Transgenic expression of human equilibrative nucleoside transporter 1 in mouse neurons

Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by rever...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 109; no. 2; pp. 562 - 572
Main Authors Parkinson, Fiona E, Xiong, Wei, Zamzow, Christina R, Chestley, Taeyo, Mizuno, Tooru, Duckworth, Mary Lynn
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.04.2009
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [³H]adenosine uptake and [³H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
AbstractList Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [(3)H]adenosine uptake and [(3)H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [³H]adenosine uptake and [³H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [3H]adenosine uptake and [3H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling. [PUBLICATION ABSTRACT]
Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron‐specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)‐PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [3H]adenosine uptake and [3H]nitrobenzylthioinosine binding, relative to samples from wild‐type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine‐induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol‐induced motor incoordination in wild‐type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT‐PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine‐related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron‐specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)‐PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [ 3 H]adenosine uptake and [ 3 H]nitrobenzylthioinosine binding, relative to samples from wild‐type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine‐induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol‐induced motor incoordination in wild‐type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT‐PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine‐related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
AbstractTransgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been generated. Southern blot and PCR revealed the presence of the transgene in five founder mice. Mice from each founder line were examined by reverse transcriptase (RT)-PCR and found to express hENT1 in RNA isolated from whole brain, cerebral cortex, striatum, hippocampus, and cerebellum but not liver, kidney, heart, lung or skeletal muscle. Cortical synaptosomes prepared from transgenic mice had significantly increased [3H]adenosine uptake and [3H]nitrobenzylthioinosine binding, relative to samples from wild-type mice. In behavioral tests, transgenic mice had altered responses to caffeine and ethanol, two drugs that inhibit and enhance, respectively, adenosine receptor activity. Caffeine-induced locomotor stimulation was attenuated whereas the hypnotic effect of ethanol was enhanced in transgenic mice. Caffeine was more potent in inhibiting ethanol-induced motor incoordination in wild-type than in transgenic mice. No differences in expression of mouse genes for adenosine receptors, nucleoside transporters, or purine metabolizing enzymes were detected by RT-PCR analyses. These data indicate that expression of hENT1 in neurons does not trigger adaptive changes in expression of adenosine-related genes. Instead, hENT1 expression affects dynamic changes in endogenous adenosine levels, as revealed by altered behavioral responses to drugs that affect adenosine receptor signalling.
Author Zamzow, Christina R
Duckworth, Mary Lynn
Chestley, Taeyo
Parkinson, Fiona E
Mizuno, Tooru
Xiong, Wei
Author_xml – sequence: 1
  fullname: Parkinson, Fiona E
– sequence: 2
  fullname: Xiong, Wei
– sequence: 3
  fullname: Zamzow, Christina R
– sequence: 4
  fullname: Chestley, Taeyo
– sequence: 5
  fullname: Mizuno, Tooru
– sequence: 6
  fullname: Duckworth, Mary Lynn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21283782$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19222701$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vFCEYxompsdvqV1BiorcZgWEYOHgwm9Y_afRg65UwzEtlMwNb2NHtt5dxNzXxolwg8HtenpeHM3QSYgCEMCU1LePNpqa8oxWnraoZIaomrVK03j9Cq4eDE7QihLGqIZydorOcN4RQwQV9gk6pYox1hK7Qt-tkQr6F4C2G_TZBzj4GHB3-Pk8mYLib_ej7ZHb-B-Aw2xFi9gPg3aLbxrSDhCn2AU9xzoWAOcWQn6LHzowZnh3nc3RzeXG9_lBdfXn_cf3uqrKtamnVu9Z1veXOtLwfuDQ9gGyks7JpmLRll0NbGjJiGNxAFOsUFb0Q4JwgkvXNOXp9qLtN8W6GvNOTzxbG0QQofrToiBJSdf8EGWm5pIQV8OVf4CbOKZQmCiPalgmuCiQPkE0x5wROb5OfTLrXlOglIb3RSxB6CUIvCenfCel9kT4_1p_7CYY_wmMkBXh1BEy2ZnTlna3PDxyjTDadXIy-PXA__Qj3_21Af_q8XlZF_-KgdyZqc5vKHTdfWTFQfgnpSp_NL-hOt5M
CODEN JONRA9
CitedBy_id crossref_primary_10_1007_s12017_014_8338_2
crossref_primary_10_1111_j_1530_0277_2010_01379_x
crossref_primary_10_1038_srep27758
crossref_primary_10_1089_jcr_2011_0017
crossref_primary_10_1111_j_1530_0277_2010_01153_x
crossref_primary_10_1007_s12311_017_0866_5
crossref_primary_10_1016_j_bbr_2011_05_023
crossref_primary_10_1016_j_biopsych_2011_02_013
crossref_primary_10_1007_s12031_013_0064_y
crossref_primary_10_1152_ajpheart_00711_2009
crossref_primary_10_1038_aps_2012_127
crossref_primary_10_1111_j_1471_4159_2011_07263_x
crossref_primary_10_1186_2040_7378_4_4
crossref_primary_10_1124_jpet_116_232231
crossref_primary_10_1371_journal_pone_0020934
crossref_primary_10_1111_j_1471_4159_2011_07242_x
crossref_primary_10_1016_j_neulet_2010_12_033
crossref_primary_10_1016_S1995_7645_13_60162_5
crossref_primary_10_1016_j_neuropharm_2012_02_022
crossref_primary_10_1111_j_1530_0277_2011_01722_x
crossref_primary_10_1007_s00213_016_4212_2
crossref_primary_10_1016_j_neulet_2010_05_079
crossref_primary_10_1042_BJ20130231
Cites_doi 10.1111/j.1471-4159.2005.03312.x
10.1016/0896-6273(90)90308-3
10.1074/jbc.M513825200
10.1006/meth.2001.1262
10.1016/S0021-9258(19)38732-0
10.1146/annurev.pharmtox.45.120403.095731
10.1073/pnas.92.10.4397
10.1161/01.RES.0000238359.18495.42
10.1042/bj2620109
10.1111/j.2042-7158.1988.tb05282.x
10.1016/S0306-4522(00)00479-6
10.1016/0378-1119(87)90218-6
10.1016/S0006-8993(96)01263-2
10.1111/j.1600-0773.1995.tb00111.x
10.1007/s00424-003-1107-y
10.1111/j.1471-4159.1985.tb04020.x
10.1152/ajprenal.00007.2007
10.1152/ajpcell.1992.262.5.C1175
10.1126/science.287.5455.1056
10.1016/S0361-9230(01)00552-4
10.1016/0006-8993(94)90767-6
10.1074/jbc.M414337200
10.1097/00004647-200108000-00005
10.1016/S0074-7742(05)63007-3
10.1111/j.1601-183X.2007.00311.x
10.1007/s00424-003-1103-2
10.1146/annurev.neuro.24.1.31
10.1038/sj.bjp.0703170
10.1128/JVI.75.11.5328-5334.2001
10.1016/S0169-328X(96)00244-6
10.1523/JNEUROSCI.22-23-10487.2002
10.1038/nn1288
10.1016/0896-6273(95)90105-1
10.1080/09687860701210617
10.1139/o02-143
ContentType Journal Article
Copyright 2009 The Authors. Journal Compilation © 2009 International Society for Neurochemistry
2009 INIST-CNRS
Journal compilation © 2009 International Society for Neurochemistry
Copyright_xml – notice: 2009 The Authors. Journal Compilation © 2009 International Society for Neurochemistry
– notice: 2009 INIST-CNRS
– notice: Journal compilation © 2009 International Society for Neurochemistry
DBID FBQ
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7QO
7TM
RC3
7X8
DOI 10.1111/j.1471-4159.2009.05991.x
DatabaseName AGRIS
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts

CrossRef
Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 572
ExternalDocumentID 1664204361
10_1111_j_1471_4159_2009_05991_x
19222701
21283782
JNC5991
US201301607526
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAYJJ
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIVO
ABLJU
ABPTK
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AI.
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FBQ
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZA5
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AHBTC
AITYG
HGLYW
OIG
08R
AAUGY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
CITATION
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7QO
7TM
RC3
7X8
ID FETCH-LOGICAL-c5951-bf5f7bc4fa54bd48abee838fc83328ca544e5471a6ddfd0927916b66eff6082b3
IEDL.DBID DR2
ISSN 0022-3042
IngestDate Wed Dec 04 03:56:19 EST 2024
Wed Dec 04 05:24:28 EST 2024
Thu Oct 10 21:59:37 EDT 2024
Fri Dec 06 03:00:43 EST 2024
Sat Sep 28 07:54:36 EDT 2024
Sun Oct 22 16:05:32 EDT 2023
Sat Aug 24 00:57:23 EDT 2024
Wed Dec 27 19:12:14 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cerebellum
Heart
Cerebral cortex
Liver
Lung
Central nervous system
Respiratory system
ethanol
Kidney
Encephalon
Synaptosome
caffeine
behavior
Human
nucleoside transport
Digestive system
ENT1 nucleoside transporter
Rodentia
Basal ganglion
Corpus striatum
Striated muscle
adenosine
Vertebrata
Mammalia
Neuron
Urinary system
Mouse
Circulatory system
Subtype
Hippocampus
Language English
License CC BY 4.0
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5951-bf5f7bc4fa54bd48abee838fc83328ca544e5471a6ddfd0927916b66eff6082b3
Notes http://dx.doi.org/10.1111/j.1471-4159.2009.05991.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1111/j.1471-4159.2009.05991.x
PMID 19222701
PQID 206552649
PQPubID 31528
PageCount 11
ParticipantIDs proquest_miscellaneous_67096897
proquest_miscellaneous_20548102
proquest_journals_206552649
crossref_primary_10_1111_j_1471_4159_2009_05991_x
pubmed_primary_19222701
pascalfrancis_primary_21283782
wiley_primary_10_1111_j_1471_4159_2009_05991_x_JNC5991
fao_agris_US201301607526
PublicationCentury 2000
PublicationDate April 2009
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: April 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References 2001; 102
1995; 92
1992; 262
1995; 15
2006; 99
1993; 44
2004; 7
1995; 76
2002; 80
1985; 45
1991; 259
2001; 24
2004; 447
1990; 265
2001; 25
2001; 21
2005; 280
2005a; 63
1994; 666
2007; 293
1987; 60
1989; 262
2000; 129
2002; 22
1986
2007; 6
1988; 40
2000; 287
2005b; 45
2006; 281
2005; 94
1990; 255
2001; 55
1997; 749
2007; 24
1996; 42
2001; 75
1990; 5
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Crawford C. R. (e_1_2_7_11_1) 1990; 265
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_29_1
Dar M. S. (e_1_2_7_15_1) 1990; 255
Krauss S. W. (e_1_2_7_31_1) 1993; 44
Carmichael F. J. (e_1_2_7_7_1) 1991; 259
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
Hogan B. (e_1_2_7_28_1) 1986
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Hammond J. R. (e_1_2_7_27_1) 1989; 262
References_xml – volume: 6
  start-page: 776
  year: 2007
  article-title: The type 1 equilibrative nucleoside transporter regulates anxiety‐like behavior in mice
  publication-title: Genes Brain Behav.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method
  publication-title: Methods
– volume: 76
  start-page: 93
  year: 1995
  end-page: 101
  article-title: Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine
  publication-title: Pharmacol. Toxicol.
– volume: 44
  start-page: 1021
  year: 1993
  end-page: 1026
  article-title: Inhibition of adenosine uptake by ethanol is specific for one class of nucleoside transporters
  publication-title: Mol. Pharmacol.
– volume: 63
  start-page: 191
  year: 2005a
  end-page: 270
  article-title: Adenosine and brain function
  publication-title: Int. Rev. Neurobiol.
– volume: 15
  start-page: 1183
  year: 1995
  end-page: 1191
  article-title: Neuron‐specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent
  publication-title: Neuron
– volume: 75
  start-page: 5328
  year: 2001
  end-page: 5334
  article-title: Efficient transmission of two different sheep scrapie isolates in transgenic mice expressing the ovine PrP gene
  publication-title: J. Virol.
– volume: 262
  start-page: C1175
  year: 1992
  end-page: C1180
  article-title: Ethanol metabolism and inhibition of nucleoside uptake lead to increased extracellular adenosine in hepatocytes
  publication-title: Am. J. Physiol.
– volume: 42
  start-page: 358
  year: 1996
  end-page: 361
  article-title: Demonstration of the existence of mRNAs encoding the N1/ and N2/ sodium/nucleoside cotransporters in rat brain
  publication-title: Mol. Brain Res.
– volume: 287
  start-page: 1056
  year: 2000
  end-page: 1060
  article-title: Ethanol‐induced apoptotic neurodegeneration and fetal alcohol syndrome
  publication-title: Science
– volume: 265
  start-page: 9732
  year: 1990
  end-page: 9736
  article-title: Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters
  publication-title: J. Biol. Chem.
– volume: 447
  start-page: 735
  year: 2004
  end-page: 743
  article-title: The equilibrative nucleoside transporter family, SLC29
  publication-title: Pflugers Arch.
– volume: 447
  start-page: 728
  year: 2004
  end-page: 734
  article-title: The concentrative nucleoside transporter family, SLC28
  publication-title: Pflugers Arch.
– year: 1986
– volume: 24
  start-page: 31
  year: 2001
  end-page: 55
  article-title: The role and regulation of adenosine in the central nervous system
  publication-title: Annu. Rev. Neurosci.
– volume: 5
  start-page: 187
  year: 1990
  end-page: 197
  article-title: Transgenic mice expressing beta‐galactosidase in mature neurons under neuron‐specific enolase promoter control
  publication-title: Neuron
– volume: 129
  start-page: 1465
  year: 2000
  end-page: 1473
  article-title: The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors
  publication-title: Br. J. Pharmacol.
– volume: 7
  start-page: 855
  year: 2004
  end-page: 861
  article-title: The type 1 equilibrative nucleoside transporter regulates ethanol intoxication and preference
  publication-title: Nat. Neurosci.
– volume: 92
  start-page: 4397
  year: 1995
  end-page: 4401
  article-title: Bcl‐2 transgene expression can protect neurons against developmental and induced cell death
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 21
  start-page: 929
  year: 2001
  end-page: 936
  article-title: Cloned blood‐brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 24
  start-page: 294
  year: 2007
  end-page: 303
  article-title: Differential regulation of mouse equilibrative nucleoside transporter 1 (mENT1) splice variants by protein kinase CK2
  publication-title: Mol. Membr. Biol.
– volume: 40
  start-page: 482
  year: 1988
  end-page: 487
  article-title: The biphasic effects of centrally and peripherally administered caffeine on ethanol‐induced motor incoordination in mice
  publication-title: J. Pharm. Pharmacol.
– volume: 55
  start-page: 513
  year: 2001
  end-page: 520
  article-title: Modulation of ethanol‐induced motor incoordination by mouse striatal A(1) adenosinergic receptor
  publication-title: Brain Res. Bull.
– volume: 262
  start-page: 109
  year: 1989
  end-page: 118
  article-title: Solubilization and reconstitution of a nucleoside‐transport system from Ehrlich ascites‐tumour cells
  publication-title: Biochem. J.
– volume: 259
  start-page: 403
  year: 1991
  end-page: 408
  article-title: Central nervous system effects of acetate: contribution to the central effects of ethanol
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 22
  start-page: 10487
  year: 2002
  end-page: 10493
  article-title: Low ethanol sensitivity and increased ethanol consumption in mice lacking adenosine A2A receptors
  publication-title: J. Neurosci.
– volume: 749
  start-page: 263
  year: 1997
  end-page: 274
  article-title: Mouse cerebellar adenosinergic modulation of ethanol‐induced motor incoordination: possible involvement of cAMP
  publication-title: Brain Res.
– volume: 45
  start-page: 385
  year: 2005b
  end-page: 412
  article-title: Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 666
  start-page: 151
  year: 1994
  end-page: 167
  article-title: Synaptotrophic effects of human amyloid beta protein precursors in the cortex of transgenic mice
  publication-title: Brain Res.
– volume: 281
  start-page: 16700
  year: 2006
  end-page: 16706
  article-title: Identification of the mitochondrial targeting signal of the human equilibrative nucleoside transporter 1 (hENT1): implications for interspecies differences in mitochondrial toxicity of fialuridine
  publication-title: J. Biol. Chem.
– volume: 60
  start-page: 103
  year: 1987
  end-page: 113
  article-title: The structure and expression of neuron‐specific enolase gene
  publication-title: Gene
– volume: 293
  start-page: F200
  year: 2007
  end-page: F211
  article-title: Localization of broadly selective equilibrative and concentrative nucleoside transporters, hENT1 and hCNT3, in human kidney
  publication-title: Am. J. Physiol. Renal Physiol.
– volume: 45
  start-page: 527
  year: 1985
  end-page: 535
  article-title: Species differences in the binding of [3H]nitrobenzylthioinosine to the nucleoside transport system in mammalian central nervous system membranes: evidence for interconvertible conformations of the binding site/transporter complex
  publication-title: J. Neurochem.
– volume: 94
  start-page: 1420
  year: 2005
  end-page: 1426
  article-title: Polarized distribution of nucleoside transporters in rat brain endothelial and choroid plexus epithelial cells
  publication-title: J. Neurochem.
– volume: 80
  start-page: 655
  year: 2002
  end-page: 665
  article-title: Transport characteristics of HL‐1 cells: a new model for the study of adenosine physiology in cardiomyocytes
  publication-title: Biochem. Cell Biol.
– volume: 255
  start-page: 1202
  year: 1990
  end-page: 1209
  article-title: Central adenosinergic system involvement in ethanol‐induced motor incoordination in mice
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 102
  start-page: 307
  year: 2001
  end-page: 317
  article-title: A gain‐of‐function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities
  publication-title: Neuroscience
– volume: 280
  start-page: 15880
  year: 2005
  end-page: 15887
  article-title: Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 510
  year: 2006
  end-page: 519
  article-title: Distribution and functional characterization of equilibrative nucleoside transporter‐4, a novel cardiac adenosine transporter activated at acidic pH
  publication-title: Circ. Res.
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1471-4159.2005.03312.x
– ident: e_1_2_7_21_1
  doi: 10.1016/0896-6273(90)90308-3
– ident: e_1_2_7_32_1
  doi: 10.1074/jbc.M513825200
– ident: e_1_2_7_34_1
  doi: 10.1006/meth.2001.1262
– volume: 265
  start-page: 9732
  year: 1990
  ident: e_1_2_7_11_1
  article-title: Nucleoside transport in L1210 murine leukemia cells. Evidence for three transporters
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)38732-0
  contributor:
    fullname: Crawford C. R.
– ident: e_1_2_7_24_1
  doi: 10.1146/annurev.pharmtox.45.120403.095731
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.92.10.4397
– ident: e_1_2_7_5_1
  doi: 10.1161/01.RES.0000238359.18495.42
– volume: 262
  start-page: 109
  year: 1989
  ident: e_1_2_7_27_1
  article-title: Solubilization and reconstitution of a nucleoside‐transport system from Ehrlich ascites‐tumour cells
  publication-title: Biochem. J.
  doi: 10.1042/bj2620109
  contributor:
    fullname: Hammond J. R.
– ident: e_1_2_7_14_1
  doi: 10.1111/j.2042-7158.1988.tb05282.x
– ident: e_1_2_7_30_1
  doi: 10.1016/S0306-4522(00)00479-6
– volume: 259
  start-page: 403
  year: 1991
  ident: e_1_2_7_7_1
  article-title: Central nervous system effects of acetate: contribution to the central effects of ethanol
  publication-title: J. Pharmacol. Exp. Ther.
  contributor:
    fullname: Carmichael F. J.
– ident: e_1_2_7_40_1
  doi: 10.1016/0378-1119(87)90218-6
– ident: e_1_2_7_16_1
  doi: 10.1016/S0006-8993(96)01263-2
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1600-0773.1995.tb00111.x
– ident: e_1_2_7_25_1
  doi: 10.1007/s00424-003-1107-y
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1471-4159.1985.tb04020.x
– ident: e_1_2_7_13_1
  doi: 10.1152/ajprenal.00007.2007
– ident: e_1_2_7_37_1
  doi: 10.1152/ajpcell.1992.262.5.C1175
– ident: e_1_2_7_29_1
  doi: 10.1126/science.287.5455.1056
– ident: e_1_2_7_17_1
  doi: 10.1016/S0361-9230(01)00552-4
– ident: e_1_2_7_35_1
  doi: 10.1016/0006-8993(94)90767-6
– ident: e_1_2_7_4_1
  doi: 10.1074/jbc.M414337200
– ident: e_1_2_7_33_1
  doi: 10.1097/00004647-200108000-00005
– ident: e_1_2_7_23_1
  doi: 10.1016/S0074-7742(05)63007-3
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1601-183X.2007.00311.x
– ident: e_1_2_7_3_1
  doi: 10.1007/s00424-003-1103-2
– ident: e_1_2_7_18_1
  doi: 10.1146/annurev.neuro.24.1.31
– ident: e_1_2_7_19_1
  doi: 10.1038/sj.bjp.0703170
– ident: e_1_2_7_12_1
  doi: 10.1128/JVI.75.11.5328-5334.2001
– ident: e_1_2_7_2_1
  doi: 10.1016/S0169-328X(96)00244-6
– volume: 44
  start-page: 1021
  year: 1993
  ident: e_1_2_7_31_1
  article-title: Inhibition of adenosine uptake by ethanol is specific for one class of nucleoside transporters
  publication-title: Mol. Pharmacol.
  contributor:
    fullname: Krauss S. W.
– ident: e_1_2_7_36_1
  doi: 10.1523/JNEUROSCI.22-23-10487.2002
– ident: e_1_2_7_10_1
  doi: 10.1038/nn1288
– volume: 255
  start-page: 1202
  year: 1990
  ident: e_1_2_7_15_1
  article-title: Central adenosinergic system involvement in ethanol‐induced motor incoordination in mice
  publication-title: J. Pharmacol. Exp. Ther.
  contributor:
    fullname: Dar M. S.
– ident: e_1_2_7_38_1
  doi: 10.1016/0896-6273(95)90105-1
– ident: e_1_2_7_6_1
  doi: 10.1080/09687860701210617
– ident: e_1_2_7_8_1
  doi: 10.1139/o02-143
– volume-title: Manipulating the Mouse Embryo. A Laboratory Manual
  year: 1986
  ident: e_1_2_7_28_1
  contributor:
    fullname: Hogan B.
SSID ssj0016461
Score 2.1235583
Snippet Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have been...
Transgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron‐specific enolase promoter have been...
AbstractTransgenic mice that express human equilibrative nucleoside transporter subtype 1 (hENT1) under the control of a neuron-specific enolase promoter have...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 562
SubjectTerms adenosine
Adenosine - metabolism
Animals
behavior
Behavior, Animal - drug effects
Behavior, Animal - physiology
Biochemistry
Biological and medical sciences
caffeine
Caffeine - administration & dosage
Caffeine - antagonists & inhibitors
Cell physiology
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Equilibrative Nucleoside Transporter 1 - biosynthesis
Equilibrative Nucleoside Transporter 1 - genetics
Equilibrative Nucleoside Transporter 1 - physiology
ethanol
Ethanol - administration & dosage
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation - drug effects
Gene Expression Regulation - physiology
Humans
Medical sciences
Membrane and intracellular transports
Mice
Mice, Transgenic
Molecular and cellular biology
Neurology
Neurons - drug effects
Neurons - metabolism
Neurons - physiology
nucleoside transport
PC12 Cells
Rats
Receptors, Purinergic P1 - biosynthesis
Receptors, Purinergic P1 - genetics
Rodents
Transgenic animals
Up-Regulation - genetics
Title Transgenic expression of human equilibrative nucleoside transporter 1 in mouse neurons
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2009.05991.x
https://www.ncbi.nlm.nih.gov/pubmed/19222701
https://www.proquest.com/docview/206552649
https://search.proquest.com/docview/20548102
https://search.proquest.com/docview/67096897
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BL3Dh0QINheID4pZVnPiRHKuFVVmJHoBFvVmOY6NVRRa6u1Lh1zPjPGCrIiHEJVplnVFmMvZ8tsffALxUGBXyUom0bKxLhSp4WlVCp5lrMPxlrpKazju_O1OnCzE_l-d9_hOdhen4IcYFN-oZcbymDm7r9bVOrnH-g_G4p52UiHUmhCd5oSm77_X7kUmKWLT4SByOjrqb1HOjoJ1IdTvYFeVN2jWaLnQ1L24CpbsYNwap2X24GNTrclMuJttNPXE_rjE__h_9H8C9Hsuyk875HsIt3-7DwUmL8_gv39krFrNL47L9PtyZDpXlDuBTDJDouUvH_FWfiduyVWCxYiDz37bL-G40FLOWGJdXVFWUbUYm9kvG2bJltG6BLYhgpF0_gsXszcfpadrXd0idRGCX1kEGXTsRrBR1I0pbe18WZXBlUeSlw7vCS9TRqqYJTVblGrFsrZQPQSFyqYvHsNeuWn8ITFvnpPWF1SiIi6ZElOIKyz0KdohgE-DDtzRfOxoP8_v0R3NDhqSinJWJhjRXCRziRzf2M462ZvEhpz1eouOTuUrgeMcTRpkIBIihP0_gaHAN0w8KaxSuJD4sqgRejP-i6WmLxrYeLYZNcAaJmO_PLYhvT5WVTuBJ53G_9KnoXHPGE1DRb_5aUTM_m9Kvp__64BHcHTbZMv4M9jaXW_8csdqmPo69EK-zt_Ofk4MvRg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOZQLjxZoKLQ-IG5ZxYntJMdqoVpKuwfoot4sx7HRCshCd1cq_HpmnAdsVSSEuEWJM4onM57P9vgbgBcKo0JaKBEXtbGxUBmPy1LkcWJrDH-JLWVO553PpmoyEycX8qIrB0RnYVp-iGHBjTwjjNfk4LQgfc3Lc5wAYUDueCclgp0RAso76P2c8rtevRu4pIhHiw_U4Wiqm2k9N0raiFW3vVlQ5qRZovJ8W_XiJli6iXJDmDq-D5_7DrbZKZ9G61U1sj-ucT_-Jw08gHsdnGVHrf09hFuu2YHdowan8l--s5csJJiGlfsd2B73xeV24UOIkWi8c8vcVZeM27CFZ6FoIHPf1vPwcTQas4ZIlxdUWJStBjL2S8bZvGG0dIEtiGOkWT6C2fHr8_Ek7ko8xFYitosrL31eWeGNFFUtClM5V2SFt0WWpYXFu8JJ7KNRde3rpExzhLOVUs57heClyh7DVrNo3B6w3FgrjctMjoK4qAsEKjYz3KFgiyA2At7_TP21ZfLQv8-Acq5JkVSXs9RBkfoqgj3869p8xAFXz96ntM1LjHwyVREcbJjCIBOxAJH0pxHs97ahu3FhicKVxJdFGcHh8BRVT7s0pnGoMWyCk0iEfX9uQZR7qijzCJ60JverPyUdbU54BCoYzl93VJ9Mx3T19F9fPITtyfnZqT59M327D3f7PbeEP4Ot1eXaPUfotqoOgkv-BHEMMm0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BkYALjxZoKLQ-IG5Z5WE7ybHasioFVghY1JvlODZaVXhLd1cq_HpmnAdsVSSEuEWJPYrHY89ne_wNwAuJXiErJY_LRpuYyzyNq4oXcWIadH-JqURB953fTeXxjJ-citMu_onuwrT8EMOGG42MMF_TAD9v3JVBXuD6B_1xRzspEOuMEE_e4jKriEf_6MNAJUU0WunAHI6WuhnVc62kDVd10-kFBU7qJerOtUkvrkOlmyA3eKnJfTjr29cGp5yN1qt6ZH5coX78Pwp4APc6MMsOW-t7CDes34adQ48L-a_f2UsWwkvDvv023Bn3qeV24HPwkGi6c8PsZReK69nCsZAykNlv63n4N5qLmSfK5QWlFWWrgYr9gqVs7hltXGAJYhjxy0cwm7z6ND6OuwQPsRGI7OLaCVfUhjsteN3wUtfWlnnpTJnnWWnwLbcC26hl07gmqbICwWwtpXVOInSp88ew5Rfe7gIrtDFC21wXKCjlTYkwxeQ6tSjYIISNIO37Up23PB7q9_VPkSpSJGXlrFRQpLqMYBc7XekvON2q2ceMDnmJj09kMoL9DUsYZCISIIr-LIK93jRUNyssUbgUWJlXERwMX1H1dEajvUWNYRFcQiLo-3MJItyTZVVE8KS1uF_tqehic5JGIIPd_HVD1cl0TE9P_7XiAdx-fzRRb19P3-zB3f7ALUmfwdbqYm2fI25b1fthQP4En7oxHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+expression+of+human+equilibrative+nucleoside+transporter+1+in+mouse+neurons&rft.jtitle=Journal+of+neurochemistry&rft.au=Parkinson%2C+Fiona+E.&rft.au=Xiong%2C+Wei&rft.au=Zamzow%2C+Christina+R.&rft.au=Chestley%2C+Taeyo&rft.date=2009-04-01&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=109&rft.issue=2&rft.spage=562&rft.epage=572&rft_id=info:doi/10.1111%2Fj.1471-4159.2009.05991.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1471_4159_2009_05991_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon