基于RBF神经网络的土壤有机质空间变异研究方法
通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础。该文以四川眉山一块约40km^2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的空间分布。与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和R...
Saved in:
Published in | Nong ye gong cheng xue bao Vol. 26; no. 1; pp. 87 - 93 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
四川农业大学资源环境学院,雅安,625014
2010
中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101 中国科学院地理科学与资源研究所,北京,100101 |
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.3969/j.issn.1002-6819.2010.01.015 |
Cover
Loading…
Abstract | 通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础。该文以四川眉山一块约40km^2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的空间分布。与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和RBF1减小了10.23%和2.33%,并且插值图差异相对较小,可以更好地反映土壤有机质空间分布的异质性。因此,利用以坐标和邻近样点为输入的神经网络方法可以相对准确、快速地获取区域土壤性质空间分布的异质性信息。 |
---|---|
AbstractList | 通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础。该文以四川眉山一块约40km^2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的空间分布。与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和RBF1减小了10.23%和2.33%,并且插值图差异相对较小,可以更好地反映土壤有机质空间分布的异质性。因此,利用以坐标和邻近样点为输入的神经网络方法可以相对准确、快速地获取区域土壤性质空间分布的异质性信息。 S153.6~+21%TP183; 通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础.该文以四川眉山一块约40km~2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的窄间分布.与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和RBF1减小了10.23%和2.33%,并且插值图差异相对较小,可以更好地反映土壤有机质空间分布的异质性.因此,利用以坐标和邻近样点为输入的神经网络方法可以相对准确、快速地获取区域土壤性质空间分布的异质性信息. |
Abstract_FL | Fast and accurate simulation of the spatial distribution of soil properties from the study on soil spatial variability and spatial interpolation was the basis for precision agriculture and environmental protection. In this paper, 80 topsoil samples were collected in a 40 km~2 test area in Meishan, Sichuan Province. Nonlinear mapped relations between spatial coordinates and neighbor samples and the content of soil organic matter were established based on radial basis function neural network (RBF2) to simulate the distribution of the content of soil organic matter in the test area. Compared with ordinary kriging method (OK) and radial basis function neural network method only using spatial coordinates as inputs of net (RBF1), the predicted errors achieved by RBF2 were much smaller, which were reduced by 9.87%, 13.09% and 1.97%, 2.36%, respectively;even samples were cut in half, the predicted error was still reduced by 10.23% and 2.33%, respectively, compared with OK and RBF1 which used in all samples. Besides, RBF2, which was able to make the interpolation maps and had smaller difference comparatively in different samples, could express the spatial heterogeneity of soil organic matter well. Thus, the spatial heterogeneity information of soil properties could be achieved exactly and quickly by the method of radial basis function neural network which used spatial coordinates and neighbor samples information as inputs of net. |
Author | 李启权 王昌全 岳天祥 李冰 杨娟 |
AuthorAffiliation | 四川农业大学资源环境学院,雅安625014 中国科学院地理科学与资源研究所,北京100101 中国科学院研究生院,北京100039 |
AuthorAffiliation_xml | – name: 四川农业大学资源环境学院,雅安,625014;中国科学院地理科学与资源研究所,北京,100101;中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101 |
Author_FL | Wang Changquan Li Bing Yue Tianxiang Yang Juan Li Qiquan |
Author_FL_xml | – sequence: 1 fullname: Li Qiquan – sequence: 2 fullname: Wang Changquan – sequence: 3 fullname: Yue Tianxiang – sequence: 4 fullname: Li Bing – sequence: 5 fullname: Yang Juan |
Author_xml | – sequence: 1 fullname: 李启权 王昌全 岳天祥 李冰 杨娟 |
BookMark | eNo9j8tKw0AUhmdRwVr7EiK4SpyZZC5ZiRarQkGQ7sNkmqmpZYoGUbfixo1F8IYEK6hg1xbBVN_GZPQtjFSED344_8c5nBlQ0j0dAjCPoO141Fvs2FEcaxtBiC3KkWdjWFQQFZASKP_Pp0E1jqMAIuYyjhgug6VskH6mZ1srdfN0Z8Z983Fuxom5PcmSQfbwmCeneZJ-jZ7NMP2-HmX9m-z92NxfmOFrfvWWv1zOgiklunFY_csKaNZXm7V1q7G5tlFbbliSeMQKCQy5kAIHTDK3hXjLhQo6jFJPMYZdqhQJBA-IDCBjnEpXKSolRlgRrhB1KmBhsvZAaCV02-_09vd0cdDXR215GPz-W4BIYc5NTLnd0-3dqHADIXdU1A19x8HUczl2fgBpsnA- |
ClassificationCodes | S153.6~+21%TP183 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W95 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1002-6819.2010.01.015 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Method for spatial variety of soil organic matter based on radial basis function neural network |
DocumentTitle_FL | Method for spatial variety of soil organic matter based on radial basis function neural network |
EndPage | 93 |
ExternalDocumentID | nygcxb201001015 33269482 |
GrantInformation_xml | – fundername: 科技部科技支撑计划项目(2008BAD98B05; 2007BAD89B15; 2008BAK51B02); 教育部重点项目 funderid: 科技部科技支撑计划项目(2008BAD98B05; 2007BAD89B15; 2008BAK51B02); (03110) |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CDYEO CHDYS CQIGP CUKSK CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N W95 ~WA 4A8 93N ABJNI ACUHS PSX |
ID | FETCH-LOGICAL-c595-e50e8aca2b7c74d18d40f037669f77246ff5ba8b5cb07786c4ff6cc212f58f163 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:04:16 EDT 2025 Fri Nov 25 02:42:00 EST 2022 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | 径向基函数网络 普通克里格 ordinary kriging error analysis 有机质 radial basis function networks organic matter spatial heterogeneity 空间异质性 soils 误差分析 土壤 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c595-e50e8aca2b7c74d18d40f037669f77246ff5ba8b5cb07786c4ff6cc212f58f163 |
Notes | ordinary kriging TP183 error analysis radial basis function networks; error analysis; soils; organic matter; spatial heterogeneity; ordinary kriging radial basis function networks organic matter 11-2047/S spatial heterogeneity S153.621 soils |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb201001015 chongqing_backfile_33269482 |
PublicationCentury | 2000 |
PublicationDate | 2010 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – year: 2010 text: 2010 |
PublicationDecade | 2010 |
PublicationTitle | Nong ye gong cheng xue bao |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationTitle_FL | TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING |
PublicationYear | 2010 |
Publisher | 四川农业大学资源环境学院,雅安,625014 中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101 中国科学院地理科学与资源研究所,北京,100101 |
Publisher_xml | – name: 中国科学院地理科学与资源研究所,北京,100101 – name: 中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101 – name: 四川农业大学资源环境学院,雅安,625014 |
SSID | ssib017478172 ssj0041925 ssib001101065 ssib023167668 ssib051370041 |
Score | 1.8729937 |
Snippet | ... S153.6~+21%TP183;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 87 |
SubjectTerms | 土壤 径向基函数网络 普通克里格 有机质 空间异质性 误差分析 |
Title | 基于RBF神经网络的土壤有机质空间变异研究方法 |
URI | http://lib.cqvip.com/qk/90712X/20101/33269482.html https://d.wanfangdata.com.cn/periodical/nygcxb201001015 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsEkiiB7EJ8ao7CF93DjTM93TfZKZ3VliQA8SIbdlnhsQNpgHaI7ixYtB8IWsRlDBnA2CG_0bd0f_wqqe3ochvgLD0NTU1KNrZqq6qaohZDZ23NRmUVp1MtytSkVcVVGaVK2UJUmcSMvTLYWu3xDzt9yFJb40MflqLGtpYz2eSzYPrCs5jFUBBnbFKtn_sOyQKABgDPaFM1gYzv9kYxpyqho08Gno4lmGN4MGDT3qAzzEQRBQqSFBnSrbQFQNBwrwXU2hhkRg4DvUB4hAiFRmgMQlDVzqS01ZaYiiykMg3AX0lcRBAHcxjWNR5Q6QhaYjaKAJBg4t_3Y5CIg1Bc0IVZAoFZLSKiAFSWWgZatTX5OSPlwaPCaadh301npY1G8MIM4IxcPrSEWgoLKmWQJFOUIBjgxlQ0Yuil3O4W8YgbyBNb5dYlJm8dHWggR4lGrATQdqiGy8McVgirm2h8D5BVVKsf3SMAwUGkOG2VcIZDU9DlAdvBqi2VgNFptWWTNr3A36IyGN0zD-qOwg8Mt7tzYemZRhihZeUVnXUw-WLkvR93tERwmlPSLymxvyMzmNNhx8FAkM8zPb91rJ3RhxsAUhnyRHmOfZmDHbuLYwirZt3FAYugOGTRXEaPXKbQf_nTDMuMJ8A66TD4wQR8mskfDKn-TDrifLK-3WHYjldGldO4_arbEocPEkOWGWbxW_fBdPkYnN5dPkuN9aNS1ssjPkam-7-637CN7E4v3rYm-r-Pq42OsULx_0Otu9t-_6nYf9Tvf77odip_vj-W5v60Xvy_3izZNi51P_2ef-x6dnyWIjXKzNV81vSqoJV7yacSuTURKx2Es8-PDJ1LVyC_y2UDksXV2R5zyOZMyT2MJmjYmb51isYLOcyxyWQ-fIVHulnZ0nFaZSnkH0aMd56npeHglXxm5miSx1cmZF02RmOBMQ5Sa3sXdb03GwGl2yaVIxc9M036i15j5DXvg7ygw5VibI4C7jRTK1vrqRXYK4ez2-rK3_EyXcpZw |
linkProvider | Ingenta |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ERBF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E8%B4%A8%E7%A9%BA%E9%97%B4%E5%8F%98%E5%BC%82%E7%A0%94%E7%A9%B6%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E5%90%AF%E6%9D%83&rft.au=%E7%8E%8B%E6%98%8C%E5%85%A8&rft.au=%E5%B2%B3%E5%A4%A9%E7%A5%A5&rft.au=%E6%9D%8E%E5%86%B0&rft.date=2010&rft.pub=%E5%9B%9B%E5%B7%9D%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E9%9B%85%E5%AE%89%2C625014&rft.issn=1002-6819&rft.volume=26&rft.issue=1&rft.spage=87&rft.epage=%E5%89%8D%E6%8F%924&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2010.01.015&rft.externalDocID=nygcxb201001015 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |