influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale
We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural...
Saved in:
Published in | Journal of biogeography Vol. 37; no. 7; pp. 1317 - 1328 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.07.2010
Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Mainland Scotland. We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities. |
---|---|
AbstractList | We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Mainland Scotland. We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities. Aim: We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomie groups in the context of conservation policies for birch woodland and heather moorland. Location: Mainland Scotland. Methods: We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results: The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C: N ratio between habitats, respectively. Main conclusions: The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities. Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land‐use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Location Mainland Scotland. Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens ) and heather moorland (dominated by Calluna vulgaris ) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non‐metric multidimensional scaling based on Bray–Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities. AbstractAim We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and-or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland.Location Mainland Scotland.Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis.Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively.Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities. The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities. |
Author | Nielsen, Uffe N. Osler, Graham H. R. van der Wal, René Campbell, Colin D. Burslem, David F. R. P. |
Author_xml | – sequence: 1 givenname: Uffe N. surname: Nielsen fullname: Nielsen, Uffe N. – sequence: 2 givenname: Graham H. R. surname: Osler fullname: Osler, Graham H. R. – sequence: 3 givenname: Colin D. surname: Campbell fullname: Campbell, Colin D. – sequence: 4 givenname: David F. R. P. surname: Burslem fullname: Burslem, David F. R. P. – sequence: 5 givenname: René surname: van der Wal fullname: van der Wal, René |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22919236$$DView record in Pascal Francis https://res.slu.se/id/publ/43643$$DView record from Swedish Publication Index |
BookMark | eNqNktuO0zAQhi20SHQXHgGRG8QNKT4m9QVIS8WeVHHQsuLScpzJ4pLEwU5227fgkXGaqkhcNRexY3__zGT-OUUnrWsBoYTgOYnPu_WcsEykNJNyTnE8xZQuyHzzBM0OFydohhkWKaY5foZOQ1hjjKVgfIb-2LaqB2gNJK5KHuAeet1b1yb9toO3SXC2TjrvOvC9hZDotoyfYGxn99yI_oTEuKZzwU5H1aRrbA87RWONd4XV9Yg1Q2unWP1OWUciGN1BEt81PEdPK10HeLFfz9Ddxafvy6t09eXyenm-So2QgqSM5pwTDEC0KWlFS5OzPIfM8JKIkpZSV5ITWpRcaikkIwZXXBtZmKLAnAE7Q-kUNzxCNxSq87bRfquctirUQ6H9uKgAirOMs8i_mfjYjd8DhF41NhioY_nghqBiORnlMecRJM1j73fk6z2px3-vvG6NDYdSKJVEUpZFbjFxsY0heKgOCMFqnAK1VqPZajRbjVOgdlOgNlH64T-p2TvXe23rYwK8nwI82hq2RydWNx-vx13Uv5z069A7f9BznDPCifjngw09bA732v9SWbRUqB-fL9XNt1uWXX1dqWXkX018pZ3S9z726-42ZmaYLITIKGV_AShc8xU |
CODEN | JBIODN |
CitedBy_id | crossref_primary_10_1371_journal_pone_0180371 crossref_primary_10_5423_PPJ_OA_07_2021_0106 crossref_primary_10_1016_j_pedobi_2011_11_002 crossref_primary_10_1016_j_still_2019_104443 crossref_primary_10_3389_fmicb_2017_02126 crossref_primary_10_1038_srep43150 crossref_primary_10_17221_283_2018_PSE crossref_primary_10_3389_fevo_2016_00032 crossref_primary_10_1080_11250003_2015_1091897 crossref_primary_10_1590_18069657rbcs20180031 crossref_primary_10_1007_s00300_018_2330_5 crossref_primary_10_1007_s11427_017_9200_1 crossref_primary_10_1016_j_resmic_2012_05_005 crossref_primary_10_1051_e3sconf_202449502006 crossref_primary_10_3390_su12218763 crossref_primary_10_1016_j_foreco_2020_118501 crossref_primary_10_1016_j_funeco_2018_12_005 crossref_primary_10_1111_jbi_12775 crossref_primary_10_3390_su12051864 crossref_primary_10_3389_fmicb_2021_789034 crossref_primary_10_1016_j_soilbio_2017_05_012 crossref_primary_10_1111_ejss_13209 crossref_primary_10_1002_iroh_201401734 crossref_primary_10_1038_ismej_2010_171 crossref_primary_10_1146_annurev_environ_102014_021257 crossref_primary_10_1007_s42832_020_0041_7 crossref_primary_10_1007_s11104_014_2055_3 crossref_primary_10_1111_1574_6941_12197 crossref_primary_10_1002_ecs2_1901 crossref_primary_10_1016_j_apsoil_2021_103909 crossref_primary_10_1007_s11769_015_0787_5 crossref_primary_10_1007_s11676_019_01006_8 crossref_primary_10_1016_j_soilbio_2020_107951 crossref_primary_10_1016_j_soilbio_2017_03_009 crossref_primary_10_1007_s10841_012_9512_1 crossref_primary_10_3389_fmicb_2020_00678 crossref_primary_10_1146_annurev_ento_011613_162039 crossref_primary_10_1016_j_soilbio_2014_05_025 crossref_primary_10_1007_s11676_017_0565_6 crossref_primary_10_1007_s11442_021_1880_6 crossref_primary_10_1134_S1067413621010136 crossref_primary_10_1016_j_soilbio_2012_07_013 crossref_primary_10_3390_insects13030285 crossref_primary_10_1016_j_soilbio_2017_09_022 crossref_primary_10_1038_s41598_024_74448_8 crossref_primary_10_3389_fevo_2024_1338109 crossref_primary_10_1007_s42729_022_01002_8 crossref_primary_10_1371_journal_pone_0028967 crossref_primary_10_1016_j_catena_2020_104717 crossref_primary_10_1038_ngeo860 crossref_primary_10_1111_gcb_12522 crossref_primary_10_3389_fmicb_2015_00582 crossref_primary_10_3897_caucasiana_2_e110495 crossref_primary_10_1186_s13568_017_0479_x crossref_primary_10_1038_s41598_018_22788_7 crossref_primary_10_1016_j_ecolind_2017_03_049 crossref_primary_10_1002_ldr_3835 crossref_primary_10_1371_journal_pone_0315908 crossref_primary_10_1016_j_ecolind_2020_107236 crossref_primary_10_1071_SR20094 crossref_primary_10_1007_s10021_013_9689_5 crossref_primary_10_1016_j_scitotenv_2018_11_056 crossref_primary_10_1016_j_funeco_2024_101342 crossref_primary_10_1111_ejss_12219 crossref_primary_10_1088_1755_1315_1398_1_012018 crossref_primary_10_1111_aab_12529 crossref_primary_10_1016_j_ejsobi_2013_08_002 crossref_primary_10_1016_j_still_2021_105082 crossref_primary_10_3389_fevo_2024_1440649 crossref_primary_10_1002_ece3_5638 crossref_primary_10_1016_j_apsoil_2023_104808 crossref_primary_10_1515_biolog_2017_0072 crossref_primary_10_3390_plants11070846 crossref_primary_10_7717_peerj_8047 crossref_primary_10_1134_S1064229319060127 crossref_primary_10_1002_ldr_3542 crossref_primary_10_1016_j_jes_2020_02_009 crossref_primary_10_1007_s11104_018_3673_y crossref_primary_10_1016_j_soilbio_2017_07_010 crossref_primary_10_1111_ele_13904 crossref_primary_10_1016_j_ejsobi_2017_10_006 crossref_primary_10_1016_j_agee_2016_02_020 crossref_primary_10_1038_s41598_023_44468_x crossref_primary_10_1007_s00248_020_01625_3 crossref_primary_10_1016_j_soilbio_2015_06_027 crossref_primary_10_1371_journal_pone_0290144 crossref_primary_10_3389_fmicb_2018_01968 crossref_primary_10_1080_01647954_2018_1520297 crossref_primary_10_1016_j_scitotenv_2021_147497 crossref_primary_10_1007_s10646_014_1186_x crossref_primary_10_1134_S1995425521020037 crossref_primary_10_1111_j_1600_0587_2011_06808_x crossref_primary_10_3390_agronomy13010032 crossref_primary_10_1002_ece3_6057 crossref_primary_10_1016_j_soilbio_2016_12_014 crossref_primary_10_3390_d5010073 crossref_primary_10_1016_j_apsoil_2015_08_004 crossref_primary_10_1016_j_apsoil_2020_103813 crossref_primary_10_5325_jpennacadscie_95_2_0104 crossref_primary_10_3732_ajb_1000305 crossref_primary_10_1371_journal_pone_0152894 crossref_primary_10_1016_j_scitotenv_2018_02_197 crossref_primary_10_1186_s40529_014_0050_x crossref_primary_10_1038_ismej_2016_205 crossref_primary_10_1038_s41598_018_24040_8 crossref_primary_10_1371_journal_pone_0019950 crossref_primary_10_3389_fmicb_2024_1345235 crossref_primary_10_3390_f15101708 crossref_primary_10_1038_s41598_020_63547_x crossref_primary_10_1371_journal_pone_0099597 crossref_primary_10_1007_s11104_019_04044_7 crossref_primary_10_1016_j_agee_2023_108632 crossref_primary_10_1890_ES11_00325_1 crossref_primary_10_1016_j_ecolmodel_2024_110903 crossref_primary_10_3390_agronomy14081614 crossref_primary_10_1038_s41598_019_41170_9 crossref_primary_10_1111_mec_14694 crossref_primary_10_1007_s10342_024_01744_3 crossref_primary_10_1007_s42452_018_0024_9 crossref_primary_10_1038_s41598_021_89448_1 crossref_primary_10_3390_f14101977 crossref_primary_10_5194_bg_12_2585_2015 crossref_primary_10_1016_j_agee_2020_107119 crossref_primary_10_1016_j_scitotenv_2017_07_102 crossref_primary_10_3390_microorganisms9112228 crossref_primary_10_1128_AEM_02188_15 crossref_primary_10_1016_j_apsoil_2015_12_001 crossref_primary_10_1071_SR19351 crossref_primary_10_1515_biolog_2016_0161 crossref_primary_10_3390_d13080369 crossref_primary_10_1002_ldr_3481 crossref_primary_10_1111_icad_12152 crossref_primary_10_1264_jsme2_ME13142 crossref_primary_10_1038_srep28257 crossref_primary_10_1186_s13568_020_01018_2 crossref_primary_10_1894_0038_4909_58_3_351 crossref_primary_10_1080_15324982_2019_1637968 crossref_primary_10_1016_j_soilbio_2012_02_025 crossref_primary_10_1007_s42690_020_00315_4 crossref_primary_10_1016_j_geoderma_2020_114199 crossref_primary_10_1007_s00300_024_03254_9 crossref_primary_10_1007_s11368_016_1485_3 crossref_primary_10_1016_j_resmic_2014_01_002 crossref_primary_10_1007_s10493_015_9959_3 crossref_primary_10_1111_icad_12667 crossref_primary_10_1371_journal_pone_0148785 crossref_primary_10_1038_s42003_018_0274_5 crossref_primary_10_1007_s00248_011_9991_8 crossref_primary_10_1007_s11274_013_1286_4 crossref_primary_10_1016_j_apsoil_2021_104242 crossref_primary_10_1016_j_soilbio_2011_03_022 crossref_primary_10_1073_pnas_1908117117 crossref_primary_10_1038_srep26360 crossref_primary_10_1016_j_foreco_2017_05_015 crossref_primary_10_1007_s10530_023_03034_2 crossref_primary_10_1007_s11248_016_9968_y crossref_primary_10_1016_j_scitotenv_2014_09_018 crossref_primary_10_1111_mec_13621 crossref_primary_10_1007_s10493_024_00909_4 crossref_primary_10_1016_j_scitotenv_2021_145780 crossref_primary_10_1007_s11104_022_05727_4 crossref_primary_10_1128_AEM_01750_12 crossref_primary_10_1002_saj2_20135 crossref_primary_10_1016_j_catena_2022_106849 crossref_primary_10_1038_s41598_021_03937_x crossref_primary_10_1002_ldr_3505 crossref_primary_10_1007_s10311_022_01406_z crossref_primary_10_1080_15275922_2020_1850555 crossref_primary_10_1111_1574_6941_12379 crossref_primary_10_3390_f10020161 crossref_primary_10_1038_srep46407 crossref_primary_10_1016_j_pedobi_2019_03_002 crossref_primary_10_3390_d6040827 crossref_primary_10_1016_j_apsoil_2016_11_005 crossref_primary_10_1016_j_scitotenv_2017_02_229 crossref_primary_10_12677_IJE_2021_104053 |
Cites_doi | 10.1007/BF01218130 10.1007/s002480000053 10.1016/j.ejsobi.2005.09.016 10.1016/S1164-5563(03)00005-0 10.1016/j.apsoil.2006.05.004 10.1111/j.1574-6941.2007.00428.x 10.1093/acprof:oso/9780198525035.001.0001 10.1111/j.1461-0248.2008.01245.x 10.1016/0006-3207(94)00043-P 10.1016/0038-0717(90)90002-H 10.1016/S0031-4056(24)00100-8 10.1046/j.1469-8137.2003.00938.x 10.1016/S0169-5347(02)02496-5 10.1111/j.1461-0248.2006.00931.x 10.1080/03746609708684864 10.1007/s004420050050 10.2981/wlb.2001.004 10.1016/j.tree.2005.08.009 10.1111/j.1365-2745.2007.01227.x 10.1128/AEM.65.8.3622-3626.1999 10.1016/0038-0717(80)90001-2 10.1111/j.1574-6941.2008.00488.x 10.9750/PSAS.124.1.54 10.1128/AEM.00510-06 10.1016/S1146-609X(02)01163-3 10.1046/j.1365-2664.2002.00769.x 10.1073/pnas.0610671104 10.1073/pnas.0507535103 10.1128/AEM.69.6.3593-3599.2003 10.2134/agronmonogr9.2.2ed.c12 10.1016/j.pedobi.2006.05.001 10.1016/j.soilbio.2006.05.013 10.1111/j.1365-2486.2005.00902.x 10.1016/S0031-4056(24)00293-2 10.1111/j.1365-2486.2006.01263.x 10.1016/j.soilbio.2007.12.029 10.1046/j.1462-2920.2003.00522.x 10.1016/j.pedobi.2005.05.006 10.1038/nature03073 10.1128/AEM.69.3.1800-1809.2003 10.2307/2260714 10.1016/j.ecoenv.2005.03.029 10.2307/2256803 |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd. 2010 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd. – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7S9 L.6 7SN 7SS 7ST 7T7 7U6 8FD C1K FR3 M7N P64 SOI ADTPV AOWAS |
DOI | 10.1111/j.1365-2699.2010.02281.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts SwePub SwePub Articles |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Entomology Abstracts Technology Research Database Sustainability Science Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Biology Ecology |
EISSN | 1365-2699 |
EndPage | 1328 |
ExternalDocumentID | oai_slubar_slu_se_43643 22919236 10_1111_j_1365_2699_2010_02281_x JBI2281 40731415 ark_67375_WNG_JQS36HPL_C US201301855622 |
Genre | article |
GeographicLocations | Scotland United Kingdom Great Britain Europe |
GeographicLocations_xml | – name: Scotland |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 VH1 VOH VQP W8V W99 WBKPD WIH WIK WMRSR WOHZO WQJ WRC WSUWO WXSBR XG1 YQT ZZTAW ~02 ~IA ~KM ~WT AAHBH ABXSQ ADACV AHBTC AHXOZ AILXY AITYG AQVQM BSCLL HGLYW IPSME OIG AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION IQODW 7S9 L.6 7SN 7SS 7ST 7T7 7U6 8FD C1K FR3 M7N P64 SOI ADTPV AOWAS |
ID | FETCH-LOGICAL-c5951-3274410ee1acd2f2dc7377e6c4d15d2d9af9412bd49a95931c0f4ac9bcbb043e3 |
IEDL.DBID | DR2 |
ISSN | 0305-0270 1365-2699 |
IngestDate | Thu Aug 21 06:30:06 EDT 2025 Fri Jul 11 01:58:18 EDT 2025 Fri Jul 11 05:01:43 EDT 2025 Mon Jul 21 09:11:13 EDT 2025 Tue Jul 01 05:30:43 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Wed Jan 22 17:06:37 EST 2025 Thu Jul 03 21:30:49 EDT 2025 Wed Oct 30 09:52:22 EDT 2024 Wed Dec 27 19:21:52 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Archaeobacteria Biogeography Scotland Mesostigmata Woodland Fungi Precipitation Acari Dicotyledones Angiospermae community composition Bacteria Gamasida Betulaceae Microbial community Parasitiformes Community structure Composition Landscape Betula pubescens Archaea Property of soil Oribatida Soils heather moorland Acariformes Arachnida Vegetation type Arthropoda Spermatophyta birch woodland Invertebrata |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5951-3274410ee1acd2f2dc7377e6c4d15d2d9af9412bd49a95931c0f4ac9bcbb043e3 |
Notes | http://dx.doi.org/10.1111/j.1365-2699.2010.02281.x ark:/67375/WNG-JQS36HPL-C ArticleID:JBI2281 istex:FF8F2C6BD95779B7704D053D48CC7C824D2400A0 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 742753441 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_43643 proquest_miscellaneous_744624941 proquest_miscellaneous_742753441 pascalfrancis_primary_22919236 crossref_primary_10_1111_j_1365_2699_2010_02281_x crossref_citationtrail_10_1111_j_1365_2699_2010_02281_x wiley_primary_10_1111_j_1365_2699_2010_02281_x_JBI2281 jstor_primary_40731415 istex_primary_ark_67375_WNG_JQS36HPL_C fao_agris_US201301855622 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2010 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: July 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Journal of biogeography |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell |
References | Miles, J. (1981) Effect of birch on moorlands. Institute of Terrestrial Ecology, Cambridge, UK. Keith, A.M., van der Wal, R., Brooker, R.W., Osler, G.H.R., Chapman, S.J. & Burslem, D.F.R.P. (2006) Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biology and Biochemistry, 38, 3421-3430. Zhang, W., Parker, K.M., Luo, Y., Wan, S., Wallace, L.L. & Hu, S. (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277. Minor, M.A. & Cianciolo, J.M. (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Applied Soil Ecology, 35, 140-153. Wall, D.H. (ed.) (2004) Sustaining biodiversity and ecosystem services in soil and sediments. SCOPE 64. Island Press, Washington, DC. Bardgett, R.D. (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford. Ramette, A. & Tiedje, J.M. (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences USA, 104, 2761-2766. Čoja, T. & Bruckner, A. (2003) Soil microhabitat diversity of a temperate Norway spruce (Picea abies) forest does not influence the community composition of gamasid mites (Gamasida, Acari). European Journal of Soil Biology, 39, 79-84. Huntley, B., Daniell, J.R.G. & Allen, J.R.M. (1997) Scottish vegetation history: the Highlands. Botanical Journal of Scotland, 49, 163-175. Robertson, P.A., Park, K.J. & Barton, A.F. (2001) Loss of heather Calluna vulgaris moorland in the Scottish uplands: the role of red grouse Lagopus lagopus scoticus management. Wildlife Biology, 7, 11-16. Satchell, J.E. (1980) Soil and vegetation changes in experimental birch plots on a Calluna podzol. Soil Biology and Biochemistry, 12, 303-310. Coleman, D.C., Crossley, D.A., Jr & Hendrix, P.F. (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, New York. Lindberg, N., Bengtsson, J. & Persson, T. (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936. Nielsen, U.N., Osler, G.H.R., van der Wal, R., Campbell, C.D. & Burslem, D.F.R.P. (2008) Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biology and Biochemistry, 40, 1538-1541. Wardle, D.A. (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in Population Biology, 34. Princeton University Press, Princeton, NJ. Mitchell, R.J., Campbell, C.D., Chapman, S.J., Osler, G.H.R., Vanbergen, A.J., Ross, L.C., Cameron, C.M. & Cole, L. (2007) The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology, 95, 540-554. Osler, G.H.R., Cole, L. & Keith, A.M. (2006) Changes in oribatid mite community structure associated with the succession from heather (Calluna vulgaris) moorland to birch (Betula pubescens) woodland. Pedobiologia, 50, 323-330. Dimbleby, G.W. (1952) Soil regeneration on the north-east Yorkshire moors. Journal of Ecology, 40, 331-341. Nüsslein, K. & Tiedje, J.M. (1999) Soil bacterial community shift correlated with changes from forest to pasture vegetation. Applied and Environmental Microbiology, 65, 3622-3626. Kielak, A., Pijl, A.S., van Veen, J.A. & Kowalchuk, G.A. (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbial Ecology, 63, 372-382. Wauthy, G. (1982) Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups. Acta Oecologia, 3, 469-494. Anderson, I.C., Campbell, C.D. & Prosser, J.I. (2003) Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 5, 1121-1132. Fierer, N. & Jackson, R. (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA, 103, 626-631. Yao, H., He, Z., Wilson, M.J. & Campbell, C.D. (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223-237. Beare, M.H., Neely, C.L., Coleman, D.C. & Hargrove, W.L. (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residue. Soil Biology and Biochemistry, 22, 585-594. Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N. et al. (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1-13. Ponge, J.-F. (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia, 37, 223-244. Thompson, D.B.A., MacDonald, A.J., Marsden, J.H. & Galbraith, C.A. (1995) Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation. Biological Conservation, 71, 163-178. Singh, B.K., Nazaries, L., Munro, S., Anderson, I.C. & Campbell, C.D. (2006) Use of multiplex-terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Applied and Environmental Microbiology, 72, 7278-7285. Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Golbert, L., Booth, R.E. & Grime, J.P. (2003) Plant communities affect arbuscular mycorrhizal diversity and community composition in grassland microcosms. New Phytologist, 161, 503-515. Wauthy, G., Noti, M.-I. & Dufrêne, M. (1989) Geographic ecology of soil oribatid mites in deciduous forests. Pedobiologia, 33, 399-416. Weis-Fogh, T. (1948) Ecological investigations of mites and collemboles in the soil. Nature Jutlandica, 1, 135-277. Kaneko, N. (1988) Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue d'Ecologie et de Biologie du Sol, 25, 353-363. Pella, E. & Colombo, B. (1973) Study of carbon, hydrogen and nitrogen by combustion gas chromatography. Mikrochimica Acta, 5, 697-719. Wardle, D. (2006) The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870-886. Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M. & Ball, A.S. (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69, 1800-1809. Bridges, E.M. (1997) World soils, 3rd edn. Cambridge University Press, Cambridge. Coleman, D.C. & Whitman, W.B. (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 49, 479-497. ter Braak, C.J.F. & Šmilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (ver. 4.5). Microcomputer Power, Ithaca, NY. Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts, J.M. (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593-3599. Rinnan, R., Michelsen, A., Bååth, E. & Jonasson, S. (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39. De Deyn, G.B. & Van der Putten, W.H. (2005) Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 20, 625-633. Ettema, C.H. & Wardle, D.A. (2002) Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183. Ruf, A. & Beck, L. (2005) The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotoxicology and Environmental Safety, 62, 290-299. Colwell, R.K. (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0. User's guide and application published at: http://viceroy.eeb.uconn.edu/estimates. Tipping, R. (1994) The form and fate of Scotland's woodlands. Proceedings of the Society of Antiquaries of Scotland, 124, 1-54. Chan, O.C., Casper, P., Sha, L.Q., Feng, Z.L., Fu, Y., Yang, X.D., Ulrich, A. & Zou, X.M. (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbial Ecology, 64, 449-458. Irmler, U. (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42, 51-62. Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753. Eom, A.-H., Hartnett, D.C. & Wilson, G.W.T. (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435-444. Hester, A.J., Miles, J. & Gimingham, C.H. (1991) Succession from heather moorland to birch woodland. I. Experimental alteration of species environmental conditions in the field. Journal of Ecology, 79, 303-315. Migliorini, M., Petrioli, A. & Bernini, F. (2002) Comparative analysis of two edaphic zoocoenoses (oribatid mites and carabid beetles) in five habitats of the 'Pietraporciana' and 'Lucciolabella' Nature Reserves (Orcia Valley, central Italy). Acta Oecologica, 23, 361-374. Miles, J. & Young, W.F. (1980) The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.). Bulletin d'Ecologie, 11, 233-242. 2002; 17 2007; 104 1995; 71 2006; 72 2006; 38 2005; 62 2005; 20 1997; 49 2007; 35 1993; 37 1989; 33 1948; 1 1982; 3 2003; 161 2003; 5 1982 2000; 122 2008; 63 1981 2008; 64 2002; 39 2006; 50 1991; 79 2006; 9 1997 2006 1999; 65 2005 2003; 39 2004 2008; 11 2007; 95 2002 2005; 49 2007; 13 1994; 124 1990; 22 2006; 42 2004; 432 2001; 7 1988; 25 2002; 23 1980; 12 1980; 11 1952; 40 1965 2003; 69 2000; 40 1973; 5 2008; 40 2005; 11 2006; 103 e_1_2_7_3_1 e_1_2_7_9_1 Miles J. (e_1_2_7_31_1) 1981 e_1_2_7_7_1 Colwell R.K. (e_1_2_7_12_1) 2006 e_1_2_7_19_1 Kaneko N. (e_1_2_7_25_1) 1988; 25 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 Weis‐Fogh T. (e_1_2_7_54_1) 1948; 1 e_1_2_7_28_1 Ponge J.‐F. (e_1_2_7_39_1) 1993; 37 Wauthy G. (e_1_2_7_53_1) 1989; 33 Sinsabaugh R.L. (e_1_2_7_46_1) 2008; 11 Nüsslein K. (e_1_2_7_36_1) 1999; 65 Tipping R. (e_1_2_7_48_1) 1994; 124 Wardle D.A. (e_1_2_7_51_1) 2002 e_1_2_7_50_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 Wauthy G. (e_1_2_7_52_1) 1982; 3 Wall D.H. (e_1_2_7_49_1) 2004 Miles J. (e_1_2_7_32_1) 1980; 11 ter Braak C.J.F. (e_1_2_7_5_1) 2002 Gardner W.H. (e_1_2_7_18_1) 1965 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_27_1 Bridges E.M. (e_1_2_7_6_1) 1997 Coleman D.C. (e_1_2_7_11_1) 2004 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_38_1 McLean E.O. (e_1_2_7_29_1) 1982 |
References_xml | – reference: Kaneko, N. (1988) Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue d'Ecologie et de Biologie du Sol, 25, 353-363. – reference: Coleman, D.C. & Whitman, W.B. (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 49, 479-497. – reference: Colwell, R.K. (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0. User's guide and application published at: http://viceroy.eeb.uconn.edu/estimates. – reference: Pella, E. & Colombo, B. (1973) Study of carbon, hydrogen and nitrogen by combustion gas chromatography. Mikrochimica Acta, 5, 697-719. – reference: Wauthy, G., Noti, M.-I. & Dufrêne, M. (1989) Geographic ecology of soil oribatid mites in deciduous forests. Pedobiologia, 33, 399-416. – reference: Bardgett, R.D. (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford. – reference: ter Braak, C.J.F. & Šmilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (ver. 4.5). Microcomputer Power, Ithaca, NY. – reference: Nüsslein, K. & Tiedje, J.M. (1999) Soil bacterial community shift correlated with changes from forest to pasture vegetation. Applied and Environmental Microbiology, 65, 3622-3626. – reference: Huntley, B., Daniell, J.R.G. & Allen, J.R.M. (1997) Scottish vegetation history: the Highlands. Botanical Journal of Scotland, 49, 163-175. – reference: Zhang, W., Parker, K.M., Luo, Y., Wan, S., Wallace, L.L. & Hu, S. (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277. – reference: Wall, D.H. (ed.) (2004) Sustaining biodiversity and ecosystem services in soil and sediments. SCOPE 64. Island Press, Washington, DC. – reference: Fierer, N. & Jackson, R. (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA, 103, 626-631. – reference: Yao, H., He, Z., Wilson, M.J. & Campbell, C.D. (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223-237. – reference: Coleman, D.C., Crossley, D.A., Jr & Hendrix, P.F. (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, New York. – reference: Ponge, J.-F. (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia, 37, 223-244. – reference: Thompson, D.B.A., MacDonald, A.J., Marsden, J.H. & Galbraith, C.A. (1995) Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation. Biological Conservation, 71, 163-178. – reference: Miles, J. (1981) Effect of birch on moorlands. Institute of Terrestrial Ecology, Cambridge, UK. – reference: Tipping, R. (1994) The form and fate of Scotland's woodlands. Proceedings of the Society of Antiquaries of Scotland, 124, 1-54. – reference: Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Golbert, L., Booth, R.E. & Grime, J.P. (2003) Plant communities affect arbuscular mycorrhizal diversity and community composition in grassland microcosms. New Phytologist, 161, 503-515. – reference: Migliorini, M., Petrioli, A. & Bernini, F. (2002) Comparative analysis of two edaphic zoocoenoses (oribatid mites and carabid beetles) in five habitats of the 'Pietraporciana' and 'Lucciolabella' Nature Reserves (Orcia Valley, central Italy). Acta Oecologica, 23, 361-374. – reference: Irmler, U. (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42, 51-62. – reference: Miles, J. & Young, W.F. (1980) The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.). Bulletin d'Ecologie, 11, 233-242. – reference: Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N. et al. (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1-13. – reference: Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts, J.M. (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593-3599. – reference: Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M. & Ball, A.S. (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69, 1800-1809. – reference: Dimbleby, G.W. (1952) Soil regeneration on the north-east Yorkshire moors. Journal of Ecology, 40, 331-341. – reference: Satchell, J.E. (1980) Soil and vegetation changes in experimental birch plots on a Calluna podzol. Soil Biology and Biochemistry, 12, 303-310. – reference: Bridges, E.M. (1997) World soils, 3rd edn. Cambridge University Press, Cambridge. – reference: Ettema, C.H. & Wardle, D.A. (2002) Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183. – reference: Ramette, A. & Tiedje, J.M. (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences USA, 104, 2761-2766. – reference: Eom, A.-H., Hartnett, D.C. & Wilson, G.W.T. (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435-444. – reference: Anderson, I.C., Campbell, C.D. & Prosser, J.I. (2003) Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 5, 1121-1132. – reference: Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753. – reference: Lindberg, N., Bengtsson, J. & Persson, T. (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936. – reference: Čoja, T. & Bruckner, A. (2003) Soil microhabitat diversity of a temperate Norway spruce (Picea abies) forest does not influence the community composition of gamasid mites (Gamasida, Acari). European Journal of Soil Biology, 39, 79-84. – reference: Beare, M.H., Neely, C.L., Coleman, D.C. & Hargrove, W.L. (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residue. Soil Biology and Biochemistry, 22, 585-594. – reference: Minor, M.A. & Cianciolo, J.M. (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Applied Soil Ecology, 35, 140-153. – reference: Wauthy, G. (1982) Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups. Acta Oecologia, 3, 469-494. – reference: Robertson, P.A., Park, K.J. & Barton, A.F. (2001) Loss of heather Calluna vulgaris moorland in the Scottish uplands: the role of red grouse Lagopus lagopus scoticus management. Wildlife Biology, 7, 11-16. – reference: Wardle, D. (2006) The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870-886. – reference: Rinnan, R., Michelsen, A., Bååth, E. & Jonasson, S. (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39. – reference: Keith, A.M., van der Wal, R., Brooker, R.W., Osler, G.H.R., Chapman, S.J. & Burslem, D.F.R.P. (2006) Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biology and Biochemistry, 38, 3421-3430. – reference: Ruf, A. & Beck, L. (2005) The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotoxicology and Environmental Safety, 62, 290-299. – reference: Osler, G.H.R., Cole, L. & Keith, A.M. (2006) Changes in oribatid mite community structure associated with the succession from heather (Calluna vulgaris) moorland to birch (Betula pubescens) woodland. Pedobiologia, 50, 323-330. – reference: Kielak, A., Pijl, A.S., van Veen, J.A. & Kowalchuk, G.A. (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbial Ecology, 63, 372-382. – reference: Singh, B.K., Nazaries, L., Munro, S., Anderson, I.C. & Campbell, C.D. (2006) Use of multiplex-terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Applied and Environmental Microbiology, 72, 7278-7285. – reference: Mitchell, R.J., Campbell, C.D., Chapman, S.J., Osler, G.H.R., Vanbergen, A.J., Ross, L.C., Cameron, C.M. & Cole, L. (2007) The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology, 95, 540-554. – reference: Weis-Fogh, T. (1948) Ecological investigations of mites and collemboles in the soil. Nature Jutlandica, 1, 135-277. – reference: Wardle, D.A. (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in Population Biology, 34. Princeton University Press, Princeton, NJ. – reference: Nielsen, U.N., Osler, G.H.R., van der Wal, R., Campbell, C.D. & Burslem, D.F.R.P. (2008) Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biology and Biochemistry, 40, 1538-1541. – reference: De Deyn, G.B. & Van der Putten, W.H. (2005) Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 