Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy

Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case–control study. Participants Type 2 diabetes cases and age‐gender matched controls without diabetes. Methods Spectral‐domain optical coherence tomography (O...

Full description

Saved in:
Bibliographic Details
Published inClinical & experimental ophthalmology Vol. 44; no. 4; pp. 243 - 250
Main Authors Ng, Dorothy SK, Chiang, Peggy PC, Tan, Gavin, Cheung, CM Gemmy, Cheng, Ching-Yu, Cheung, Carol Y, Wong, Tien Y, Lamoureux, Ecosse L, Ikram, Mohammad K
Format Journal Article
LanguageEnglish
Published Australia Blackwell Publishing Ltd 01.05.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case–control study. Participants Type 2 diabetes cases and age‐gender matched controls without diabetes. Methods Spectral‐domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell‐inner plexiform layer (GC‐IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC‐IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC‐IPL −4.49 µm (−2.92; −6.06), RNFL −0.93 µm (−0.09; −1.85)], including cases with no DR [mean difference (95% CI), GC‐IPL −4.37 µm (−2.72; −6.02), RNFL −1.06 µm (−0.10; −2.02)]. Cases with any DR had thinner GC‐IPL than controls [mean difference (95% CI): GC‐IPL −4.81 µm (−2.12; −7.50)]. Among cases, subjects with moderate or severe DR had thinner GC‐IPL than subjects with no DR [mean difference (95% CI): GC‐IPL −2.07 µm (−0.08; −4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.
AbstractList To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.BACKGROUNDTo examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.Observational case-control study.DESIGNObservational case-control study.Type 2 diabetes cases and age-gender matched controls without diabetes.PARTICIPANTSType 2 diabetes cases and age-gender matched controls without diabetes.Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates.METHODSSpectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates.Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses.MAIN OUTCOME MEASURESAverage ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses.We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 µm (-2.92; -6.06), RNFL -0.93 µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 µm (-2.72; -6.02), RNFL -1.06 µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 µm (-0.08; -4.07)].RESULTSWe analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 µm (-2.92; -6.06), RNFL -0.93 µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 µm (-2.72; -6.02), RNFL -1.06 µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 µm (-0.08; -4.07)].RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.CONCLUSIONSRGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.
Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case–control study. Participants Type 2 diabetes cases and age‐gender matched controls without diabetes. Methods Spectral‐domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell‐inner plexiform layer (GC‐IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC‐IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC‐IPL −4.49 µm (−2.92; −6.06), RNFL −0.93 µm (−0.09; −1.85)], including cases with no DR [mean difference (95% CI), GC‐IPL −4.37 µm (−2.72; −6.02), RNFL −1.06 µm (−0.10; −2.02)]. Cases with any DR had thinner GC‐IPL than controls [mean difference (95% CI): GC‐IPL −4.81 µm (−2.12; −7.50)]. Among cases, subjects with moderate or severe DR had thinner GC‐IPL than subjects with no DR [mean difference (95% CI): GC‐IPL −2.07 µm (−0.08; −4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.
Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case-control study. Participants Type 2 diabetes cases and age-gender matched controls without diabetes. Methods Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P=0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49µm (-2.92; -6.06), RNFL -0.93µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37µm (-2.72; -6.02), RNFL -1.06µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07µm (-0.08; -4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.
Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case-control study. Participants Type 2 diabetes cases and age-gender matched controls without diabetes. Methods Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P=0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 mu m (-2.92; -6.06), RNFL -0.93 mu m (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 mu m (-2.72; -6.02), RNFL -1.06 mu m (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 mu m (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 mu m (-0.08; -4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.
To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Observational case-control study. Type 2 diabetes cases and age-gender matched controls without diabetes. Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses. We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 µm (-2.92; -6.06), RNFL -0.93 µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 µm (-2.72; -6.02), RNFL -1.06 µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 µm (-0.08; -4.07)]. RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.
Author Tan, Gavin
Lamoureux, Ecosse L
Chiang, Peggy PC
Wong, Tien Y
Cheng, Ching-Yu
Ng, Dorothy SK
Cheung, Carol Y
Cheung, CM Gemmy
Ikram, Mohammad K
Author_xml – sequence: 1
  givenname: Dorothy SK
  surname: Ng
  fullname: Ng, Dorothy SK
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 2
  givenname: Peggy PC
  surname: Chiang
  fullname: Chiang, Peggy PC
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 3
  givenname: Gavin
  surname: Tan
  fullname: Tan, Gavin
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 4
  givenname: CM Gemmy
  surname: Cheung
  fullname: Cheung, CM Gemmy
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 5
  givenname: Ching-Yu
  surname: Cheng
  fullname: Cheng, Ching-Yu
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 6
  givenname: Carol Y
  surname: Cheung
  fullname: Cheung, Carol Y
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 7
  givenname: Tien Y
  surname: Wong
  fullname: Wong, Tien Y
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 8
  givenname: Ecosse L
  surname: Lamoureux
  fullname: Lamoureux, Ecosse L
  email: ecosse@unimelb.edu.au
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
– sequence: 9
  givenname: Mohammad K
  surname: Ikram
  fullname: Ikram, Mohammad K
  organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26872562$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYhS1URC-w4AVQJDawSOu74yUdtQVUqISALi3H_jO4ZOzBTgTz9mQ6GRYVCG980fcdWec_RgcxRUDoOcGnZFpnDtIpoYryR-iIcE5rjRU5mM-SY36Ijku5wxgLyuQTdEhlo6iQ9Ai9_wRDiLavljYu-5Bi5aDvqwhjTttnb1d2CVWIlQ-2hQFKZaOfL8FVeauntR2-bZ6ix53tCzyb9xP05fLi8-JtfX1z9W7x5rp2QgteywaoZkwBa1vnWtVRha1unbWEUd_pjklCPYXGC-GE50RhxTrHKKfMy8axE_Rql7vO6ccIZTCrULa_thHSWAxpcCOJkIT8H1VaNUoQgif05QP0Lo15quCekoo0GvOJejFTY7sCb9Y5rGzemH2hE3C2A1xOpWTojAuDHaZih2xDbwg225GZaWTmfmST8fqBsQ_9Gzun_ww9bP4NmsXFzd6od0YoA_z6Y9j83UjFlDC3H6_M5Yfbr1qca8PYb9IksgM
CitedBy_id crossref_primary_10_1016_j_gene_2024_148219
crossref_primary_10_53432_2078_4104_2021_20_3_59_77
crossref_primary_10_3389_fimmu_2023_1151185
crossref_primary_10_1038_s41598_018_30165_7
crossref_primary_10_3389_fnagi_2021_666495
crossref_primary_10_3390_ijms24010240
crossref_primary_10_21516_2072_0076_2021_14_3_54_64
crossref_primary_10_1007_s12031_017_0899_8
crossref_primary_10_1371_journal_pone_0177515
crossref_primary_10_3389_fnins_2022_971952
crossref_primary_10_1016_j_jchemneu_2022_102181
crossref_primary_10_1109_RBME_2017_2705064
crossref_primary_10_3390_antiox12061237
crossref_primary_10_1016_j_jff_2024_106486
crossref_primary_10_4103_1673_5374_266910
crossref_primary_10_1177_11206721211048793
crossref_primary_10_1007_s11892_021_01425_0
crossref_primary_10_1007_s00417_024_06552_4
crossref_primary_10_1111_aos_14273
crossref_primary_10_1016_j_oftale_2022_02_009
crossref_primary_10_1016_j_ophtha_2019_03_003
crossref_primary_10_1007_s11892_019_1134_5
crossref_primary_10_3389_fendo_2022_1036735
crossref_primary_10_1080_15569527_2023_2245034
crossref_primary_10_1038_s41598_017_02767_0
crossref_primary_10_1111_aos_13733
crossref_primary_10_1016_j_ophtha_2019_08_015
crossref_primary_10_1007_s00347_018_0670_8
crossref_primary_10_1007_s11428_018_0410_3
crossref_primary_10_1007_s00417_022_05925_x
crossref_primary_10_31362_patd_544201
crossref_primary_10_3390_ijms21072351
crossref_primary_10_1167_iovs_18_26108
crossref_primary_10_1136_bjophthalmol_2017_310959
crossref_primary_10_1186_s40662_021_00260_4
crossref_primary_10_1210_clinem_dgab050
crossref_primary_10_1007_s12020_019_02017_5
crossref_primary_10_4103_DLJO_DLJO_183_23
crossref_primary_10_5301_ejo_5000887
crossref_primary_10_1016_j_ajo_2019_09_010
crossref_primary_10_1136_bjophthalmol_2018_313159
crossref_primary_10_1016_j_taap_2024_116885
crossref_primary_10_1016_j_bcp_2024_116311
crossref_primary_10_3389_fendo_2022_1047642
crossref_primary_10_1016_j_biopha_2020_110818
crossref_primary_10_1155_2020_9232157
crossref_primary_10_1080_08820538_2020_1810289
crossref_primary_10_3390_jpm12111807
crossref_primary_10_1016_j_jep_2017_12_018
crossref_primary_10_3390_jcm9061849
crossref_primary_10_1038_s41598_025_89734_2
crossref_primary_10_1016_j_molmet_2023_101736
crossref_primary_10_1136_bmjophth_2024_001791
crossref_primary_10_1155_2021_3181347
crossref_primary_10_3389_fmed_2021_778283
crossref_primary_10_22141_2309_8147_11_1_2023_312
crossref_primary_10_1186_s12886_021_01975_7
crossref_primary_10_3389_fendo_2022_915031
crossref_primary_10_1038_s41598_021_89992_w
crossref_primary_10_1038_s41598_021_88698_3
crossref_primary_10_3390_ijms24021447
crossref_primary_10_1007_s00592_023_02226_5
crossref_primary_10_1007_s10792_022_02569_y
crossref_primary_10_1177_1120672120974296
crossref_primary_10_1016_j_exer_2023_109693
crossref_primary_10_3389_fnmol_2022_930599
crossref_primary_10_1016_j_exer_2025_110274
crossref_primary_10_7759_cureus_30609
crossref_primary_10_12677_hjo_2025_141008
crossref_primary_10_3390_ijms20092101
crossref_primary_10_1038_s41598_021_94500_1
crossref_primary_10_1007_s00417_021_05277_y
crossref_primary_10_3341_jkos_2021_62_6_769
crossref_primary_10_1038_s41419_020_2302_x
crossref_primary_10_18231_j_ijceo_2020_035
crossref_primary_10_1002_jcp_28488
crossref_primary_10_1002_nbm_3783
crossref_primary_10_1016_j_bbadis_2024_167118
crossref_primary_10_4103_jpbs_jpbs_199_21
crossref_primary_10_3390_cells11203246
crossref_primary_10_1007_s10384_020_00729_0
crossref_primary_10_4103_1673_5374_194758
