An autophagy‐related long non‐coding RNA signature for glioma

Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in...

Full description

Saved in:
Bibliographic Details
Published inFEBS open bio Vol. 9; no. 4; pp. 653 - 667
Main Authors Luan, Fangkun, Chen, Wenjie, Chen, Miao, Yan, Jun, Chen, Hao, Yu, Haiyue, Liu, Tieqi, Mo, Ligen
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.04.2019
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value (PCBP1‐AS1, TP53TG1, DHRS4‐AS1, ZNF674‐AS1, GABPB1‐AS1, DDX11‐AS1, SBF2‐AS1, MIR4453HG, MAPKAPK5‐AS1 and COX10‐AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology. Here, we identified a 10 autophagy‐associated long non‐coding RNA (lncRNA) signature with prognostic value in glioma patients, by using a Chinese Glioma Genome Atlas microarray. Gene sets based on the signature were significantly enriched in cancer‐related pathways. Our 10 autophagy‐related lncRNA signature may have prognostic potential for glioma.
AbstractList Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value (PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1 and COX10-AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology.
Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value ( , , , , , , , , -AS1 and ) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195-8.305;  < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110-2.231;  = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology.
Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value ( PCBP1‐AS1 , TP53TG1 , DHRS4‐AS1 , ZNF674‐AS1 , GABPB1‐AS1 , DDX11‐AS1 , SBF2‐AS1 , MIR4453HG , MAPKAPK5 ‐AS1 and COX10‐AS1 ) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P  < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P  = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology.
Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value (PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1 and COX10-AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195-8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110-2.231; P = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology.Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value (PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1 and COX10-AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195-8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110-2.231; P = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology.
Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value (PCBP1‐AS1, TP53TG1, DHRS4‐AS1, ZNF674‐AS1, GABPB1‐AS1, DDX11‐AS1, SBF2‐AS1, MIR4453HG, MAPKAPK5‐AS1 and COX10‐AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology. Here, we identified a 10 autophagy‐associated long non‐coding RNA (lncRNA) signature with prognostic value in glioma patients, by using a Chinese Glioma Genome Atlas microarray. Gene sets based on the signature were significantly enriched in cancer‐related pathways. Our 10 autophagy‐related lncRNA signature may have prognostic potential for glioma.
Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value (PCBP1‐AS1, TP53TG1, DHRS4‐AS1, ZNF674‐AS1, GABPB1‐AS1, DDX11‐AS1, SBF2‐AS1, MIR4453HG, MAPKAPK5‐AS1 and COX10‐AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology.
Author Chen, Wenjie
Yu, Haiyue
Luan, Fangkun
Mo, Ligen
Chen, Miao
Liu, Tieqi
Yan, Jun
Chen, Hao
AuthorAffiliation 2 Department of Ultrasound Affiliated Tumor Hospital of Guangxi Medical University Nanning China
1 Department of Neurosurgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
AuthorAffiliation_xml – name: 1 Department of Neurosurgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China
– name: 2 Department of Ultrasound Affiliated Tumor Hospital of Guangxi Medical University Nanning China
Author_xml – sequence: 1
  givenname: Fangkun
  surname: Luan
  fullname: Luan, Fangkun
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 2
  givenname: Wenjie
  surname: Chen
  fullname: Chen, Wenjie
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 3
  givenname: Miao
  surname: Chen
  fullname: Chen, Miao
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 4
  givenname: Jun
  surname: Yan
  fullname: Yan, Jun
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 5
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 6
  givenname: Haiyue
  surname: Yu
  fullname: Yu, Haiyue
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 7
  givenname: Tieqi
  surname: Liu
  fullname: Liu, Tieqi
  organization: Affiliated Tumor Hospital of Guangxi Medical University
– sequence: 8
  givenname: Ligen
  surname: Mo
  fullname: Mo, Ligen
  email: ligenmo@163.com
  organization: Affiliated Tumor Hospital of Guangxi Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30984540$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVARLaVnbigSFy7b-jMbX5CWqoVKFUgIztasPU698saLk4D21p_Q38gvwdm0VVsJdS62x--9GY_f62KvjS0WxVtKjikh7IQxSmdSVPyYsorQF8XBfWbvwX6_OOq6FcmRQRUhr4p9TlQtpCAHxWLRljD0cXMFzfbv9U3CAD3aMsS2KXO9nDLR-nz4_nVRdr5poR8Sli6msgk-ruFN8dJB6PDodj0sfp6f_Tj9Mrv89vnidHE5M1JJOlNGSIbMAjIBNVZMghWOWEMUcdbOaSUEGlNXTqFBJyUnphZcsaVyznHDD4uLSddGWOlN8mtIWx3B610ipkZD6r0JqNHO7RIFqqUDQakCwaGmxArGa6DCZq2Pk9ZmWK7RGmz7BOGR6OOb1l_pJv7WuUleVzILfLgVSPHXgF2v174zGAK0GIdOszmtOadCVc9DGVE58hgy9P0T6CoOqc1T1Yyzeqy8Q7172Px913efmgFyApgUuy6h08b30Ps4vsUHTYke_aNHh-jRIXrnn8w7ecK7k_4_o5oYf3zA7XNwfX72SUzEf9-31dg
CitedBy_id crossref_primary_10_1186_s12885_022_09706_x
crossref_primary_10_3389_fonc_2021_634732
crossref_primary_10_1016_j_genrep_2024_101942
crossref_primary_10_1177_15330338211011966
crossref_primary_10_1155_2020_3801748
crossref_primary_10_3389_fcell_2021_788451
crossref_primary_10_3389_fgene_2021_681867
crossref_primary_10_3389_fonc_2022_873037
crossref_primary_10_1016_j_brainres_2024_148863
crossref_primary_10_1111_jcmm_15551
crossref_primary_10_3389_fonc_2022_779168
crossref_primary_10_1016_j_canlet_2021_08_001
crossref_primary_10_3389_fonc_2021_711736
crossref_primary_10_1016_j_intimp_2021_107499
crossref_primary_10_1089_cbr_2020_3567
crossref_primary_10_1016_j_gene_2020_144974
crossref_primary_10_18632_aging_202431
crossref_primary_10_3389_fgene_2021_673319
crossref_primary_10_3389_fonc_2020_603864
crossref_primary_10_1159_000505131
crossref_primary_10_1007_s12035_022_02736_3
crossref_primary_10_3389_fcell_2021_694633
crossref_primary_10_1155_2021_8810849
crossref_primary_10_1186_s10020_021_00385_1
crossref_primary_10_3389_fonc_2022_1030366
crossref_primary_10_1007_s12031_024_02216_4
crossref_primary_10_1080_15257770_2024_2372315
crossref_primary_10_3389_fcell_2020_585251
crossref_primary_10_1016_j_bbrc_2021_10_006
crossref_primary_10_1155_2022_3895396
crossref_primary_10_3389_fonc_2021_780601
crossref_primary_10_1016_j_ygeno_2021_01_016
crossref_primary_10_1093_carcin_bgab047
crossref_primary_10_1016_j_omtn_2020_01_005
crossref_primary_10_1093_molehr_gaab010
crossref_primary_10_1186_s12935_020_01267_y
crossref_primary_10_1080_21655979_2021_1994719
crossref_primary_10_1186_s11658_021_00247_y
crossref_primary_10_32604_or_2022_025262
crossref_primary_10_1007_s13258_022_01339_5
crossref_primary_10_1080_21655979_2021_1957072
crossref_primary_10_1186_s12935_023_03151_x
crossref_primary_10_7717_peerj_15810
crossref_primary_10_1007_s11064_020_03081_4
crossref_primary_10_1073_pnas_2104666118
crossref_primary_10_3389_fimmu_2022_998236
crossref_primary_10_1042_BSR20204442
crossref_primary_10_1038_s41598_021_03213_y
crossref_primary_10_12677_ACM_2022_12111477
crossref_primary_10_3389_fgene_2021_569318
crossref_primary_10_1016_j_brainresbull_2022_04_005
crossref_primary_10_1016_j_lfs_2022_120645
crossref_primary_10_1186_s12865_021_00439_3
crossref_primary_10_3390_ncrna9050058
crossref_primary_10_1155_2020_3708231
crossref_primary_10_1155_2021_6640652
crossref_primary_10_1166_jbn_2023_3712
crossref_primary_10_3389_fonc_2020_597569
crossref_primary_10_1016_j_compbiolchem_2020_107370
crossref_primary_10_18632_aging_103947
crossref_primary_10_1111_cns_14380
crossref_primary_10_3390_ijms24076392
crossref_primary_10_7717_peerj_11968
crossref_primary_10_1016_j_mcp_2019_101500
crossref_primary_10_2174_1381612828666220418131506
crossref_primary_10_3389_fcell_2021_743910
crossref_primary_10_3389_fneur_2023_1054686
crossref_primary_10_1089_cbr_2019_3021
crossref_primary_10_1016_j_ijbiomac_2023_126951
crossref_primary_10_1016_j_canlet_2020_07_011
crossref_primary_10_1186_s12903_023_02806_5
crossref_primary_10_3389_fmed_2021_762570
crossref_primary_10_3389_fonc_2021_726745
crossref_primary_10_7554_eLife_58597
crossref_primary_10_3389_fonc_2021_648152
crossref_primary_10_3390_ijms221910373
crossref_primary_10_1038_s41598_025_87246_7
crossref_primary_10_1111_jcmm_15980
crossref_primary_10_3389_fcell_2021_699621
crossref_primary_10_3389_fgene_2020_00990
Cites_doi 10.18632/oncotarget.16358
10.1101/gr.1239303
10.1016/j.bbcan.2015.07.001
10.1091/mbc.E10-06-0500
10.1016/j.mam.2012.09.001
10.1152/ajplung.00221.2016
10.1016/j.cell.2007.12.018
10.1124/pr.117.014944
10.1126/science.1164382
10.1089/ars.2011.4243
10.3390/ijms151018985
10.1038/ncomms12791
10.1038/srep17683
10.4161/auto.28363
10.1371/journal.pone.0093388
10.1038/ni.3771
10.1007/s00401-007-0243-4
10.1158/1078-0432.CCR-10-2634
10.1002/jcp.24549
10.1016/j.phrs.2017.11.009
10.1016/j.critrevonc.2017.03.021
10.1038/nrg2521
10.1002/ijc.28171
10.1158/0008-5472.CAN-06-2072
10.1158/0008-5472.CAN-04-1337
10.1016/j.canlet.2011.09.031
10.1016/j.gpb.2015.09.006
10.1038/cddis.2013.350
10.1634/theoncologist.12-12-1395
10.1038/nrclinonc.2011.71
10.1016/j.wneu.2016.10.016
10.1158/0008-5472.CAN-04-3640
10.1371/journal.pone.0141042
10.1039/C6MB00114A
10.1002/jcb.26175
ContentType Journal Article
Copyright 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1002/2211-5463.12601
DatabaseName Wiley Online Library Journals (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE

MEDLINE - Academic
CrossRef

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central (NC Live)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate F. Luan et al
EISSN 2211-5463
EndPage 667
ExternalDocumentID oai_doaj_org_article_ed7dbe4e9bfa4119a43a810d4238a14d
PMC6443865
30984540
10_1002_2211_5463_12601
FEB412601
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
United States--US
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: Guangxi Medical Health Appropriate Technology Development and Application Project
  funderid: S2017099
– fundername: Guangxi Medical Health Appropriate Technology Development and Application Project
  grantid: S2017099
GroupedDBID ---
--K
0R~
0SF
1OC
24P
4.4
53G
5VS
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAHHS
AAIKJ
AALRI
AAXUO
AAZKR
ABMAC
ACCFJ
ACCMX
ACXQS
ADBBV
ADEZE
ADKYN
ADPDF
ADRAZ
ADVLN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEXQZ
AFKRA
AGHFR
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EJD
EMOBN
FDB
GROUPED_DOAJ
HCIFZ
HYE
HZ~
IAO
IGS
IHR
INH
IPNFZ
ITC
IXB
KQ8
LK8
M41
M48
M7P
M~E
NCXOZ
O-L
O9-
OK1
OVD
OVEED
PIMPY
PROAC
R9-
RIG
ROL
RPM
SSZ
TEORI
WIN
XH2
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c5951-9c452e2dae24a8e625ad4f0dc090fdd71644ecc86f9ecef5530c84392b9fff3c3
IEDL.DBID M48
ISSN 2211-5463
IngestDate Wed Aug 27 01:31:04 EDT 2025
Thu Aug 21 18:29:05 EDT 2025
Fri Jul 11 18:23:17 EDT 2025
Thu Jul 10 18:36:21 EDT 2025
Wed Aug 13 07:12:23 EDT 2025
Wed Feb 19 02:31:02 EST 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 01:14:09 EDT 2025
Wed Jan 22 16:19:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords glioma
autophagy
CCGA
TCGA
long non‐coding RNA
prognostic signature
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5951-9c452e2dae24a8e625ad4f0dc090fdd71644ecc86f9ecef5530c84392b9fff3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Fangkun Luan and Wenjie Chen contributed equally to this article
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/2211-5463.12601
PMID 30984540
PQID 2328386590
PQPubID 4368360
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_ed7dbe4e9bfa4119a43a810d4238a14d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443865
proquest_miscellaneous_2718331496
proquest_miscellaneous_2209999090
proquest_journals_2328386590
pubmed_primary_30984540
crossref_citationtrail_10_1002_2211_5463_12601
crossref_primary_10_1002_2211_5463_12601
wiley_primary_10_1002_2211_5463_12601_FEB412601
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Amsterdam
– name: Hoboken
PublicationTitle FEBS open bio
PublicationTitleAlternate FEBS Open Bio
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2004; 64
2017; 8
2013; 4
2015; 5
2015; 10
2003; 13
2005; 65
2012; 16
2015; 1856
2008; 321
2011; 17
2017; 113
2007; 12
2011; 8
2016; 14
2016; 12
2017; 118
2007; 114
2017; 97
2016; 7
2009; 10
2006; 66
2015; 230
2018; 70
2016; 311
2014; 15
2013; 133
2016; 375
2011; 22
2014; 35
2017; 18
2014; 9
2008; 132
2012; 314
2014; 10
2017; 129
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
van't Veer LJ (e_1_2_9_24_1) 2016; 375
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 70
  start-page: 412
  year: 2018
  end-page: 445
  article-title: Current challenges and opportunities in treating glioblastoma
  publication-title: Pharmacol Rev
– volume: 64
  start-page: 6892
  year: 2004
  end-page: 6899
  article-title: Genetic pathways to glioblastoma: a population‐based study
  publication-title: Can Res
– volume: 311
  start-page: L590
  year: 2016
  end-page: L601
  article-title: Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 7
  start-page: 12791
  year: 2016
  article-title: The lncRNA landscape of breast cancer reveals a role for DSCAM‐AS1 in breast cancer progression
  publication-title: Nat Commun
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
– volume: 4
  start-page: e838
  year: 2013
  article-title: Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment
  publication-title: Cell Death Dis
– volume: 12
  start-page: 1395
  year: 2007
  end-page: 1403
  article-title: Proautophagic drugs: a novel means to combat apoptosis‐resistant cancers, with a special emphasis on glioblastomas
  publication-title: Oncologist
– volume: 65
  start-page: 3336
  year: 2005
  end-page: 3346
  article-title: Synergistic augmentation of rapamycin‐induced autophagy in malignant glioma cells by phosphatidylinositol 3‐kinase/protein kinase B inhibitors
  publication-title: Can Res
– volume: 10
  start-page: 957
  year: 2014
  end-page: 971
  article-title: Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells
  publication-title: Autophagy
– volume: 113
  start-page: 213
  year: 2017
  end-page: 234
  article-title: Central nervous system gliomas
  publication-title: Crit Rev Oncol Hematol
– volume: 375
  start-page: 2200
  year: 2016
  article-title: 70‐Gene signature in early‐stage breast cancer
  publication-title: N Engl J Med
– volume: 1856
  start-page: 151
  year: 2015
  end-page: 164
  article-title: LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer
  publication-title: Biochim Biophys Acta
– volume: 66
  start-page: 11502
  year: 2006
  end-page: 11513
  article-title: Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities
  publication-title: Can Res
– volume: 10
  start-page: e0141042
  year: 2015
  article-title: Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma
  publication-title: PLoS One
– volume: 230
  start-page: 496
  year: 2015
  end-page: 503
  article-title: LncRNAs: new players in gliomas, with special emphasis on the interaction of lncRNAs With EZH2
  publication-title: J Cell Physiol
– volume: 18
  start-page: 962
  year: 2017
  article-title: Gene regulation in the immune system by long noncoding RNAs
  publication-title: Nat Immunol
– volume: 129
  start-page: 151
  year: 2017
  end-page: 155
  article-title: Long noncoding RNAs act as regulators of autophagy in cancer
  publication-title: Pharmacol Res
– volume: 114
  start-page: 97
  year: 2007
  end-page: 109
  article-title: The 2007 WHO classification of tumours of the central nervous system
  publication-title: Acta Neuropathol
– volume: 8
  start-page: 528
  year: 2011
  article-title: Autophagy as a target for anticancer therapy
  publication-title: Nat Rev Clin Oncol
– volume: 5
  start-page: 17683
  year: 2015
  article-title: Comprehensive analysis of lncRNA‐mRNA co‐expression patterns identifies immune‐associated lncRNA biomarkers in ovarian cancer malignant progression
  publication-title: Sci Rep
– volume: 97
  start-page: 684
  year: 2017
  end-page: 692
  article-title: Identification of a long noncoding RNA‐associated competing endogenous RNA network in intracranial aneurysm
  publication-title: World Neurosurg
– volume: 35
  start-page: 1
  year: 2014
  end-page: 71
  article-title: Protein damage, repair and proteolysis
  publication-title: Mol Aspects Med
– volume: 17
  start-page: 654
  year: 2011
  end-page: 666
  article-title: Principles and current strategies for targeting autophagy for cancer treatment
  publication-title: Clin Cancer Res
– volume: 10
  start-page: 155
  year: 2009
  article-title: Long non‐coding RNAs: insights into functions
  publication-title: Nat Rev Genet
– volume: 15
  start-page: 18985
  year: 2014
  end-page: 18999
  article-title: Large intervening non‐coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers
  publication-title: Int J Mol Sci
– volume: 321
  start-page: 1807
  year: 2008
  end-page: 1812
  article-title: An integrated genomic analysis of human glioblastoma multiforme
  publication-title: Science
– volume: 314
  start-page: 213
  year: 2012
  end-page: 222
  article-title: Interferon‐gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon‐regulatory factor‐1 (IRF‐1)
  publication-title: Cancer Lett
– volume: 8
  start-page: 31521
  year: 2017
  article-title: Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa
  publication-title: Oncotarget
– volume: 118
  start-page: 4897
  year: 2017
  end-page: 4904
  article-title: LncRNA‐TP53TG1 participated in the stress response under glucose deprivation in glioma
  publication-title: J Cell Biochem
– volume: 9
  start-page: e93388
  year: 2014
  article-title: Microarray profiling and co‐expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder
  publication-title: PLoS One
– volume: 12
  start-page: 2605
  year: 2016
  end-page: 2612
  article-title: The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma
  publication-title: Mol BioSyst
– volume: 22
  start-page: 165
  year: 2011
  end-page: 178
  article-title: Autophagy facilitates glycolysis during Ras‐mediated oncogenic transformation
  publication-title: Mol Biol Cell
– volume: 16
  start-page: 1264
  year: 2012
  end-page: 1284
  article-title: Warburg meets autophagy: cancer‐associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis
  publication-title: Antioxid Redox Signal
– volume: 133
  start-page: 1614
  year: 2013
  end-page: 1623
  article-title: miRNA expression profiling of inflammatory breast cancer identifies a 5‐miRNA signature predictive of breast tumor aggressiveness
  publication-title: Int J Cancer
– volume: 14
  start-page: 42
  year: 2016
  end-page: 54
  article-title: Roles, functions, and mechanisms of long non‐coding RNAs in cancer
  publication-title: Genomics Proteomics Bioinformatics
– volume: 132
  start-page: 27
  year: 2008
  end-page: 42
  article-title: Autophagy in the pathogenesis of disease
  publication-title: Cell
– ident: e_1_2_9_33_1
  doi: 10.18632/oncotarget.16358
– ident: e_1_2_9_23_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_9_19_1
  doi: 10.1016/j.bbcan.2015.07.001
– ident: e_1_2_9_30_1
  doi: 10.1091/mbc.E10-06-0500
– ident: e_1_2_9_17_1
  doi: 10.1016/j.mam.2012.09.001
– ident: e_1_2_9_18_1
  doi: 10.1152/ajplung.00221.2016
– ident: e_1_2_9_8_1
  doi: 10.1016/j.cell.2007.12.018
– ident: e_1_2_9_4_1
  doi: 10.1124/pr.117.014944
– ident: e_1_2_9_7_1
  doi: 10.1126/science.1164382
– ident: e_1_2_9_28_1
  doi: 10.1089/ars.2011.4243
– ident: e_1_2_9_16_1
  doi: 10.3390/ijms151018985
– ident: e_1_2_9_26_1
  doi: 10.1038/ncomms12791
– ident: e_1_2_9_34_1
  doi: 10.1038/srep17683
– ident: e_1_2_9_21_1
  doi: 10.4161/auto.28363
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0093388
– ident: e_1_2_9_14_1
  doi: 10.1038/ni.3771
– ident: e_1_2_9_3_1
  doi: 10.1007/s00401-007-0243-4
– ident: e_1_2_9_10_1
  doi: 10.1158/1078-0432.CCR-10-2634
– ident: e_1_2_9_15_1
  doi: 10.1002/jcp.24549
– ident: e_1_2_9_22_1
  doi: 10.1016/j.phrs.2017.11.009
– ident: e_1_2_9_2_1
  doi: 10.1016/j.critrevonc.2017.03.021
– ident: e_1_2_9_13_1
  doi: 10.1038/nrg2521
– ident: e_1_2_9_25_1
  doi: 10.1002/ijc.28171
– volume: 375
  start-page: 2200
  year: 2016
  ident: e_1_2_9_24_1
  article-title: 70‐Gene signature in early‐stage breast cancer
  publication-title: N Engl J Med
– ident: e_1_2_9_6_1
  doi: 10.1158/0008-5472.CAN-06-2072
– ident: e_1_2_9_5_1
  doi: 10.1158/0008-5472.CAN-04-1337
– ident: e_1_2_9_29_1
  doi: 10.1016/j.canlet.2011.09.031
– ident: e_1_2_9_37_1
  doi: 10.1016/j.gpb.2015.09.006
– ident: e_1_2_9_11_1
  doi: 10.1038/cddis.2013.350
– ident: e_1_2_9_12_1
  doi: 10.1634/theoncologist.12-12-1395
– ident: e_1_2_9_9_1
  doi: 10.1038/nrclinonc.2011.71
– ident: e_1_2_9_36_1
  doi: 10.1016/j.wneu.2016.10.016
– ident: e_1_2_9_27_1
  doi: 10.1158/0008-5472.CAN-04-3640
– ident: e_1_2_9_32_1
  doi: 10.1371/journal.pone.0141042
– ident: e_1_2_9_20_1
  doi: 10.1039/C6MB00114A
– ident: e_1_2_9_31_1
  doi: 10.1002/jcb.26175
SSID ssj0000601600
Score 2.4575553
Snippet Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 653
SubjectTerms Apoptosis
Autophagy
Autophagy - genetics
Cancer therapies
CCGA
Cell death
Central nervous system
China
data collection
Datasets
DNA methylation
DNA microarrays
Female
Gene expression
Gene Expression Regulation, Neoplastic
Gene set enrichment analysis
genes
Genomes
glioma
Glioma - diagnosis
Glioma - genetics
Glioma cells
hazard ratio
Humans
Interleukin 2
interleukins
Janus kinase
long non‐coding RNA
Male
Medical prognosis
microarray technology
MicroRNAs
MicroRNAs - genetics
Nervous system
non-coding RNA
p53 Protein
Phagocytosis
Physiology
Prognosis
prognostic signature
Regression analysis
Ribonucleic acid
Risk groups
RNA
RNA, Long Noncoding - analysis
Signal transduction
Software
Stat5 protein
TCGA
transactivators
Transcription
Tumor necrosis factor-α
tumor necrosis factors
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxEB6hSkhcEP9sKZWROHDZxvZ6k_UxRY0qJHpAVOrN8m-oFDaINofeeASekSdhxt5EiSj0wm1le7XembHnG3n8DcBb0Uykdx7DkqAcHTPyWivt69a340ngjbU5N-fj2fj0XH24aC-2Sn1RTlihBy6CG8UwCS6qqF2ySghtVWM7wQPCgM4KFWj3RZ-3FUyVPZiY0_iay4fLkcRIpybu9yNBLFo7biiz9d8GMf_MlNxGsNkFzR7BwwE7smmZ82O4F_sncL9Uk7x5CtNpz-yKiALs_ObXj5_5mkoMbLHs5wyjfGzyS3JV7NPZlFHiRib1ZAhb2Xxxufxqn8H57OTz-9N6qJBQ-xahUa29amWUwUapbBcxlrFBJR481zyFQLGQQh1146Sjj4lKBPkOIYh0OqXU-OY57OH340tgbSt1p4SzIjnVReGklRr1KLQPIblYwdFaYMYP9OFUxWJhCvGxNCRhQxI2WcIVvNu88K0wZ_x96DFpYDOMKK9zAxqCGQzB3GUIFRys9WeGdXhlEC92VNVU8wrebLpxBdGxiO3jcoVj6PYwOuV_jkEX3jQYTY4reFFMYjPbhqPgEPhWMNkxlp3f2e3pL79kJm9UD82uglE2q7vkZGYnxyo_7f8Pib2CBwj_dMlDOoC96--r-Boh1rU7zKvpNzpDIVw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB5BKiQuiDdbClokDly2sb3exD6hBiWqkIhQRaXeLD9DpZAtbXPov--MdxOIgHJbrb1ae8b2fGOPvwF4z-ux8M6jWxKko2NGVmmpfdX4ZjQOrLY2x-Z8mY-OT-Xns-as33C76sMqN2tiXqhD62mPfIiWX1F-Ss0-XvysKGsUna72KTTuwx4uwUoNYG8ynX892e6yZLYRxjacPkwMBXo8FXHAH3Ji09oxR5m1_29Q88-Iyd-RbDZFs8fwqMeQ5VGn9CdwL66ewoMuq-TNM0CXvrRrIgywi5sqX1aJoVy2q0WJvn7lWzJX5cn8qKTgjUzsWSJ0LRfL8_aHfQ6ns-m3T8dVnyWh8g3Co0p72Ygogo1CWhXRn7FBJhY80yyFQP6QRD2pUdLRx0RpgrxCGCKcTinVvn4BA_x7fAVl0witJHeWJydV5E5YoVGXXPsQkosFHG6EZXxPIU6ZLJamIz8WhqRrSLomS7eAD9sPLjr2jH9XnZD0t9WI9jq_aC8Xpp9FJoZxcFFG7ZKVnGsra6s4C4gJleUyFHCw0Z3p5-KV-TVyCni3LcZZREcjdhXbNdahG8RomO-sg2a8rtGjHBXwshsO29bWDAWH4LeA8c5A2enObsnq_Htm80b1UOsKGOYh9T85mdl0IvPT_t2dfQ0PEdzpLsroAAbXl-v4BgHUtXvbz5JbNT4V_A
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Journals (Open Access)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BERIXxBtDQYvEgYub3fU68R5T1KhCokKIStxW-wyVgo3a5tBbf0J_I7-EmbVjCE9xi-yxY8_seL6xZ74BeCmqmfTOY1oSlKPPjLzUSvuy9vV0Fnhlba7NeXs0PTxWbz7Wm2pC6oXp-SHGF27kGfl5TQ5u3dnkO2moxNSlJDL3PUG0WNfhBjXYUlWfVO_G1yyZbiQ3oozyG4IfLic_nWMrNmUK_9_hzl_LJ3-EtTkuLe7A7QFQsnm_Au7Ctdjeg5v9iMmL-zCft8yuiT3ALi--Xl7l3pUY2KprlwxTf9zkO4pf7P3RnFE1R2b6ZIhl2XJ10n22D-B4cfDh9WE5jE0ofY14qdRe1TLKYKNUtomY4NigEg-ea55CoARJoeGaadLRx0Rzg3yDuEQ6nVKqfPUQdvD_42NgdS11o4SzIjnVROGklRqNK7QPIblYwN5GYcYPnOI02mJlejZkaUjDhjRssoYLeDUe8KWn0_iz6D5ZYBQjHuy8oTtdmsGtTAyz4KKK2iWrhNBWVbYRPCBIbKxQoYDdjf3M4JxnBkFkQ6NONS_gxbgb3Yq-ldg2dmuUoZZijNR_lcG4XlWYYk4LeNQvifFqK46KQzRcwGxrsWzdzvae9uRTpvdG89DVFTDJy-pfejKLg32Vfz357yOewi0EgLqvRNqFnfPTdXyGIOvcPc9u9A2UMxtQ
  priority: 102
  providerName: Wiley-Blackwell
Title An autophagy‐related long non‐coding RNA signature for glioma
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2211-5463.12601
https://www.ncbi.nlm.nih.gov/pubmed/30984540
https://www.proquest.com/docview/2328386590
https://www.proquest.com/docview/2209999090
https://www.proquest.com/docview/2718331496
https://pubmed.ncbi.nlm.nih.gov/PMC6443865
https://doaj.org/article/ed7dbe4e9bfa4119a43a810d4238a14d
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB6ahJZcSt9VmxoVeuhFjna1srWHUuJiEwoxIdSQ27LahxNwpcaJof73nVlJbkyS9iakXbSah-abfXwD8IllQ25Kg2mJFSUtM6aJFNIkuckHQ5tmWoe9OSfTwfFMfD_Pz_-WA2oFeH1vakf1pGbLRf_31forOvyXlkD0kGMSkxCte58RQdYO7GFYGlI5g5MW6ze_ZSJTSzt6n7v99uFJlspChImQW0EqcPnfB0Dv7qO8jW9DgJo8g6ctsoyPGlN4Do9c9QIeN7Um1y8BE_1Yr4hGQM_XSTjC4my8qKt5XNVVYmoKYvHZ9CimLR2B7jNGQBvPF5f1T_0KZpPxj2_HSVs7ITE5gqZEGpFzx612XOjCYZajrfCpNalMvbWUJQnUXjHw0hnnqXiQKRCc8FJ67zOTvYZdfLt7C3Gec5QKKzXzpSgcK7nmEjXMpLHWly6CficsZVpicapvsVANJTJXJGhFglZB0BF83nT41XBqPNx0RNLfNCMy7HCjXs5V61vK2aEtnXCy9FowJrXIdMFSi0ix0EzYCA463anOwBQiyYLqnco0go-bx-hbtGCiK1evsA2dK8Zw_c82GNyzDPPMQQRvGnPYjLYzpwiGW4ay9TnbT6rLi8Dxjeqh0UVwGEzqf3JSk_FIhKt3D47iPewj2pPNtqMD2L1ZrtwHRFQ3ZQ92uDjtwd5oPD0964V5iV7wnj88lhoK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL8JDAgSSLxkdRynjR8m1EKrjm0VmjZpb8axnTKpJGNbhfpP8Tdy5ySFChhPe4sSJ7HPd7nv4vN3AK_jpM9NbjAssSKnZUYWSSFNlJq017cs0drn5hxMe5Nj8fEkPdmAH-1eGEqrbL-J_kNtK0P_yLvo-TOqTynZu7NvEVWNotXVtoRGrRZ7bvkdQ7aLnd0POL9vOB-Pjt5PoqaqQGRSX1PeiJQ7brXjQmcO8b-2omDWMMkKayl-EDiurFdIZ1xBZXVMhm6b57IoisQk-NwbsCmSHuMd2ByOpp8OV391PLsJYy2HEONdjhFWRJzz2zGxd625P18l4G_Q9s8Mzd-Rs3d947twp8Gs4aBWsnuw4cr7cLOuYrl8ADuDMtQLIijQs2XkN8c4G86rchaWVRmZitxjeDgdhJQs4olEQ4TK4Wx-Wn3VD-H4WuT3CDr4dvcEwjTlMhNxruMiF5mLc665RN2JpbG2yF0A262wlGkoy6lyxlzVZMtckXQVSVd56QbwdnXDWc3W8e-mQ5L-qhnRbPsT1flMNVarnO3b3Akn80KLOJZaJDqLmUUMmulY2AC22rlTje1fqF-aGsCr1WW0WlqK0aWrFtiGdiwjELiyDcKGJMEIthfA41odVr1NGAoOwXYA_TVFWRvO-pXy9ItnD8fpod4F0PUq9T85qfFoKPzR06sH-xJuTY4O9tX-7nTvGdxGYCnrDKct6FyeL9xzBG-X-YvGYkL4fN1G-hPkt1Ql
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAkYCiYub9XqdeA8VSmiilkJUVVTqzV3vI1RK7b4ilL_Gr2NmbQcioJx6s-z1Y2dndr7xzn4D8DZO-lwXGsMSIwpaZmSRFFJHqU57fcMSpXxuzpdJb-dQfDpKj9bgR7sXhtIq2znRT9Sm0vSPvIueP6P6lJJ1XZMWsb89_nB2HlEFKVppbctp1CqyZxffMXy73NrdxrF-x_l49PXjTtRUGIh06uvLa5Fyy42yXKjMYiygjHDMaCaZM4ZiCYF9zHpOWm0dldjRGbpwXkjnXKITfO4tWO9TVNSB9eFosn-w_MPjmU4Ya_mEGO9yjLYi4p_fjInJa8UV-ooBf4O5f2Zr_o6ivRsc34d7DX4NB7XCPYA1Wz6E23VFy8Uj2BqUoZoTWYGaLiK_UcaacFaV07CsykhX5CrDg8kgpMQRTyoaImwOp7OT6lQ9hsMbkd8T6ODb7TMI05TLTMSFil0hMhsXXHGJehRLbYwrbACbrbBy3dCXUxWNWV4TL_OcpJuTdHMv3QDeL284q5k7_t10SNJfNiPKbX-iupjmjQXn1vRNYYWVhVMijqUSicpiZhCPZioWJoCNduzyZh64zH9pbQBvlpfRgmlZRpW2mmMb2r2MoODaNgghkgSj2V4AT2t1WH5twlBwCLwD6K8oykp3Vq-UJ988kzgOD31dAF2vUv-TUz4eDYU_en59Z1_DHTTO_PPuZO8F3EWMKetkpw3oXF3M7UvEcVfFq8ZgQji-aRv9CeC4WFo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autophagy-related+long+non-coding+RNA+signature+for+glioma&rft.jtitle=FEBS+open+bio&rft.au=Luan%2C+Fangkun&rft.au=Chen%2C+Wenjie&rft.au=Chen%2C+Miao&rft.au=Yan%2C+Jun&rft.date=2019-04-01&rft.eissn=2211-5463&rft.volume=9&rft.issue=4&rft.spage=653&rft_id=info:doi/10.1002%2F2211-5463.12601&rft_id=info%3Apmid%2F30984540&rft.externalDocID=30984540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-5463&client=summon