20, 625-633. – reference: Chan, O.C., Casper, P., Sha, L.Q., Feng, Z.L., Fu, Y., Yang, X.D., Ulrich, A. & Zou, X.M. (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbial Ecology, 64, 449-458. – reference: Hester, A.J., Miles, J. & Gimingham, C.H. (1991) Succession from heather moorland to birch woodland. I. Experimental alteration of species environmental conditions in the field. Journal of Ecology, 79, 303-315. – volume: 38 start-page: 3421 year: 2006 end-page: 3430 article-title: Birch invasion of heather moorland increases nematode diversity and trophic complexity publication-title: Soil Biology and Biochemistry – year: 1981 – volume: 12 start-page: 303 year: 1980 end-page: 310 article-title: Soil and vegetation changes in experimental birch plots on a podzol publication-title: Soil Biology and Biochemistry – volume: 13 start-page: 28 year: 2007 end-page: 39 article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem publication-title: Global Change Biology – volume: 122 start-page: 435 year: 2000 end-page: 444 article-title: Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie publication-title: Oecologia – year: 2005 – volume: 22 start-page: 585 year: 1990 end-page: 594 article-title: A substrate‐induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residue publication-title: Soil Biology and Biochemistry – volume: 104 start-page: 2761 year: 2007 end-page: 2766 article-title: Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem publication-title: Proceedings of the National Academy of Sciences USA – volume: 5 start-page: 697 year: 1973 end-page: 719 article-title: Study of carbon, hydrogen and nitrogen by combustion gas chromatography publication-title: Mikrochimica Acta – volume: 20 start-page: 625 year: 2005 end-page: 633 article-title: Linking aboveground and belowground diversity publication-title: Trends in Ecology and Evolution – volume: 3 start-page: 469 year: 1982 end-page: 494 article-title: Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups publication-title: Acta Oecologia – volume: 103 start-page: 626 year: 2006 end-page: 631 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proceedings of the National Academy of Sciences USA – start-page: 199 year: 1982 end-page: 224 – volume: 40 start-page: 331 year: 1952 end-page: 341 article-title: Soil regeneration on the north‐east Yorkshire moors publication-title: Journal of Ecology – volume: 11 start-page: 233 year: 1980 end-page: 242 article-title: The effects on heathland and moorland soils in Scotland and northern England following colonization by birch ( spp.) publication-title: Bulletin d’Ecologie – volume: 432 start-page: 750 year: 2004 end-page: 753 article-title: A taxa–area relationship for bacteria publication-title: Nature – volume: 37 start-page: 223 year: 1993 end-page: 244 article-title: Biocenoses of Collembola in Atlantic temperate grass–woodland ecosystems publication-title: Pedobiologia – volume: 49 start-page: 163 year: 1997 end-page: 175 article-title: Scottish vegetation history: the Highlands publication-title: Botanical Journal of Scotland – volume: 65 start-page: 3622 year: 1999 end-page: 3626 article-title: Soil bacterial community shift correlated with changes from forest to pasture vegetation publication-title: Applied and Environmental Microbiology – volume: 40 start-page: 223 year: 2000 end-page: 237 article-title: Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use publication-title: Microbial Ecology – volume: 69 start-page: 1800 year: 2003 end-page: 1809 article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils publication-title: Applied and Environmental Microbiology – volume: 42 start-page: 51 year: 2006 end-page: 62 article-title: Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation publication-title: European Journal of Soil Biology – volume: 35 start-page: 140 year: 2007 end-page: 153 article-title: Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York publication-title: Applied Soil Ecology – start-page: 82 year: 1965 end-page: 187 – volume: 39 start-page: 79 year: 2003 end-page: 84 article-title: Soil microhabitat diversity of a temperate Norway spruce ( ) forest does not influence the community composition of gamasid mites (Gamasida, Acari) publication-title: European Journal of Soil Biology – volume: 25 start-page: 353 year: 1988 end-page: 363 article-title: Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan publication-title: Revue d’Ecologie et de Biologie du Sol – year: 2004 – year: 1997 – volume: 95 start-page: 540 year: 2007 end-page: 554 article-title: The cascading effects of birch on heather moorland: a test for the top‐down control of an ecosystem engineer publication-title: Journal of Ecology – volume: 71 start-page: 163 year: 1995 end-page: 178 article-title: Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation publication-title: Biological Conservation – volume: 40 start-page: 1538 year: 2008 end-page: 1541 article-title: Soil pore volume and the abundance of soil mites in two contrasting habitats publication-title: Soil Biology and Biochemistry – volume: 1 start-page: 135 year: 1948 end-page: 277 article-title: Ecological investigations of mites and collemboles in the soil publication-title: Nature Jutlandica – volume: 17 start-page: 177 year: 2002 end-page: 183 article-title: Spatial soil ecology publication-title: Trends in Ecology and Evolution – volume: 50 start-page: 323 year: 2006 end-page: 330 article-title: Changes in oribatid mite community structure associated with the succession from heather ( ) moorland to birch ( ) woodland publication-title: Pedobiologia – volume: 64 start-page: 449 year: 2008 end-page: 458 article-title: Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T‐RFLP analysis publication-title: FEMS Microbial Ecology – volume: 23 start-page: 361 year: 2002 end-page: 374 article-title: Comparative analysis of two edaphic zoocoenoses (oribatid mites and carabid beetles) in five habitats of the ‘Pietraporciana’ and ‘Lucciolabella’ Nature Reserves (Orcia Valley, central Italy) publication-title: Acta Oecologica – volume: 33 start-page: 399 year: 1989 end-page: 416 article-title: Geographic ecology of soil oribatid