crossref_primary_10_1097_OPX_0000000000001242
crossref_primary_10_1167_iovs_66_1_1
crossref_primary_10_1016_j_preteyeres_2020_100899
crossref_primary_10_1155_2019_1825819
crossref_primary_10_4103_jpbs_jpbs_165_21
crossref_primary_10_1016_j_brainresbull_2017_05_007
crossref_primary_10_1038_s41598_020_58465_x
crossref_primary_10_1080_02713683_2022_2055084
crossref_primary_10_1136_bjophthalmol_2021_319853
crossref_primary_10_1016_j_survophthal_2021_04_003
crossref_primary_10_1016_j_oftal_2021_04_004
crossref_primary_10_1016_j_bcp_2021_114473
crossref_primary_10_1159_000528503
crossref_primary_10_3390_nu14061146
crossref_primary_10_1007_s40123_023_00663_7
crossref_primary_10_1016_j_exer_2024_110113
crossref_primary_10_1016_j_npep_2020_102057
crossref_primary_10_3390_antiox11040617
Cites_doi 10.1136/bjo.2010.191841
10.1167/iovs.12-9712
10.2337/dc13-1990
10.1001/archopht.120.6.791
10.1002/(SICI)1099-1166(199911)14:11<936::AID-GPS39>3.0.CO;2-1
10.1016/S0161-6420(86)33606-6
10.1001/archopht.121.2.245
10.1167/iovs.15-16730
10.2147/CLEP.S30816
10.2337/diabetes.47.5.815
10.1155/2013/905058
10.1254/jphs.13R03CP
10.1016/S0140-6736(09)62124-3
10.1167/iovs.11-7962
10.1046/j.1442-9071.2000.00222.x
10.1097/EDE.0b013e318064630a
10.1136/bjo.86.7.725
10.1111/j.1442-9071.2011.02697.x
10.1167/iovs.12-10414
10.1001/archophthalmol.2010.340
10.1167/iovs.08-2970
10.3109/09286580903144738
10.1046/j.1440-1789.2002.00439.x
10.1167/iovs.08-3143
10.1001/archopht.1997.01100160331011
10.1172/JCI2425
10.1167/iovs.10-6293
10.1016/j.ajo.2005.08.063
10.1167/iovs.04-0335
10.1016/S0039-6257(02)00387-9
10.1007/s12035-014-8732-7
10.1006/exer.2000.0840
10.1016/S0161-6420(13)38012-9
10.2337/dc08-0189
10.4103/0301-4738.136234
10.1001/archopht.1990.01070050070033
10.20452/pamw.1411
10.1016/S0161-6420(93)31513-7
10.2337/db14-0227
10.1111/j.1755-3768.1980.tb08312.x
10.1167/iovs.11-8997
10.1167/iovs.09-5041
10.2337/diabetes.47.3.445
10.2174/1570159X12666140619205024
10.1167/iovs.03-1101
ContentType Journal Article
Copyright 2016 Royal Australian and New Zealand College of Ophthalmologists
2016 Royal Australian and New Zealand College of Ophthalmologists.
Copyright_xml – notice: 2016 Royal Australian and New Zealand College of Ophthalmologists
– notice: 2016 Royal Australian and New Zealand College of Ophthalmologists.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
7QO
8FD
FR3
P64
DOI 10.1111/ceo.12724
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1442-9071
EndPage 250
ExternalDocumentID 4089313551
26872562
10_1111_ceo_12724
CEO12724
ark_67375_WNG_FMWV95B9_3
Genre article
Journal Article
Observational Study
GrantInformation_xml – fundername: Biomedical Research Council, Singapore
  funderid: 08/1/35/19/550
– fundername: National Medical Research Council, Singapore
  funderid: NMRC/CG/SERI/2010
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KTM
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c5954-68e29337e3bbccb7f270a9bcaa132df9f3612d2e8d55c5d417073fc32423d68c3
IEDL.DBID DR2
ISSN 1442-6404
1442-9071
IngestDate Fri Jul 11 06:03:26 EDT 2025
Fri Jul 11 07:38:27 EDT 2025
Fri Jul 25 03:10:13 EDT 2025
Mon Jul 21 06:05:10 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Thu Jul 03 08:31:00 EDT 2025
Wed Jan 22 16:28:58 EST 2025
Wed Oct 30 09:49:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neuronal damage
diabetic retinopathy
optical coherence tomography
diabetes
retinal ganglion cell
Language English
License 2016 Royal Australian and New Zealand College of Ophthalmologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5954-68e29337e3bbccb7f270a9bcaa132df9f3612d2e8d55c5d417073fc32423d68c3
Notes Biomedical Research Council, Singapore - No. 08/1/35/19/550
istex:65D3975D665B01ED209A9A331D93D8F33372A080
ArticleID:CEO12724
National Medical Research Council, Singapore - No. NMRC/CG/SERI/2010
ark:/67375/WNG-FMWV95B9-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ceo.12724
PMID 26872562
PQID 1796718904
PQPubID 1006520
PageCount 8
ParticipantIDs proquest_miscellaneous_1808615611
proquest_miscellaneous_1797875110
proquest_journals_1796718904
pubmed_primary_26872562
crossref_citationtrail_10_1111_ceo_12724
crossref_primary_10_1111_ceo_12724
wiley_primary_10_1111_ceo_12724_CEO12724
istex_primary_ark_67375_WNG_FMWV95B9_3
PublicationCentury 2000
PublicationDate May/June 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May/June 2016
PublicationDecade 2010
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Surry Hills
PublicationTitle Clinical & experimental ophthalmology
PublicationTitleAlternate Clinical & Experimental Ophthalmology
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98 (5 Suppl): 786-806.
Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1997; 115: 1161-6.
Cheung N, Rogers SL, Donaghue KC, Jenkins AJ, Tikellis G, Wong TY. Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes. Diabetes Care 2008; 31: 1842-6.
Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 2002; 47 (Suppl 2): S253-62.
Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 2014; 63: 3906-14.
Araszkiewicz A, Zozulinska-Ziolkiewicz D, Meller M, et al. Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn 2012; 122: 464-70.
Juen S, Kieselbach GF. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 1990; 108: 372-5.
Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993; 100: 1147-51.
Wong TY, Klein R, Islam FM, et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol 2006; 141: 446-55.
van Dijk HW, Verbraak FD, Kok PH, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 2010; 51: 3660-5.
Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 948-54.
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376: 124-36.
Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 1156-63.
van Leiden HA, Dekker JM, Moll AC, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol 2003; 121: 245-51.
Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 1996; 74: 819-25.
Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care 2014; 37: 900-5.
Lin IF, Lai MY, Chuang PH. Analysis of matched case-control data with incomplete strata: applying longitudinal approaches. Epidemiology 2007; 18: 446-52.
Lopes de Faria JM, Russ H, Costa VP. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol 2002; 86: 725-8.
Koh VT, Tham YC, Cheung CY, et al. Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 5853-9.
Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl 1994; 43: 1-11.
Lamoureux EL, Fenwick E, Xie J, et al. Methodology and early findings of the Diabetes Management Project: a cohort study investigating the barriers to optimal diabetes care in diabetic patients with and without diabetic retinopathy. Clin Experiment Ophthalmol 2012; 40: 73-82.
Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638-51.
Niven DJ, Berthiaume LR, Fick GH, Laupland KB. Matched case-control studies: a review of reported statistical methodology. Clin Epidemiol 2012; 4: 99-110.
Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes 1998; 47: 445-9.
Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2015; 51: 878-84.
Park HY, Kim IT, Park CK. Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography. Br J Ophthalmol 2011; 95: 1223-8.
Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 3847-57.
van Dijk HW, Verbraak FD, Kok PH, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 2012; 53: 2715-9.
Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol 2014; 62: 719-20.
Brooke P, Bullock R. Validation of a 6 item cognitive impairment test with a view to primary care usage. Int J Geriatr Psychiatry 1999; 14: 936-40.
Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998; 47: 815-20.
Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102: 783-91.
Roy MS, Klein R, Janal MN. Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high-risk characteristics in African Americans with type 1 diabetes mellitus. Arch Ophthalmol 2011; 129: 8-15.
Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2009; 50: 3432-7.
Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res 2000; 70: 723-30.
van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 2009; 50: 3404-9.
Lavanya R, Jeganathan VS, Zheng Y, et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic Epidemiol 2009; 16: 325-36.
Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 8323-9.
Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 1981; 21 (1 Pt 2): 1-226.
Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2729-41.
Huang G, Luo T, Gast TJ, Burns SA, Malinovsky VE, Swanson WH. Imaging glaucomatous damage across the temporal raphe. Invest Ophthalmol Vis Sci 2015; 56: 3496-504.
Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol (Copenh) 1980; 58: 865-78.
Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 2000; 28: 3-8.
Klein R, Klein BE, Magli YL, et al. An alternative method of grading diabetic retinopathy. Ophthalmology 1986; 93: 1183-7.
Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 2002; 120: 791-6.
Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013; 2013: 905058.
Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology: Off J Jp Soc Neuropathology 2002; 22: 161-70.
Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012-7.
Nakahara T, Mori A, Kurauchi Y, Sakamoto K, Ishii K. Neurovascular interactions in the retina: physiological and pathological roles. J Pharmacol Sci 2013; 123: 79-84.
Ola MS, Alhomida AS. Neurodegeneration in diabetic retina and its potential drug targets. Curr Neuropharmacol 2014; 12: 380-6.
2007; 18
2015; 56
1997; 115
1990; 108
2012; 122
1986; 93
2000; 28
1991; 98
2015; 51
2004; 45
2013; 123
2011; 52
2000; 70
1996; 74
1999; 40
2008; 31
2014; 63
2014; 62
1981; 21
2012; 53
2005; 46
1998; 47
1994; 43
1993; 100
2002; 47
1980; 58
2011; 129
2002; 120
2002; 86
2013; 2013
2009; 50
2010; 376
2011; 95
2002; 22
1999; 14
2006; 141
2014; 37
1997; 38
1998; 102
2012; 4
2009; 16
2014; 12
2010; 51
2003; 121
2012; 40
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_42_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
Fortune B (e_1_2_5_40_1) 1999; 40
e_1_2_5_19_1
Orrenius S (e_1_2_5_47_1) 1994; 43
(e_1_2_5_28_1) 1991; 98
Murata T (e_1_2_5_48_1) 1996; 74
Mathews MK (e_1_2_5_49_1) 1997; 38
e_1_2_5_30_1
e_1_2_5_51_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
(e_1_2_5_29_1) 1981; 21
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
Araszkiewicz A (e_1_2_5_18_1) 2012; 122
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_31_1
e_1_2_5_50_1
References_xml – reference: Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2009; 50: 3432-7.
– reference: Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol (Copenh) 1980; 58: 865-78.
– reference: Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998; 47: 815-20.
– reference: Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1997; 115: 1161-6.
– reference: Nakahara T, Mori A, Kurauchi Y, Sakamoto K, Ishii K. Neurovascular interactions in the retina: physiological and pathological roles. J Pharmacol Sci 2013; 123: 79-84.
– reference: Araszkiewicz A, Zozulinska-Ziolkiewicz D, Meller M, et al. Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn 2012; 122: 464-70.
– reference: Cheung N, Rogers SL, Donaghue KC, Jenkins AJ, Tikellis G, Wong TY. Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes. Diabetes Care 2008; 31: 1842-6.
– reference: Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 2002; 47 (Suppl 2): S253-62.
– reference: Wong TY, Klein R, Islam FM, et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol 2006; 141: 446-55.
– reference: Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 1996; 74: 819-25.
– reference: Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2015; 51: 878-84.
– reference: Lopes de Faria JM, Russ H, Costa VP. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol 2002; 86: 725-8.
– reference: Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes 1998; 47: 445-9.
– reference: Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 2000; 28: 3-8.
– reference: Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2729-41.
– reference: Klein R, Klein BE, Magli YL, et al. An alternative method of grading diabetic retinopathy. Ophthalmology 1986; 93: 1183-7.
– reference: Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl 1994; 43: 1-11.
– reference: Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98 (5 Suppl): 786-806.
– reference: Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376: 124-36.
– reference: Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 1156-63.
– reference: Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care 2014; 37: 900-5.
– reference: Park HY, Kim IT, Park CK. Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography. Br J Ophthalmol 2011; 95: 1223-8.
– reference: Lin IF, Lai MY, Chuang PH. Analysis of matched case-control data with incomplete strata: applying longitudinal approaches. Epidemiology 2007; 18: 446-52.
– reference: Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012-7.
– reference: van Dijk HW, Verbraak FD, Kok PH, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 2010; 51: 3660-5.
– reference: van Leiden HA, Dekker JM, Moll AC, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol 2003; 121: 245-51.
– reference: Brooke P, Bullock R. Validation of a 6 item cognitive impairment test with a view to primary care usage. Int J Geriatr Psychiatry 1999; 14: 936-40.
– reference: Lamoureux EL, Fenwick E, Xie J, et al. Methodology and early findings of the Diabetes Management Project: a cohort study investigating the barriers to optimal diabetes care in diabetic patients with and without diabetic retinopathy. Clin Experiment Ophthalmol 2012; 40: 73-82.
– reference: Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 8323-9.
– reference: Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993; 100: 1147-51.
– reference: Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 3847-57.
– reference: Niven DJ, Berthiaume LR, Fick GH, Laupland KB. Matched case-control studies: a review of reported statistical methodology. Clin Epidemiol 2012; 4: 99-110.
– reference: Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 2002; 120: 791-6.
– reference: Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102: 783-91.
– reference: Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol 2014; 62: 719-20.
– reference: Roy MS, Klein R, Janal MN. Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high-risk characteristics in African Americans with type 1 diabetes mellitus. Arch Ophthalmol 2011; 129: 8-15.
– reference: Lavanya R, Jeganathan VS, Zheng Y, et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic Epidemiol 2009; 16: 325-36.
– reference: Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 1981; 21 (1 Pt 2): 1-226.
– reference: van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 2009; 50: 3404-9.
– reference: Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 948-54.
– reference: Ola MS, Alhomida AS. Neurodegeneration in diabetic retina and its potential drug targets. Curr Neuropharmacol 2014; 12: 380-6.
– reference: van Dijk HW, Verbraak FD, Kok PH, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 2012; 53: 2715-9.
– reference: Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology: Off J Jp Soc Neuropathology 2002; 22: 161-70.
– reference: Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013; 2013: 905058.
– reference: Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res 2000; 70: 723-30.
– reference: Koh VT, Tham YC, Cheung CY, et al. Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 5853-9.
– reference: Huang G, Luo T, Gast TJ, Burns SA, Malinovsky VE, Swanson WH. Imaging glaucomatous damage across the temporal raphe. Invest Ophthalmol Vis Sci 2015; 56: 3496-504.
– reference: Juen S, Kieselbach GF. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 1990; 108: 372-5.
– reference: Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638-51.
– reference: Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 2014; 63: 3906-14.
– volume: 38
  start-page: 2729
  year: 1997
  end-page: 41
  article-title: Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 51
  start-page: 878
  year: 2015
  end-page: 84
  article-title: Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy
  publication-title: Mol Neurobiol
– volume: 52
  start-page: 8323
  year: 2011
  end-page: 9
  article-title: Macular ganglion cell‐inner plexiform layer: automated detection and thickness reproducibility with spectral domain‐optical coherence tomography in glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 2013
  start-page: 905058
  year: 2013
  article-title: Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations
  publication-title: J Diabetes Res
– volume: 28
  start-page: 3
  year: 2000
  end-page: 8
  article-title: Retinal neurodegeneration: early pathology in diabetes
  publication-title: Clin Experiment Ophthalmol
– volume: 95
  start-page: 1223
  year: 2011
  end-page: 8
  article-title: Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography
  publication-title: Br J Ophthalmol
– volume: 14
  start-page: 936
  year: 1999
  end-page: 40
  article-title: Validation of a 6 item cognitive impairment test with a view to primary care usage
  publication-title: Int J Geriatr Psychiatry
– volume: 21
  start-page: 1
  issue: 1 Pt 2
  year: 1981
  end-page: 226
  article-title: Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 4
  start-page: 99
  year: 2012
  end-page: 110
  article-title: Matched case‐control studies: a review of reported statistical methodology
  publication-title: Clin Epidemiol
– volume: 51
  start-page: 3660
  year: 2010
  end-page: 5
  article-title: Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes
  publication-title: Invest Ophthalmol Vis Sci
– volume: 40
  start-page: 73
  year: 2012
  end-page: 82
  article-title: Methodology and early findings of the Diabetes Management Project: a cohort study investigating the barriers to optimal diabetes care in diabetic patients with and without diabetic retinopathy
  publication-title: Clin Experiment Ophthalmol
– volume: 120
  start-page: 791
  year: 2002
  end-page: 6
  article-title: The distribution of mitochondrial activity in relation to optic nerve structure
  publication-title: Arch Ophthalmol
– volume: 18
  start-page: 446
  year: 2007
  end-page: 52
  article-title: Analysis of matched case‐control data with incomplete strata: applying longitudinal approaches
  publication-title: Epidemiology
– volume: 86
  start-page: 725
  year: 2002
  end-page: 8
  article-title: Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy
  publication-title: Br J Ophthalmol
– volume: 53
  start-page: 5853
  year: 2012
  end-page: 9
  article-title: Determinants of ganglion cell‐inner plexiform layer thickness measured by high‐definition optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– volume: 37
  start-page: 900
  year: 2014
  end-page: 5
  article-title: Ocular anti‐VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications
  publication-title: Diabetes Care
– volume: 12
  start-page: 380
  year: 2014
  end-page: 6
  article-title: Neurodegeneration in diabetic retina and its potential drug targets
  publication-title: Curr Neuropharmacol
– volume: 53
  start-page: 2715
  year: 2012
  end-page: 9
  article-title: Early neurodegeneration in the retina of type 2 diabetic patients
  publication-title: Invest Ophthalmol Vis Sci
– volume: 58
  start-page: 865
  year: 1980
  end-page: 78
  article-title: The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy
  publication-title: Acta Ophthalmol (Copenh)
– volume: 31
  start-page: 1842
  year: 2008
  end-page: 6
  article-title: Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes
  publication-title: Diabetes Care
– volume: 50
  start-page: 3432
  year: 2009
  end-page: 7
  article-title: Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments
  publication-title: Invest Ophthalmol Vis Sci
– volume: 93
  start-page: 1183
  year: 1986
  end-page: 7
  article-title: An alternative method of grading diabetic retinopathy
  publication-title: Ophthalmology
– volume: 56
  start-page: 3496
  year: 2015
  end-page: 504
  article-title: Imaging glaucomatous damage across the temporal raphe
  publication-title: Invest Ophthalmol Vis Sci
– volume: 74
  start-page: 819
  year: 1996
  end-page: 25
  article-title: The relation between expression of vascular endothelial growth factor and breakdown of the blood‐retinal barrier in diabetic rat retinas
  publication-title: Lab Invest
– volume: 53
  start-page: 3847
  year: 2012
  end-page: 57
  article-title: Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma
  publication-title: Invest Ophthalmol Vis Sci
– volume: 70
  start-page: 723
  year: 2000
  end-page: 30
  article-title: Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group
  publication-title: Exp Eye Res
– volume: 376
  start-page: 124
  year: 2010
  end-page: 36
  article-title: Diabetic retinopathy
  publication-title: Lancet
– volume: 47
  start-page: S253
  issue: Suppl 2
  year: 2002
  end-page: 62
  article-title: Diabetic retinopathy: more than meets the eye
  publication-title: Surv Ophthalmol
– volume: 100
  start-page: 1147
  year: 1993
  end-page: 51
  article-title: Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy
  publication-title: Ophthalmology
– volume: 22
  start-page: 161
  year: 2002
  end-page: 70
  article-title: Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin‐diabetic rats
  publication-title: Neuropathology: Off J Jp Soc Neuropathology
– volume: 47
  start-page: 815
  year: 1998
  end-page: 20
  article-title: Glial reactivity and impaired glutamate metabolism in short‐term experimental diabetic retinopathy. Penn State Retina Research Group
  publication-title: Diabetes
– volume: 43
  start-page: 1
  year: 1994
  end-page: 11
  article-title: The calcium ion and cell death
  publication-title: J Neural Transm Suppl
– volume: 108
  start-page: 372
  year: 1990
  end-page: 5
  article-title: Electrophysiological changes in juvenile diabetics without retinopathy
  publication-title: Arch Ophthalmol
– volume: 40
  start-page: 2638
  year: 1999
  end-page: 51
  article-title: Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 115
  start-page: 1161
  year: 1997
  end-page: 6
  article-title: Elevated gamma‐aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy
  publication-title: Arch Ophthalmol
– volume: 50
  start-page: 3404
  year: 2009
  end-page: 9
  article-title: Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 141
  start-page: 446
  year: 2006
  end-page: 55
  article-title: Diabetic retinopathy in a multi‐ethnic cohort in the United States
  publication-title: Am J Ophthalmol
– volume: 121
  start-page: 245
  year: 2003
  end-page: 51
  article-title: Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study
  publication-title: Arch Ophthalmol
– volume: 46
  start-page: 2012
  year: 2005
  end-page: 7
  article-title: Macular segmentation with optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
– volume: 52
  start-page: 1156
  year: 2011
  end-page: 63
  article-title: The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 45
  start-page: 948
  year: 2004
  end-page: 54
  article-title: Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 98
  start-page: 786
  issue: 5 Suppl
  year: 1991
  end-page: 806
  article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group
  publication-title: Ophthalmology
– volume: 102
  start-page: 783
  year: 1998
  end-page: 91
  article-title: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin
  publication-title: J Clin Invest
– volume: 129
  start-page: 8
  year: 2011
  end-page: 15
  article-title: Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high‐risk characteristics in African Americans with type 1 diabetes mellitus
  publication-title: Arch Ophthalmol
– volume: 123
  start-page: 79
  year: 2013
  end-page: 84
  article-title: Neurovascular interactions in the retina: physiological and pathological roles
  publication-title: J Pharmacol Sci
– volume: 63
  start-page: 3906
  year: 2014
  end-page: 14
  article-title: Retinal vessel calibers predict long‐term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987)
  publication-title: Diabetes
– volume: 62
  start-page: 719
  year: 2014
  end-page: 20
  article-title: Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus
  publication-title: Indian J Ophthalmol
– volume: 16
  start-page: 325
  year: 2009
  end-page: 36
  article-title: Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians
  publication-title: Ophthalmic Epidemiol
– volume: 122
  start-page: 464
  year: 2012
  end-page: 70
  article-title: Neurodegeneration of the retina in type 1 diabetic patients
  publication-title: Pol Arch Med Wewn
– volume: 47
  start-page: 445
  year: 1998
  end-page: 9
  article-title: Muller cell changes in human diabetic retinopathy
  publication-title: Diabetes
– ident: e_1_2_5_20_1
  doi: 10.1136/bjo.2010.191841
– ident: e_1_2_5_39_1
  doi: 10.1167/iovs.12-9712
– ident: e_1_2_5_2_1
  doi: 10.2337/dc13-1990
– volume: 40
  start-page: 2638
  year: 1999
  ident: e_1_2_5_40_1
  article-title: Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_5_38_1
  doi: 10.1001/archopht.120.6.791
– ident: e_1_2_5_22_1
  doi: 10.1002/(SICI)1099-1166(199911)14:11<936::AID-GPS39>3.0.CO;2-1
– ident: e_1_2_5_27_1
  doi: 10.1016/S0161-6420(86)33606-6
– volume: 74
  start-page: 819
  year: 1996
  ident: e_1_2_5_48_1
  article-title: The relation between expression of vascular endothelial growth factor and breakdown of the blood‐retinal barrier in diabetic rat retinas
  publication-title: Lab Invest
– volume: 21
  start-page: 1
  issue: 1
  year: 1981
  ident: e_1_2_5_29_1
  article-title: Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– volume: 43
  start-page: 1
  year: 1994
  ident: e_1_2_5_47_1
  article-title: The calcium ion and cell death
  publication-title: J Neural Transm Suppl
– ident: e_1_2_5_30_1
  doi: 10.1001/archopht.121.2.245
– volume: 38
  start-page: 2729
  year: 1997
  ident: e_1_2_5_49_1
  article-title: Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_5_37_1
  doi: 10.1167/iovs.15-16730
– ident: e_1_2_5_31_1
  doi: 10.2147/CLEP.S30816
– ident: e_1_2_5_36_1
  doi: 10.2337/diabetes.47.5.815
– ident: e_1_2_5_17_1
  doi: 10.1155/2013/905058
– ident: e_1_2_5_42_1
  doi: 10.1254/jphs.13R03CP
– ident: e_1_2_5_3_1
  doi: 10.1016/S0140-6736(09)62124-3
– ident: e_1_2_5_9_1
  doi: 10.1167/iovs.11-7962
– ident: e_1_2_5_10_1
  doi: 10.1046/j.1442-9071.2000.00222.x
– ident: e_1_2_5_32_1
  doi: 10.1097/EDE.0b013e318064630a
– ident: e_1_2_5_13_1
  doi: 10.1136/bjo.86.7.725
– ident: e_1_2_5_21_1
  doi: 10.1111/j.1442-9071.2011.02697.x
– ident: e_1_2_5_24_1
  doi: 10.1167/iovs.12-10414
– ident: e_1_2_5_6_1
  doi: 10.1001/archophthalmol.2010.340
– ident: e_1_2_5_25_1
  doi: 10.1167/iovs.08-2970
– ident: e_1_2_5_23_1
  doi: 10.3109/09286580903144738
– ident: e_1_2_5_11_1
  doi: 10.1046/j.1440-1789.2002.00439.x
– ident: e_1_2_5_16_1
  doi: 10.1167/iovs.08-3143
– ident: e_1_2_5_46_1
  doi: 10.1001/archopht.1997.01100160331011
– ident: e_1_2_5_8_1
  doi: 10.1172/JCI2425
– ident: e_1_2_5_7_1
  doi: 10.1167/iovs.10-6293
– ident: e_1_2_5_26_1
  doi: 10.1016/j.ajo.2005.08.063
– ident: e_1_2_5_33_1
  doi: 10.1167/iovs.04-0335
– ident: e_1_2_5_43_1
  doi: 10.1016/S0039-6257(02)00387-9
– ident: e_1_2_5_51_1
  doi: 10.1007/s12035-014-8732-7
– ident: e_1_2_5_44_1
  doi: 10.1006/exer.2000.0840
– volume: 98
  start-page: 786
  issue: 5
  year: 1991
  ident: e_1_2_5_28_1
  article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(13)38012-9
– ident: e_1_2_5_5_1
  doi: 10.2337/dc08-0189
– ident: e_1_2_5_19_1
  doi: 10.4103/0301-4738.136234
– ident: e_1_2_5_34_1
  doi: 10.1001/archopht.1990.01070050070033
– volume: 122
  start-page: 464
  year: 2012
  ident: e_1_2_5_18_1
  article-title: Neurodegeneration of the retina in type 1 diabetic patients
  publication-title: Pol Arch Med Wewn
  doi: 10.20452/pamw.1411
– ident: e_1_2_5_12_1
  doi: 10.1016/S0161-6420(93)31513-7
– ident: e_1_2_5_4_1
  doi: 10.2337/db14-0227
– ident: e_1_2_5_35_1
  doi: 10.1111/j.1755-3768.1980.tb08312.x
– ident: e_1_2_5_15_1
  doi: 10.1167/iovs.11-8997
– ident: e_1_2_5_14_1
  doi: 10.1167/iovs.09-5041
– ident: e_1_2_5_45_1
  doi: 10.2337/diabetes.47.3.445
– ident: e_1_2_5_50_1
  doi: 10.2174/1570159X12666140619205024
– ident: e_1_2_5_41_1
  doi: 10.1167/iovs.03-1101
SSID ssj0005236
Score 2.4602134
Snippet Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case–control study....
To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Observational case-control study. Type 2 diabetes...
Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case-control study....
To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.BACKGROUNDTo examine the association of diabetes and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 243
SubjectTerms Adult
Aged
Aged, 80 and over
Axial Length, Eye - pathology
Blood Pressure
Case-Control Studies
diabetes
Diabetes Mellitus, Type 2 - complications
diabetic retinopathy
Diabetic Retinopathy - complications
Female
Glycated Hemoglobin A - metabolism
Humans
Male
Middle Aged
Nerve Fibers - pathology
neuronal damage
optical coherence tomography
retinal ganglion cell
Retinal Ganglion Cells - pathology
Tomography, Optical Coherence
Title Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy
URI https://api.istex.fr/ark:/67375/WNG-FMWV95B9-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fceo.12724
https://www.ncbi.nlm.nih.gov/pubmed/26872562
https://www.proquest.com/docview/1796718904
https://www.proquest.com/docview/1797875110
https://www.proquest.com/docview/1808615611
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB5EQfrS--W0VrZFpC972M1ls8Enj_UowlEQrT4UQm5bxHa36DnQ9tc7yV7QYkvp215ml2SSmfkmmZkAbGiW59RlVUooMynTVKTSEJEKNK-OcmZd3C6YHRb7p-zgnJ8vwVafC9PWhxgW3IJkRH0dBFyb61tCbn0zzokgoRZoiNUKgOiY3ArvoG1mESNpwTLWVRUKUTzDl3ds0Upg64_7gOZd3BoNz_QRfO6b3MabXI4XczO2v36r5viffXoMDztAmmy3M-gJLPn6KazOui33Z3BwHJKikeKLDhm_TZ2Etf4k1sEMj53-hiopuaiTfhk30bXrbi5sErIk6yYcfPzzOZxOd0929tPuAIbUcslZWpQe0QAVnhpjrREVEZmWxmqNPqyrZEURHzniS8e55Y7lAhVGZSNGc0Vp6QtYrpvav4JEaO64I9wI6RBDZKWnljhujWRFpQUfwYd-KJTtqpOHQzK-qt5LQd6oyJsRvB9Iv7clOe4j2ozjOVDoq8sQwya4OjvcU9PZ2SfJJ1LREaz1A6468b1WqKUKNNoyw_-8G16j4AUO69o3i0iDyg7xavYXmhI9RvSQ83wEL9vJNDSIFGUQCII9j1Piz31RO7tH8eL1v5O-gQcI7Yo2NHMNludXC_8W4dPcrMPK9uTjZLoe5eUGWawUBA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iAuqLt2Y16igivswy08f0NPiiIesasyuExOQlNH2NhMQZibug_nqrew4SiSK-zVEz9FVVX3XXAfBCszynLqtSQplJmaYilYaIVKB6dZQz6-JxwWxeTPfZ9iE_XIHXfSxMmx9i2HALnBHldWDwsCF9jsutb8Y5EYRdgbVQ0TsaVLvknIMHbWOLGEkLlrEur1Dw4xk-vaCN1sLAfr8Mal5ErlH1TG7CUd_o1uPkZLxcmLH9-Vs-x__t1S240WHS5E27iG7Diq_vwNVZd-p-F7Z3Q1w0UnzWIei3qZOw3Z_EVJjhsdNfUColx3XS7-QmunbdzbFNQqBk3YTaxz_uwf5ka29zmnY1GFLLJWdpUXoEBFR4aoy1RlREZFoaqzWasa6SFUWI5IgvHeeWO5YLlBmVjTDNFaWl92G1bmq_DonQ3HFHuBHSIYzISk8tcdwayYpKCz6CV_1cKNslKA91Mk5Vb6jg2Kg4NiN4PpB-bbNyXEb0Mk7oQKHPToIbm-DqYP5OTWYHnyR_KxUdwUY_46rj4G8KBVWBeltm-J9nw2vkvTDCuvbNMtKgvEPImv2FpkSjEY3kPB_Bg3Y1DQ0iRRl4gmDP45r4c1_U5tbHePHw30mfwrXp3mxH7byff3gE1xHpFa2n5gasLs6W_jGiqYV5EpnmF9ytFq0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVqp4KTcsFAgIIV6ySnwm4gnaLqWwC6oo7UMly1eqqpBUZVcCfj1j51CLCkK85ZhE9nhm_I09MwZ4plmeU5dVKaHMpExTmZaGyFTi9OooZ9bF7YLpTGzvsZ0DfrAEL_tcmLY-xLDgFjQj2uug4KeuOqfk1jfjnEjCrsAKE1kRRHpzl5yL76BtahEjqWAZ68oKhTCe4dMLk9FK4Ov3y5DmReAaZ57JNTjs29wGnJyMF3Mztj9_K-f4n526DmsdIk1etSJ0A5Z8fRNWp92e-y3Y2Q1Z0UhxpEPKb1MnYbE_iYUww2Onv6JNSo7rpF_HTXTtuptjm4Q0yboJJx__uA17k61PG9tpdwJDannJWSoKj3CASk-NsdbIishMl8ZqjU6sq8qKIkByxBeOc8sdyyVajMpGkOZEYekdWK6b2t-DRGruuCPcyNIhiMgKTy1x3JqSiUpLPoIX_VAo25UnD6dkfFG9m4K8UZE3I3g6kJ62NTkuI3oex3Og0GcnIYhNcrU_e6Mm0_3PJX9dKjqC9X7AVae_3xSaKYGzdpnhf54Mr1HzAod17ZtFpEFrh4A1-wtNgS4jush5PoK7rTANDSKiCBpBsOdRJP7cF7Wx9SFe3P930sew-nFzot6_nb17AFcR5ok2THMdludnC_8QodTcPIoq8wuhQBVl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+ganglion+cell+neuronal+damage+in+diabetes+and+diabetic+retinopathy&rft.jtitle=Clinical+%26+experimental+ophthalmology&rft.au=Ng%2C+Dorothy+SK&rft.au=Chiang%2C+Peggy+PC&rft.au=Tan%2C+Gavin&rft.au=Cheung%2C+CM+Gemmy&rft.date=2016-05-01&rft.issn=1442-6404&rft.eissn=1442-9071&rft.volume=44&rft.issue=4&rft.spage=243&rft.epage=250&rft_id=info:doi/10.1111%2Fceo.12724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-6404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-6404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-6404&client=summon