influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale

We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 37; no. 7; pp. 1317 - 1328
Main Authors Nielsen, Uffe N., Osler, Graham H. R., Campbell, Colin D., Burslem, David F. R. P., van der Wal, René
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.07.2010
Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Mainland Scotland. We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.
AbstractList We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Mainland Scotland. We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.
Aim: We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomie groups in the context of conservation policies for birch woodland and heather moorland. Location: Mainland Scotland. Methods: We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results: The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C: N ratio between habitats, respectively. Main conclusions: The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.
Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land‐use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Location Mainland Scotland. Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens ) and heather moorland (dominated by Calluna vulgaris ) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non‐metric multidimensional scaling based on Bray–Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.
AbstractAim We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and-or induced changes (e.g. changes in land-use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland.Location Mainland Scotland.Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non-metric multidimensional scaling based on Bray-Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis.Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively.Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.
The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.
Author Nielsen, Uffe N.
Osler, Graham H. R.
van der Wal, René
Campbell, Colin D.
Burslem, David F. R. P.
Author_xml – sequence: 1
  givenname: Uffe N.
  surname: Nielsen
  fullname: Nielsen, Uffe N.
– sequence: 2
  givenname: Graham H. R.
  surname: Osler
  fullname: Osler, Graham H. R.
– sequence: 3
  givenname: Colin D.
  surname: Campbell
  fullname: Campbell, Colin D.
– sequence: 4
  givenname: David F. R. P.
  surname: Burslem
  fullname: Burslem, David F. R. P.
– sequence: 5
  givenname: René
  surname: van der Wal
  fullname: van der Wal, René
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22919236$$DView record in Pascal Francis
https://res.slu.se/id/publ/43643$$DView record from Swedish Publication Index
BookMark eNqNktuO0zAQhi20SHQXHgGRG8QNKT4m9QVIS8WeVHHQsuLScpzJ4pLEwU5227fgkXGaqkhcNRexY3__zGT-OUUnrWsBoYTgOYnPu_WcsEykNJNyTnE8xZQuyHzzBM0OFydohhkWKaY5foZOQ1hjjKVgfIb-2LaqB2gNJK5KHuAeet1b1yb9toO3SXC2TjrvOvC9hZDotoyfYGxn99yI_oTEuKZzwU5H1aRrbA87RWONd4XV9Yg1Q2unWP1OWUciGN1BEt81PEdPK10HeLFfz9Ddxafvy6t09eXyenm-So2QgqSM5pwTDEC0KWlFS5OzPIfM8JKIkpZSV5ITWpRcaikkIwZXXBtZmKLAnAE7Q-kUNzxCNxSq87bRfquctirUQ6H9uKgAirOMs8i_mfjYjd8DhF41NhioY_nghqBiORnlMecRJM1j73fk6z2px3-vvG6NDYdSKJVEUpZFbjFxsY0heKgOCMFqnAK1VqPZajRbjVOgdlOgNlH64T-p2TvXe23rYwK8nwI82hq2RydWNx-vx13Uv5z069A7f9BznDPCifjngw09bA732v9SWbRUqB-fL9XNt1uWXX1dqWXkX018pZ3S9z726-42ZmaYLITIKGV_AShc8xU
CODEN JBIODN
CitedBy_id crossref_primary_10_1371_journal_pone_0180371
crossref_primary_10_5423_PPJ_OA_07_2021_0106
crossref_primary_10_1016_j_pedobi_2011_11_002
crossref_primary_10_1016_j_still_2019_104443
crossref_primary_10_3389_fmicb_2017_02126
crossref_primary_10_1038_srep43150
crossref_primary_10_17221_283_2018_PSE
crossref_primary_10_3389_fevo_2016_00032
crossref_primary_10_1080_11250003_2015_1091897
crossref_primary_10_1590_18069657rbcs20180031
crossref_primary_10_1007_s00300_018_2330_5
crossref_primary_10_1007_s11427_017_9200_1
crossref_primary_10_1016_j_resmic_2012_05_005
crossref_primary_10_1051_e3sconf_202449502006
crossref_primary_10_3390_su12218763
crossref_primary_10_1016_j_foreco_2020_118501
crossref_primary_10_1016_j_funeco_2018_12_005
crossref_primary_10_1111_jbi_12775
crossref_primary_10_3390_su12051864
crossref_primary_10_3389_fmicb_2021_789034
crossref_primary_10_1016_j_soilbio_2017_05_012
crossref_primary_10_1111_ejss_13209
crossref_primary_10_1002_iroh_201401734
crossref_primary_10_1038_ismej_2010_171
crossref_primary_10_1146_annurev_environ_102014_021257
crossref_primary_10_1007_s42832_020_0041_7
crossref_primary_10_1007_s11104_014_2055_3
crossref_primary_10_1111_1574_6941_12197
crossref_primary_10_1002_ecs2_1901
crossref_primary_10_1016_j_apsoil_2021_103909
crossref_primary_10_1007_s11769_015_0787_5
crossref_primary_10_1007_s11676_019_01006_8
crossref_primary_10_1016_j_soilbio_2020_107951
crossref_primary_10_1016_j_soilbio_2017_03_009
crossref_primary_10_1007_s10841_012_9512_1
crossref_primary_10_3389_fmicb_2020_00678
crossref_primary_10_1146_annurev_ento_011613_162039
crossref_primary_10_1016_j_soilbio_2014_05_025
crossref_primary_10_1007_s11676_017_0565_6
crossref_primary_10_1007_s11442_021_1880_6
crossref_primary_10_1134_S1067413621010136
crossref_primary_10_1016_j_soilbio_2012_07_013
crossref_primary_10_3390_insects13030285
crossref_primary_10_1016_j_soilbio_2017_09_022
crossref_primary_10_1038_s41598_024_74448_8
crossref_primary_10_3389_fevo_2024_1338109
crossref_primary_10_1007_s42729_022_01002_8
crossref_primary_10_1371_journal_pone_0028967
crossref_primary_10_1016_j_catena_2020_104717
crossref_primary_10_1038_ngeo860
crossref_primary_10_1111_gcb_12522
crossref_primary_10_3389_fmicb_2015_00582
crossref_primary_10_3897_caucasiana_2_e110495
crossref_primary_10_1186_s13568_017_0479_x
crossref_primary_10_1038_s41598_018_22788_7
crossref_primary_10_1016_j_ecolind_2017_03_049
crossref_primary_10_1002_ldr_3835
crossref_primary_10_1371_journal_pone_0315908
crossref_primary_10_1016_j_ecolind_2020_107236
crossref_primary_10_1071_SR20094
crossref_primary_10_1007_s10021_013_9689_5
crossref_primary_10_1016_j_scitotenv_2018_11_056
crossref_primary_10_1016_j_funeco_2024_101342
crossref_primary_10_1111_ejss_12219
crossref_primary_10_1088_1755_1315_1398_1_012018
crossref_primary_10_1111_aab_12529
crossref_primary_10_1016_j_ejsobi_2013_08_002
crossref_primary_10_1016_j_still_2021_105082
crossref_primary_10_3389_fevo_2024_1440649
crossref_primary_10_1002_ece3_5638
crossref_primary_10_1016_j_apsoil_2023_104808
crossref_primary_10_1515_biolog_2017_0072
crossref_primary_10_3390_plants11070846
crossref_primary_10_7717_peerj_8047
crossref_primary_10_1134_S1064229319060127
crossref_primary_10_1002_ldr_3542
crossref_primary_10_1016_j_jes_2020_02_009
crossref_primary_10_1007_s11104_018_3673_y
crossref_primary_10_1016_j_soilbio_2017_07_010
crossref_primary_10_1111_ele_13904
crossref_primary_10_1016_j_ejsobi_2017_10_006
crossref_primary_10_1016_j_agee_2016_02_020
crossref_primary_10_1038_s41598_023_44468_x
crossref_primary_10_1007_s00248_020_01625_3
crossref_primary_10_1016_j_soilbio_2015_06_027
crossref_primary_10_1371_journal_pone_0290144
crossref_primary_10_3389_fmicb_2018_01968
crossref_primary_10_1080_01647954_2018_1520297
crossref_primary_10_1016_j_scitotenv_2021_147497
crossref_primary_10_1007_s10646_014_1186_x
crossref_primary_10_1134_S1995425521020037
crossref_primary_10_1111_j_1600_0587_2011_06808_x
crossref_primary_10_3390_agronomy13010032
crossref_primary_10_1002_ece3_6057
crossref_primary_10_1016_j_soilbio_2016_12_014
crossref_primary_10_3390_d5010073
crossref_primary_10_1016_j_apsoil_2015_08_004
crossref_primary_10_1016_j_apsoil_2020_103813
crossref_primary_10_5325_jpennacadscie_95_2_0104
crossref_primary_10_3732_ajb_1000305
crossref_primary_10_1371_journal_pone_0152894
crossref_primary_10_1016_j_scitotenv_2018_02_197
crossref_primary_10_1186_s40529_014_0050_x
crossref_primary_10_1038_ismej_2016_205
crossref_primary_10_1038_s41598_018_24040_8
crossref_primary_10_1371_journal_pone_0019950
crossref_primary_10_3389_fmicb_2024_1345235
crossref_primary_10_3390_f15101708
crossref_primary_10_1038_s41598_020_63547_x
crossref_primary_10_1371_journal_pone_0099597
crossref_primary_10_1007_s11104_019_04044_7
crossref_primary_10_1016_j_agee_2023_108632
crossref_primary_10_1890_ES11_00325_1
crossref_primary_10_1016_j_ecolmodel_2024_110903
crossref_primary_10_3390_agronomy14081614
crossref_primary_10_1038_s41598_019_41170_9
crossref_primary_10_1111_mec_14694
crossref_primary_10_1007_s10342_024_01744_3
crossref_primary_10_1007_s42452_018_0024_9
crossref_primary_10_1038_s41598_021_89448_1
crossref_primary_10_3390_f14101977
crossref_primary_10_5194_bg_12_2585_2015
crossref_primary_10_1016_j_agee_2020_107119
crossref_primary_10_1016_j_scitotenv_2017_07_102
crossref_primary_10_3390_microorganisms9112228
crossref_primary_10_1128_AEM_02188_15
crossref_primary_10_1016_j_apsoil_2015_12_001
crossref_primary_10_1071_SR19351
crossref_primary_10_1515_biolog_2016_0161
crossref_primary_10_3390_d13080369
crossref_primary_10_1002_ldr_3481
crossref_primary_10_1111_icad_12152
crossref_primary_10_1264_jsme2_ME13142
crossref_primary_10_1038_srep28257
crossref_primary_10_1186_s13568_020_01018_2
crossref_primary_10_1894_0038_4909_58_3_351
crossref_primary_10_1080_15324982_2019_1637968
crossref_primary_10_1016_j_soilbio_2012_02_025
crossref_primary_10_1007_s42690_020_00315_4
crossref_primary_10_1016_j_geoderma_2020_114199
crossref_primary_10_1007_s00300_024_03254_9
crossref_primary_10_1007_s11368_016_1485_3
crossref_primary_10_1016_j_resmic_2014_01_002
crossref_primary_10_1007_s10493_015_9959_3
crossref_primary_10_1111_icad_12667
crossref_primary_10_1371_journal_pone_0148785
crossref_primary_10_1038_s42003_018_0274_5
crossref_primary_10_1007_s00248_011_9991_8
crossref_primary_10_1007_s11274_013_1286_4
crossref_primary_10_1016_j_apsoil_2021_104242
crossref_primary_10_1016_j_soilbio_2011_03_022
crossref_primary_10_1073_pnas_1908117117
crossref_primary_10_1038_srep26360
crossref_primary_10_1016_j_foreco_2017_05_015
crossref_primary_10_1007_s10530_023_03034_2
crossref_primary_10_1007_s11248_016_9968_y
crossref_primary_10_1016_j_scitotenv_2014_09_018
crossref_primary_10_1111_mec_13621
crossref_primary_10_1007_s10493_024_00909_4
crossref_primary_10_1016_j_scitotenv_2021_145780
crossref_primary_10_1007_s11104_022_05727_4
crossref_primary_10_1128_AEM_01750_12
crossref_primary_10_1002_saj2_20135
crossref_primary_10_1016_j_catena_2022_106849
crossref_primary_10_1038_s41598_021_03937_x
crossref_primary_10_1002_ldr_3505
crossref_primary_10_1007_s10311_022_01406_z
crossref_primary_10_1080_15275922_2020_1850555
crossref_primary_10_1111_1574_6941_12379
crossref_primary_10_3390_f10020161
crossref_primary_10_1038_srep46407
crossref_primary_10_1016_j_pedobi_2019_03_002
crossref_primary_10_3390_d6040827
crossref_primary_10_1016_j_apsoil_2016_11_005
crossref_primary_10_1016_j_scitotenv_2017_02_229
crossref_primary_10_12677_IJE_2021_104053
Cites_doi 10.1007/BF01218130
10.1007/s002480000053
10.1016/j.ejsobi.2005.09.016
10.1016/S1164-5563(03)00005-0
10.1016/j.apsoil.2006.05.004
10.1111/j.1574-6941.2007.00428.x
10.1093/acprof:oso/9780198525035.001.0001
10.1111/j.1461-0248.2008.01245.x
10.1016/0006-3207(94)00043-P
10.1016/0038-0717(90)90002-H
10.1016/S0031-4056(24)00100-8
10.1046/j.1469-8137.2003.00938.x
10.1016/S0169-5347(02)02496-5
10.1111/j.1461-0248.2006.00931.x
10.1080/03746609708684864
10.1007/s004420050050
10.2981/wlb.2001.004
10.1016/j.tree.2005.08.009
10.1111/j.1365-2745.2007.01227.x
10.1128/AEM.65.8.3622-3626.1999
10.1016/0038-0717(80)90001-2
10.1111/j.1574-6941.2008.00488.x
10.9750/PSAS.124.1.54
10.1128/AEM.00510-06
10.1016/S1146-609X(02)01163-3
10.1046/j.1365-2664.2002.00769.x
10.1073/pnas.0610671104
10.1073/pnas.0507535103
10.1128/AEM.69.6.3593-3599.2003
10.2134/agronmonogr9.2.2ed.c12
10.1016/j.pedobi.2006.05.001
10.1016/j.soilbio.2006.05.013
10.1111/j.1365-2486.2005.00902.x
10.1016/S0031-4056(24)00293-2
10.1111/j.1365-2486.2006.01263.x
10.1016/j.soilbio.2007.12.029
10.1046/j.1462-2920.2003.00522.x
10.1016/j.pedobi.2005.05.006
10.1038/nature03073
10.1128/AEM.69.3.1800-1809.2003
10.2307/2260714
10.1016/j.ecoenv.2005.03.029
10.2307/2256803
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd.
2010 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Blackwell Publishing Ltd.
– notice: 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
7SN
7SS
7ST
7T7
7U6
8FD
C1K
FR3
M7N
P64
SOI
ADTPV
AOWAS
DOI 10.1111/j.1365-2699.2010.02281.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
SwePub
SwePub Articles
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Entomology Abstracts
Technology Research Database
Sustainability Science Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

CrossRef

Entomology Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
EndPage 1328
ExternalDocumentID oai_slubar_slu_se_43643
22919236
10_1111_j_1365_2699_2010_02281_x
JBI2281
40731415
ark_67375_WNG_JQS36HPL_C
US201301855622
Genre article
GeographicLocations Scotland
United Kingdom
Great Britain
Europe
GeographicLocations_xml – name: Scotland
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TN5
UB1
VH1
VOH
VQP
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WRC
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
AAHBH
ABXSQ
ADACV
AHBTC
AHXOZ
AILXY
AITYG
AQVQM
BSCLL
HGLYW
IPSME
OIG
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
IQODW
7S9
L.6
7SN
7SS
7ST
7T7
7U6
8FD
C1K
FR3
M7N
P64
SOI
ADTPV
AOWAS
ID FETCH-LOGICAL-c5951-3274410ee1acd2f2dc7377e6c4d15d2d9af9412bd49a95931c0f4ac9bcbb043e3
IEDL.DBID DR2
ISSN 0305-0270
1365-2699
IngestDate Thu Aug 21 06:30:06 EDT 2025
Fri Jul 11 01:58:18 EDT 2025
Fri Jul 11 05:01:43 EDT 2025
Mon Jul 21 09:11:13 EDT 2025
Tue Jul 01 05:30:43 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Wed Jan 22 17:06:37 EST 2025
Thu Jul 03 21:30:49 EDT 2025
Wed Oct 30 09:52:22 EDT 2024
Wed Dec 27 19:21:52 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Archaeobacteria
Biogeography
Scotland
Mesostigmata
Woodland
Fungi
Precipitation
Acari
Dicotyledones
Angiospermae
community composition
Bacteria
Gamasida
Betulaceae
Microbial community
Parasitiformes
Community structure
Composition
Landscape
Betula pubescens
Archaea
Property of soil
Oribatida
Soils
heather moorland
Acariformes
Arachnida
Vegetation type
Arthropoda
Spermatophyta
birch woodland
Invertebrata
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5951-3274410ee1acd2f2dc7377e6c4d15d2d9af9412bd49a95931c0f4ac9bcbb043e3
Notes http://dx.doi.org/10.1111/j.1365-2699.2010.02281.x
ark:/67375/WNG-JQS36HPL-C
ArticleID:JBI2281
istex:FF8F2C6BD95779B7704D053D48CC7C824D2400A0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 742753441
PQPubID 24069
PageCount 12
ParticipantIDs swepub_primary_oai_slubar_slu_se_43643
proquest_miscellaneous_744624941
proquest_miscellaneous_742753441
pascalfrancis_primary_22919236
crossref_primary_10_1111_j_1365_2699_2010_02281_x
crossref_citationtrail_10_1111_j_1365_2699_2010_02281_x
wiley_primary_10_1111_j_1365_2699_2010_02281_x_JBI2281
jstor_primary_40731415
istex_primary_ark_67375_WNG_JQS36HPL_C
fao_agris_US201301855622
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: July 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
References Miles, J. (1981) Effect of birch on moorlands. Institute of Terrestrial Ecology, Cambridge, UK.
Keith, A.M., van der Wal, R., Brooker, R.W., Osler, G.H.R., Chapman, S.J. & Burslem, D.F.R.P. (2006) Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biology and Biochemistry, 38, 3421-3430.
Zhang, W., Parker, K.M., Luo, Y., Wan, S., Wallace, L.L. & Hu, S. (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277.
Minor, M.A. & Cianciolo, J.M. (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Applied Soil Ecology, 35, 140-153.
Wall, D.H. (ed.) (2004) Sustaining biodiversity and ecosystem services in soil and sediments. SCOPE 64. Island Press, Washington, DC.
Bardgett, R.D. (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford.
Ramette, A. & Tiedje, J.M. (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences USA, 104, 2761-2766.
Čoja, T. & Bruckner, A. (2003) Soil microhabitat diversity of a temperate Norway spruce (Picea abies) forest does not influence the community composition of gamasid mites (Gamasida, Acari). European Journal of Soil Biology, 39, 79-84.
Huntley, B., Daniell, J.R.G. & Allen, J.R.M. (1997) Scottish vegetation history: the Highlands. Botanical Journal of Scotland, 49, 163-175.
Robertson, P.A., Park, K.J. & Barton, A.F. (2001) Loss of heather Calluna vulgaris moorland in the Scottish uplands: the role of red grouse Lagopus lagopus scoticus management. Wildlife Biology, 7, 11-16.
Satchell, J.E. (1980) Soil and vegetation changes in experimental birch plots on a Calluna podzol. Soil Biology and Biochemistry, 12, 303-310.
Coleman, D.C., Crossley, D.A., Jr & Hendrix, P.F. (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, New York.
Lindberg, N., Bengtsson, J. & Persson, T. (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936.
Nielsen, U.N., Osler, G.H.R., van der Wal, R., Campbell, C.D. & Burslem, D.F.R.P. (2008) Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biology and Biochemistry, 40, 1538-1541.
Wardle, D.A. (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in Population Biology, 34. Princeton University Press, Princeton, NJ.
Mitchell, R.J., Campbell, C.D., Chapman, S.J., Osler, G.H.R., Vanbergen, A.J., Ross, L.C., Cameron, C.M. & Cole, L. (2007) The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology, 95, 540-554.
Osler, G.H.R., Cole, L. & Keith, A.M. (2006) Changes in oribatid mite community structure associated with the succession from heather (Calluna vulgaris) moorland to birch (Betula pubescens) woodland. Pedobiologia, 50, 323-330.
Dimbleby, G.W. (1952) Soil regeneration on the north-east Yorkshire moors. Journal of Ecology, 40, 331-341.
Nüsslein, K. & Tiedje, J.M. (1999) Soil bacterial community shift correlated with changes from forest to pasture vegetation. Applied and Environmental Microbiology, 65, 3622-3626.
Kielak, A., Pijl, A.S., van Veen, J.A. & Kowalchuk, G.A. (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbial Ecology, 63, 372-382.
Wauthy, G. (1982) Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups. Acta Oecologia, 3, 469-494.
Anderson, I.C., Campbell, C.D. & Prosser, J.I. (2003) Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 5, 1121-1132.
Fierer, N. & Jackson, R. (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA, 103, 626-631.
Yao, H., He, Z., Wilson, M.J. & Campbell, C.D. (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223-237.
Beare, M.H., Neely, C.L., Coleman, D.C. & Hargrove, W.L. (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residue. Soil Biology and Biochemistry, 22, 585-594.
Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N. et al. (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1-13.
Ponge, J.-F. (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia, 37, 223-244.
Thompson, D.B.A., MacDonald, A.J., Marsden, J.H. & Galbraith, C.A. (1995) Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation. Biological Conservation, 71, 163-178.
Singh, B.K., Nazaries, L., Munro, S., Anderson, I.C. & Campbell, C.D. (2006) Use of multiplex-terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Applied and Environmental Microbiology, 72, 7278-7285.
Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Golbert, L., Booth, R.E. & Grime, J.P. (2003) Plant communities affect arbuscular mycorrhizal diversity and community composition in grassland microcosms. New Phytologist, 161, 503-515.
Wauthy, G., Noti, M.-I. & Dufrêne, M. (1989) Geographic ecology of soil oribatid mites in deciduous forests. Pedobiologia, 33, 399-416.
Weis-Fogh, T. (1948) Ecological investigations of mites and collemboles in the soil. Nature Jutlandica, 1, 135-277.
Kaneko, N. (1988) Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue d'Ecologie et de Biologie du Sol, 25, 353-363.
Pella, E. & Colombo, B. (1973) Study of carbon, hydrogen and nitrogen by combustion gas chromatography. Mikrochimica Acta, 5, 697-719.
Wardle, D. (2006) The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870-886.
Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M. & Ball, A.S. (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69, 1800-1809.
Bridges, E.M. (1997) World soils, 3rd edn. Cambridge University Press, Cambridge.
Coleman, D.C. & Whitman, W.B. (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 49, 479-497.
ter Braak, C.J.F. & Šmilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (ver. 4.5). Microcomputer Power, Ithaca, NY.
Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts, J.M. (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593-3599.
Rinnan, R., Michelsen, A., Bååth, E. & Jonasson, S. (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39.
De Deyn, G.B. & Van der Putten, W.H. (2005) Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 20, 625-633.
Ettema, C.H. & Wardle, D.A. (2002) Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183.
Ruf, A. & Beck, L. (2005) The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotoxicology and Environmental Safety, 62, 290-299.
Colwell, R.K. (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0. User's guide and application published at: http://viceroy.eeb.uconn.edu/estimates.
Tipping, R. (1994) The form and fate of Scotland's woodlands. Proceedings of the Society of Antiquaries of Scotland, 124, 1-54.
Chan, O.C., Casper, P., Sha, L.Q., Feng, Z.L., Fu, Y., Yang, X.D., Ulrich, A. & Zou, X.M. (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbial Ecology, 64, 449-458.
Irmler, U. (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42, 51-62.
Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753.
Eom, A.-H., Hartnett, D.C. & Wilson, G.W.T. (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435-444.
Hester, A.J., Miles, J. & Gimingham, C.H. (1991) Succession from heather moorland to birch woodland. I. Experimental alteration of species environmental conditions in the field. Journal of Ecology, 79, 303-315.
Migliorini, M., Petrioli, A. & Bernini, F. (2002) Comparative analysis of two edaphic zoocoenoses (oribatid mites and carabid beetles) in five habitats of the 'Pietraporciana' and 'Lucciolabella' Nature Reserves (Orcia Valley, central Italy). Acta Oecologica, 23, 361-374.
Miles, J. & Young, W.F. (1980) The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.). Bulletin d'Ecologie, 11, 233-242.
2002; 17
2007; 104
1995; 71
2006; 72
2006; 38
2005; 62
2005; 20
1997; 49
2007; 35
1993; 37
1989; 33
1948; 1
1982; 3
2003; 161
2003; 5
1982
2000; 122
2008; 63
1981
2008; 64
2002; 39
2006; 50
1991; 79
2006; 9
1997
2006
1999; 65
2005
2003; 39
2004
2008; 11
2007; 95
2002
2005; 49
2007; 13
1994; 124
1990; 22
2006; 42
2004; 432
2001; 7
1988; 25
2002; 23
1980; 12
1980; 11
1952; 40
1965
2003; 69
2000; 40
1973; 5
2008; 40
2005; 11
2006; 103
e_1_2_7_3_1
e_1_2_7_9_1
Miles J. (e_1_2_7_31_1) 1981
e_1_2_7_7_1
Colwell R.K. (e_1_2_7_12_1) 2006
e_1_2_7_19_1
Kaneko N. (e_1_2_7_25_1) 1988; 25
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
Weis‐Fogh T. (e_1_2_7_54_1) 1948; 1
e_1_2_7_28_1
Ponge J.‐F. (e_1_2_7_39_1) 1993; 37
Wauthy G. (e_1_2_7_53_1) 1989; 33
Sinsabaugh R.L. (e_1_2_7_46_1) 2008; 11
Nüsslein K. (e_1_2_7_36_1) 1999; 65
Tipping R. (e_1_2_7_48_1) 1994; 124
Wardle D.A. (e_1_2_7_51_1) 2002
e_1_2_7_50_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
Wauthy G. (e_1_2_7_52_1) 1982; 3
Wall D.H. (e_1_2_7_49_1) 2004
Miles J. (e_1_2_7_32_1) 1980; 11
ter Braak C.J.F. (e_1_2_7_5_1) 2002
Gardner W.H. (e_1_2_7_18_1) 1965
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_27_1
Bridges E.M. (e_1_2_7_6_1) 1997
Coleman D.C. (e_1_2_7_11_1) 2004
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_38_1
McLean E.O. (e_1_2_7_29_1) 1982
References_xml – reference: Kaneko, N. (1988) Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue d'Ecologie et de Biologie du Sol, 25, 353-363.
– reference: Coleman, D.C. & Whitman, W.B. (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia, 49, 479-497.
– reference: Colwell, R.K. (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0. User's guide and application published at: http://viceroy.eeb.uconn.edu/estimates.
– reference: Pella, E. & Colombo, B. (1973) Study of carbon, hydrogen and nitrogen by combustion gas chromatography. Mikrochimica Acta, 5, 697-719.
– reference: Wauthy, G., Noti, M.-I. & Dufrêne, M. (1989) Geographic ecology of soil oribatid mites in deciduous forests. Pedobiologia, 33, 399-416.
– reference: Bardgett, R.D. (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford.
– reference: ter Braak, C.J.F. & Šmilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (ver. 4.5). Microcomputer Power, Ithaca, NY.
– reference: Nüsslein, K. & Tiedje, J.M. (1999) Soil bacterial community shift correlated with changes from forest to pasture vegetation. Applied and Environmental Microbiology, 65, 3622-3626.
– reference: Huntley, B., Daniell, J.R.G. & Allen, J.R.M. (1997) Scottish vegetation history: the Highlands. Botanical Journal of Scotland, 49, 163-175.
– reference: Zhang, W., Parker, K.M., Luo, Y., Wan, S., Wallace, L.L. & Hu, S. (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277.
– reference: Wall, D.H. (ed.) (2004) Sustaining biodiversity and ecosystem services in soil and sediments. SCOPE 64. Island Press, Washington, DC.
– reference: Fierer, N. & Jackson, R. (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences USA, 103, 626-631.
– reference: Yao, H., He, Z., Wilson, M.J. & Campbell, C.D. (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223-237.
– reference: Coleman, D.C., Crossley, D.A., Jr & Hendrix, P.F. (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, New York.
– reference: Ponge, J.-F. (1993) Biocenoses of Collembola in Atlantic temperate grass-woodland ecosystems. Pedobiologia, 37, 223-244.
– reference: Thompson, D.B.A., MacDonald, A.J., Marsden, J.H. & Galbraith, C.A. (1995) Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation. Biological Conservation, 71, 163-178.
– reference: Miles, J. (1981) Effect of birch on moorlands. Institute of Terrestrial Ecology, Cambridge, UK.
– reference: Tipping, R. (1994) The form and fate of Scotland's woodlands. Proceedings of the Society of Antiquaries of Scotland, 124, 1-54.
– reference: Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Golbert, L., Booth, R.E. & Grime, J.P. (2003) Plant communities affect arbuscular mycorrhizal diversity and community composition in grassland microcosms. New Phytologist, 161, 503-515.
– reference: Migliorini, M., Petrioli, A. & Bernini, F. (2002) Comparative analysis of two edaphic zoocoenoses (oribatid mites and carabid beetles) in five habitats of the 'Pietraporciana' and 'Lucciolabella' Nature Reserves (Orcia Valley, central Italy). Acta Oecologica, 23, 361-374.
– reference: Irmler, U. (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42, 51-62.
– reference: Miles, J. & Young, W.F. (1980) The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.). Bulletin d'Ecologie, 11, 233-242.
– reference: Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N. et al. (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1-13.
– reference: Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts, J.M. (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593-3599.
– reference: Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M. & Ball, A.S. (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology, 69, 1800-1809.
– reference: Dimbleby, G.W. (1952) Soil regeneration on the north-east Yorkshire moors. Journal of Ecology, 40, 331-341.
– reference: Satchell, J.E. (1980) Soil and vegetation changes in experimental birch plots on a Calluna podzol. Soil Biology and Biochemistry, 12, 303-310.
– reference: Bridges, E.M. (1997) World soils, 3rd edn. Cambridge University Press, Cambridge.
– reference: Ettema, C.H. & Wardle, D.A. (2002) Spatial soil ecology. Trends in Ecology and Evolution, 17, 177-183.
– reference: Ramette, A. & Tiedje, J.M. (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proceedings of the National Academy of Sciences USA, 104, 2761-2766.
– reference: Eom, A.-H., Hartnett, D.C. & Wilson, G.W.T. (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435-444.
– reference: Anderson, I.C., Campbell, C.D. & Prosser, J.I. (2003) Diversity of fungi in organic soils under a moorland - Scots pine (Pinus sylvestris L.) gradient. Environmental Microbiology, 5, 1121-1132.
– reference: Horner-Devine, M.C., Lage, M., Hughes, J.B. & Bohannan, B.J.M. (2004) A taxa-area relationship for bacteria. Nature, 432, 750-753.
– reference: Lindberg, N., Bengtsson, J. & Persson, T. (2002) Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. Journal of Applied Ecology, 39, 924-936.
– reference: Čoja, T. & Bruckner, A. (2003) Soil microhabitat diversity of a temperate Norway spruce (Picea abies) forest does not influence the community composition of gamasid mites (Gamasida, Acari). European Journal of Soil Biology, 39, 79-84.
– reference: Beare, M.H., Neely, C.L., Coleman, D.C. & Hargrove, W.L. (1990) A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residue. Soil Biology and Biochemistry, 22, 585-594.
– reference: Minor, M.A. & Cianciolo, J.M. (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Applied Soil Ecology, 35, 140-153.
– reference: Wauthy, G. (1982) Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups. Acta Oecologia, 3, 469-494.
– reference: Robertson, P.A., Park, K.J. & Barton, A.F. (2001) Loss of heather Calluna vulgaris moorland in the Scottish uplands: the role of red grouse Lagopus lagopus scoticus management. Wildlife Biology, 7, 11-16.
– reference: Wardle, D. (2006) The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870-886.
– reference: Rinnan, R., Michelsen, A., Bååth, E. & Jonasson, S. (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Global Change Biology, 13, 28-39.
– reference: Keith, A.M., van der Wal, R., Brooker, R.W., Osler, G.H.R., Chapman, S.J. & Burslem, D.F.R.P. (2006) Birch invasion of heather moorland increases nematode diversity and trophic complexity. Soil Biology and Biochemistry, 38, 3421-3430.
– reference: Ruf, A. & Beck, L. (2005) The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotoxicology and Environmental Safety, 62, 290-299.
– reference: Osler, G.H.R., Cole, L. & Keith, A.M. (2006) Changes in oribatid mite community structure associated with the succession from heather (Calluna vulgaris) moorland to birch (Betula pubescens) woodland. Pedobiologia, 50, 323-330.
– reference: Kielak, A., Pijl, A.S., van Veen, J.A. & Kowalchuk, G.A. (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbial Ecology, 63, 372-382.
– reference: Singh, B.K., Nazaries, L., Munro, S., Anderson, I.C. & Campbell, C.D. (2006) Use of multiplex-terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Applied and Environmental Microbiology, 72, 7278-7285.
– reference: Mitchell, R.J., Campbell, C.D., Chapman, S.J., Osler, G.H.R., Vanbergen, A.J., Ross, L.C., Cameron, C.M. & Cole, L. (2007) The cascading effects of birch on heather moorland: a test for the top-down control of an ecosystem engineer. Journal of Ecology, 95, 540-554.
– reference: Weis-Fogh, T. (1948) Ecological investigations of mites and collemboles in the soil. Nature Jutlandica, 1, 135-277.
– reference: Wardle, D.A. (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in Population Biology, 34. Princeton University Press, Princeton, NJ.
– reference: Nielsen, U.N., Osler, G.H.R., van der Wal, R., Campbell, C.D. & Burslem, D.F.R.P. (2008) Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biology and Biochemistry, 40, 1538-1541.
– reference: De Deyn, G.B. & Van der Putten, W.H. (2005) Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 20, 625-633.
– reference: Chan, O.C., Casper, P., Sha, L.Q., Feng, Z.L., Fu, Y., Yang, X.D., Ulrich, A. & Zou, X.M. (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbial Ecology, 64, 449-458.
– reference: Hester, A.J., Miles, J. & Gimingham, C.H. (1991) Succession from heather moorland to birch woodland. I. Experimental alteration of species environmental conditions in the field. Journal of Ecology, 79, 303-315.
– volume: 38
  start-page: 3421
  year: 2006
  end-page: 3430
  article-title: Birch invasion of heather moorland increases nematode diversity and trophic complexity
  publication-title: Soil Biology and Biochemistry
– year: 1981
– volume: 12
  start-page: 303
  year: 1980
  end-page: 310
  article-title: Soil and vegetation changes in experimental birch plots on a podzol
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 28
  year: 2007
  end-page: 39
  article-title: Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem
  publication-title: Global Change Biology
– volume: 122
  start-page: 435
  year: 2000
  end-page: 444
  article-title: Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie
  publication-title: Oecologia
– year: 2005
– volume: 22
  start-page: 585
  year: 1990
  end-page: 594
  article-title: A substrate‐induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residue
  publication-title: Soil Biology and Biochemistry
– volume: 104
  start-page: 2761
  year: 2007
  end-page: 2766
  article-title: Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 5
  start-page: 697
  year: 1973
  end-page: 719
  article-title: Study of carbon, hydrogen and nitrogen by combustion gas chromatography
  publication-title: Mikrochimica Acta
– volume: 20
  start-page: 625
  year: 2005
  end-page: 633
  article-title: Linking aboveground and belowground diversity
  publication-title: Trends in Ecology and Evolution
– volume: 3
  start-page: 469
  year: 1982
  end-page: 494
  article-title: Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups
  publication-title: Acta Oecologia
– volume: 103
  start-page: 626
  year: 2006
  end-page: 631
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proceedings of the National Academy of Sciences USA
– start-page: 199
  year: 1982
  end-page: 224
– volume: 40
  start-page: 331
  year: 1952
  end-page: 341
  article-title: Soil regeneration on the north‐east Yorkshire moors
  publication-title: Journal of Ecology
– volume: 11
  start-page: 233
  year: 1980
  end-page: 242
  article-title: The effects on heathland and moorland soils in Scotland and northern England following colonization by birch ( spp.)
  publication-title: Bulletin d’Ecologie
– volume: 432
  start-page: 750
  year: 2004
  end-page: 753
  article-title: A taxa–area relationship for bacteria
  publication-title: Nature
– volume: 37
  start-page: 223
  year: 1993
  end-page: 244
  article-title: Biocenoses of Collembola in Atlantic temperate grass–woodland ecosystems
  publication-title: Pedobiologia
– volume: 49
  start-page: 163
  year: 1997
  end-page: 175
  article-title: Scottish vegetation history: the Highlands
  publication-title: Botanical Journal of Scotland
– volume: 65
  start-page: 3622
  year: 1999
  end-page: 3626
  article-title: Soil bacterial community shift correlated with changes from forest to pasture vegetation
  publication-title: Applied and Environmental Microbiology
– volume: 40
  start-page: 223
  year: 2000
  end-page: 237
  article-title: Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use
  publication-title: Microbial Ecology
– volume: 69
  start-page: 1800
  year: 2003
  end-page: 1809
  article-title: Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils
  publication-title: Applied and Environmental Microbiology
– volume: 42
  start-page: 51
  year: 2006
  end-page: 62
  article-title: Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation
  publication-title: European Journal of Soil Biology
– volume: 35
  start-page: 140
  year: 2007
  end-page: 153
  article-title: Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York
  publication-title: Applied Soil Ecology
– start-page: 82
  year: 1965
  end-page: 187
– volume: 39
  start-page: 79
  year: 2003
  end-page: 84
  article-title: Soil microhabitat diversity of a temperate Norway spruce ( ) forest does not influence the community composition of gamasid mites (Gamasida, Acari)
  publication-title: European Journal of Soil Biology
– volume: 25
  start-page: 353
  year: 1988
  end-page: 363
  article-title: Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan
  publication-title: Revue d’Ecologie et de Biologie du Sol
– year: 2004
– year: 1997
– volume: 95
  start-page: 540
  year: 2007
  end-page: 554
  article-title: The cascading effects of birch on heather moorland: a test for the top‐down control of an ecosystem engineer
  publication-title: Journal of Ecology
– volume: 71
  start-page: 163
  year: 1995
  end-page: 178
  article-title: Upland heather moorland in Great Britain: a review of international importance, vegetation change and some objectives for nature conservation
  publication-title: Biological Conservation
– volume: 40
  start-page: 1538
  year: 2008
  end-page: 1541
  article-title: Soil pore volume and the abundance of soil mites in two contrasting habitats
  publication-title: Soil Biology and Biochemistry
– volume: 1
  start-page: 135
  year: 1948
  end-page: 277
  article-title: Ecological investigations of mites and collemboles in the soil
  publication-title: Nature Jutlandica
– volume: 17
  start-page: 177
  year: 2002
  end-page: 183
  article-title: Spatial soil ecology
  publication-title: Trends in Ecology and Evolution
– volume: 50
  start-page: 323
  year: 2006
  end-page: 330
  article-title: Changes in oribatid mite community structure associated with the succession from heather ( ) moorland to birch ( ) woodland
  publication-title: Pedobiologia
– volume: 64
  start-page: 449
  year: 2008
  end-page: 458
  article-title: Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T‐RFLP analysis
  publication-title: FEMS Microbial Ecology
– volume: 23
  start-page: 361
  year: 2002
  end-page: 374
  article-title: Comparative analysis of two edaphic zoocoenoses (oribatid mites and carabid beetles) in five habitats of the ‘Pietraporciana’ and ‘Lucciolabella’ Nature Reserves (Orcia Valley, central Italy)
  publication-title: Acta Oecologica
– volume: 33
  start-page: 399
  year: 1989
  end-page: 416
  article-title: Geographic ecology of soil oribatid mites in deciduous forests
  publication-title: Pedobiologia
– volume: 161
  start-page: 503
  year: 2003
  end-page: 515
  article-title: Plant communities affect arbuscular mycorrhizal diversity and community composition in grassland microcosms
  publication-title: New Phytologist
– volume: 124
  start-page: 1
  year: 1994
  end-page: 54
  article-title: The form and fate of Scotland’s woodlands
  publication-title: Proceedings of the Society of Antiquaries of Scotland
– volume: 49
  start-page: 479
  year: 2005
  end-page: 497
  article-title: Linking species richness, biodiversity and ecosystem function in soil systems
  publication-title: Pedobiologia
– volume: 69
  start-page: 3593
  year: 2003
  end-page: 3599
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Applied and Environmental Microbiology
– volume: 11
  start-page: 1
  year: 2008
  end-page: 13
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecology Letters
– volume: 9
  start-page: 870
  year: 2006
  end-page: 886
  article-title: The influence of biotic interactions on soil biodiversity
  publication-title: Ecology Letters
– volume: 62
  start-page: 290
  year: 2005
  end-page: 299
  article-title: The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites
  publication-title: Ecotoxicology and Environmental Safety
– volume: 11
  start-page: 266
  year: 2005
  end-page: 277
  article-title: Soil microbial responses to experimental warming and clipping in a tallgrass prairie
  publication-title: Global Change Biology
– volume: 63
  start-page: 372
  year: 2008
  end-page: 382
  article-title: Differences in vegetation composition and plant species identity lead to only minor changes in soil‐borne microbial communities in a former arable field
  publication-title: FEMS Microbial Ecology
– volume: 7
  start-page: 11
  year: 2001
  end-page: 16
  article-title: Loss of heather moorland in the Scottish uplands: the role of red grouse management
  publication-title: Wildlife Biology
– year: 2002
– year: 2006
– volume: 72
  start-page: 7278
  year: 2006
  end-page: 7285
  article-title: Use of multiplex‐terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community
  publication-title: Applied and Environmental Microbiology
– volume: 5
  start-page: 1121
  year: 2003
  end-page: 1132
  article-title: Diversity of fungi in organic soils under a moorland – Scots pine ( L.) gradient
  publication-title: Environmental Microbiology
– volume: 39
  start-page: 924
  year: 2002
  end-page: 936
  article-title: Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand
  publication-title: Journal of Applied Ecology
– volume: 79
  start-page: 303
  year: 1991
  end-page: 315
  article-title: Succession from heather moorland to birch woodland. I. Experimental alteration of species environmental conditions in the field
  publication-title: Journal of Ecology
– ident: e_1_2_7_38_1
  doi: 10.1007/BF01218130
– ident: e_1_2_7_55_1
  doi: 10.1007/s002480000053
– volume-title: EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0
  year: 2006
  ident: e_1_2_7_12_1
– volume: 3
  start-page: 469
  year: 1982
  ident: e_1_2_7_52_1
  article-title: Synecology of forest soil oribatid mites of Belgium (Acari, Oribatida). III. Ecological groups
  publication-title: Acta Oecologia
– volume: 1
  start-page: 135
  year: 1948
  ident: e_1_2_7_54_1
  article-title: Ecological investigations of mites and collemboles in the soil
  publication-title: Nature Jutlandica
– ident: e_1_2_7_23_1
  doi: 10.1016/j.ejsobi.2005.09.016
– ident: e_1_2_7_9_1
  doi: 10.1016/S1164-5563(03)00005-0
– ident: e_1_2_7_33_1
  doi: 10.1016/j.apsoil.2006.05.004
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1574-6941.2007.00428.x
– ident: e_1_2_7_3_1
  doi: 10.1093/acprof:oso/9780198525035.001.0001
– volume-title: Communities and ecosystems: linking the aboveground and belowground components
  year: 2002
  ident: e_1_2_7_51_1
– volume: 11
  start-page: 1
  year: 2008
  ident: e_1_2_7_46_1
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2008.01245.x
– ident: e_1_2_7_47_1
  doi: 10.1016/0006-3207(94)00043-P
– ident: e_1_2_7_4_1
  doi: 10.1016/0038-0717(90)90002-H
– volume: 37
  start-page: 223
  year: 1993
  ident: e_1_2_7_39_1
  article-title: Biocenoses of Collembola in Atlantic temperate grass–woodland ecosystems
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(24)00100-8
– start-page: 82
  volume-title: Methods of soil analysis: Part 1. Physical and mineralogical properties, including statistics of measurement and sampling
  year: 1965
  ident: e_1_2_7_18_1
– volume-title: Effect of birch on moorlands
  year: 1981
  ident: e_1_2_7_31_1
– ident: e_1_2_7_24_1
  doi: 10.1046/j.1469-8137.2003.00938.x
– volume: 25
  start-page: 353
  year: 1988
  ident: e_1_2_7_25_1
  article-title: Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan
  publication-title: Revue d’Ecologie et de Biologie du Sol
– ident: e_1_2_7_16_1
  doi: 10.1016/S0169-5347(02)02496-5
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1461-0248.2006.00931.x
– ident: e_1_2_7_22_1
  doi: 10.1080/03746609708684864
– ident: e_1_2_7_15_1
  doi: 10.1007/s004420050050
– ident: e_1_2_7_42_1
  doi: 10.2981/wlb.2001.004
– volume-title: Sustaining biodiversity and ecosystem services in soil and sediments
  year: 2004
  ident: e_1_2_7_49_1
– ident: e_1_2_7_13_1
  doi: 10.1016/j.tree.2005.08.009
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1365-2745.2007.01227.x
– volume-title: World soils
  year: 1997
  ident: e_1_2_7_6_1
– volume: 65
  start-page: 3622
  year: 1999
  ident: e_1_2_7_36_1
  article-title: Soil bacterial community shift correlated with changes from forest to pasture vegetation
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.65.8.3622-3626.1999
– ident: e_1_2_7_44_1
  doi: 10.1016/0038-0717(80)90001-2
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1574-6941.2008.00488.x
– volume: 124
  start-page: 1
  year: 1994
  ident: e_1_2_7_48_1
  article-title: The form and fate of Scotland’s woodlands
  publication-title: Proceedings of the Society of Antiquaries of Scotland
  doi: 10.9750/PSAS.124.1.54
– ident: e_1_2_7_45_1
  doi: 10.1128/AEM.00510-06
– ident: e_1_2_7_30_1
  doi: 10.1016/S1146-609X(02)01163-3
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1365-2664.2002.00769.x
– ident: e_1_2_7_40_1
  doi: 10.1073/pnas.0610671104
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.0507535103
– ident: e_1_2_7_7_1
  doi: 10.1128/AEM.69.6.3593-3599.2003
– start-page: 199
  volume-title: Methods of soil analysis: Part 2. Chemical and microbiological properties
  year: 1982
  ident: e_1_2_7_29_1
  doi: 10.2134/agronmonogr9.2.2ed.c12
– ident: e_1_2_7_37_1
  doi: 10.1016/j.pedobi.2006.05.001
– ident: e_1_2_7_26_1
  doi: 10.1016/j.soilbio.2006.05.013
– ident: e_1_2_7_56_1
  doi: 10.1111/j.1365-2486.2005.00902.x
– volume: 33
  start-page: 399
  year: 1989
  ident: e_1_2_7_53_1
  article-title: Geographic ecology of soil oribatid mites in deciduous forests
  publication-title: Pedobiologia
  doi: 10.1016/S0031-4056(24)00293-2
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2486.2006.01263.x
– ident: e_1_2_7_35_1
  doi: 10.1016/j.soilbio.2007.12.029
– ident: e_1_2_7_2_1
  doi: 10.1046/j.1462-2920.2003.00522.x
– ident: e_1_2_7_10_1
  doi: 10.1016/j.pedobi.2005.05.006
– volume: 11
  start-page: 233
  year: 1980
  ident: e_1_2_7_32_1
  article-title: The effects on heathland and moorland soils in Scotland and northern England following colonization by birch (Betula spp.)
  publication-title: Bulletin d’Ecologie
– ident: e_1_2_7_21_1
  doi: 10.1038/nature03073
– volume-title: Fundamentals of soil ecology
  year: 2004
  ident: e_1_2_7_11_1
– ident: e_1_2_7_19_1
  doi: 10.1128/AEM.69.3.1800-1809.2003
– ident: e_1_2_7_20_1
  doi: 10.2307/2260714
– volume-title: CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (ver. 4.5)
  year: 2002
  ident: e_1_2_7_5_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ecoenv.2005.03.029
– ident: e_1_2_7_14_1
  doi: 10.2307/2256803
SSID ssj0009534
Score 2.4083426
Snippet We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in...
Aim: We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and...
Aim  We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and...
Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and...
AbstractAim We used a landscape-scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil...
The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms...
SourceID swepub
proquest
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1317
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Arachnida
Archaea
bacteria
Betula pubescens
Biological and medical sciences
birch woodland
Calluna vulgaris
carbon nitrogen ratio
climate
climate change
community composition
community structure
Forest soils
Fundamental and applied biological sciences. Psychology
fungal communities
fungi
General aspects
Habitats
heather moorland
heathlands
Invertebrates
issues and policy
land use change
landscapes
linear models
Markvetenskap
Mesostigmata
microhabitats
Mites
Moorlands
multidimensional scaling
Oribatida
rain
Responses to habitat alteration and loss
Sarcoptiformes
Scotland
Soil composition
Soil ecology
Soil microorganisms
soil pH
Soil properties
Soil Science
Synecology
Vegetation
Woodlands
Title influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale
URI https://api.istex.fr/ark:/67375/WNG-JQS36HPL-C/fulltext.pdf
https://www.jstor.org/stable/40731415
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2699.2010.02281.x
https://www.proquest.com/docview/742753441
https://www.proquest.com/docview/744624941
https://res.slu.se/id/publ/43643
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEoIXvqdlwOQHtCdSJY4TL48wbZQKTcCo2Jvl2M5WtSRV004bv4MfzL12Ei0IoQnxVEf1tZLra-c4Pj6XkNdKZ8pEmQnTIotCrnFI2dRih6SGR0qI0hFkT7LxlE_O0rOW_4RnYbw-RP_BDUeGm69xgKuiGQ5yz9DK85ahxdhBPEI8iX8gPvrCbujvJl5JCrlqTERDUs8fGxq8qe6Wqgb8iq6_6qiLyKNUDbiy9DkwhiDVC48OMa97aR0_IvPucT1XZT7arIuR_vGbEuT_8cdj8rDFtvStD8Yn5I6tnpJ7PtvlNZSOdFu636Zev7h-Rn5CoNJZlyqF1iW9tOctB5LiB-I3tKlnC7rEXYMVyr9SVRm4tHq2bAXGKVaFZpAf35LQsCFnh-e3nMX3mdOcghvU_lCMb2vtLN2JZ-SCUfS0fU6mx0dfD8dhmyoi1ClgxDBBocM4sjZW2rCSGS0SIWymuYlTw0yuypzHrDA8VyjFHOuo5ErnhS6KiCc22SZbVV3ZHQgLnqVFbrkxCtZmgNcSVqYRXOVCl9GBDojowkLq9jExncdC3lhPQU9I7AmJPSFdT8irgMS95dJridzCZgciT6pzmPLl9JThRjNALECtLCD7Lhz7ttRqjjQ9kcpvJ-_l5PNpko0_fZSHAdl28dpXhEV8EgNyC8jeIID7CozliPyzgNAuoiVMO7iXpCpbbxopOIOFLvj8b1V4Bot7rLLvB0PfPmqaN4tNoVb4IxsreQLQOCCZi_Bbe0dO3n3A0u6_Gr4gDzwdBPnXL8nWerWxrwBlros9N3_8AsKJbCc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCI0XvqeFj-EHtCdSJY6TLI8wbXSlVMBWsTfLsZ2tWkmqpkUbfwd_MHd2Ei0IoQnxVEfynZrz2fmd_fMdIa-lSqQOEu3HeRL4XOGUMrHBAYk1D2SaFpYgO0mGUz46jU-bckB4F8blh-g23HBm2PUaJzhuSPdnuaNoZVlD0WJsLxwAoLyDBb5tfPWFXcvAG7lcUshWY2nQp_X8UVPvW3W7kBUgWDT-ZUteRCalrMGYhauC0YepLvVoH_Xaz9bhAzJvX9ixVS4G61U-UD9-ywX5nyzykNxv4C196_zxEbllysfkrit4eQWtA9W0Npvq6-dXT8hP8FU6a6ul0Kqg381ZQ4OkuEf8htbVbE4XeHCwxAywVJYaHo2aLZoc4xS7ghqkyDc8NFRk5fAKl5X4NrNpp-APKncvxulaWUl76RnpYBRNbZ6S6eHByf7Qb6pF-CoGmOhHmOswDIwJpdKsYFqlUZqaRHEdxprpTBYZD1mueSYxG3OogoJLleUqzwMemWiLbJRVabbBL8B_8sxwrSWEZwDZIlbEATxlqSqCPeWRtPULoZrXxIoec3EtpIKREDgSAkdC2JEQlx4JO8mFSydyA5ltcD0hz2DVF9NjhmfNgLIAuDKP7Fp_7HTJ5QUy9dJYfJ28F6PPx1Ey_DQW-x7Zsg7bdYQ4PgoBvHlkp-fBXQfGMgT_iUdo69ICVh48TpKlqda1SDmDWBds_rcuPIH4HrvsutnQ6ce05vV8ncsl_ojaCB4BOvZIYl38xtYRo3dH2Hr2r4KvyObw5ONYjI8mH56Te44dgnTsF2RjtVyblwA6V_mOXUx-AWZIcEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgiMsL92nhMvyA9kSqxHGc5hG2la5M1WBU7M1ybGdULW3VtGjjd_CDOcdOowUhNCGe6kg-R83xsfM5-fwdQl4rLZSJhAnTQkQh1zilbGpxQFLDI5VlpSPIDkV_xAdn6VnNf8KzMF4fonnhhjPDrdc4wRembE9yz9DK85qhxVg37gCevMVF1MUMP_jErgjwJl5KCslqLIvarJ4_emo9qm6Wag4AFmN_seEuIpFSVRDL0hfBaKNUrzzaBr3uqdV7QCab-_VklUlnvSo6-sdvUpD_JyAPyf0a3NK3PhsfkRt29pjc9uUuL6F1qOvW3br2-tfLJ-QnZCodb2ql0HlJv9vzmgRJ8Q3xG1rNx1O6wM8GS9R_pWpm4NLq8aJWGKfYFdwgQb5moaEjZ4cHuJzFt7ETnYI_qP2pGO9r5SzdkWckg1GMtH1KRr3Dz_v9sK4VEeoUQGKYoNJhHFkbK21YyYzOkiyzQnMTp4aZXJU5j1lheK5QiznWUcmVzgtdFBFPbLJNtmbzmd2BtOAiLXLLjVGwOQPAlrAyjeAqz3QZdXVAsk1aSF3fJtbzmMorGyoYCYkjIXEkpBsJeRGQuLFceDGRa9jsQOZJdQ5rvhydMvzSDBgLYCsLyJ5Lx8aXWk6Qp5el8svwvRx8PE1E_-RY7gdk2-Vr0xF28UkM0C0gu60EbjowliP0FwGhm4yWsO7gxyQ1s_N1JTPOYKcLMf9bFy5gd49d9vxkaPyjqHk1XRdqiT-yspIngI0DIlyGXzs6cvDuCFvP_tXwFblzctCTx0fDD8_JPU8NQS72C7K1Wq7tS0Ccq2LXLSW_AM1Mbvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+vegetation+type%2C+soil+properties+and+precipitation+on+the+composition+of+soil+mite+and+microbial+communities+at+the+landscape+scale&rft.jtitle=Journal+of+biogeography&rft.au=Nielsen%2C+Uffe+N.&rft.au=Osler%2C+Graham+H.+R.&rft.au=Campbell%2C+Colin+D.&rft.au=Burslem%2C+David+F.+R.+P.&rft.date=2010-07-01&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=37&rft.issue=7&rft.spage=1317&rft.epage=1328&rft_id=info:doi/10.1111%2Fj.1365-2699.2010.02281.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2699_2010_02281_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon