Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy
Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case–control study. Participants Type 2 diabetes cases and age‐gender matched controls without diabetes. Methods Spectral‐domain optical coherence tomography (O...
Saved in:
Published in | Clinical & experimental ophthalmology Vol. 44; no. 4; pp. 243 - 250 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Australia
Blackwell Publishing Ltd
01.05.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.
Design
Observational case–control study.
Participants
Type 2 diabetes cases and age‐gender matched controls without diabetes.
Methods
Spectral‐domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates.
Main Outcome Measures
Average ganglion cell‐inner plexiform layer (GC‐IPL) and average retinal nerve fibre layer (RNFL) thicknesses.
Results
We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC‐IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC‐IPL −4.49 µm (−2.92; −6.06), RNFL −0.93 µm (−0.09; −1.85)], including cases with no DR [mean difference (95% CI), GC‐IPL −4.37 µm (−2.72; −6.02), RNFL −1.06 µm (−0.10; −2.02)]. Cases with any DR had thinner GC‐IPL than controls [mean difference (95% CI): GC‐IPL −4.81 µm (−2.12; −7.50)]. Among cases, subjects with moderate or severe DR had thinner GC‐IPL than subjects with no DR [mean difference (95% CI): GC‐IPL −2.07 µm (−0.08; −4.07)].
Conclusions
RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT. |
---|---|
AbstractList | To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.BACKGROUNDTo examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.Observational case-control study.DESIGNObservational case-control study.Type 2 diabetes cases and age-gender matched controls without diabetes.PARTICIPANTSType 2 diabetes cases and age-gender matched controls without diabetes.Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates.METHODSSpectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates.Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses.MAIN OUTCOME MEASURESAverage ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses.We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 µm (-2.92; -6.06), RNFL -0.93 µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 µm (-2.72; -6.02), RNFL -1.06 µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 µm (-0.08; -4.07)].RESULTSWe analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 µm (-2.92; -6.06), RNFL -0.93 µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 µm (-2.72; -6.02), RNFL -1.06 µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 µm (-0.08; -4.07)].RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT.CONCLUSIONSRGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT. Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case–control study. Participants Type 2 diabetes cases and age‐gender matched controls without diabetes. Methods Spectral‐domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell‐inner plexiform layer (GC‐IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC‐IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC‐IPL −4.49 µm (−2.92; −6.06), RNFL −0.93 µm (−0.09; −1.85)], including cases with no DR [mean difference (95% CI), GC‐IPL −4.37 µm (−2.72; −6.02), RNFL −1.06 µm (−0.10; −2.02)]. Cases with any DR had thinner GC‐IPL than controls [mean difference (95% CI): GC‐IPL −4.81 µm (−2.12; −7.50)]. Among cases, subjects with moderate or severe DR had thinner GC‐IPL than subjects with no DR [mean difference (95% CI): GC‐IPL −2.07 µm (−0.08; −4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT. Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case-control study. Participants Type 2 diabetes cases and age-gender matched controls without diabetes. Methods Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P=0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49µm (-2.92; -6.06), RNFL -0.93µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37µm (-2.72; -6.02), RNFL -1.06µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07µm (-0.08; -4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT. Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case-control study. Participants Type 2 diabetes cases and age-gender matched controls without diabetes. Methods Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Main Outcome Measures Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses. Results We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P=0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 mu m (-2.92; -6.06), RNFL -0.93 mu m (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 mu m (-2.72; -6.02), RNFL -1.06 mu m (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 mu m (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 mu m (-0.08; -4.07)]. Conclusions RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT. To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Observational case-control study. Type 2 diabetes cases and age-gender matched controls without diabetes. Spectral-domain optical coherence tomography (OCT) parameters of RGCs were calculated after automated segmentation of macular scans. DR severity was graded on fundus photographs using the modified Airlie House Classification system. Generalized estimating equation was used to compare OCT parameters between cases and controls, adjusted for covariates. Average ganglion cell-inner plexiform layer (GC-IPL) and average retinal nerve fibre layer (RNFL) thicknesses. We analyzed 227 cases and 227 controls. The mean age (years) of cases was 58.3 and controls was 58.1 (P = 0.13). Among cases, 101 had none, 25 had mild and 101 had moderate or severe DR. Compared with controls, GC-IPL and RNFL were thinner in all cases [mean difference (95% confidence interval [CI]): GC-IPL -4.49 µm (-2.92; -6.06), RNFL -0.93 µm (-0.09; -1.85)], including cases with no DR [mean difference (95% CI), GC-IPL -4.37 µm (-2.72; -6.02), RNFL -1.06 µm (-0.10; -2.02)]. Cases with any DR had thinner GC-IPL than controls [mean difference (95% CI): GC-IPL -4.81 µm (-2.12; -7.50)]. Among cases, subjects with moderate or severe DR had thinner GC-IPL than subjects with no DR [mean difference (95% CI): GC-IPL -2.07 µm (-0.08; -4.07)]. RGC loss is present in subjects with diabetes and no DR, and is progressive in moderate or severe DR. RGC neuronal damage in diabetes and DR can be clinically detected using OCT. |
Author | Tan, Gavin Lamoureux, Ecosse L Chiang, Peggy PC Wong, Tien Y Cheng, Ching-Yu Ng, Dorothy SK Cheung, Carol Y Cheung, CM Gemmy Ikram, Mohammad K |
Author_xml | – sequence: 1 givenname: Dorothy SK surname: Ng fullname: Ng, Dorothy SK organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 2 givenname: Peggy PC surname: Chiang fullname: Chiang, Peggy PC organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 3 givenname: Gavin surname: Tan fullname: Tan, Gavin organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 4 givenname: CM Gemmy surname: Cheung fullname: Cheung, CM Gemmy organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 5 givenname: Ching-Yu surname: Cheng fullname: Cheng, Ching-Yu organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 6 givenname: Carol Y surname: Cheung fullname: Cheung, Carol Y organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 7 givenname: Tien Y surname: Wong fullname: Wong, Tien Y organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 8 givenname: Ecosse L surname: Lamoureux fullname: Lamoureux, Ecosse L email: ecosse@unimelb.edu.au organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore – sequence: 9 givenname: Mohammad K surname: Ikram fullname: Ikram, Mohammad K organization: Singapore Eye Research Institute, Singapore National Eye Centre, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26872562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS1URC-w4AVQJDawSOu74yUdtQVUqISALi3H_jO4ZOzBTgTz9mQ6GRYVCG980fcdWec_RgcxRUDoOcGnZFpnDtIpoYryR-iIcE5rjRU5mM-SY36Ijku5wxgLyuQTdEhlo6iQ9Ai9_wRDiLavljYu-5Bi5aDvqwhjTttnb1d2CVWIlQ-2hQFKZaOfL8FVeauntR2-bZ6ix53tCzyb9xP05fLi8-JtfX1z9W7x5rp2QgteywaoZkwBa1vnWtVRha1unbWEUd_pjklCPYXGC-GE50RhxTrHKKfMy8axE_Rql7vO6ccIZTCrULa_thHSWAxpcCOJkIT8H1VaNUoQgif05QP0Lo15quCekoo0GvOJejFTY7sCb9Y5rGzemH2hE3C2A1xOpWTojAuDHaZih2xDbwg225GZaWTmfmST8fqBsQ_9Gzun_ww9bP4NmsXFzd6od0YoA_z6Y9j83UjFlDC3H6_M5Yfbr1qca8PYb9IksgM |
CitedBy_id | crossref_primary_10_1016_j_gene_2024_148219 crossref_primary_10_53432_2078_4104_2021_20_3_59_77 crossref_primary_10_3389_fimmu_2023_1151185 crossref_primary_10_1038_s41598_018_30165_7 crossref_primary_10_3389_fnagi_2021_666495 crossref_primary_10_3390_ijms24010240 crossref_primary_10_21516_2072_0076_2021_14_3_54_64 crossref_primary_10_1007_s12031_017_0899_8 crossref_primary_10_1371_journal_pone_0177515 crossref_primary_10_3389_fnins_2022_971952 crossref_primary_10_1016_j_jchemneu_2022_102181 crossref_primary_10_1109_RBME_2017_2705064 crossref_primary_10_3390_antiox12061237 crossref_primary_10_1016_j_jff_2024_106486 crossref_primary_10_4103_1673_5374_266910 crossref_primary_10_1177_11206721211048793 crossref_primary_10_1007_s11892_021_01425_0 crossref_primary_10_1007_s00417_024_06552_4 crossref_primary_10_1111_aos_14273 crossref_primary_10_1016_j_oftale_2022_02_009 crossref_primary_10_1016_j_ophtha_2019_03_003 crossref_primary_10_1007_s11892_019_1134_5 crossref_primary_10_3389_fendo_2022_1036735 crossref_primary_10_1080_15569527_2023_2245034 crossref_primary_10_1038_s41598_017_02767_0 crossref_primary_10_1111_aos_13733 crossref_primary_10_1016_j_ophtha_2019_08_015 crossref_primary_10_1007_s00347_018_0670_8 crossref_primary_10_1007_s11428_018_0410_3 crossref_primary_10_1007_s00417_022_05925_x crossref_primary_10_31362_patd_544201 crossref_primary_10_3390_ijms21072351 crossref_primary_10_1167_iovs_18_26108 crossref_primary_10_1136_bjophthalmol_2017_310959 crossref_primary_10_1186_s40662_021_00260_4 crossref_primary_10_1210_clinem_dgab050 crossref_primary_10_1007_s12020_019_02017_5 crossref_primary_10_4103_DLJO_DLJO_183_23 crossref_primary_10_5301_ejo_5000887 crossref_primary_10_1016_j_ajo_2019_09_010 crossref_primary_10_1136_bjophthalmol_2018_313159 crossref_primary_10_1016_j_taap_2024_116885 crossref_primary_10_1016_j_bcp_2024_116311 crossref_primary_10_3389_fendo_2022_1047642 crossref_primary_10_1016_j_biopha_2020_110818 crossref_primary_10_1155_2020_9232157 crossref_primary_10_1080_08820538_2020_1810289 crossref_primary_10_3390_jpm12111807 crossref_primary_10_1016_j_jep_2017_12_018 crossref_primary_10_3390_jcm9061849 crossref_primary_10_1038_s41598_025_89734_2 crossref_primary_10_1016_j_molmet_2023_101736 crossref_primary_10_1136_bmjophth_2024_001791 crossref_primary_10_1155_2021_3181347 crossref_primary_10_3389_fmed_2021_778283 crossref_primary_10_22141_2309_8147_11_1_2023_312 crossref_primary_10_1186_s12886_021_01975_7 crossref_primary_10_3389_fendo_2022_915031 crossref_primary_10_1038_s41598_021_89992_w crossref_primary_10_1038_s41598_021_88698_3 crossref_primary_10_3390_ijms24021447 crossref_primary_10_1007_s00592_023_02226_5 crossref_primary_10_1007_s10792_022_02569_y crossref_primary_10_1177_1120672120974296 crossref_primary_10_1016_j_exer_2023_109693 crossref_primary_10_3389_fnmol_2022_930599 crossref_primary_10_1016_j_exer_2025_110274 crossref_primary_10_7759_cureus_30609 crossref_primary_10_12677_hjo_2025_141008 crossref_primary_10_3390_ijms20092101 crossref_primary_10_1038_s41598_021_94500_1 crossref_primary_10_1007_s00417_021_05277_y crossref_primary_10_3341_jkos_2021_62_6_769 crossref_primary_10_1038_s41419_020_2302_x crossref_primary_10_18231_j_ijceo_2020_035 crossref_primary_10_1002_jcp_28488 crossref_primary_10_1002_nbm_3783 crossref_primary_10_1016_j_bbadis_2024_167118 crossref_primary_10_4103_jpbs_jpbs_199_21 crossref_primary_10_3390_cells11203246 crossref_primary_10_1007_s10384_020_00729_0 crossref_primary_10_4103_1673_5374_194758 crossref_primary_10_1097_OPX_0000000000001242 crossref_primary_10_1167_iovs_66_1_1 crossref_primary_10_1016_j_preteyeres_2020_100899 crossref_primary_10_1155_2019_1825819 crossref_primary_10_4103_jpbs_jpbs_165_21 crossref_primary_10_1016_j_brainresbull_2017_05_007 crossref_primary_10_1038_s41598_020_58465_x crossref_primary_10_1080_02713683_2022_2055084 crossref_primary_10_1136_bjophthalmol_2021_319853 crossref_primary_10_1016_j_survophthal_2021_04_003 crossref_primary_10_1016_j_oftal_2021_04_004 crossref_primary_10_1016_j_bcp_2021_114473 crossref_primary_10_1159_000528503 crossref_primary_10_3390_nu14061146 crossref_primary_10_1007_s40123_023_00663_7 crossref_primary_10_1016_j_exer_2024_110113 crossref_primary_10_1016_j_npep_2020_102057 crossref_primary_10_3390_antiox11040617 |
Cites_doi | 10.1136/bjo.2010.191841 10.1167/iovs.12-9712 10.2337/dc13-1990 10.1001/archopht.120.6.791 10.1002/(SICI)1099-1166(199911)14:11<936::AID-GPS39>3.0.CO;2-1 10.1016/S0161-6420(86)33606-6 10.1001/archopht.121.2.245 10.1167/iovs.15-16730 10.2147/CLEP.S30816 10.2337/diabetes.47.5.815 10.1155/2013/905058 10.1254/jphs.13R03CP 10.1016/S0140-6736(09)62124-3 10.1167/iovs.11-7962 10.1046/j.1442-9071.2000.00222.x 10.1097/EDE.0b013e318064630a 10.1136/bjo.86.7.725 10.1111/j.1442-9071.2011.02697.x 10.1167/iovs.12-10414 10.1001/archophthalmol.2010.340 10.1167/iovs.08-2970 10.3109/09286580903144738 10.1046/j.1440-1789.2002.00439.x 10.1167/iovs.08-3143 10.1001/archopht.1997.01100160331011 10.1172/JCI2425 10.1167/iovs.10-6293 10.1016/j.ajo.2005.08.063 10.1167/iovs.04-0335 10.1016/S0039-6257(02)00387-9 10.1007/s12035-014-8732-7 10.1006/exer.2000.0840 10.1016/S0161-6420(13)38012-9 10.2337/dc08-0189 10.4103/0301-4738.136234 10.1001/archopht.1990.01070050070033 10.20452/pamw.1411 10.1016/S0161-6420(93)31513-7 10.2337/db14-0227 10.1111/j.1755-3768.1980.tb08312.x 10.1167/iovs.11-8997 10.1167/iovs.09-5041 10.2337/diabetes.47.3.445 10.2174/1570159X12666140619205024 10.1167/iovs.03-1101 |
ContentType | Journal Article |
Copyright | 2016 Royal Australian and New Zealand College of Ophthalmologists 2016 Royal Australian and New Zealand College of Ophthalmologists. |
Copyright_xml | – notice: 2016 Royal Australian and New Zealand College of Ophthalmologists – notice: 2016 Royal Australian and New Zealand College of Ophthalmologists. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 7QO 8FD FR3 P64 |
DOI | 10.1111/ceo.12724 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1442-9071 |
EndPage | 250 |
ExternalDocumentID | 4089313551 26872562 10_1111_ceo_12724 CEO12724 ark_67375_WNG_FMWV95B9_3 |
Genre | article Journal Article Observational Study |
GrantInformation_xml | – fundername: Biomedical Research Council, Singapore funderid: 08/1/35/19/550 – fundername: National Medical Research Council, Singapore funderid: NMRC/CG/SERI/2010 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO KTM LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOQ WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c5954-68e29337e3bbccb7f270a9bcaa132df9f3612d2e8d55c5d417073fc32423d68c3 |
IEDL.DBID | DR2 |
ISSN | 1442-6404 1442-9071 |
IngestDate | Fri Jul 11 06:03:26 EDT 2025 Fri Jul 11 07:38:27 EDT 2025 Fri Jul 25 03:10:13 EDT 2025 Mon Jul 21 06:05:10 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Thu Jul 03 08:31:00 EDT 2025 Wed Jan 22 16:28:58 EST 2025 Wed Oct 30 09:49:54 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | neuronal damage diabetic retinopathy optical coherence tomography diabetes retinal ganglion cell |
Language | English |
License | 2016 Royal Australian and New Zealand College of Ophthalmologists. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5954-68e29337e3bbccb7f270a9bcaa132df9f3612d2e8d55c5d417073fc32423d68c3 |
Notes | Biomedical Research Council, Singapore - No. 08/1/35/19/550 istex:65D3975D665B01ED209A9A331D93D8F33372A080 ArticleID:CEO12724 National Medical Research Council, Singapore - No. NMRC/CG/SERI/2010 ark:/67375/WNG-FMWV95B9-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ceo.12724 |
PMID | 26872562 |
PQID | 1796718904 |
PQPubID | 1006520 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1808615611 proquest_miscellaneous_1797875110 proquest_journals_1796718904 pubmed_primary_26872562 crossref_citationtrail_10_1111_ceo_12724 crossref_primary_10_1111_ceo_12724 wiley_primary_10_1111_ceo_12724_CEO12724 istex_primary_ark_67375_WNG_FMWV95B9_3 |
PublicationCentury | 2000 |
PublicationDate | May/June 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May/June 2016 |
PublicationDecade | 2010 |
PublicationPlace | Australia |
PublicationPlace_xml | – name: Australia – name: Surry Hills |
PublicationTitle | Clinical & experimental ophthalmology |
PublicationTitleAlternate | Clinical & Experimental Ophthalmology |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98 (5 Suppl): 786-806. Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1997; 115: 1161-6. Cheung N, Rogers SL, Donaghue KC, Jenkins AJ, Tikellis G, Wong TY. Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes. Diabetes Care 2008; 31: 1842-6. Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 2002; 47 (Suppl 2): S253-62. Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 2014; 63: 3906-14. Araszkiewicz A, Zozulinska-Ziolkiewicz D, Meller M, et al. Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn 2012; 122: 464-70. Juen S, Kieselbach GF. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 1990; 108: 372-5. Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993; 100: 1147-51. Wong TY, Klein R, Islam FM, et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol 2006; 141: 446-55. van Dijk HW, Verbraak FD, Kok PH, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 2010; 51: 3660-5. Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 948-54. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376: 124-36. Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 1156-63. van Leiden HA, Dekker JM, Moll AC, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol 2003; 121: 245-51. Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 1996; 74: 819-25. Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care 2014; 37: 900-5. Lin IF, Lai MY, Chuang PH. Analysis of matched case-control data with incomplete strata: applying longitudinal approaches. Epidemiology 2007; 18: 446-52. Lopes de Faria JM, Russ H, Costa VP. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol 2002; 86: 725-8. Koh VT, Tham YC, Cheung CY, et al. Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 5853-9. Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl 1994; 43: 1-11. Lamoureux EL, Fenwick E, Xie J, et al. Methodology and early findings of the Diabetes Management Project: a cohort study investigating the barriers to optimal diabetes care in diabetic patients with and without diabetic retinopathy. Clin Experiment Ophthalmol 2012; 40: 73-82. Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638-51. Niven DJ, Berthiaume LR, Fick GH, Laupland KB. Matched case-control studies: a review of reported statistical methodology. Clin Epidemiol 2012; 4: 99-110. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes 1998; 47: 445-9. Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2015; 51: 878-84. Park HY, Kim IT, Park CK. Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography. Br J Ophthalmol 2011; 95: 1223-8. Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 3847-57. van Dijk HW, Verbraak FD, Kok PH, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 2012; 53: 2715-9. Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol 2014; 62: 719-20. Brooke P, Bullock R. Validation of a 6 item cognitive impairment test with a view to primary care usage. Int J Geriatr Psychiatry 1999; 14: 936-40. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998; 47: 815-20. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102: 783-91. Roy MS, Klein R, Janal MN. Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high-risk characteristics in African Americans with type 1 diabetes mellitus. Arch Ophthalmol 2011; 129: 8-15. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2009; 50: 3432-7. Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res 2000; 70: 723-30. van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 2009; 50: 3404-9. Lavanya R, Jeganathan VS, Zheng Y, et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic Epidemiol 2009; 16: 325-36. Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 8323-9. Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 1981; 21 (1 Pt 2): 1-226. Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2729-41. Huang G, Luo T, Gast TJ, Burns SA, Malinovsky VE, Swanson WH. Imaging glaucomatous damage across the temporal raphe. Invest Ophthalmol Vis Sci 2015; 56: 3496-504. Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol (Copenh) 1980; 58: 865-78. Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 2000; 28: 3-8. Klein R, Klein BE, Magli YL, et al. An alternative method of grading diabetic retinopathy. Ophthalmology 1986; 93: 1183-7. Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 2002; 120: 791-6. Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013; 2013: 905058. Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology: Off J Jp Soc Neuropathology 2002; 22: 161-70. Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012-7. Nakahara T, Mori A, Kurauchi Y, Sakamoto K, Ishii K. Neurovascular interactions in the retina: physiological and pathological roles. J Pharmacol Sci 2013; 123: 79-84. Ola MS, Alhomida AS. Neurodegeneration in diabetic retina and its potential drug targets. Curr Neuropharmacol 2014; 12: 380-6. 2007; 18 2015; 56 1997; 115 1990; 108 2012; 122 1986; 93 2000; 28 1991; 98 2015; 51 2004; 45 2013; 123 2011; 52 2000; 70 1996; 74 1999; 40 2008; 31 2014; 63 2014; 62 1981; 21 2012; 53 2005; 46 1998; 47 1994; 43 1993; 100 2002; 47 1980; 58 2011; 129 2002; 120 2002; 86 2013; 2013 2009; 50 2010; 376 2011; 95 2002; 22 1999; 14 2006; 141 2014; 37 1997; 38 1998; 102 2012; 4 2009; 16 2014; 12 2010; 51 2003; 121 2012; 40 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_42_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 Fortune B (e_1_2_5_40_1) 1999; 40 e_1_2_5_19_1 Orrenius S (e_1_2_5_47_1) 1994; 43 (e_1_2_5_28_1) 1991; 98 Murata T (e_1_2_5_48_1) 1996; 74 Mathews MK (e_1_2_5_49_1) 1997; 38 e_1_2_5_30_1 e_1_2_5_51_1 e_1_2_5_26_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 (e_1_2_5_29_1) 1981; 21 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 Araszkiewicz A (e_1_2_5_18_1) 2012; 122 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_31_1 e_1_2_5_50_1 |
References_xml | – reference: Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci 2009; 50: 3432-7. – reference: Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol (Copenh) 1980; 58: 865-78. – reference: Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 1998; 47: 815-20. – reference: Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1997; 115: 1161-6. – reference: Nakahara T, Mori A, Kurauchi Y, Sakamoto K, Ishii K. Neurovascular interactions in the retina: physiological and pathological roles. J Pharmacol Sci 2013; 123: 79-84. – reference: Araszkiewicz A, Zozulinska-Ziolkiewicz D, Meller M, et al. Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn 2012; 122: 464-70. – reference: Cheung N, Rogers SL, Donaghue KC, Jenkins AJ, Tikellis G, Wong TY. Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes. Diabetes Care 2008; 31: 1842-6. – reference: Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 2002; 47 (Suppl 2): S253-62. – reference: Wong TY, Klein R, Islam FM, et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am J Ophthalmol 2006; 141: 446-55. – reference: Murata T, Nakagawa K, Khalil A, Ishibashi T, Inomata H, Sueishi K. The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 1996; 74: 819-25. – reference: Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2015; 51: 878-84. – reference: Lopes de Faria JM, Russ H, Costa VP. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol 2002; 86: 725-8. – reference: Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes 1998; 47: 445-9. – reference: Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Experiment Ophthalmol 2000; 28: 3-8. – reference: Mathews MK, Merges C, McLeod DS, Lutty GA. Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2729-41. – reference: Klein R, Klein BE, Magli YL, et al. An alternative method of grading diabetic retinopathy. Ophthalmology 1986; 93: 1183-7. – reference: Orrenius S, Nicotera P. The calcium ion and cell death. J Neural Transm Suppl 1994; 43: 1-11. – reference: Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98 (5 Suppl): 786-806. – reference: Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet 2010; 376: 124-36. – reference: Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 1156-63. – reference: Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. Diabetes Care 2014; 37: 900-5. – reference: Park HY, Kim IT, Park CK. Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography. Br J Ophthalmol 2011; 95: 1223-8. – reference: Lin IF, Lai MY, Chuang PH. Analysis of matched case-control data with incomplete strata: applying longitudinal approaches. Epidemiology 2007; 18: 446-52. – reference: Ishikawa H, Stein DM, Wollstein G, Beaton S, Fujimoto JG, Schuman JS. Macular segmentation with optical coherence tomography. Invest Ophthalmol Vis Sci 2005; 46: 2012-7. – reference: van Dijk HW, Verbraak FD, Kok PH, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci 2010; 51: 3660-5. – reference: van Leiden HA, Dekker JM, Moll AC, et al. Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study. Arch Ophthalmol 2003; 121: 245-51. – reference: Brooke P, Bullock R. Validation of a 6 item cognitive impairment test with a view to primary care usage. Int J Geriatr Psychiatry 1999; 14: 936-40. – reference: Lamoureux EL, Fenwick E, Xie J, et al. Methodology and early findings of the Diabetes Management Project: a cohort study investigating the barriers to optimal diabetes care in diabetic patients with and without diabetic retinopathy. Clin Experiment Ophthalmol 2012; 40: 73-82. – reference: Mwanza JC, Oakley JD, Budenz DL, Chang RT, Knight OJ, Feuer WJ. Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 8323-9. – reference: Chihara E, Matsuoka T, Ogura Y, Matsumura M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993; 100: 1147-51. – reference: Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci 2012; 53: 3847-57. – reference: Niven DJ, Berthiaume LR, Fick GH, Laupland KB. Matched case-control studies: a review of reported statistical methodology. Clin Epidemiol 2012; 4: 99-110. – reference: Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 2002; 120: 791-6. – reference: Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest 1998; 102: 783-91. – reference: Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol 2014; 62: 719-20. – reference: Roy MS, Klein R, Janal MN. Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high-risk characteristics in African Americans with type 1 diabetes mellitus. Arch Ophthalmol 2011; 129: 8-15. – reference: Lavanya R, Jeganathan VS, Zheng Y, et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic Epidemiol 2009; 16: 325-36. – reference: Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 1981; 21 (1 Pt 2): 1-226. – reference: van Dijk HW, Kok PH, Garvin M, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci 2009; 50: 3404-9. – reference: Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004; 45: 948-54. – reference: Ola MS, Alhomida AS. Neurodegeneration in diabetic retina and its potential drug targets. Curr Neuropharmacol 2014; 12: 380-6. – reference: van Dijk HW, Verbraak FD, Kok PH, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci 2012; 53: 2715-9. – reference: Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology: Off J Jp Soc Neuropathology 2002; 22: 161-70. – reference: Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations. J Diabetes Res 2013; 2013: 905058. – reference: Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res 2000; 70: 723-30. – reference: Koh VT, Tham YC, Cheung CY, et al. Determinants of ganglion cell-inner plexiform layer thickness measured by high-definition optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 5853-9. – reference: Huang G, Luo T, Gast TJ, Burns SA, Malinovsky VE, Swanson WH. Imaging glaucomatous damage across the temporal raphe. Invest Ophthalmol Vis Sci 2015; 56: 3496-504. – reference: Juen S, Kieselbach GF. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 1990; 108: 372-5. – reference: Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999; 40: 2638-51. – reference: Broe R, Rasmussen ML, Frydkjaer-Olsen U, et al. Retinal vessel calibers predict long-term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987). Diabetes 2014; 63: 3906-14. – volume: 38 start-page: 2729 year: 1997 end-page: 41 article-title: Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 51 start-page: 878 year: 2015 end-page: 84 article-title: Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy publication-title: Mol Neurobiol – volume: 52 start-page: 8323 year: 2011 end-page: 9 article-title: Macular ganglion cell‐inner plexiform layer: automated detection and thickness reproducibility with spectral domain‐optical coherence tomography in glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 2013 start-page: 905058 year: 2013 article-title: Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Muller cells alterations publication-title: J Diabetes Res – volume: 28 start-page: 3 year: 2000 end-page: 8 article-title: Retinal neurodegeneration: early pathology in diabetes publication-title: Clin Experiment Ophthalmol – volume: 95 start-page: 1223 year: 2011 end-page: 8 article-title: Early diabetic changes in the nerve fibre layer at the macula detected by spectral domain optical coherence tomography publication-title: Br J Ophthalmol – volume: 14 start-page: 936 year: 1999 end-page: 40 article-title: Validation of a 6 item cognitive impairment test with a view to primary care usage publication-title: Int J Geriatr Psychiatry – volume: 21 start-page: 1 issue: 1 Pt 2 year: 1981 end-page: 226 article-title: Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 4 start-page: 99 year: 2012 end-page: 110 article-title: Matched case‐control studies: a review of reported statistical methodology publication-title: Clin Epidemiol – volume: 51 start-page: 3660 year: 2010 end-page: 5 article-title: Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes publication-title: Invest Ophthalmol Vis Sci – volume: 40 start-page: 73 year: 2012 end-page: 82 article-title: Methodology and early findings of the Diabetes Management Project: a cohort study investigating the barriers to optimal diabetes care in diabetic patients with and without diabetic retinopathy publication-title: Clin Experiment Ophthalmol – volume: 120 start-page: 791 year: 2002 end-page: 6 article-title: The distribution of mitochondrial activity in relation to optic nerve structure publication-title: Arch Ophthalmol – volume: 18 start-page: 446 year: 2007 end-page: 52 article-title: Analysis of matched case‐control data with incomplete strata: applying longitudinal approaches publication-title: Epidemiology – volume: 86 start-page: 725 year: 2002 end-page: 8 article-title: Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy publication-title: Br J Ophthalmol – volume: 53 start-page: 5853 year: 2012 end-page: 9 article-title: Determinants of ganglion cell‐inner plexiform layer thickness measured by high‐definition optical coherence tomography publication-title: Invest Ophthalmol Vis Sci – volume: 37 start-page: 900 year: 2014 end-page: 5 article-title: Ocular anti‐VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications publication-title: Diabetes Care – volume: 12 start-page: 380 year: 2014 end-page: 6 article-title: Neurodegeneration in diabetic retina and its potential drug targets publication-title: Curr Neuropharmacol – volume: 53 start-page: 2715 year: 2012 end-page: 9 article-title: Early neurodegeneration in the retina of type 2 diabetic patients publication-title: Invest Ophthalmol Vis Sci – volume: 58 start-page: 865 year: 1980 end-page: 78 article-title: The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy publication-title: Acta Ophthalmol (Copenh) – volume: 31 start-page: 1842 year: 2008 end-page: 6 article-title: Retinal arteriolar dilation predicts retinopathy in adolescents with type 1 diabetes publication-title: Diabetes Care – volume: 50 start-page: 3432 year: 2009 end-page: 7 article-title: Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments publication-title: Invest Ophthalmol Vis Sci – volume: 93 start-page: 1183 year: 1986 end-page: 7 article-title: An alternative method of grading diabetic retinopathy publication-title: Ophthalmology – volume: 56 start-page: 3496 year: 2015 end-page: 504 article-title: Imaging glaucomatous damage across the temporal raphe publication-title: Invest Ophthalmol Vis Sci – volume: 74 start-page: 819 year: 1996 end-page: 25 article-title: The relation between expression of vascular endothelial growth factor and breakdown of the blood‐retinal barrier in diabetic rat retinas publication-title: Lab Invest – volume: 53 start-page: 3847 year: 2012 end-page: 57 article-title: Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma publication-title: Invest Ophthalmol Vis Sci – volume: 70 start-page: 723 year: 2000 end-page: 30 article-title: Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group publication-title: Exp Eye Res – volume: 376 start-page: 124 year: 2010 end-page: 36 article-title: Diabetic retinopathy publication-title: Lancet – volume: 47 start-page: S253 issue: Suppl 2 year: 2002 end-page: 62 article-title: Diabetic retinopathy: more than meets the eye publication-title: Surv Ophthalmol – volume: 100 start-page: 1147 year: 1993 end-page: 51 article-title: Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy publication-title: Ophthalmology – volume: 22 start-page: 161 year: 2002 end-page: 70 article-title: Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin‐diabetic rats publication-title: Neuropathology: Off J Jp Soc Neuropathology – volume: 47 start-page: 815 year: 1998 end-page: 20 article-title: Glial reactivity and impaired glutamate metabolism in short‐term experimental diabetic retinopathy. Penn State Retina Research Group publication-title: Diabetes – volume: 43 start-page: 1 year: 1994 end-page: 11 article-title: The calcium ion and cell death publication-title: J Neural Transm Suppl – volume: 108 start-page: 372 year: 1990 end-page: 5 article-title: Electrophysiological changes in juvenile diabetics without retinopathy publication-title: Arch Ophthalmol – volume: 40 start-page: 2638 year: 1999 end-page: 51 article-title: Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 115 start-page: 1161 year: 1997 end-page: 6 article-title: Elevated gamma‐aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy publication-title: Arch Ophthalmol – volume: 50 start-page: 3404 year: 2009 end-page: 9 article-title: Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 141 start-page: 446 year: 2006 end-page: 55 article-title: Diabetic retinopathy in a multi‐ethnic cohort in the United States publication-title: Am J Ophthalmol – volume: 121 start-page: 245 year: 2003 end-page: 51 article-title: Risk factors for incident retinopathy in a diabetic and nondiabetic population: the Hoorn study publication-title: Arch Ophthalmol – volume: 46 start-page: 2012 year: 2005 end-page: 7 article-title: Macular segmentation with optical coherence tomography publication-title: Invest Ophthalmol Vis Sci – volume: 52 start-page: 1156 year: 2011 end-page: 63 article-title: The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 45 start-page: 948 year: 2004 end-page: 54 article-title: Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 98 start-page: 786 issue: 5 Suppl year: 1991 end-page: 806 article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group publication-title: Ophthalmology – volume: 102 start-page: 783 year: 1998 end-page: 91 article-title: Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin publication-title: J Clin Invest – volume: 129 start-page: 8 year: 2011 end-page: 15 article-title: Retinal venular diameter as an early indicator of progression to proliferative diabetic retinopathy with and without high‐risk characteristics in African Americans with type 1 diabetes mellitus publication-title: Arch Ophthalmol – volume: 123 start-page: 79 year: 2013 end-page: 84 article-title: Neurovascular interactions in the retina: physiological and pathological roles publication-title: J Pharmacol Sci – volume: 63 start-page: 3906 year: 2014 end-page: 14 article-title: Retinal vessel calibers predict long‐term microvascular complications in type 1 diabetes: the Danish Cohort of Pediatric Diabetes 1987 (DCPD1987) publication-title: Diabetes – volume: 62 start-page: 719 year: 2014 end-page: 20 article-title: Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus publication-title: Indian J Ophthalmol – volume: 16 start-page: 325 year: 2009 end-page: 36 article-title: Methodology of the Singapore Indian Chinese Cohort (SICC) eye study: quantifying ethnic variations in the epidemiology of eye diseases in Asians publication-title: Ophthalmic Epidemiol – volume: 122 start-page: 464 year: 2012 end-page: 70 article-title: Neurodegeneration of the retina in type 1 diabetic patients publication-title: Pol Arch Med Wewn – volume: 47 start-page: 445 year: 1998 end-page: 9 article-title: Muller cell changes in human diabetic retinopathy publication-title: Diabetes – ident: e_1_2_5_20_1 doi: 10.1136/bjo.2010.191841 – ident: e_1_2_5_39_1 doi: 10.1167/iovs.12-9712 – ident: e_1_2_5_2_1 doi: 10.2337/dc13-1990 – volume: 40 start-page: 2638 year: 1999 ident: e_1_2_5_40_1 article-title: Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_5_38_1 doi: 10.1001/archopht.120.6.791 – ident: e_1_2_5_22_1 doi: 10.1002/(SICI)1099-1166(199911)14:11<936::AID-GPS39>3.0.CO;2-1 – ident: e_1_2_5_27_1 doi: 10.1016/S0161-6420(86)33606-6 – volume: 74 start-page: 819 year: 1996 ident: e_1_2_5_48_1 article-title: The relation between expression of vascular endothelial growth factor and breakdown of the blood‐retinal barrier in diabetic rat retinas publication-title: Lab Invest – volume: 21 start-page: 1 issue: 1 year: 1981 ident: e_1_2_5_29_1 article-title: Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy publication-title: Invest Ophthalmol Vis Sci – volume: 43 start-page: 1 year: 1994 ident: e_1_2_5_47_1 article-title: The calcium ion and cell death publication-title: J Neural Transm Suppl – ident: e_1_2_5_30_1 doi: 10.1001/archopht.121.2.245 – volume: 38 start-page: 2729 year: 1997 ident: e_1_2_5_49_1 article-title: Vascular endothelial growth factor and vascular permeability changes in human diabetic retinopathy publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_5_37_1 doi: 10.1167/iovs.15-16730 – ident: e_1_2_5_31_1 doi: 10.2147/CLEP.S30816 – ident: e_1_2_5_36_1 doi: 10.2337/diabetes.47.5.815 – ident: e_1_2_5_17_1 doi: 10.1155/2013/905058 – ident: e_1_2_5_42_1 doi: 10.1254/jphs.13R03CP – ident: e_1_2_5_3_1 doi: 10.1016/S0140-6736(09)62124-3 – ident: e_1_2_5_9_1 doi: 10.1167/iovs.11-7962 – ident: e_1_2_5_10_1 doi: 10.1046/j.1442-9071.2000.00222.x – ident: e_1_2_5_32_1 doi: 10.1097/EDE.0b013e318064630a – ident: e_1_2_5_13_1 doi: 10.1136/bjo.86.7.725 – ident: e_1_2_5_21_1 doi: 10.1111/j.1442-9071.2011.02697.x – ident: e_1_2_5_24_1 doi: 10.1167/iovs.12-10414 – ident: e_1_2_5_6_1 doi: 10.1001/archophthalmol.2010.340 – ident: e_1_2_5_25_1 doi: 10.1167/iovs.08-2970 – ident: e_1_2_5_23_1 doi: 10.3109/09286580903144738 – ident: e_1_2_5_11_1 doi: 10.1046/j.1440-1789.2002.00439.x – ident: e_1_2_5_16_1 doi: 10.1167/iovs.08-3143 – ident: e_1_2_5_46_1 doi: 10.1001/archopht.1997.01100160331011 – ident: e_1_2_5_8_1 doi: 10.1172/JCI2425 – ident: e_1_2_5_7_1 doi: 10.1167/iovs.10-6293 – ident: e_1_2_5_26_1 doi: 10.1016/j.ajo.2005.08.063 – ident: e_1_2_5_33_1 doi: 10.1167/iovs.04-0335 – ident: e_1_2_5_43_1 doi: 10.1016/S0039-6257(02)00387-9 – ident: e_1_2_5_51_1 doi: 10.1007/s12035-014-8732-7 – ident: e_1_2_5_44_1 doi: 10.1006/exer.2000.0840 – volume: 98 start-page: 786 issue: 5 year: 1991 ident: e_1_2_5_28_1 article-title: Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group publication-title: Ophthalmology doi: 10.1016/S0161-6420(13)38012-9 – ident: e_1_2_5_5_1 doi: 10.2337/dc08-0189 – ident: e_1_2_5_19_1 doi: 10.4103/0301-4738.136234 – ident: e_1_2_5_34_1 doi: 10.1001/archopht.1990.01070050070033 – volume: 122 start-page: 464 year: 2012 ident: e_1_2_5_18_1 article-title: Neurodegeneration of the retina in type 1 diabetic patients publication-title: Pol Arch Med Wewn doi: 10.20452/pamw.1411 – ident: e_1_2_5_12_1 doi: 10.1016/S0161-6420(93)31513-7 – ident: e_1_2_5_4_1 doi: 10.2337/db14-0227 – ident: e_1_2_5_35_1 doi: 10.1111/j.1755-3768.1980.tb08312.x – ident: e_1_2_5_15_1 doi: 10.1167/iovs.11-8997 – ident: e_1_2_5_14_1 doi: 10.1167/iovs.09-5041 – ident: e_1_2_5_45_1 doi: 10.2337/diabetes.47.3.445 – ident: e_1_2_5_50_1 doi: 10.2174/1570159X12666140619205024 – ident: e_1_2_5_41_1 doi: 10.1167/iovs.03-1101 |
SSID | ssj0005236 |
Score | 2.4602134 |
Snippet | Background
To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.
Design
Observational case–control study.... To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Observational case-control study. Type 2 diabetes... Background To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss. Design Observational case-control study.... To examine the association of diabetes and diabetic retinopathy (DR) with retinal ganglion cell (RGC) loss.BACKGROUNDTo examine the association of diabetes and... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 243 |
SubjectTerms | Adult Aged Aged, 80 and over Axial Length, Eye - pathology Blood Pressure Case-Control Studies diabetes Diabetes Mellitus, Type 2 - complications diabetic retinopathy Diabetic Retinopathy - complications Female Glycated Hemoglobin A - metabolism Humans Male Middle Aged Nerve Fibers - pathology neuronal damage optical coherence tomography retinal ganglion cell Retinal Ganglion Cells - pathology Tomography, Optical Coherence |
Title | Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy |
URI | https://api.istex.fr/ark:/67375/WNG-FMWV95B9-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fceo.12724 https://www.ncbi.nlm.nih.gov/pubmed/26872562 https://www.proquest.com/docview/1796718904 https://www.proquest.com/docview/1797875110 https://www.proquest.com/docview/1808615611 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB5EQfrS--W0VrZFpC972M1ls8Enj_UowlEQrT4UQm5bxHa36DnQ9tc7yV7QYkvp215ml2SSmfkmmZkAbGiW59RlVUooMynTVKTSEJEKNK-OcmZd3C6YHRb7p-zgnJ8vwVafC9PWhxgW3IJkRH0dBFyb61tCbn0zzokgoRZoiNUKgOiY3ArvoG1mESNpwTLWVRUKUTzDl3ds0Upg64_7gOZd3BoNz_QRfO6b3MabXI4XczO2v36r5viffXoMDztAmmy3M-gJLPn6KazOui33Z3BwHJKikeKLDhm_TZ2Etf4k1sEMj53-hiopuaiTfhk30bXrbi5sErIk6yYcfPzzOZxOd0929tPuAIbUcslZWpQe0QAVnhpjrREVEZmWxmqNPqyrZEURHzniS8e55Y7lAhVGZSNGc0Vp6QtYrpvav4JEaO64I9wI6RBDZKWnljhujWRFpQUfwYd-KJTtqpOHQzK-qt5LQd6oyJsRvB9Iv7clOe4j2ozjOVDoq8sQwya4OjvcU9PZ2SfJJ1LREaz1A6468b1WqKUKNNoyw_-8G16j4AUO69o3i0iDyg7xavYXmhI9RvSQ83wEL9vJNDSIFGUQCII9j1Piz31RO7tH8eL1v5O-gQcI7Yo2NHMNludXC_8W4dPcrMPK9uTjZLoe5eUGWawUBA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iAuqLt2Y16igivswy08f0NPiiIesasyuExOQlNH2NhMQZibug_nqrew4SiSK-zVEz9FVVX3XXAfBCszynLqtSQplJmaYilYaIVKB6dZQz6-JxwWxeTPfZ9iE_XIHXfSxMmx9i2HALnBHldWDwsCF9jsutb8Y5EYRdgbVQ0TsaVLvknIMHbWOLGEkLlrEur1Dw4xk-vaCN1sLAfr8Mal5ErlH1TG7CUd_o1uPkZLxcmLH9-Vs-x__t1S240WHS5E27iG7Diq_vwNVZd-p-F7Z3Q1w0UnzWIei3qZOw3Z_EVJjhsdNfUColx3XS7-QmunbdzbFNQqBk3YTaxz_uwf5ka29zmnY1GFLLJWdpUXoEBFR4aoy1RlREZFoaqzWasa6SFUWI5IgvHeeWO5YLlBmVjTDNFaWl92G1bmq_DonQ3HFHuBHSIYzISk8tcdwayYpKCz6CV_1cKNslKA91Mk5Vb6jg2Kg4NiN4PpB-bbNyXEb0Mk7oQKHPToIbm-DqYP5OTWYHnyR_KxUdwUY_46rj4G8KBVWBeltm-J9nw2vkvTDCuvbNMtKgvEPImv2FpkSjEY3kPB_Bg3Y1DQ0iRRl4gmDP45r4c1_U5tbHePHw30mfwrXp3mxH7byff3gE1xHpFa2n5gasLs6W_jGiqYV5EpnmF9ytFq0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVqp4KTcsFAgIIV6ySnwm4gnaLqWwC6oo7UMly1eqqpBUZVcCfj1j51CLCkK85ZhE9nhm_I09MwZ4plmeU5dVKaHMpExTmZaGyFTi9OooZ9bF7YLpTGzvsZ0DfrAEL_tcmLY-xLDgFjQj2uug4KeuOqfk1jfjnEjCrsAKE1kRRHpzl5yL76BtahEjqWAZ68oKhTCe4dMLk9FK4Ov3y5DmReAaZ57JNTjs29wGnJyMF3Mztj9_K-f4n526DmsdIk1etSJ0A5Z8fRNWp92e-y3Y2Q1Z0UhxpEPKb1MnYbE_iYUww2Onv6JNSo7rpF_HTXTtuptjm4Q0yboJJx__uA17k61PG9tpdwJDannJWSoKj3CASk-NsdbIishMl8ZqjU6sq8qKIkByxBeOc8sdyyVajMpGkOZEYekdWK6b2t-DRGruuCPcyNIhiMgKTy1x3JqSiUpLPoIX_VAo25UnD6dkfFG9m4K8UZE3I3g6kJ62NTkuI3oex3Og0GcnIYhNcrU_e6Mm0_3PJX9dKjqC9X7AVae_3xSaKYGzdpnhf54Mr1HzAod17ZtFpEFrh4A1-wtNgS4jush5PoK7rTANDSKiCBpBsOdRJP7cF7Wx9SFe3P930sew-nFzot6_nb17AFcR5ok2THMdludnC_8QodTcPIoq8wuhQBVl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+ganglion+cell+neuronal+damage+in+diabetes+and+diabetic+retinopathy&rft.jtitle=Clinical+%26+experimental+ophthalmology&rft.au=Ng%2C+Dorothy+SK&rft.au=Chiang%2C+Peggy+PC&rft.au=Tan%2C+Gavin&rft.au=Cheung%2C+CM+Gemmy&rft.date=2016-05-01&rft.issn=1442-6404&rft.eissn=1442-9071&rft.volume=44&rft.issue=4&rft.spage=243&rft.epage=250&rft_id=info:doi/10.1111%2Fceo.12724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-6404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-6404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-6404&client=summon |