1007_s00775_009_0549_x
crossref_primary_10_1039_c3dt51275d
crossref_primary_10_3390_biomedicines9091243
crossref_primary_10_1021_acs_inorgchem_8b02634
crossref_primary_10_1039_c1dt11189b
crossref_primary_10_3390_molecules25071512
crossref_primary_10_1002_anie_201608094
crossref_primary_10_1016_j_molstruc_2024_141141
crossref_primary_10_1038_nchem_2918
crossref_primary_10_1002_ange_200601752
crossref_primary_10_1016_j_jorganchem_2016_09_003
crossref_primary_10_1021_acs_inorgchem_6b02430
crossref_primary_10_1039_D0NJ04958A
crossref_primary_10_1039_c2cc30678f
crossref_primary_10_1039_c2ra20984e
crossref_primary_10_1039_C7CS00195A
crossref_primary_10_1016_j_jorganchem_2011_12_034
crossref_primary_10_1021_acs_inorgchem_0c00694
crossref_primary_10_1021_ic302819j
crossref_primary_10_1021_ic200607j
crossref_primary_10_1039_D2DT03009H
crossref_primary_10_1039_c3mt20261e
crossref_primary_10_1039_C6DT03306G
crossref_primary_10_1007_s00894_018_3598_7
crossref_primary_10_1021_om500644f
crossref_primary_10_1021_acs_inorgchem_3c00073
crossref_primary_10_1080_00958972_2013_879647
crossref_primary_10_1002_ejic_201601226
crossref_primary_10_1039_D2DT03484K
crossref_primary_10_1002_ange_201814532
crossref_primary_10_1002_rcm_8423
crossref_primary_10_3390_ijms19072137
crossref_primary_10_1080_07391102_2013_819299
crossref_primary_10_1016_j_cplett_2014_02_046
crossref_primary_10_1039_C7DT00938K
crossref_primary_10_1039_C6SC00268D
crossref_primary_10_1039_C7MT00330G
crossref_primary_10_1039_b904071d
crossref_primary_10_1002_cmdc_202400435
crossref_primary_10_1002_ejic_200900518
crossref_primary_10_1021_acs_inorgchem_1c00507
crossref_primary_10_1039_C7DT01767G
crossref_primary_10_1002_cmdc_201500221
crossref_primary_10_1007_s40010_016_0292_y
crossref_primary_10_1021_acs_inorgchem_0c01044
crossref_primary_10_1016_j_jinorgbio_2017_06_016
crossref_primary_10_1021_om501081z
crossref_primary_10_1016_j_jorganchem_2017_01_020
crossref_primary_10_1021_jp903237w
crossref_primary_10_1039_b601590e
crossref_primary_10_1007_s00775_006_0098_5
crossref_primary_10_1021_ic9013366
crossref_primary_10_1016_j_cbi_2021_109522
crossref_primary_10_1016_j_ccr_2020_213338
crossref_primary_10_1021_acs_organomet_0c00399
crossref_primary_10_1021_acs_inorgchem_0c02287
crossref_primary_10_1016_j_jinorgbio_2018_02_004
crossref_primary_10_1039_D0DT02069A
crossref_primary_10_1039_D3DT01217D
crossref_primary_10_1063_1_3515534
crossref_primary_10_1016_j_inoche_2015_03_052
crossref_primary_10_1007_s00894_013_1987_5
crossref_primary_10_1021_acs_jmedchem_2c00722
crossref_primary_10_1155_2013_892052
crossref_primary_10_1039_C8RA07926A
crossref_primary_10_1021_ic800506g
crossref_primary_10_1039_D0DT02167A
crossref_primary_10_1021_ja903405z
crossref_primary_10_1002_aoc_4756
crossref_primary_10_1021_acs_inorgchem_3c03696
crossref_primary_10_1016_j_ica_2012_06_031
crossref_primary_10_1155_2015_832045
crossref_primary_10_1021_ic4002626
crossref_primary_10_1016_j_saa_2012_12_016
crossref_primary_10_1021_acs_organomet_9b00440
crossref_primary_10_1002_jcc_21179
crossref_primary_10_1021_acs_cgd_5b00059
crossref_primary_10_1016_j_jinorgbio_2015_02_015
crossref_primary_10_1134_S1070363222080242
crossref_primary_10_4155_fmc_09_25
crossref_primary_10_1021_ic401762z
crossref_primary_10_1039_c3cc43000f
crossref_primary_10_1021_ic400835n
crossref_primary_10_3390_molecules28104051
crossref_primary_10_1002_anie_200601752
crossref_primary_10_3390_molecules18043760
crossref_primary_10_1002_cphc_201701209
crossref_primary_10_1002_cssc_202301041
crossref_primary_10_1016_j_jinorgbio_2007_04_018
crossref_primary_10_1016_j_ccr_2006_11_017
crossref_primary_10_3390_inorganics7030031
crossref_primary_10_1021_ic701735q
crossref_primary_10_1515_pac_2024_0224
crossref_primary_10_1039_C4DT03983A
crossref_primary_10_1021_ja800194a
crossref_primary_10_1039_C2DT32091F
crossref_primary_10_1007_s00775_012_0917_9
crossref_primary_10_1002_aoc_6550
crossref_primary_10_1021_acsami_3c06394
crossref_primary_10_1021_ar400266c
crossref_primary_10_3390_pharmaceutics15020356
crossref_primary_10_1039_C7RA06514K
crossref_primary_10_1134_S1070363220110249
crossref_primary_10_1039_C6DT03356C
crossref_primary_10_1039_D3DT01661G
crossref_primary_10_1021_om201177y
crossref_primary_10_1002_aoc_3610
crossref_primary_10_1039_C4RA02960G
crossref_primary_10_1002_ange_201608094
crossref_primary_10_1016_j_ejmech_2019_04_062
crossref_primary_10_1039_c3sc53185f
crossref_primary_10_1002_rcm_8292
crossref_primary_10_1039_D1DT03274G
crossref_primary_10_1080_07391102_2018_1513867
crossref_primary_10_1080_00958972_2021_1885650
crossref_primary_10_1002_jcc_24373
crossref_primary_10_1021_ic801818x
crossref_primary_10_1016_j_poly_2018_04_025
crossref_primary_10_1021_acs_organomet_5b00041
crossref_primary_10_1021_acs_inorgchem_1c01482
crossref_primary_10_1016_j_jinorgbio_2020_111155
crossref_primary_10_1016_j_ejmech_2014_02_062
crossref_primary_10_1021_jp711799g
crossref_primary_10_1002_chem_201200960
crossref_primary_10_1016_j_ccr_2021_214403
crossref_primary_10_1016_j_ccr_2015_10_007
crossref_primary_10_1039_D0SC00897D
crossref_primary_10_1002_cbic_202000704
crossref_primary_10_1016_j_yexcr_2018_01_031
crossref_primary_10_1021_acs_inorgchem_5b02600
crossref_primary_10_1002_ejic_202100122
crossref_primary_10_1021_acs_inorgchem_8b01270
crossref_primary_10_1002_ejic_201100250
crossref_primary_10_1021_acsptsci_3c00085
crossref_primary_10_1002_aoc_4154
crossref_primary_10_1016_j_ica_2022_120925
crossref_primary_10_1016_j_jasms_2007_12_002
crossref_primary_10_1002_chem_202004954
crossref_primary_10_1021_ic101795s
crossref_primary_10_1039_D2QI00423B
crossref_primary_10_1016_j_jorganchem_2019_121094
crossref_primary_10_1021_acs_inorgchem_9b00853
crossref_primary_10_1002_chem_201701681
crossref_primary_10_1007_s00775_020_01823_x
crossref_primary_10_1016_j_bioorg_2023_106555
crossref_primary_10_1016_j_ica_2005_12_059
crossref_primary_10_1002_aoc_6187
crossref_primary_10_1039_C5CC09427E
crossref_primary_10_1002_anie_201311161
crossref_primary_10_1016_j_ica_2017_06_001
crossref_primary_10_1016_j_jinorgbio_2007_11_009
crossref_primary_10_1002_chem_201903109
crossref_primary_10_1007_s00894_012_1467_3
crossref_primary_10_1016_j_jorganchem_2009_08_006
crossref_primary_10_1016_j_saa_2013_06_057
crossref_primary_10_1186_s12967_016_0797_9
crossref_primary_10_1039_D1DT01604K
crossref_primary_10_1139_cjc_2021_0180
crossref_primary_10_1021_bc300173h
crossref_primary_10_1021_ar100140e
crossref_primary_10_1039_C8DT04687E
crossref_primary_10_1021_ic401606v
crossref_primary_10_1039_b914153g
crossref_primary_10_1016_j_jorganchem_2012_11_042
crossref_primary_10_1016_j_jorganchem_2017_03_038
crossref_primary_10_1021_acs_inorgchem_1c02648
crossref_primary_10_1002_asia_200800149
crossref_primary_10_1002_ejic_201402412
crossref_primary_10_1021_acs_organomet_7b00842
crossref_primary_10_1002_ejic_201601164
crossref_primary_10_1016_j_ica_2021_120701
crossref_primary_10_1039_C6DT01242F
crossref_primary_10_1021_jm3017442
crossref_primary_10_1039_c8mt00352a
crossref_primary_10_1016_j_jorganchem_2006_10_041
crossref_primary_10_1021_acs_jmedchem_5b01194
crossref_primary_10_1002_anie_200602873
crossref_primary_10_1039_D0DT03107K
crossref_primary_10_1007_s12039_012_0337_y
crossref_primary_10_1515_revic_2015_0008
crossref_primary_10_1021_acs_jmedchem_3c01092
crossref_primary_10_1021_jm501655t
crossref_primary_10_1002_chem_201301389
crossref_primary_10_1021_acs_inorgchem_8b02299
crossref_primary_10_1002_ange_200705342
crossref_primary_10_1016_j_jinorgbio_2015_10_008
crossref_primary_10_1039_D3NJ02391E
crossref_primary_10_1007_s00775_024_02052_2
crossref_primary_10_1039_C7CC01503H
crossref_primary_10_1016_j_ijms_2010_12_003
crossref_primary_10_1021_om3006307
crossref_primary_10_1039_C5MT00122F
crossref_primary_10_1021_ic900412n
crossref_primary_10_1007_s00775_020_01758_3
crossref_primary_10_1002_aoc_5687
crossref_primary_10_1021_acs_jmedchem_9b02000
crossref_primary_10_1039_C1DT11405K
crossref_primary_10_1002_chem_201503991
crossref_primary_10_1016_j_poly_2014_07_019
crossref_primary_10_1021_om2005468
crossref_primary_10_1016_j_ica_2018_09_019
crossref_primary_10_1039_D0NJ03664A
crossref_primary_10_1021_acs_inorgchem_8b01070
crossref_primary_10_1021_jm5002748
crossref_primary_10_1039_D1DT00246E
crossref_primary_10_1039_D1DT00694K
crossref_primary_10_1002_jcc_23639
crossref_primary_10_1016_j_jorganchem_2016_06_024
crossref_primary_10_1016_j_jinorgbio_2023_112310
crossref_primary_10_1021_acs_organomet_7b00868
crossref_primary_10_1039_C9NJ03663F
crossref_primary_10_1039_D1MD00220A
Cites_doi 10.1002/jcc.1056
10.1021/bi034933u
10.1021/ja017482e
10.1021/cr00081a012
10.1021/ic00281a009
10.1021/ic950973d
10.1073/pnas.2434016100
10.1021/ic00029a003
10.1038/sj.bjc.6600290
10.1007/s00775-004-0621-5
10.1073/pnas.0737293100
10.1021/ic50016a009
10.1016/S0010-8545(02)00312-0
10.1021/jm010051m
10.1002/chem.200304724
10.1016/S0020-1693(96)05403-5
10.1021/ic025538f
10.1007/BF00868859
10.1021/ja00244a028
10.1021/ic50070a010
10.1016/S0898-8838(08)60035-5
10.1002/9780470132524.ch16
10.1139/v72-486
10.1002/chem.200400640
10.1021/ic00105a048
10.1071/CH9662229
10.1021/ic00060a005
10.1351/pac200173020209
10.1021/om0300777
10.1039/j19710000481
10.1016/S0022-328X(00)00036-X
10.1016/j.jorganchem.2004.07.027
10.1016/S0020-1693(00)90384-0
10.1021/ja027719m
10.1039/dt9740000233
10.1021/ic00278a025
ContentType Journal Article
Copyright Copyright 2005 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Dec 20, 2005
Copyright © 2005, The National Academy of Sciences 2005
Copyright_xml – notice: Copyright 2005 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Dec 20, 2005
– notice: Copyright © 2005, The National Academy of Sciences 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0505798102
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts

CrossRef


Nucleic Acids Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Chemistry
EISSN 1091-6490
EndPage 18274
ExternalDocumentID PMC1317918
953783531
16352726
10_1073_pnas_0505798102
102_51_18269
4152606
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c595t-19f55d3b6e04d8c3beb598ff660e897f6d8c4e0b4c86bb74a50c59369b018da63
ISSN 0027-8424
IngestDate Thu Aug 21 13:10:56 EDT 2025
Thu Jul 10 23:51:12 EDT 2025
Fri Jul 11 02:39:12 EDT 2025
Mon Jun 30 08:32:31 EDT 2025
Wed Feb 19 02:08:49 EST 2025
Thu Apr 24 22:59:40 EDT 2025
Tue Jul 01 02:29:33 EDT 2025
Wed Nov 11 00:29:43 EST 2020
Thu May 30 08:51:22 EDT 2019
Thu May 29 08:42:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c595t-19f55d3b6e04d8c3beb598ff660e897f6d8c4e0b4c86bb74a50c59369b018da63
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Abbreviations: bip, biphenyl; bz, benzene; dcp, 3,5-dichloropyridine; dfp, 3,5-difluoropyridine; dha, dihydroanthracene; en, ethylenediamine; ESI-MS, electrospray ionization MS; hmb, hexamethylbenzene; ind, indan; pic, 3-picoline (3-methylpyridine); pcp, p-cyanopyridine; p-cym, p-cymene; py, pyridine; SPh, thiophenolate; tha, tetrahydroanthracene; UV-Vis, UV-visible.
Author contributions: F.W., D.I.J., and P.J.S. designed research; F.W., A.H., E.P.L.v.d.G., R.F., M.M., R.J.D., R.A., S.G., F.P.A.F., P.L.-C., I.D.H.O., and S.P. performed research; F.W., A.H., E.P.L.v.d.G., R.J.D., R.A., S.G., F.P.A.F., P.L.-C., I.D.H.O., D.I.J., S.P., and P.J.S. analyzed data; and F.W., R.J.D., S.P., and P.J.S. wrote the paper.
Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved October 27, 2005
This paper was submitted directly (Track II) to the PNAS office.
To whom correspondence should be addressed. E-mail: p.j.sadler@ed.ac.uk.
Conflict of interest statement: University of Edinburgh has submitted patent applications relating to the compounds used in this study for which an exclusive license has been granted to Oncosense Ltd.
Data deposition: The atomic coordinates have been deposited in the Cambridge Structural Database, Cambridge Crystallographic Data Centre, Cambridge CB2 1EZ, United Kingdom (CSD reference nos. 288192–288197). The x-ray crystallographic data for complexes 1, 3, 5, 9, 11, and 19 can be found in Data Sets 1–6, which are published as supporting information on the PNAS web site.
OpenAccessLink http://doi.org/10.1073/pnas.0505798102
PMID 16352726
PQID 201402996
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_0505798102
proquest_journals_201402996
crossref_citationtrail_10_1073_pnas_0505798102
pubmed_primary_16352726
pnas_primary_102_51_18269
proquest_miscellaneous_68909036
jstor_primary_4152606
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1317918
proquest_miscellaneous_17430704
pnas_primary_102_51_18269_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-12-20
PublicationDateYYYYMMDD 2005-12-20
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-20
  day: 20
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2005
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
(e_1_3_2_16_2) 2000; 49
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
(e_1_3_2_22_2) 1982; 21
e_1_3_2_35_2
(e_1_3_2_43_2) 1995; 23
(e_1_3_2_6_2) 1980; 11
References_xml – ident: e_1_3_2_19_2
  doi: 10.1002/jcc.1056
– ident: e_1_3_2_44_2
  doi: 10.1021/bi034933u
– ident: e_1_3_2_13_2
  doi: 10.1021/ja017482e
– ident: e_1_3_2_40_2
– ident: e_1_3_2_3_2
  doi: 10.1021/cr00081a012
– ident: e_1_3_2_35_2
  doi: 10.1021/ic00281a009
– ident: e_1_3_2_20_2
– ident: e_1_3_2_8_2
  doi: 10.1021/ic950973d
– ident: e_1_3_2_14_2
  doi: 10.1073/pnas.2434016100
– volume: 49
  start-page: 183
  year: 2000
  ident: e_1_3_2_16_2
  publication-title: Adv. Inorg. Chem.
– ident: e_1_3_2_42_2
  doi: 10.1021/ic00029a003
– ident: e_1_3_2_11_2
  doi: 10.1038/sj.bjc.6600290
– ident: e_1_3_2_39_2
  doi: 10.1007/s00775-004-0621-5
– ident: e_1_3_2_41_2
  doi: 10.1073/pnas.0737293100
– ident: e_1_3_2_36_2
  doi: 10.1021/ic50016a009
– ident: e_1_3_2_9_2
  doi: 10.1016/S0010-8545(02)00312-0
– ident: e_1_3_2_12_2
  doi: 10.1021/jm010051m
– ident: e_1_3_2_18_2
  doi: 10.1002/chem.200304724
– ident: e_1_3_2_27_2
  doi: 10.1016/S0020-1693(96)05403-5
– ident: e_1_3_2_38_2
  doi: 10.1021/ic025538f
– ident: e_1_3_2_45_2
– ident: e_1_3_2_21_2
  doi: 10.1007/BF00868859
– ident: e_1_3_2_29_2
– ident: e_1_3_2_30_2
  doi: 10.1021/ja00244a028
– ident: e_1_3_2_26_2
  doi: 10.1021/ic50070a010
– ident: e_1_3_2_4_2
  doi: 10.1016/S0898-8838(08)60035-5
– volume: 11
  start-page: 63
  year: 1980
  ident: e_1_3_2_6_2
  publication-title: Met. Ions Biol. Syst.
– volume: 21
  start-page: 74
  year: 1982
  ident: e_1_3_2_22_2
  publication-title: Inorg. Synth.
  doi: 10.1002/9780470132524.ch16
– ident: e_1_3_2_24_2
  doi: 10.1139/v72-486
– ident: e_1_3_2_25_2
– ident: e_1_3_2_33_2
  doi: 10.1002/chem.200400640
– volume: 23
  start-page: 178
  year: 1995
  ident: e_1_3_2_43_2
  publication-title: Drug Metab. Dispos.
– ident: e_1_3_2_17_2
– ident: e_1_3_2_32_2
  doi: 10.1021/ic00105a048
– ident: e_1_3_2_37_2
  doi: 10.1071/CH9662229
– ident: e_1_3_2_7_2
  doi: 10.1021/ic00060a005
– ident: e_1_3_2_1_2
  doi: 10.1351/pac200173020209
– ident: e_1_3_2_2_2
  doi: 10.1021/om0300777
– ident: e_1_3_2_28_2
  doi: 10.1039/j19710000481
– ident: e_1_3_2_5_2
  doi: 10.1016/S0022-328X(00)00036-X
– ident: e_1_3_2_10_2
  doi: 10.1016/j.jorganchem.2004.07.027
– ident: e_1_3_2_31_2
  doi: 10.1016/S0020-1693(00)90384-0
– ident: e_1_3_2_15_2
  doi: 10.1021/ja027719m
– ident: e_1_3_2_23_2
  doi: 10.1039/dt9740000233
– ident: e_1_3_2_34_2
  doi: 10.1021/ic00278a025
SSID ssj0009580
Score 2.350957
Snippet Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18269
SubjectTerms Adducts
Antineoplastic Agents - chemistry
Antineoplastic Agents - toxicity
Antineoplastics
Arene
Benzene
Cancer
Cell Line, Tumor
Cell Survival - drug effects
Chemical reactions
Chemistry
Chlorides
Cytotoxicity
Design
DNA
Drug Design
Female
Guanosine Monophosphate - chemistry
Guanosine Monophosphate - metabolism
Half lives
Halides
Humans
Hydrolysis
Inhibitory Concentration 50
Kinetics
Ligands
Liquid chromatography
Molecular Structure
Organometallic Compounds - chemistry
Organometallic Compounds - toxicity
Ovarian cancer
Ovarian Neoplasms - genetics
Ovarian Neoplasms - pathology
Pharmacology
Physical Sciences
Ruthenium
Ruthenium - chemistry
Ruthenium - toxicity
Title Controlling Ligand Substitution Reactions of Organometallic Complexes: Tuning Cancer Cell Cytotoxicity
URI https://www.jstor.org/stable/4152606
http://www.pnas.org/content/102/51/18269.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16352726
https://www.proquest.com/docview/201402996
https://www.proquest.com/docview/17430704
https://www.proquest.com/docview/68909036
https://pubmed.ncbi.nlm.nih.gov/PMC1317918
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBFAqE8rAQh6IoS15OYm5VRVshqCrUit4i23HKSu1u1c1KLf-X_8GM7XWy1RYBl2iVOI6T-XY8Hs98Q8i7RknJddpERcM5LFAUj7iURaTBds6zVDNpEmm_HhYHJ_nnU3a6tvZrELU07-RI_VyZV_I_UoVzIFfMkv0HyfpO4QT8BvnCESQMx7-S8a6NMzcZ5efjM-MDB0Vgdv9RrGAQKh_pZuo3TS80WNtIbG1iyfW1DYk7nhv3iEIIXIXozA_VTTftptdjNe6Wdn6P_Iw3W8QXHC4cijt9eorTGbMwCo8O-2LHe_ObcfhduOnSbDthqnZ4ICQSSsM3u_A2PnITh0ej8MvIFBdG0ot93QcTfxOt0OchOsLNbn-C3vAlJwbDgJA07mM8huP0Ixzq7RTm0txmW4-0VdVg6URFbouNel0epwPQOipbq5pxIcVXThqg5bDS8UTMRljXr-SV62YAocsLgyGwXllapivIu29Nqj7UEbqqWVKbp98j91NYzWChjf3TZMANXdlMKfeSCwaqMvtwa1BIcetGsGRH2VBa5OeF9qvWSrdDfgc21PEj8tAtfuiORfIGWdOTx2RjIQi67TjQ3z8h7QDa1EKbDqFNPbTptKXL0KYe2h-pBTa1wKYIbDoE9iY52ft0vHsQuZIgkWKcdVHCW8aaTBY6zptKZVJLxqu2LYpYV7xsCziZ61jmqiqkLHPBYmVqVso4qRpRZE_J-mQ60c8JjeNGVJXItRBprljK41yyRMGCnrepkHFARosPXCvHl49lW85rE7dRZjV-7LoXTkC2_Q2Xlirm7qabRmK-HZrR8OSABKZlf3sPnoC8vfNa3bpIsYBsLWRfO0U1q1P0ooDZCd2_8VdhFsGPLiZ6Op_V6JeAyT-_u0VRcXTpQh_PLJL6gThEBqRcwphvgAz2y1cm4x-GyT7JkB25evGH194iD3qF8ZKsd1dz_QrWAZ18bf5FvwE_Ggra
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+ligand+substitution+reactions+of+organometallic+complexes%3A+Tuning+cancer+cell+cytotoxicity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fuyi+Wang&rft.au=Abraha+Habtemariam&rft.au=Erwin+P.+L.+van+der+Geer&rft.au=Rafael+Fern%C3%A1ndez&rft.date=2005-12-20&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=102&rft.issue=51&rft.spage=18269&rft_id=info:doi/10.1073%2Fpnas.0505798102&rft_id=info%3Apmid%2F16352726&rft.externalDBID=n%2Fa&rft.externalDocID=102_51_18269
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F51.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F51.cover.gif