Controlling Ligand Substitution Reactions of Organometallic Complexes: Tuning Cancer Cell Cytotoxicity
Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other s...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 102; no. 51; pp. 18269 - 18274 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
20.12.2005
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type $[(\eta^6-arene)Ru(ethylenediamine)(X)]^{n+}$. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. |
---|---|
AbstractList | Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [({eta}6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents.[PUBLICATION ABSTRACT] Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional “piano-stool” ruthenium(II) arene complexes of the type [(η 6 -arene)Ru(ethylenediamine)(X)] n + . A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H 2 O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional “piano-stool” ruthenium(II) arene complexes of the type [(η 6 -arene)Ru(ethylenediamine)(X)] n + . A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H 2 O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. anticancer bioorganometallic hydrolysis kinetics ruthenium complexes Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type $[(\eta^6-arene)Ru(ethylenediamine)(X)]^{n+}$. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [( eta super(6)-arene)Ru(ethylenediamine)(X)] super(n) super(+). A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H sub(2)O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional "piano-stool" ruthenium(II) arene complexes of the type [(eta6-arene)Ru(ethylenediamine)(X)]n+. A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H2O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents. |
Author | Iain D. H. Oswald Parsons, Simon Halpern, Jack Patricia Lozano-Casal Rhona Aird Robert J. Deeth Francesca P. A. Fabbiani Fernández, Rafael Michael Melchart Duncan I. Jodrell Sadler, Peter J. Sylvie Guichard Wang, Fuyi Erwin P. L. van der Geer Abraha Habtemariam |
AuthorAffiliation | School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, United Kingdom; † Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and ‡ CRUK Pharmacology and Drug Development Team, University of Edinburgh Cancer Research Centre, Cancer Research UK Oncology Unit, Crewe Road South, EH4 2XR Edinburgh, United Kingdom |
AuthorAffiliation_xml | – name: School of Chemistry, University of Edinburgh, West Mains Road, EH9 3JJ Edinburgh, United Kingdom; † Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom; and ‡ CRUK Pharmacology and Drug Development Team, University of Edinburgh Cancer Research Centre, Cancer Research UK Oncology Unit, Crewe Road South, EH4 2XR Edinburgh, United Kingdom |