mites in deciduous forests publication-title: Pedobiologia – volume: 161 start-page: 503 year: 2003 end-page: 515 article-title: Plant communities affect arbuscular mycorrhizal diversity and community composition in grassland microcosms publication-title: New Phytologist – volume: 124 start-page: 1 year: 1994 end-page: 54 article-title: The form and fate of Scotland’s woodlands publication-title: Proceedings of the Society of Antiquaries of Scotland – volume: 49 start-page: 479 year: 2005 end-page: 497 article-title: Linking species richness, biodiversity and ecosystem function in soil systems publication-title: Pedobiologia – volume: 69 start-page: 3593 year: 2003 end-page: 3599 article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil publication-title: Applied and Environmental Microbiology – volume: 11 start-page: 1 year: 2008 end-page: 13 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters – volume: 9 start-page: 870 year: 2006 end-page: 886 article-title: The influence of biotic interactions on soil biodiversity publication-title: Ecology Letters – volume: 62 start-page: 290 year: 2005 end-page: 299 article-title: The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites publication-title: Ecotoxicology and Environmental Safety – volume: 11 start-page: 266 year: 2005 end-page: 277 article-title: Soil microbial responses to experimental warming and clipping in a tallgrass prairie publication-title: Global Change Biology – volume: 63 start-page: 372 year: 2008 end-page: 382 article-title: Differences in vegetation composition and plant species identity lead to only minor changes in soil‐borne microbial communities in a former arable field publication-title: FEMS Microbial Ecology – volume: 7 start-page: 11 year: 2001 end-page: 16 article-title: Loss of heather moorland in the Scottish uplands: the role of red grouse management publication-title: Wildlife Biology – year: 2002 – year: 2006 – volume: 72 start-page: 7278 year: 2006 end-page: 7285 article-title: Use of multiplex‐terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community publication-title: Applied and Environmental Microbiology – volume: 5 start-page: 1121 year: 2003 end-page: 1132 article-title: Diversity of fungi in organic soils under a moorland – Scots pine ( L.) gradient publication-title: Environmental Microbiology – volume: 39 start-page: 924 year: 2002 end-page: 936 article-title: Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand publication-title: Journal of Applied Ecology – volume: 79 start-page: 303 year: 1991 end-page: 315 article-title: Succession from heather moorland to birch woodland. I. Experimental alteration of species environmental conditions in the field publication-title: Journal of Ecology – ident: e_1_2_7_38_1 doi: 10.1007/BF01218130 – ident: e_1_2_7_55_1 doi: 10.1007/s002480000053 – volume-title: EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0 year: 2006 ident: e_1_2_7_12_1 – volume: 3 start-page: 469 year: 1982 ident: e_1_2_7_52_1 article-title: Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups publication-title: Acta Oecologia – volume: 1 start-page: 135 year: 1948 ident: e_1_2_7_54_1 article-title: Ecological investigations of mites and collemboles in the soil publication-title: Nature Jutlandica – ident: e_1_2_7_23_1 doi: 10.1016/j.ejsobi.2005.09.016 – ident: e_1_2_7_9_1 doi: 10.1016/S1164-5563(03)00005-0 – ident: e_1_2_7_33_1 doi: 10.1016/j.apsoil.2006.05.004 – ident: e_1_2_7_27_1 doi: 10.1111/j.1574-6941.2007.00428.x – ident: e_1_2_7_3_1 doi: 10.1093/acprof:oso/9780198525035.001.0001 – volume-title: Communities and ecosystems: linking the aboveground and belowground components year: 2002 ident: e_1_2_7_51_1 – volume: 11 start-page: 1 year: 2008 ident: e_1_2_7_46_1 article-title: Stoichiometry of soil enzyme activity at global scale publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2008.01245.x – ident: e_1_2_7_47_1 doi: 10.1016/0006-3207(94)00043-P – ident: e_1_2_7_4_1 doi: 10.1016/0038-0717(90)90002-H – volume: 37 start-page: 223 year: 1993 ident: e_1_2_7_39_1 article-title: Biocenoses of Collembola in Atlantic temperate grass–woodland ecosystems publication-title: Pedobiologia doi: 10.1016/S0031-4056(24)00100-8 – start-page: 82 volume-title: Methods of soil analysis: Part 1. Physical and mineralogical properties, including statistics of measurement and sampling year: 1965 ident: e_1_2_7_18_1 – volume-title: Effect of birch on moorlands year: 1981 ident: e_1_2_7_31_1 – ident: e_1_2_7_24_1 doi: 10.1046/j.1469-8137.2003.00938.x – volume: 25 start-page: 353 year: 1988 ident: e_1_2_7_25_1 article-title: Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan publication-title: Revue d’Ecologie et de Biologie du Sol – ident: e_1_2_7_16_1 doi: 10.1016/S0169-5347(02)02496-5 – ident: e_1_2_7_50_1 doi: 10.1111/j.1461-0248.2006.00931.x – ident: e_1_2_7_22_1 doi: 10.1080/03746609708684864 – ident: e_1_2_7_15_1 doi: 10.1007/s004420050050 – ident: e_1_2_7_42_1 doi: 10.2981/wlb.2001.004 – volume-title: Sustaining biodiversity and ecosystem services in soil and sediments year: 2004 ident: e_1_2_7_49_1 – ident: e_1_2_7_13_1 doi: 10.1016/j.tree.2005.08.009 – ident: e_1_2_7_34_1 doi: 10.1111/j.1365-2745.2007.01227.x – volume-title: World soils year: 1997 ident: e_1_2_7_6_1 – volume: 65 start-page: 3622 year: 1999 ident: e_1_2_7_36_1 article-title: Soil bacterial community shift correlated with changes from forest to pasture vegetation publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.65.8.3622-3626.1999 – ident: e_1_2_7_44_1 doi: 10.1016/0038-0717(80)90001-2 – ident: e_1_2_7_8_1 doi: 10.1111/j.1574-6941.2008.00488.x – volume: 124 start-page: 1 year: 1994 ident: e_1_2_7_48_1 article-title: The form and fate of Scotland’s woodlands publication-title: Proceedings of the Society of Antiquaries of Scotland doi: 10.9750/PSAS.124.1.54 – ident: e_1_2_7_45_1 doi: 10.1128/AEM.00510-06 – ident: e_1_2_7_30_1 doi: 10.1016/S1146-609X(02)01163-3 – ident: e_1_2_7_28_1 doi: 10.1046/j.1365-2664.2002.00769.x – ident: e_1_2_7_40_1 doi: 10.1073/pnas.0610671104 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.0507535103 – ident: e_1_2_7_7_1 doi: 10.1128/AEM.69.6.3593-3599.2003 – start-page: 199 volume-title: Methods of soil analysis: Part 2. Chemical and microbiological properties year: 1982 ident: e_1_2_7_29_1 doi: 10.2134/agronmonogr9.2.2ed.c12 – ident: e_1_2_7_37_1 doi: 10.1016/j.pedobi.2006.05.001 – ident: e_1_2_7_26_1 doi: 10.1016/j.soilbio.2006.05.013 – ident: e_1_2_7_56_1 doi: 10.1111/j.1365-2486.2005.00902.x – volume: 33 start-page: 399 year: 1989 ident: e_1_2_7_53_1 article-title: Geographic ecology of soil oribatid mites in deciduous forests publication-title: Pedobiologia doi: 10.1016/S0031-4056(24)00293-2 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2486.2006.01263.x – ident: e_1_2_7_35_1 doi: 10.1016/j.soilbio.2007.12.029 – ident: e_1_2_7_2_1 doi: 10.1046/j.1462-2920.2003.00522.x – ident: e_1_2_7_10_1 doi: 10.1016/j.pedobi.2005.05.006 – volume: 11 start-page: 233 year: 1980 ident: e_1_2_7_32_1 article-title: The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.) publication-title: Bulletin d’Ecologie – ident: e_1_2_7_21_1 doi: 10.1038/nature03073 – volume-title: Fundamentals of soil ecology year: 2004 ident: e_1_2_7_11_1 – ident: e_1_2_7_19_1 doi: 10.1128/AEM.69.3.1800-1809.2003 – ident: e_1_2_7_20_1 doi: 10.2307/2260714 – volume-title: CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (ver. 4.5) year: 2002 ident: e_1_2_7_5_1 – ident: e_1_2_7_43_1 doi: 10.1016/j.ecoenv.2005.03.029 – ident: e_1_2_7_14_1 doi: 10.2307/2256803 |
SSID | ssj0009534 |
Score | 2.4083426 |
Snippet | We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in... Aim: We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and... Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and... Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and... AbstractAim We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil... The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms... |
SourceID | swepub proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1317 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Arachnida Archaea bacteria Betula pubescens Biological and medical sciences birch woodland Calluna vulgaris carbon nitrogen ratio climate climate change community composition community structure Forest soils Fundamental and applied biological sciences. Psychology fungal communities fungi General aspects Habitats heather moorland heathlands Invertebrates issues and policy land use change landscapes linear models Markvetenskap Mesostigmata microhabitats Mites Moorlands multidimensional scaling Oribatida rain Responses to habitat alteration and loss Sarcoptiformes Scotland Soil composition Soil ecology Soil microorganisms soil pH Soil properties Soil Science Synecology Vegetation Woodlands |
Title | influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale |
URI | https://api.istex.fr/ark:/67375/WNG-JQS36HPL-C/fulltext.pdf https://www.jstor.org/stable/40731415 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2010.02281.x https://www.proquest.com/docview/742753441 https://www.proquest.com/docview/744624941 https://res.slu.se/id/publ/43643 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEoIXvqdlwOQHtCdSJY4TL48wbZQKTcCo2Jvl2M5WtSRV004bv4MfzL12Ei0IoQnxVEf1tZLra-c4Pj6XkNdKZ8pEmQnTIotCrnFI2dRih6SGR0qI0hFkT7LxlE_O0rOW_4RnYbw-RP_BDUeGm69xgKuiGQ5yz9DK85ahxdhBPEI8iX8gPvrCbujvJl5JCrlqTERDUs8fGxq8qe6Wqgb8iq6_6qiLyKNUDbiy9DkwhiDVC48OMa97aR0_IvPucT1XZT7arIuR_vGbEuT_8cdj8rDFtvStD8Yn5I6tnpJ7PtvlNZSOdFu636Zev7h-Rn5CoNJZlyqF1iW9tOctB5LiB-I3tKlnC7rEXYMVyr9SVRm4tHq2bAXGKVaFZpAf35LQsCFnh-e3nMX3mdOcghvU_lCMb2vtLN2JZ-SCUfS0fU6mx0dfD8dhmyoi1ClgxDBBocM4sjZW2rCSGS0SIWymuYlTw0yuypzHrDA8VyjFHOuo5ErnhS6KiCc22SZbVV3ZHQgLnqVFbrkxCtZmgNcSVqYRXOVCl9GBDojowkLq9jExncdC3lhPQU9I7AmJPSFdT8irgMS95dJridzCZgciT6pzmPLl9JThRjNALECtLCD7Lhz7ttRqjjQ9kcpvJ-_l5PNpko0_fZSHAdl28dpXhEV8EgNyC8jeIID7CozliPyzgNAuoiVMO7iXpCpbbxopOIOFLvj8b1V4Bot7rLLvB0PfPmqaN4tNoVb4IxsreQLQOCCZi_Bbe0dO3n3A0u6_Gr4gDzwdBPnXL8nWerWxrwBlros9N3_8AsKJbCc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCI0XvqeFj-EHtCdSJY6TLI8wbXSlVMBWsTfLsZ2tWkmqpkUbfwd_MHd2Ei0IoQnxVEfynZrz2fmd_fMdIa-lSqQOEu3HeRL4XOGUMrHBAYk1D2SaFpYgO0mGUz46jU-bckB4F8blh-g23HBm2PUaJzhuSPdnuaNoZVlD0WJsLxwAoLyDBb5tfPWFXcvAG7lcUshWY2nQp_X8UVPvW3W7kBUgWDT-ZUteRCalrMGYhauC0YepLvVoH_Xaz9bhAzJvX9ixVS4G61U-UD9-ywX5nyzykNxv4C196_zxEbllysfkrit4eQWtA9W0Npvq6-dXT8hP8FU6a6ul0Kqg381ZQ4OkuEf8htbVbE4XeHCwxAywVJYaHo2aLZoc4xS7ghqkyDc8NFRk5fAKl5X4NrNpp-APKncvxulaWUl76RnpYBRNbZ6S6eHByf7Qb6pF-CoGmOhHmOswDIwJpdKsYFqlUZqaRHEdxprpTBYZD1mueSYxG3OogoJLleUqzwMemWiLbJRVabbBL8B_8sxwrSWEZwDZIlbEATxlqSqCPeWRtPULoZrXxIoec3EtpIKREDgSAkdC2JEQlx4JO8mFSydyA5ltcD0hz2DVF9NjhmfNgLIAuDKP7Fp_7HTJ5QUy9dJYfJ28F6PPx1Ey_DQW-x7Zsg7bdYQ4PgoBvHlkp-fBXQfGMgT_iUdo69ICVh48TpKlqda1SDmDWBds_rcuPIH4HrvsutnQ6ce05vV8ncsl_ojaCB4BOvZIYl38xtYRo3dH2Hr2r4KvyObw5ONYjI8mH56Te44dgnTsF2RjtVyblwA6V_mOXUx-AWZIcEI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgiMsL92nhMvyA9kSqxHGc5hG2la5M1WBU7M1ybGdULW3VtGjjd_CDOcdOowUhNCGe6kg-R83xsfM5-fwdQl4rLZSJhAnTQkQh1zilbGpxQFLDI5VlpSPIDkV_xAdn6VnNf8KzMF4fonnhhjPDrdc4wRembE9yz9DK85qhxVg37gCevMVF1MUMP_jErgjwJl5KCslqLIvarJ4_emo9qm6Wag4AFmN_seEuIpFSVRDL0hfBaKNUrzzaBr3uqdV7QCab-_VklUlnvSo6-sdvUpD_JyAPyf0a3NK3PhsfkRt29pjc9uUuL6F1qOvW3br2-tfLJ-QnZCodb2ql0HlJv9vzmgRJ8Q3xG1rNx1O6wM8GS9R_pWpm4NLq8aJWGKfYFdwgQb5moaEjZ4cHuJzFt7ETnYI_qP2pGO9r5SzdkWckg1GMtH1KRr3Dz_v9sK4VEeoUQGKYoNJhHFkbK21YyYzOkiyzQnMTp4aZXJU5j1lheK5QiznWUcmVzgtdFBFPbLJNtmbzmd2BtOAiLXLLjVGwOQPAlrAyjeAqz3QZdXVAsk1aSF3fJtbzmMorGyoYCYkjIXEkpBsJeRGQuLFceDGRa9jsQOZJdQ5rvhydMvzSDBgLYCsLyJ5Lx8aXWk6Qp5el8svwvRx8PE1E_-RY7gdk2-Vr0xF28UkM0C0gu60EbjowliP0FwGhm4yWsO7gxyQ1s_N1JTPOYKcLMf9bFy5gd49d9vxkaPyjqHk1XRdqiT-yspIngI0DIlyGXzs6cvDuCFvP_tXwFblzctCTx0fDD8_JPU8NQS72C7K1Wq7tS0Ccq2LXLSW_AM1Mbvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+vegetation+type%2C+soil+properties+and+precipitation+on+the+composition+of+soil+mite+and+microbial+communities+at+the+landscape+scale&rft.jtitle=Journal+of+biogeography&rft.au=Nielsen%2C+Uffe+N.&rft.au=Osler%2C+Graham+H.+R.&rft.au=Campbell%2C+Colin+D.&rft.au=Burslem%2C+David+F.+R.+P.&rft.date=2010-07-01&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=37&rft.issue=7&rft.spage=1317&rft.epage=1328&rft_id=info:doi/10.1111%2Fj.1365-2699.2010.02281.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2699_2010_02281_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon |