An autophagy‐related long non‐coding RNA signature for glioma
Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in...
Saved in:
Published in | FEBS open bio Vol. 9; no. 4; pp. 653 - 667 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2019
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value (PCBP1‐AS1, TP53TG1, DHRS4‐AS1, ZNF674‐AS1, GABPB1‐AS1, DDX11‐AS1, SBF2‐AS1, MIR4453HG, MAPKAPK5‐AS1 and COX10‐AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology.
Here, we identified a 10 autophagy‐associated long non‐coding RNA (lncRNA) signature with prognostic value in glioma patients, by using a Chinese Glioma Genome Atlas microarray. Gene sets based on the signature were significantly enriched in cancer‐related pathways. Our 10 autophagy‐related lncRNA signature may have prognostic potential for glioma. |
---|---|
AbstractList | Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value (PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1 and COX10-AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology. Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value ( , , , , , , , , -AS1 and ) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195-8.305; < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110-2.231; = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology. Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value ( PCBP1‐AS1 , TP53TG1 , DHRS4‐AS1 , ZNF674‐AS1 , GABPB1‐AS1 , DDX11‐AS1 , SBF2‐AS1 , MIR4453HG , MAPKAPK5 ‐AS1 and COX10‐AS1 ) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology. Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value (PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1 and COX10-AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195-8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110-2.231; P = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology.Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy-associated long non-coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy-associated lncRNAs with prognostic value (PCBP1-AS1, TP53TG1, DHRS4-AS1, ZNF674-AS1, GABPB1-AS1, DDX11-AS1, SBF2-AS1, MIR4453HG, MAPKAPK5-AS1 and COX10-AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low-risk and high-risk groups. The overall survival time was shorter in the high-risk group than that in the low-risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195-8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer-related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high-risk patients have worse survival outcomes than low-risk patients (HR = 1.544, 95% CI: 1.110-2.231; P = 0.031). In summary, our signature of 10 autophagy-related lncRNAs has prognostic potential for glioma, and these autophagy-related lncRNAs may play a key role in glioma biology. Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value (PCBP1‐AS1, TP53TG1, DHRS4‐AS1, ZNF674‐AS1, GABPB1‐AS1, DDX11‐AS1, SBF2‐AS1, MIR4453HG, MAPKAPK5‐AS1 and COX10‐AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology. Here, we identified a 10 autophagy‐associated long non‐coding RNA (lncRNA) signature with prognostic value in glioma patients, by using a Chinese Glioma Genome Atlas microarray. Gene sets based on the signature were significantly enriched in cancer‐related pathways. Our 10 autophagy‐related lncRNA signature may have prognostic potential for glioma. Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been reported to induce glioma cell death, we investigated the potential prognostic role of autophagy‐associated long non‐coding RNA (lncRNA) in glioma patients. In this study, we obtained 879 lncRNAs and 216 autophagy genes from the Chinese Glioma Genome Atlas microarray, and found that 402 lncRNAs are correlated with the autophagy genes. Subsequently, 10 autophagy‐associated lncRNAs with prognostic value (PCBP1‐AS1, TP53TG1, DHRS4‐AS1, ZNF674‐AS1, GABPB1‐AS1, DDX11‐AS1, SBF2‐AS1, MIR4453HG, MAPKAPK5‐AS1 and COX10‐AS1) were identified in glioma patients using multivariate Cox regression analyses. A prognostic signature was then established based on these prognostic lncRNAs, dividing patients into low‐risk and high‐risk groups. The overall survival time was shorter in the high‐risk group than that in the low‐risk group [hazard ratio (HR) = 5.307, 95% CI: 4.195–8.305; P < 0.0001]. Gene set enrichment analysis revealed that the gene sets were significantly enriched in cancer‐related pathways, including interleukin (IL) 6/Janus kinase/signal transducer and activator of transcription (STAT) 3 signaling, tumor necrosis factor α signaling via nuclear factor κB, IL2/STAT5 signaling, the p53 pathway and the KRAS signaling pathway. The Cancer Genome Atlas dataset was used to validate that high‐risk patients have worse survival outcomes than low‐risk patients (HR = 1.544, 95% CI: 1.110–2.231; P = 0.031). In summary, our signature of 10 autophagy‐related lncRNAs has prognostic potential for glioma, and these autophagy‐related lncRNAs may play a key role in glioma biology. |
Author | Chen, Wenjie Yu, Haiyue Luan, Fangkun Mo, Ligen Chen, Miao Liu, Tieqi Yan, Jun Chen, Hao |
AuthorAffiliation | 2 Department of Ultrasound Affiliated Tumor Hospital of Guangxi Medical University Nanning China 1 Department of Neurosurgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China |
AuthorAffiliation_xml | – name: 1 Department of Neurosurgery Affiliated Tumor Hospital of Guangxi Medical University Nanning China – name: 2 Department of Ultrasound Affiliated Tumor Hospital of Guangxi Medical University Nanning China |
Author_xml | – sequence: 1 givenname: Fangkun surname: Luan fullname: Luan, Fangkun organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 2 givenname: Wenjie surname: Chen fullname: Chen, Wenjie organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 3 givenname: Miao surname: Chen fullname: Chen, Miao organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 4 givenname: Jun surname: Yan fullname: Yan, Jun organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 5 givenname: Hao surname: Chen fullname: Chen, Hao organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 6 givenname: Haiyue surname: Yu fullname: Yu, Haiyue organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 7 givenname: Tieqi surname: Liu fullname: Liu, Tieqi organization: Affiliated Tumor Hospital of Guangxi Medical University – sequence: 8 givenname: Ligen surname: Mo fullname: Mo, Ligen email: ligenmo@163.com organization: Affiliated Tumor Hospital of Guangxi Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30984540$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQjVARLaVnbigSFy7b-jMbX5CWqoVKFUgIztasPU698saLk4D21p_Q38gvwdm0VVsJdS62x--9GY_f62KvjS0WxVtKjikh7IQxSmdSVPyYsorQF8XBfWbvwX6_OOq6FcmRQRUhr4p9TlQtpCAHxWLRljD0cXMFzfbv9U3CAD3aMsS2KXO9nDLR-nz4_nVRdr5poR8Sli6msgk-ruFN8dJB6PDodj0sfp6f_Tj9Mrv89vnidHE5M1JJOlNGSIbMAjIBNVZMghWOWEMUcdbOaSUEGlNXTqFBJyUnphZcsaVyznHDD4uLSddGWOlN8mtIWx3B610ipkZD6r0JqNHO7RIFqqUDQakCwaGmxArGa6DCZq2Pk9ZmWK7RGmz7BOGR6OOb1l_pJv7WuUleVzILfLgVSPHXgF2v174zGAK0GIdOszmtOadCVc9DGVE58hgy9P0T6CoOqc1T1Yyzeqy8Q7172Px913efmgFyApgUuy6h08b30Ps4vsUHTYke_aNHh-jRIXrnn8w7ecK7k_4_o5oYf3zA7XNwfX72SUzEf9-31dg |
CitedBy_id | crossref_primary_10_1186_s12885_022_09706_x crossref_primary_10_3389_fonc_2021_634732 crossref_primary_10_1016_j_genrep_2024_101942 crossref_primary_10_1177_15330338211011966 crossref_primary_10_1155_2020_3801748 crossref_primary_10_3389_fcell_2021_788451 crossref_primary_10_3389_fgene_2021_681867 crossref_primary_10_3389_fonc_2022_873037 crossref_primary_10_1016_j_brainres_2024_148863 crossref_primary_10_1111_jcmm_15551 crossref_primary_10_3389_fonc_2022_779168 crossref_primary_10_1016_j_canlet_2021_08_001 crossref_primary_10_3389_fonc_2021_711736 crossref_primary_10_1016_j_intimp_2021_107499 crossref_primary_10_1089_cbr_2020_3567 crossref_primary_10_1016_j_gene_2020_144974 crossref_primary_10_18632_aging_202431 crossref_primary_10_3389_fgene_2021_673319 crossref_primary_10_3389_fonc_2020_603864 crossref_primary_10_1159_000505131 crossref_primary_10_1007_s12035_022_02736_3 crossref_primary_10_3389_fcell_2021_694633 crossref_primary_10_1155_2021_8810849 crossref_primary_10_1186_s10020_021_00385_1 crossref_primary_10_3389_fonc_2022_1030366 crossref_primary_10_1007_s12031_024_02216_4 crossref_primary_10_1080_15257770_2024_2372315 crossref_primary_10_3389_fcell_2020_585251 crossref_primary_10_1016_j_bbrc_2021_10_006 crossref_primary_10_1155_2022_3895396 crossref_primary_10_3389_fonc_2021_780601 crossref_primary_10_1016_j_ygeno_2021_01_016 crossref_primary_10_1093_carcin_bgab047 crossref_primary_10_1016_j_omtn_2020_01_005 crossref_primary_10_1093_molehr_gaab010 crossref_primary_10_1186_s12935_020_01267_y crossref_primary_10_1080_21655979_2021_1994719 crossref_primary_10_1186_s11658_021_00247_y crossref_primary_10_32604_or_2022_025262 crossref_primary_10_1007_s13258_022_01339_5 crossref_primary_10_1080_21655979_2021_1957072 crossref_primary_10_1186_s12935_023_03151_x crossref_primary_10_7717_peerj_15810 crossref_primary_10_1007_s11064_020_03081_4 crossref_primary_10_1073_pnas_2104666118 crossref_primary_10_3389_fimmu_2022_998236 crossref_primary_10_1042_BSR20204442 crossref_primary_10_1038_s41598_021_03213_y crossref_primary_10_12677_ACM_2022_12111477 crossref_primary_10_3389_fgene_2021_569318 crossref_primary_10_1016_j_brainresbull_2022_04_005 crossref_primary_10_1016_j_lfs_2022_120645 crossref_primary_10_1186_s12865_021_00439_3 crossref_primary_10_3390_ncrna9050058 crossref_primary_10_1155_2020_3708231 crossref_primary_10_1155_2021_6640652 crossref_primary_10_1166_jbn_2023_3712 crossref_primary_10_3389_fonc_2020_597569 crossref_primary_10_1016_j_compbiolchem_2020_107370 crossref_primary_10_18632_aging_103947 crossref_primary_10_1111_cns_14380 crossref_primary_10_3390_ijms24076392 crossref_primary_10_7717_peerj_11968 crossref_primary_10_1016_j_mcp_2019_101500 crossref_primary_10_2174_1381612828666220418131506 crossref_primary_10_3389_fcell_2021_743910 crossref_primary_10_3389_fneur_2023_1054686 crossref_primary_10_1089_cbr_2019_3021 crossref_primary_10_1016_j_ijbiomac_2023_126951 crossref_primary_10_1016_j_canlet_2020_07_011 crossref_primary_10_1186_s12903_023_02806_5 crossref_primary_10_3389_fmed_2021_762570 crossref_primary_10_3389_fonc_2021_726745 crossref_primary_10_7554_eLife_58597 crossref_primary_10_3389_fonc_2021_648152 crossref_primary_10_3390_ijms221910373 crossref_primary_10_1038_s41598_025_87246_7 crossref_primary_10_1111_jcmm_15980 crossref_primary_10_3389_fcell_2021_699621 crossref_primary_10_3389_fgene_2020_00990 |
Cites_doi | 10.18632/oncotarget.16358 10.1101/gr.1239303 10.1016/j.bbcan.2015.07.001 10.1091/mbc.E10-06-0500 10.1016/j.mam.2012.09.001 10.1152/ajplung.00221.2016 10.1016/j.cell.2007.12.018 10.1124/pr.117.014944 10.1126/science.1164382 10.1089/ars.2011.4243 10.3390/ijms151018985 10.1038/ncomms12791 10.1038/srep17683 10.4161/auto.28363 10.1371/journal.pone.0093388 10.1038/ni.3771 10.1007/s00401-007-0243-4 10.1158/1078-0432.CCR-10-2634 10.1002/jcp.24549 10.1016/j.phrs.2017.11.009 10.1016/j.critrevonc.2017.03.021 10.1038/nrg2521 10.1002/ijc.28171 10.1158/0008-5472.CAN-06-2072 10.1158/0008-5472.CAN-04-1337 10.1016/j.canlet.2011.09.031 10.1016/j.gpb.2015.09.006 10.1038/cddis.2013.350 10.1634/theoncologist.12-12-1395 10.1038/nrclinonc.2011.71 10.1016/j.wneu.2016.10.016 10.1158/0008-5472.CAN-04-3640 10.1371/journal.pone.0141042 10.1039/C6MB00114A 10.1002/jcb.26175 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1002/2211-5463.12601 |
DatabaseName | Wiley Online Library Journals (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central (NC Live) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | F. Luan et al |
EISSN | 2211-5463 |
EndPage | 667 |
ExternalDocumentID | oai_doaj_org_article_ed7dbe4e9bfa4119a43a810d4238a14d PMC6443865 30984540 10_1002_2211_5463_12601 FEB412601 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China United States--US |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: Guangxi Medical Health Appropriate Technology Development and Application Project funderid: S2017099 – fundername: Guangxi Medical Health Appropriate Technology Development and Application Project grantid: S2017099 |
GroupedDBID | --- --K 0R~ 0SF 1OC 24P 4.4 53G 5VS 8FE 8FH AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAHHS AAIKJ AALRI AAXUO AAZKR ABMAC ACCFJ ACCMX ACXQS ADBBV ADEZE ADKYN ADPDF ADRAZ ADVLN ADZMN ADZOD AEEZP AENEX AEQDE AEXQZ AFKRA AGHFR AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD EMOBN FDB GROUPED_DOAJ HCIFZ HYE HZ~ IAO IGS IHR INH IPNFZ ITC IXB KQ8 LK8 M41 M48 M7P M~E NCXOZ O-L O9- OK1 OVD OVEED PIMPY PROAC R9- RIG ROL RPM SSZ TEORI WIN XH2 AAYWO AAYXX ACVFH ADCNI AEUPX AFPKN AFPUW AIGII AKBMS AKYEP CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c5951-9c452e2dae24a8e625ad4f0dc090fdd71644ecc86f9ecef5530c84392b9fff3c3 |
IEDL.DBID | M48 |
ISSN | 2211-5463 |
IngestDate | Wed Aug 27 01:31:04 EDT 2025 Thu Aug 21 18:29:05 EDT 2025 Fri Jul 11 18:23:17 EDT 2025 Thu Jul 10 18:36:21 EDT 2025 Wed Aug 13 07:12:23 EDT 2025 Wed Feb 19 02:31:02 EST 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 01:14:09 EDT 2025 Wed Jan 22 16:19:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | glioma autophagy CCGA TCGA long non‐coding RNA prognostic signature |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5951-9c452e2dae24a8e625ad4f0dc090fdd71644ecc86f9ecef5530c84392b9fff3c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Fangkun Luan and Wenjie Chen contributed equally to this article |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/2211-5463.12601 |
PMID | 30984540 |
PQID | 2328386590 |
PQPubID | 4368360 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed7dbe4e9bfa4119a43a810d4238a14d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6443865 proquest_miscellaneous_2718331496 proquest_miscellaneous_2209999090 proquest_journals_2328386590 pubmed_primary_30984540 crossref_citationtrail_10_1002_2211_5463_12601 crossref_primary_10_1002_2211_5463_12601 wiley_primary_10_1002_2211_5463_12601_FEB412601 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Amsterdam – name: Hoboken |
PublicationTitle | FEBS open bio |
PublicationTitleAlternate | FEBS Open Bio |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2004; 64 2017; 8 2013; 4 2015; 5 2015; 10 2003; 13 2005; 65 2012; 16 2015; 1856 2008; 321 2011; 17 2017; 113 2007; 12 2011; 8 2016; 14 2016; 12 2017; 118 2007; 114 2017; 97 2016; 7 2009; 10 2006; 66 2015; 230 2018; 70 2016; 311 2014; 15 2013; 133 2016; 375 2011; 22 2014; 35 2017; 18 2014; 9 2008; 132 2012; 314 2014; 10 2017; 129 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 van't Veer LJ (e_1_2_9_24_1) 2016; 375 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 70 start-page: 412 year: 2018 end-page: 445 article-title: Current challenges and opportunities in treating glioblastoma publication-title: Pharmacol Rev – volume: 64 start-page: 6892 year: 2004 end-page: 6899 article-title: Genetic pathways to glioblastoma: a population‐based study publication-title: Can Res – volume: 311 start-page: L590 year: 2016 end-page: L601 article-title: Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 7 start-page: 12791 year: 2016 article-title: The lncRNA landscape of breast cancer reveals a role for DSCAM‐AS1 in breast cancer progression publication-title: Nat Commun – volume: 13 start-page: 2498 year: 2003 end-page: 2504 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res – volume: 4 start-page: e838 year: 2013 article-title: Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment publication-title: Cell Death Dis – volume: 12 start-page: 1395 year: 2007 end-page: 1403 article-title: Proautophagic drugs: a novel means to combat apoptosis‐resistant cancers, with a special emphasis on glioblastomas publication-title: Oncologist – volume: 65 start-page: 3336 year: 2005 end-page: 3346 article-title: Synergistic augmentation of rapamycin‐induced autophagy in malignant glioma cells by phosphatidylinositol 3‐kinase/protein kinase B inhibitors publication-title: Can Res – volume: 10 start-page: 957 year: 2014 end-page: 971 article-title: Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells publication-title: Autophagy – volume: 113 start-page: 213 year: 2017 end-page: 234 article-title: Central nervous system gliomas publication-title: Crit Rev Oncol Hematol – volume: 375 start-page: 2200 year: 2016 article-title: 70‐Gene signature in early‐stage breast cancer publication-title: N Engl J Med – volume: 1856 start-page: 151 year: 2015 end-page: 164 article-title: LncRNA HOTAIR: a master regulator of chromatin dynamics and cancer publication-title: Biochim Biophys Acta – volume: 66 start-page: 11502 year: 2006 end-page: 11513 article-title: Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities publication-title: Can Res – volume: 10 start-page: e0141042 year: 2015 article-title: Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma publication-title: PLoS One – volume: 230 start-page: 496 year: 2015 end-page: 503 article-title: LncRNAs: new players in gliomas, with special emphasis on the interaction of lncRNAs With EZH2 publication-title: J Cell Physiol – volume: 18 start-page: 962 year: 2017 article-title: Gene regulation in the immune system by long noncoding RNAs publication-title: Nat Immunol – volume: 129 start-page: 151 year: 2017 end-page: 155 article-title: Long noncoding RNAs act as regulators of autophagy in cancer publication-title: Pharmacol Res – volume: 114 start-page: 97 year: 2007 end-page: 109 article-title: The 2007 WHO classification of tumours of the central nervous system publication-title: Acta Neuropathol – volume: 8 start-page: 528 year: 2011 article-title: Autophagy as a target for anticancer therapy publication-title: Nat Rev Clin Oncol – volume: 5 start-page: 17683 year: 2015 article-title: Comprehensive analysis of lncRNA‐mRNA co‐expression patterns identifies immune‐associated lncRNA biomarkers in ovarian cancer malignant progression publication-title: Sci Rep – volume: 97 start-page: 684 year: 2017 end-page: 692 article-title: Identification of a long noncoding RNA‐associated competing endogenous RNA network in intracranial aneurysm publication-title: World Neurosurg – volume: 35 start-page: 1 year: 2014 end-page: 71 article-title: Protein damage, repair and proteolysis publication-title: Mol Aspects Med – volume: 17 start-page: 654 year: 2011 end-page: 666 article-title: Principles and current strategies for targeting autophagy for cancer treatment publication-title: Clin Cancer Res – volume: 10 start-page: 155 year: 2009 article-title: Long non‐coding RNAs: insights into functions publication-title: Nat Rev Genet – volume: 15 start-page: 18985 year: 2014 end-page: 18999 article-title: Large intervening non‐coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers publication-title: Int J Mol Sci – volume: 321 start-page: 1807 year: 2008 end-page: 1812 article-title: An integrated genomic analysis of human glioblastoma multiforme publication-title: Science – volume: 314 start-page: 213 year: 2012 end-page: 222 article-title: Interferon‐gamma induces autophagy with growth inhibition and cell death in human hepatocellular carcinoma (HCC) cells through interferon‐regulatory factor‐1 (IRF‐1) publication-title: Cancer Lett – volume: 8 start-page: 31521 year: 2017 article-title: Transcriptome analysis reveals differentially expressed lncRNAs between oral squamous cell carcinoma and healthy oral mucosa publication-title: Oncotarget – volume: 118 start-page: 4897 year: 2017 end-page: 4904 article-title: LncRNA‐TP53TG1 participated in the stress response under glucose deprivation in glioma publication-title: J Cell Biochem – volume: 9 start-page: e93388 year: 2014 article-title: Microarray profiling and co‐expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder publication-title: PLoS One – volume: 12 start-page: 2605 year: 2016 end-page: 2612 article-title: The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma publication-title: Mol BioSyst – volume: 22 start-page: 165 year: 2011 end-page: 178 article-title: Autophagy facilitates glycolysis during Ras‐mediated oncogenic transformation publication-title: Mol Biol Cell – volume: 16 start-page: 1264 year: 2012 end-page: 1284 article-title: Warburg meets autophagy: cancer‐associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis publication-title: Antioxid Redox Signal – volume: 133 start-page: 1614 year: 2013 end-page: 1623 article-title: miRNA expression profiling of inflammatory breast cancer identifies a 5‐miRNA signature predictive of breast tumor aggressiveness publication-title: Int J Cancer – volume: 14 start-page: 42 year: 2016 end-page: 54 article-title: Roles, functions, and mechanisms of long non‐coding RNAs in cancer publication-title: Genomics Proteomics Bioinformatics – volume: 132 start-page: 27 year: 2008 end-page: 42 article-title: Autophagy in the pathogenesis of disease publication-title: Cell – ident: e_1_2_9_33_1 doi: 10.18632/oncotarget.16358 – ident: e_1_2_9_23_1 doi: 10.1101/gr.1239303 – ident: e_1_2_9_19_1 doi: 10.1016/j.bbcan.2015.07.001 – ident: e_1_2_9_30_1 doi: 10.1091/mbc.E10-06-0500 – ident: e_1_2_9_17_1 doi: 10.1016/j.mam.2012.09.001 – ident: e_1_2_9_18_1 doi: 10.1152/ajplung.00221.2016 – ident: e_1_2_9_8_1 doi: 10.1016/j.cell.2007.12.018 – ident: e_1_2_9_4_1 doi: 10.1124/pr.117.014944 – ident: e_1_2_9_7_1 doi: 10.1126/science.1164382 – ident: e_1_2_9_28_1 doi: 10.1089/ars.2011.4243 – ident: e_1_2_9_16_1 doi: 10.3390/ijms151018985 – ident: e_1_2_9_26_1 doi: 10.1038/ncomms12791 – ident: e_1_2_9_34_1 doi: 10.1038/srep17683 – ident: e_1_2_9_21_1 doi: 10.4161/auto.28363 – ident: e_1_2_9_35_1 doi: 10.1371/journal.pone.0093388 – ident: e_1_2_9_14_1 doi: 10.1038/ni.3771 – ident: e_1_2_9_3_1 doi: 10.1007/s00401-007-0243-4 – ident: e_1_2_9_10_1 doi: 10.1158/1078-0432.CCR-10-2634 – ident: e_1_2_9_15_1 doi: 10.1002/jcp.24549 – ident: e_1_2_9_22_1 doi: 10.1016/j.phrs.2017.11.009 – ident: e_1_2_9_2_1 doi: 10.1016/j.critrevonc.2017.03.021 – ident: e_1_2_9_13_1 doi: 10.1038/nrg2521 – ident: e_1_2_9_25_1 doi: 10.1002/ijc.28171 – volume: 375 start-page: 2200 year: 2016 ident: e_1_2_9_24_1 article-title: 70‐Gene signature in early‐stage breast cancer publication-title: N Engl J Med – ident: e_1_2_9_6_1 doi: 10.1158/0008-5472.CAN-06-2072 – ident: e_1_2_9_5_1 doi: 10.1158/0008-5472.CAN-04-1337 – ident: e_1_2_9_29_1 doi: 10.1016/j.canlet.2011.09.031 – ident: e_1_2_9_37_1 doi: 10.1016/j.gpb.2015.09.006 – ident: e_1_2_9_11_1 doi: 10.1038/cddis.2013.350 – ident: e_1_2_9_12_1 doi: 10.1634/theoncologist.12-12-1395 – ident: e_1_2_9_9_1 doi: 10.1038/nrclinonc.2011.71 – ident: e_1_2_9_36_1 doi: 10.1016/j.wneu.2016.10.016 – ident: e_1_2_9_27_1 doi: 10.1158/0008-5472.CAN-04-3640 – ident: e_1_2_9_32_1 doi: 10.1371/journal.pone.0141042 – ident: e_1_2_9_20_1 doi: 10.1039/C6MB00114A – ident: e_1_2_9_31_1 doi: 10.1002/jcb.26175 |
SSID | ssj0000601600 |
Score | 2.4575553 |
Snippet | Glioma is one of the most common types of malignant primary central nervous system tumor, and prognosis for this disease is poor. As autophagic drugs have been... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 653 |
SubjectTerms | Apoptosis Autophagy Autophagy - genetics Cancer therapies CCGA Cell death Central nervous system China data collection Datasets DNA methylation DNA microarrays Female Gene expression Gene Expression Regulation, Neoplastic Gene set enrichment analysis genes Genomes glioma Glioma - diagnosis Glioma - genetics Glioma cells hazard ratio Humans Interleukin 2 interleukins Janus kinase long non‐coding RNA Male Medical prognosis microarray technology MicroRNAs MicroRNAs - genetics Nervous system non-coding RNA p53 Protein Phagocytosis Physiology Prognosis prognostic signature Regression analysis Ribonucleic acid Risk groups RNA RNA, Long Noncoding - analysis Signal transduction Software Stat5 protein TCGA transactivators Transcription Tumor necrosis factor-α tumor necrosis factors Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxEB6hSkhcEP9sKZWROHDZxvZ6k_UxRY0qJHpAVOrN8m-oFDaINofeeASekSdhxt5EiSj0wm1le7XembHnG3n8DcBb0Uykdx7DkqAcHTPyWivt69a340ngjbU5N-fj2fj0XH24aC-2Sn1RTlihBy6CG8UwCS6qqF2ySghtVWM7wQPCgM4KFWj3RZ-3FUyVPZiY0_iay4fLkcRIpybu9yNBLFo7biiz9d8GMf_MlNxGsNkFzR7BwwE7smmZ82O4F_sncL9Uk7x5CtNpz-yKiALs_ObXj5_5mkoMbLHs5wyjfGzyS3JV7NPZlFHiRib1ZAhb2Xxxufxqn8H57OTz-9N6qJBQ-xahUa29amWUwUapbBcxlrFBJR481zyFQLGQQh1146Sjj4lKBPkOIYh0OqXU-OY57OH340tgbSt1p4SzIjnVReGklRr1KLQPIblYwdFaYMYP9OFUxWJhCvGxNCRhQxI2WcIVvNu88K0wZ_x96DFpYDOMKK9zAxqCGQzB3GUIFRys9WeGdXhlEC92VNVU8wrebLpxBdGxiO3jcoVj6PYwOuV_jkEX3jQYTY4reFFMYjPbhqPgEPhWMNkxlp3f2e3pL79kJm9UD82uglE2q7vkZGYnxyo_7f8Pib2CBwj_dMlDOoC96--r-Boh1rU7zKvpNzpDIVw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB5BKiQuiDdbClokDly2sb3exD6hBiWqkIhQRaXeLD9DpZAtbXPov--MdxOIgHJbrb1ae8b2fGOPvwF4z-ux8M6jWxKko2NGVmmpfdX4ZjQOrLY2x-Z8mY-OT-Xns-as33C76sMqN2tiXqhD62mPfIiWX1F-Ss0-XvysKGsUna72KTTuwx4uwUoNYG8ynX892e6yZLYRxjacPkwMBXo8FXHAH3Ji09oxR5m1_29Q88-Iyd-RbDZFs8fwqMeQ5VGn9CdwL66ewoMuq-TNM0CXvrRrIgywi5sqX1aJoVy2q0WJvn7lWzJX5cn8qKTgjUzsWSJ0LRfL8_aHfQ6ns-m3T8dVnyWh8g3Co0p72Ygogo1CWhXRn7FBJhY80yyFQP6QRD2pUdLRx0RpgrxCGCKcTinVvn4BA_x7fAVl0witJHeWJydV5E5YoVGXXPsQkosFHG6EZXxPIU6ZLJamIz8WhqRrSLomS7eAD9sPLjr2jH9XnZD0t9WI9jq_aC8Xpp9FJoZxcFFG7ZKVnGsra6s4C4gJleUyFHCw0Z3p5-KV-TVyCni3LcZZREcjdhXbNdahG8RomO-sg2a8rtGjHBXwshsO29bWDAWH4LeA8c5A2enObsnq_Htm80b1UOsKGOYh9T85mdl0IvPT_t2dfQ0PEdzpLsroAAbXl-v4BgHUtXvbz5JbNT4V_A priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Journals (Open Access) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BERIXxBtDQYvEgYub3fU68R5T1KhCokKIStxW-wyVgo3a5tBbf0J_I7-EmbVjCE9xi-yxY8_seL6xZ74BeCmqmfTOY1oSlKPPjLzUSvuy9vV0Fnhlba7NeXs0PTxWbz7Wm2pC6oXp-SHGF27kGfl5TQ5u3dnkO2moxNSlJDL3PUG0WNfhBjXYUlWfVO_G1yyZbiQ3oozyG4IfLic_nWMrNmUK_9_hzl_LJ3-EtTkuLe7A7QFQsnm_Au7Ctdjeg5v9iMmL-zCft8yuiT3ALi--Xl7l3pUY2KprlwxTf9zkO4pf7P3RnFE1R2b6ZIhl2XJ10n22D-B4cfDh9WE5jE0ofY14qdRe1TLKYKNUtomY4NigEg-ea55CoARJoeGaadLRx0Rzg3yDuEQ6nVKqfPUQdvD_42NgdS11o4SzIjnVROGklRqNK7QPIblYwN5GYcYPnOI02mJlejZkaUjDhjRssoYLeDUe8KWn0_iz6D5ZYBQjHuy8oTtdmsGtTAyz4KKK2iWrhNBWVbYRPCBIbKxQoYDdjf3M4JxnBkFkQ6NONS_gxbgb3Yq-ldg2dmuUoZZijNR_lcG4XlWYYk4LeNQvifFqK46KQzRcwGxrsWzdzvae9uRTpvdG89DVFTDJy-pfejKLg32Vfz357yOewi0EgLqvRNqFnfPTdXyGIOvcPc9u9A2UMxtQ priority: 102 providerName: Wiley-Blackwell |
Title | An autophagy‐related long non‐coding RNA signature for glioma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2211-5463.12601 https://www.ncbi.nlm.nih.gov/pubmed/30984540 https://www.proquest.com/docview/2328386590 https://www.proquest.com/docview/2209999090 https://www.proquest.com/docview/2718331496 https://pubmed.ncbi.nlm.nih.gov/PMC6443865 https://doaj.org/article/ed7dbe4e9bfa4119a43a810d4238a14d |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB6ahJZcSt9VmxoVeuhFjna1srWHUuJiEwoxIdSQ27LahxNwpcaJof73nVlJbkyS9iakXbSah-abfXwD8IllQ25Kg2mJFSUtM6aJFNIkuckHQ5tmWoe9OSfTwfFMfD_Pz_-WA2oFeH1vakf1pGbLRf_31forOvyXlkD0kGMSkxCte58RQdYO7GFYGlI5g5MW6ze_ZSJTSzt6n7v99uFJlspChImQW0EqcPnfB0Dv7qO8jW9DgJo8g6ctsoyPGlN4Do9c9QIeN7Um1y8BE_1Yr4hGQM_XSTjC4my8qKt5XNVVYmoKYvHZ9CimLR2B7jNGQBvPF5f1T_0KZpPxj2_HSVs7ITE5gqZEGpFzx612XOjCYZajrfCpNalMvbWUJQnUXjHw0hnnqXiQKRCc8FJ67zOTvYZdfLt7C3Gec5QKKzXzpSgcK7nmEjXMpLHWly6CficsZVpicapvsVANJTJXJGhFglZB0BF83nT41XBqPNx0RNLfNCMy7HCjXs5V61vK2aEtnXCy9FowJrXIdMFSi0ix0EzYCA463anOwBQiyYLqnco0go-bx-hbtGCiK1evsA2dK8Zw_c82GNyzDPPMQQRvGnPYjLYzpwiGW4ay9TnbT6rLi8Dxjeqh0UVwGEzqf3JSk_FIhKt3D47iPewj2pPNtqMD2L1ZrtwHRFQ3ZQ92uDjtwd5oPD0964V5iV7wnj88lhoK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheEL8JDAgSSLxkdRynjR8m1EKrjm0VmjZpb8axnTKpJGNbhfpP8Tdy5ySFChhPe4sSJ7HPd7nv4vN3AK_jpM9NbjAssSKnZUYWSSFNlJq017cs0drn5hxMe5Nj8fEkPdmAH-1eGEqrbL-J_kNtK0P_yLvo-TOqTynZu7NvEVWNotXVtoRGrRZ7bvkdQ7aLnd0POL9vOB-Pjt5PoqaqQGRSX1PeiJQ7brXjQmcO8b-2omDWMMkKayl-EDiurFdIZ1xBZXVMhm6b57IoisQk-NwbsCmSHuMd2ByOpp8OV391PLsJYy2HEONdjhFWRJzz2zGxd625P18l4G_Q9s8Mzd-Rs3d947twp8Gs4aBWsnuw4cr7cLOuYrl8ADuDMtQLIijQs2XkN8c4G86rchaWVRmZitxjeDgdhJQs4olEQ4TK4Wx-Wn3VD-H4WuT3CDr4dvcEwjTlMhNxruMiF5mLc665RN2JpbG2yF0A262wlGkoy6lyxlzVZMtckXQVSVd56QbwdnXDWc3W8e-mQ5L-qhnRbPsT1flMNVarnO3b3Akn80KLOJZaJDqLmUUMmulY2AC22rlTje1fqF-aGsCr1WW0WlqK0aWrFtiGdiwjELiyDcKGJMEIthfA41odVr1NGAoOwXYA_TVFWRvO-pXy9ItnD8fpod4F0PUq9T85qfFoKPzR06sH-xJuTY4O9tX-7nTvGdxGYCnrDKct6FyeL9xzBG-X-YvGYkL4fN1G-hPkt1Ql |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAkYCiYub9XqdeA8VSmiilkJUVVTqzV3vI1RK7b4ilL_Gr2NmbQcioJx6s-z1Y2dndr7xzn4D8DZO-lwXGsMSIwpaZmSRFFJHqU57fcMSpXxuzpdJb-dQfDpKj9bgR7sXhtIq2znRT9Sm0vSPvIueP6P6lJJ1XZMWsb89_nB2HlEFKVppbctp1CqyZxffMXy73NrdxrF-x_l49PXjTtRUGIh06uvLa5Fyy42yXKjMYiygjHDMaCaZM4ZiCYF9zHpOWm0dldjRGbpwXkjnXKITfO4tWO9TVNSB9eFosn-w_MPjmU4Ya_mEGO9yjLYi4p_fjInJa8UV-ooBf4O5f2Zr_o6ivRsc34d7DX4NB7XCPYA1Wz6E23VFy8Uj2BqUoZoTWYGaLiK_UcaacFaV07CsykhX5CrDg8kgpMQRTyoaImwOp7OT6lQ9hsMbkd8T6ODb7TMI05TLTMSFil0hMhsXXHGJehRLbYwrbACbrbBy3dCXUxWNWV4TL_OcpJuTdHMv3QDeL284q5k7_t10SNJfNiPKbX-iupjmjQXn1vRNYYWVhVMijqUSicpiZhCPZioWJoCNduzyZh64zH9pbQBvlpfRgmlZRpW2mmMb2r2MoODaNgghkgSj2V4AT2t1WH5twlBwCLwD6K8oykp3Vq-UJ988kzgOD31dAF2vUv-TUz4eDYU_en59Z1_DHTTO_PPuZO8F3EWMKetkpw3oXF3M7UvEcVfFq8ZgQji-aRv9CeC4WFo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autophagy-related+long+non-coding+RNA+signature+for+glioma&rft.jtitle=FEBS+open+bio&rft.au=Luan%2C+Fangkun&rft.au=Chen%2C+Wenjie&rft.au=Chen%2C+Miao&rft.au=Yan%2C+Jun&rft.date=2019-04-01&rft.eissn=2211-5463&rft.volume=9&rft.issue=4&rft.spage=653&rft_id=info:doi/10.1002%2F2211-5463.12601&rft_id=info%3Apmid%2F30984540&rft.externalDocID=30984540 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-5463&client=summon |