Author_xml | – sequence: 1 givenname: Fuyi surname: Wang fullname: Wang, Fuyi – sequence: 2 fullname: Abraha Habtemariam – sequence: 3 fullname: Erwin P. L. van der Geer – sequence: 4 givenname: Rafael surname: Fernández fullname: Fernández, Rafael – sequence: 5 fullname: Michael Melchart – sequence: 6 fullname: Robert J. Deeth – sequence: 7 fullname: Rhona Aird – sequence: 8 fullname: Sylvie Guichard – sequence: 9 fullname: Francesca P. A. Fabbiani – sequence: 10 fullname: Patricia Lozano-Casal – sequence: 11 fullname: Iain D. H. Oswald – sequence: 12 fullname: Duncan I. Jodrell – sequence: 13 givenname: Simon surname: Parsons fullname: Parsons, Simon – sequence: 14 givenname: Peter J. surname: Sadler fullname: Sadler, Peter J. – sequence: 15 givenname: Jack surname: Halpern fullname: Halpern, Jack |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16352726$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks2L1DAYxoOsuLOrZy8iwYPgobtv2iRNPAhS_IKBBV3PIW3TMUMnGZNUZv57U2ac1QXZU17y_p6H9-sCnTnvDELPCVwRqKvrrdPxChiwWgoC5SO0ICBJwamEM7QAKOtC0JKeo4sY1wAgmYAn6JzwipV1yRdoaLxLwY-jdSu8tCvtevxtamOyaUrWO_zV6G4OIvYDvgkZ8BuTdBZ0uPGb7Wh2Jr7Ft5ObHRrtOhNwY8YRN_vkk9_Zzqb9U_R40GM0z47vJfr-8cNt87lY3nz60rxfFh2TLBVEDoz1VcsN0F50VWtaJsUwcA5GyHrg-ZMaaGkneNvWVDPIworLFojoNa8u0buD73ZqN6bvTG5Oj2ob7EaHvfLaqn8zzv5QK_9LkYrUkohs8PpoEPzPycSkNjZ2uR3tjJ-i4kKChIo_CJKaVlADzeCre-DaT8HlKagSCIVSytnt5d91nwr-s6gMsAPQBR9jMIPKY9XzYnIbdlQE1HwQaj4IdXcQWXd9T3ey_q8CH0uZE3d0qRhRRJRcZuTNA4gapnFMZpcy--LArmPy4QRTwkoOvPoNCZvcEw |
CitedBy_id | crossref_primary_10_1021_jm2000932 crossref_primary_10_1021_ic501865h crossref_primary_10_1021_jm3000906 crossref_primary_10_1021_jm500455p crossref_primary_10_1002_open_201700166 crossref_primary_10_1039_b805358h crossref_primary_10_1002_ange_200602873 crossref_primary_10_1021_acs_chemrev_8b00271 crossref_primary_10_1002_cbic_201900676 crossref_primary_10_1021_jm100560f crossref_primary_10_1039_D4DT00245H crossref_primary_10_1039_C6DT00668J crossref_primary_10_1016_j_jinorgbio_2016_02_020 crossref_primary_10_1039_C5DT04781A crossref_primary_10_1016_j_inoche_2024_113547 crossref_primary_10_1002_chem_201605960 crossref_primary_10_1021_om100517p crossref_primary_10_1016_j_jinorgbio_2015_07_016 crossref_primary_10_1016_j_ica_2016_04_031 crossref_primary_10_1038_srep31973 crossref_primary_10_1002_chem_200601152 crossref_primary_10_1039_C8DT02947D crossref_primary_10_1016_j_jinorgbio_2016_05_008 crossref_primary_10_1016_j_ccr_2021_214104 crossref_primary_10_1016_j_chemphys_2022_111587 crossref_primary_10_1002_anie_201814532 crossref_primary_10_1002_chem_200900699 crossref_primary_10_1021_acs_inorgchem_0c03820 crossref_primary_10_1039_C3DT52584H crossref_primary_10_1016_j_inoche_2023_110662 crossref_primary_10_1021_acs_inorgchem_9b01882 crossref_primary_10_1073_pnas_0800076105 crossref_primary_10_1016_j_surfin_2024_105670 crossref_primary_10_1002_ange_201311161 crossref_primary_10_3390_molecules20047276 crossref_primary_10_1002_anie_200705342 crossref_primary_10_1016_j_jelechem_2020_113882 crossref_primary_10_1039_C5DT01430A crossref_primary_10_1021_acs_inorgchem_8b00346 crossref_primary_10_1515_revic_2023_0007 crossref_primary_10_1002_chem_201001573 crossref_primary_10_1016_j_ccr_2024_216252 crossref_primary_10_1016_j_jinorgbio_2017_07_027 crossref_primary_10_1016_j_jinorgbio_2013_07_029 crossref_primary_10_1039_c1dt11043h crossref_primary_10_3390_molecules180910829 crossref_primary_10_1002_cmdc_200800311 crossref_primary_10_1016_j_ejmech_2018_03_015 crossref_primary_10_1021_acs_organomet_1c00006 crossref_primary_10_1002_ejic_201402205 crossref_primary_10_1007_s11426_016_0178_7 crossref_primary_10_1016_j_jmgm_2012_08_004 crossref_primary_10_1080_00958972_2016_1243238 crossref_primary_10_1002_asia_202100917 crossref_primary_10_1039_D0SC04082G crossref_primary_10_1007_s00775_009_0549_x crossref_primary_10_1039_c3dt51275d crossref_primary_10_3390_biomedicines9091243 crossref_primary_10_1021_acs_inorgchem_8b02634 crossref_primary_10_1039_c1dt11189b crossref_primary_10_3390_molecules25071512 crossref_primary_10_1002_anie_201608094 crossref_primary_10_1016_j_molstruc_2024_141141 crossref_primary_10_1038_nchem_2918 crossref_primary_10_1002_ange_200601752 crossref_primary_10_1016_j_jorganchem_2016_09_003 crossref_primary_10_1021_acs_inorgchem_6b02430 crossref_primary_10_1039_D0NJ04958A crossref_primary_10_1039_c2cc30678f crossref_primary_10_1039_c2ra20984e crossref_primary_10_1039_C7CS00195A crossref_primary_10_1016_j_jorganchem_2011_12_034 crossref_primary_10_1021_acs_inorgchem_0c00694 crossref_primary_10_1021_ic302819j crossref_primary_10_1021_ic200607j crossref_primary_10_1039_D2DT03009H crossref_primary_10_1039_c3mt20261e crossref_primary_10_1039_C6DT03306G crossref_primary_10_1007_s00894_018_3598_7 crossref_primary_10_1021_om500644f crossref_primary_10_1021_acs_inorgchem_3c00073 crossref_primary_10_1080_00958972_2013_879647 crossref_primary_10_1002_ejic_201601226 crossref_primary_10_1039_D2DT03484K crossref_primary_10_1002_ange_201814532 crossref_primary_10_1002_rcm_8423 crossref_primary_10_3390_ijms19072137 crossref_primary_10_1080_07391102_2013_819299 crossref_primary_10_1016_j_cplett_2014_02_046 crossref_primary_10_1039_C7DT00938K crossref_primary_10_1039_C6SC00268D crossref_primary_10_1039_C7MT00330G crossref_primary_10_1039_b904071d crossref_primary_10_1002_cmdc_202400435 crossref_primary_10_1002_ejic_200900518 crossref_primary_10_1021_acs_inorgchem_1c00507 crossref_primary_10_1039_C7DT01767G crossref_primary_10_1002_cmdc_201500221 crossref_primary_10_1007_s40010_016_0292_y crossref_primary_10_1021_acs_inorgchem_0c01044 crossref_primary_10_1016_j_jinorgbio_2017_06_016 crossref_primary_10_1021_om501081z crossref_primary_10_1016_j_jorganchem_2017_01_020 crossref_primary_10_1021_jp903237w crossref_primary_10_1039_b601590e crossref_primary_10_1007_s00775_006_0098_5 crossref_primary_10_1021_ic9013366 crossref_primary_10_1016_j_cbi_2021_109522 crossref_primary_10_1016_j_ccr_2020_213338 crossref_primary_10_1021_acs_organomet_0c00399 crossref_primary_10_1021_acs_inorgchem_0c02287 crossref_primary_10_1016_j_jinorgbio_2018_02_004 crossref_primary_10_1039_D0DT02069A crossref_primary_10_1039_D3DT01217D crossref_primary_10_1063_1_3515534 crossref_primary_10_1016_j_inoche_2015_03_052 crossref_primary_10_1007_s00894_013_1987_5 crossref_primary_10_1021_acs_jmedchem_2c00722 crossref_primary_10_1155_2013_892052 crossref_primary_10_1039_C8RA07926A crossref_primary_10_1021_ic800506g crossref_primary_10_1039_D0DT02167A crossref_primary_10_1021_ja903405z crossref_primary_10_1002_aoc_4756 crossref_primary_10_1021_acs_inorgchem_3c03696 crossref_primary_10_1016_j_ica_2012_06_031 crossref_primary_10_1155_2015_832045 crossref_primary_10_1021_ic4002626 crossref_primary_10_1016_j_saa_2012_12_016 crossref_primary_10_1021_acs_organomet_9b00440 crossref_primary_10_1002_jcc_21179 crossref_primary_10_1021_acs_cgd_5b00059 crossref_primary_10_1016_j_jinorgbio_2015_02_015 crossref_primary_10_1134_S1070363222080242 crossref_primary_10_4155_fmc_09_25 crossref_primary_10_1021_ic401762z crossref_primary_10_1039_c3cc43000f crossref_primary_10_1021_ic400835n crossref_primary_10_3390_molecules28104051 crossref_primary_10_1002_anie_200601752 crossref_primary_10_3390_molecules18043760 crossref_primary_10_1002_cphc_201701209 crossref_primary_10_1002_cssc_202301041 crossref_primary_10_1016_j_jinorgbio_2007_04_018 crossref_primary_10_1016_j_ccr_2006_11_017 crossref_primary_10_3390_inorganics7030031 crossref_primary_10_1021_ic701735q crossref_primary_10_1515_pac_2024_0224 crossref_primary_10_1039_C4DT03983A crossref_primary_10_1021_ja800194a crossref_primary_10_1039_C2DT32091F crossref_primary_10_1007_s00775_012_0917_9 crossref_primary_10_1002_aoc_6550 crossref_primary_10_1021_acsami_3c06394 crossref_primary_10_1021_ar400266c crossref_primary_10_3390_pharmaceutics15020356 crossref_primary_10_1039_C7RA06514K crossref_primary_10_1134_S1070363220110249 crossref_primary_10_1039_C6DT03356C crossref_primary_10_1039_D3DT01661G crossref_primary_10_1021_om201177y crossref_primary_10_1002_aoc_3610 crossref_primary_10_1039_C4RA02960G crossref_primary_10_1002_ange_201608094 crossref_primary_10_1016_j_ejmech_2019_04_062 crossref_primary_10_1039_c3sc53185f crossref_primary_10_1002_rcm_8292 crossref_primary_10_1039_D1DT03274G crossref_primary_10_1080_07391102_2018_1513867 crossref_primary_10_1080_00958972_2021_1885650 crossref_primary_10_1002_jcc_24373 crossref_primary_10_1021_ic801818x crossref_primary_10_1016_j_poly_2018_04_025 crossref_primary_10_1021_acs_organomet_5b00041 crossref_primary_10_1021_acs_inorgchem_1c01482 crossref_primary_10_1016_j_jinorgbio_2020_111155 crossref_primary_10_1016_j_ejmech_2014_02_062 crossref_primary_10_1021_jp711799g crossref_primary_10_1002_chem_201200960 crossref_primary_10_1016_j_ccr_2021_214403 crossref_primary_10_1016_j_ccr_2015_10_007 crossref_primary_10_1039_D0SC00897D crossref_primary_10_1002_cbic_202000704 crossref_primary_10_1016_j_yexcr_2018_01_031 crossref_primary_10_1021_acs_inorgchem_5b02600 crossref_primary_10_1002_ejic_202100122 crossref_primary_10_1021_acs_inorgchem_8b01270 crossref_primary_10_1002_ejic_201100250 crossref_primary_10_1021_acsptsci_3c00085 crossref_primary_10_1002_aoc_4154 crossref_primary_10_1016_j_ica_2022_120925 crossref_primary_10_1016_j_jasms_2007_12_002 crossref_primary_10_1002_chem_202004954 crossref_primary_10_1021_ic101795s crossref_primary_10_1039_D2QI00423B crossref_primary_10_1016_j_jorganchem_2019_121094 crossref_primary_10_1021_acs_inorgchem_9b00853 crossref_primary_10_1002_chem_201701681 crossref_primary_10_1007_s00775_020_01823_x crossref_primary_10_1016_j_bioorg_2023_106555 crossref_primary_10_1016_j_ica_2005_12_059 crossref_primary_10_1002_aoc_6187 crossref_primary_10_1039_C5CC09427E crossref_primary_10_1002_anie_201311161 crossref_primary_10_1016_j_ica_2017_06_001 crossref_primary_10_1016_j_jinorgbio_2007_11_009 crossref_primary_10_1002_chem_201903109 crossref_primary_10_1007_s00894_012_1467_3 crossref_primary_10_1016_j_jorganchem_2009_08_006 crossref_primary_10_1016_j_saa_2013_06_057 crossref_primary_10_1186_s12967_016_0797_9 crossref_primary_10_1039_D1DT01604K crossref_primary_10_1139_cjc_2021_0180 crossref_primary_10_1021_bc300173h crossref_primary_10_1021_ar100140e crossref_primary_10_1039_C8DT04687E crossref_primary_10_1021_ic401606v crossref_primary_10_1039_b914153g crossref_primary_10_1016_j_jorganchem_2012_11_042 crossref_primary_10_1016_j_jorganchem_2017_03_038 crossref_primary_10_1021_acs_inorgchem_1c02648 crossref_primary_10_1002_asia_200800149 crossref_primary_10_1002_ejic_201402412 crossref_primary_10_1021_acs_organomet_7b00842 crossref_primary_10_1002_ejic_201601164 crossref_primary_10_1016_j_ica_2021_120701 crossref_primary_10_1039_C6DT01242F crossref_primary_10_1021_jm3017442 crossref_primary_10_1039_c8mt00352a crossref_primary_10_1016_j_jorganchem_2006_10_041 crossref_primary_10_1021_acs_jmedchem_5b01194 crossref_primary_10_1002_anie_200602873 crossref_primary_10_1039_D0DT03107K crossref_primary_10_1007_s12039_012_0337_y crossref_primary_10_1515_revic_2015_0008 crossref_primary_10_1021_acs_jmedchem_3c01092 crossref_primary_10_1021_jm501655t crossref_primary_10_1002_chem_201301389 crossref_primary_10_1021_acs_inorgchem_8b02299 crossref_primary_10_1002_ange_200705342 crossref_primary_10_1016_j_jinorgbio_2015_10_008 crossref_primary_10_1039_D3NJ02391E crossref_primary_10_1007_s00775_024_02052_2 crossref_primary_10_1039_C7CC01503H crossref_primary_10_1016_j_ijms_2010_12_003 crossref_primary_10_1021_om3006307 crossref_primary_10_1039_C5MT00122F crossref_primary_10_1021_ic900412n crossref_primary_10_1007_s00775_020_01758_3 crossref_primary_10_1002_aoc_5687 crossref_primary_10_1021_acs_jmedchem_9b02000 crossref_primary_10_1039_C1DT11405K crossref_primary_10_1002_chem_201503991 crossref_primary_10_1016_j_poly_2014_07_019 crossref_primary_10_1021_om2005468 crossref_primary_10_1016_j_ica_2018_09_019 crossref_primary_10_1039_D0NJ03664A crossref_primary_10_1021_acs_inorgchem_8b01070 crossref_primary_10_1021_jm5002748 crossref_primary_10_1039_D1DT00246E crossref_primary_10_1039_D1DT00694K crossref_primary_10_1002_jcc_23639 crossref_primary_10_1016_j_jorganchem_2016_06_024 crossref_primary_10_1016_j_jinorgbio_2023_112310 crossref_primary_10_1021_acs_organomet_7b00868 crossref_primary_10_1039_C9NJ03663F crossref_primary_10_1039_D1MD00220A |
Cites_doi | 10.1002/jcc.1056 10.1021/bi034933u 10.1021/ja017482e 10.1021/cr00081a012 10.1021/ic00281a009 10.1021/ic950973d 10.1073/pnas.2434016100 10.1021/ic00029a003 10.1038/sj.bjc.6600290 10.1007/s00775-004-0621-5 10.1073/pnas.0737293100 10.1021/ic50016a009 10.1016/S0010-8545(02)00312-0 10.1021/jm010051m 10.1002/chem.200304724 10.1016/S0020-1693(96)05403-5 10.1021/ic025538f 10.1007/BF00868859 10.1021/ja00244a028 10.1021/ic50070a010 10.1016/S0898-8838(08)60035-5 10.1002/9780470132524.ch16 10.1139/v72-486 10.1002/chem.200400640 10.1021/ic00105a048 10.1071/CH9662229 10.1021/ic00060a005 10.1351/pac200173020209 10.1021/om0300777 10.1039/j19710000481 10.1016/S0022-328X(00)00036-X 10.1016/j.jorganchem.2004.07.027 10.1016/S0020-1693(00)90384-0 10.1021/ja027719m 10.1039/dt9740000233 10.1021/ic00278a025 |
ContentType | Journal Article |
Copyright | Copyright 2005 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 20, 2005 Copyright © 2005, The National Academy of Sciences 2005 |
Copyright_xml | – notice: Copyright 2005 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 20, 2005 – notice: Copyright © 2005, The National Academy of Sciences 2005 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.0505798102 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef Nucleic Acids Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Chemistry |
EISSN | 1091-6490 |
EndPage | 18274 |
ExternalDocumentID | PMC1317918 953783531 16352726 10_1073_pnas_0505798102 102_51_18269 4152606 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c595t-19f55d3b6e04d8c3beb598ff660e897f6d8c4e0b4c86bb74a50c59369b018da63 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 13:10:56 EDT 2025 Thu Jul 10 23:51:12 EDT 2025 Fri Jul 11 02:39:12 EDT 2025 Mon Jun 30 08:32:31 EDT 2025 Wed Feb 19 02:08:49 EST 2025 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 02:29:33 EDT 2025 Wed Nov 11 00:29:43 EST 2020 Thu May 30 08:51:22 EDT 2019 Thu May 29 08:42:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c595t-19f55d3b6e04d8c3beb598ff660e897f6d8c4e0b4c86bb74a50c59369b018da63 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Abbreviations: bip, biphenyl; bz, benzene; dcp, 3,5-dichloropyridine; dfp, 3,5-difluoropyridine; dha, dihydroanthracene; en, ethylenediamine; ESI-MS, electrospray ionization MS; hmb, hexamethylbenzene; ind, indan; pic, 3-picoline (3-methylpyridine); pcp, p-cyanopyridine; p-cym, p-cymene; py, pyridine; SPh, thiophenolate; tha, tetrahydroanthracene; UV-Vis, UV-visible. Author contributions: F.W., D.I.J., and P.J.S. designed research; F.W., A.H., E.P.L.v.d.G., R.F., M.M., R.J.D., R.A., S.G., F.P.A.F., P.L.-C., I.D.H.O., and S.P. performed research; F.W., A.H., E.P.L.v.d.G., R.J.D., R.A., S.G., F.P.A.F., P.L.-C., I.D.H.O., D.I.J., S.P., and P.J.S. analyzed data; and F.W., R.J.D., S.P., and P.J.S. wrote the paper. Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved October 27, 2005 This paper was submitted directly (Track II) to the PNAS office. To whom correspondence should be addressed. E-mail: p.j.sadler@ed.ac.uk. Conflict of interest statement: University of Edinburgh has submitted patent applications relating to the compounds used in this study for which an exclusive license has been granted to Oncosense Ltd. Data deposition: The atomic coordinates have been deposited in the Cambridge Structural Database, Cambridge Crystallographic Data Centre, Cambridge CB2 1EZ, United Kingdom (CSD reference nos. 288192–288197). The x-ray crystallographic data for complexes 1, 3, 5, 9, 11, and 19 can be found in Data Sets 1–6, which are published as supporting information on the PNAS web site. |
OpenAccessLink | http://doi.org/10.1073/pnas.0505798102 |
PMID | 16352726 |
PQID | 201402996 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_0505798102 proquest_journals_201402996 crossref_citationtrail_10_1073_pnas_0505798102 pubmed_primary_16352726 pnas_primary_102_51_18269 proquest_miscellaneous_68909036 jstor_primary_4152606 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1317918 proquest_miscellaneous_17430704 pnas_primary_102_51_18269_fulltext |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-12-20 |
PublicationDateYYYYMMDD | 2005-12-20 |
PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2005 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 (e_1_3_2_16_2) 2000; 49 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_22_2) 1982; 21 e_1_3_2_35_2 (e_1_3_2_43_2) 1995; 23 (e_1_3_2_6_2) 1980; 11 |
References_xml | – ident: e_1_3_2_19_2 doi: 10.1002/jcc.1056 – ident: e_1_3_2_44_2 doi: 10.1021/bi034933u – ident: e_1_3_2_13_2 doi: 10.1021/ja017482e – ident: e_1_3_2_40_2 – ident: e_1_3_2_3_2 doi: 10.1021/cr00081a012 – ident: e_1_3_2_35_2 doi: 10.1021/ic00281a009 – ident: e_1_3_2_20_2 – ident: e_1_3_2_8_2 doi: 10.1021/ic950973d – ident: e_1_3_2_14_2 doi: 10.1073/pnas.2434016100 – volume: 49 start-page: 183 year: 2000 ident: e_1_3_2_16_2 publication-title: Adv. Inorg. Chem. – ident: e_1_3_2_42_2 doi: 10.1021/ic00029a003 – ident: e_1_3_2_11_2 doi: 10.1038/sj.bjc.6600290 – ident: e_1_3_2_39_2 doi: 10.1007/s00775-004-0621-5 – ident: e_1_3_2_41_2 doi: 10.1073/pnas.0737293100 – ident: e_1_3_2_36_2 doi: 10.1021/ic50016a009 – ident: e_1_3_2_9_2 doi: 10.1016/S0010-8545(02)00312-0 – ident: e_1_3_2_12_2 doi: 10.1021/jm010051m – ident: e_1_3_2_18_2 doi: 10.1002/chem.200304724 – ident: e_1_3_2_27_2 doi: 10.1016/S0020-1693(96)05403-5 – ident: e_1_3_2_38_2 doi: 10.1021/ic025538f – ident: e_1_3_2_45_2 – ident: e_1_3_2_21_2 doi: 10.1007/BF00868859 – ident: e_1_3_2_29_2 – ident: e_1_3_2_30_2 doi: 10.1021/ja00244a028 – ident: e_1_3_2_26_2 doi: 10.1021/ic50070a010 – ident: e_1_3_2_4_2 doi: 10.1016/S0898-8838(08)60035-5 – volume: 11 start-page: 63 year: 1980 ident: e_1_3_2_6_2 publication-title: Met. Ions Biol. Syst. – volume: 21 start-page: 74 year: 1982 ident: e_1_3_2_22_2 publication-title: Inorg. Synth. doi: 10.1002/9780470132524.ch16 – ident: e_1_3_2_24_2 doi: 10.1139/v72-486 – ident: e_1_3_2_25_2 – ident: e_1_3_2_33_2 doi: 10.1002/chem.200400640 – volume: 23 start-page: 178 year: 1995 ident: e_1_3_2_43_2 publication-title: Drug Metab. Dispos. – ident: e_1_3_2_17_2 – ident: e_1_3_2_32_2 doi: 10.1021/ic00105a048 – ident: e_1_3_2_37_2 doi: 10.1071/CH9662229 – ident: e_1_3_2_7_2 doi: 10.1021/ic00060a005 – ident: e_1_3_2_1_2 doi: 10.1351/pac200173020209 – ident: e_1_3_2_2_2 doi: 10.1021/om0300777 – ident: e_1_3_2_28_2 doi: 10.1039/j19710000481 – ident: e_1_3_2_5_2 doi: 10.1016/S0022-328X(00)00036-X – ident: e_1_3_2_10_2 doi: 10.1016/j.jorganchem.2004.07.027 – ident: e_1_3_2_31_2 doi: 10.1016/S0020-1693(00)90384-0 – ident: e_1_3_2_15_2 doi: 10.1021/ja027719m – ident: e_1_3_2_23_2 doi: 10.1039/dt9740000233 – ident: e_1_3_2_34_2 doi: 10.1021/ic00278a025 |
SSID | ssj0009580 |
Score | 2.350957 |
Snippet | Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18269 |
SubjectTerms | Adducts Antineoplastic Agents - chemistry Antineoplastic Agents - toxicity Antineoplastics Arene Benzene Cancer Cell Line, Tumor Cell Survival - drug effects Chemical reactions Chemistry Chlorides Cytotoxicity Design DNA Drug Design Female Guanosine Monophosphate - chemistry Guanosine Monophosphate - metabolism Half lives Halides Humans Hydrolysis Inhibitory Concentration 50 Kinetics Ligands Liquid chromatography Molecular Structure Organometallic Compounds - chemistry Organometallic Compounds - toxicity Ovarian cancer Ovarian Neoplasms - genetics Ovarian Neoplasms - pathology Pharmacology Physical Sciences Ruthenium Ruthenium - chemistry Ruthenium - toxicity |
Title | Controlling Ligand Substitution Reactions of Organometallic Complexes: Tuning Cancer Cell Cytotoxicity |
URI | https://www.jstor.org/stable/4152606 http://www.pnas.org/content/102/51/18269.abstract https://www.ncbi.nlm.nih.gov/pubmed/16352726 https://www.proquest.com/docview/201402996 https://www.proquest.com/docview/17430704 https://www.proquest.com/docview/68909036 https://pubmed.ncbi.nlm.nih.gov/PMC1317918 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBFAqE8rAQh6IoS15OYm5VRVshqCrUit4i23HKSu1u1c1KLf-X_8GM7XWy1RYBl2iVOI6T-XY8Hs98Q8i7RknJddpERcM5LFAUj7iURaTBds6zVDNpEmm_HhYHJ_nnU3a6tvZrELU07-RI_VyZV_I_UoVzIFfMkv0HyfpO4QT8BvnCESQMx7-S8a6NMzcZ5efjM-MDB0Vgdv9RrGAQKh_pZuo3TS80WNtIbG1iyfW1DYk7nhv3iEIIXIXozA_VTTftptdjNe6Wdn6P_Iw3W8QXHC4cijt9eorTGbMwCo8O-2LHe_ObcfhduOnSbDthqnZ4ICQSSsM3u_A2PnITh0ej8MvIFBdG0ot93QcTfxOt0OchOsLNbn-C3vAlJwbDgJA07mM8huP0Ixzq7RTm0txmW4-0VdVg6URFbouNel0epwPQOipbq5pxIcVXThqg5bDS8UTMRljXr-SV62YAocsLgyGwXllapivIu29Nqj7UEbqqWVKbp98j91NYzWChjf3TZMANXdlMKfeSCwaqMvtwa1BIcetGsGRH2VBa5OeF9qvWSrdDfgc21PEj8tAtfuiORfIGWdOTx2RjIQi67TjQ3z8h7QDa1EKbDqFNPbTptKXL0KYe2h-pBTa1wKYIbDoE9iY52ft0vHsQuZIgkWKcdVHCW8aaTBY6zptKZVJLxqu2LYpYV7xsCziZ61jmqiqkLHPBYmVqVso4qRpRZE_J-mQ60c8JjeNGVJXItRBprljK41yyRMGCnrepkHFARosPXCvHl49lW85rE7dRZjV-7LoXTkC2_Q2Xlirm7qabRmK-HZrR8OSABKZlf3sPnoC8vfNa3bpIsYBsLWRfO0U1q1P0ooDZCd2_8VdhFsGPLiZ6Op_V6JeAyT-_u0VRcXTpQh_PLJL6gThEBqRcwphvgAz2y1cm4x-GyT7JkB25evGH194iD3qF8ZKsd1dz_QrWAZ18bf5FvwE_Ggra |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+ligand+substitution+reactions+of+organometallic+complexes%3A+Tuning+cancer+cell+cytotoxicity&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fuyi+Wang&rft.au=Abraha+Habtemariam&rft.au=Erwin+P.+L.+van+der+Geer&rft.au=Rafael+Fern%C3%A1ndez&rft.date=2005-12-20&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=102&rft.issue=51&rft.spage=18269&rft_id=info:doi/10.1073%2Fpnas.0505798102&rft_id=info%3Apmid%2F16352726&rft.externalDBID=n%2Fa&rft.externalDocID=102_51_18269 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F51.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F51.cover.gif |