基于RBF神经网络的土壤有机质空间变异研究方法

通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础。该文以四川眉山一块约40km^2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的空间分布。与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和R...

Full description

Saved in:
Bibliographic Details
Published inNong ye gong cheng xue bao Vol. 26; no. 1; pp. 87 - 93
Main Author 李启权 王昌全 岳天祥 李冰 杨娟
Format Journal Article
LanguageChinese
Published 四川农业大学资源环境学院,雅安,625014 2010
中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101
中国科学院地理科学与资源研究所,北京,100101
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.3969/j.issn.1002-6819.2010.01.015

Cover

Loading…
Abstract 通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础。该文以四川眉山一块约40km^2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的空间分布。与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和RBF1减小了10.23%和2.33%,并且插值图差异相对较小,可以更好地反映土壤有机质空间分布的异质性。因此,利用以坐标和邻近样点为输入的神经网络方法可以相对准确、快速地获取区域土壤性质空间分布的异质性信息。
AbstractList 通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础。该文以四川眉山一块约40km^2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的空间分布。与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和RBF1减小了10.23%和2.33%,并且插值图差异相对较小,可以更好地反映土壤有机质空间分布的异质性。因此,利用以坐标和邻近样点为输入的神经网络方法可以相对准确、快速地获取区域土壤性质空间分布的异质性信息。
S153.6~+21%TP183; 通过研究土壤性质的空间变异和空间插值方法,快速准确获取土壤性质的空间分布是精确农业和环境保护的基础.该文以四川眉山一块约40km~2的区域为试验区,采集表层土壤(0~20cm)样点80个,利用径向基函数(RBF)神经网络建立空间坐标和邻近样点与土壤有机质间的非线性映射关系(RBF2),模拟土壤有机质的窄间分布.与普通克里法(OK)和仅以坐标为网络输入的神经网络方法(RBF1)相比,RBF2的插值精度有显著的提高;相同样点密度下其相对预测误差分别较OK和RBF1减小了9.87%、1.97%(样本A)和13.09%、2.36%(样本B);即使样点数减半的情况下RBF2的相对预测误差也分别较OK和RBF1减小了10.23%和2.33%,并且插值图差异相对较小,可以更好地反映土壤有机质空间分布的异质性.因此,利用以坐标和邻近样点为输入的神经网络方法可以相对准确、快速地获取区域土壤性质空间分布的异质性信息.
Abstract_FL Fast and accurate simulation of the spatial distribution of soil properties from the study on soil spatial variability and spatial interpolation was the basis for precision agriculture and environmental protection. In this paper, 80 topsoil samples were collected in a 40 km~2 test area in Meishan, Sichuan Province. Nonlinear mapped relations between spatial coordinates and neighbor samples and the content of soil organic matter were established based on radial basis function neural network (RBF2) to simulate the distribution of the content of soil organic matter in the test area. Compared with ordinary kriging method (OK) and radial basis function neural network method only using spatial coordinates as inputs of net (RBF1), the predicted errors achieved by RBF2 were much smaller, which were reduced by 9.87%, 13.09% and 1.97%, 2.36%, respectively;even samples were cut in half, the predicted error was still reduced by 10.23% and 2.33%, respectively, compared with OK and RBF1 which used in all samples. Besides, RBF2, which was able to make the interpolation maps and had smaller difference comparatively in different samples, could express the spatial heterogeneity of soil organic matter well. Thus, the spatial heterogeneity information of soil properties could be achieved exactly and quickly by the method of radial basis function neural network which used spatial coordinates and neighbor samples information as inputs of net.
Author 李启权 王昌全 岳天祥 李冰 杨娟
AuthorAffiliation 四川农业大学资源环境学院,雅安625014 中国科学院地理科学与资源研究所,北京100101 中国科学院研究生院,北京100039
AuthorAffiliation_xml – name: 四川农业大学资源环境学院,雅安,625014;中国科学院地理科学与资源研究所,北京,100101;中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101
Author_FL Wang Changquan
Li Bing
Yue Tianxiang
Yang Juan
Li Qiquan
Author_FL_xml – sequence: 1
  fullname: Li Qiquan
– sequence: 2
  fullname: Wang Changquan
– sequence: 3
  fullname: Yue Tianxiang
– sequence: 4
  fullname: Li Bing
– sequence: 5
  fullname: Yang Juan
Author_xml – sequence: 1
  fullname: 李启权 王昌全 岳天祥 李冰 杨娟
BookMark eNo9j8tKw0AUhmdRwVr7EiK4SpyZZC5ZiRarQkGQ7sNkmqmpZYoGUbfixo1F8IYEK6hg1xbBVN_GZPQtjFSED344_8c5nBlQ0j0dAjCPoO141Fvs2FEcaxtBiC3KkWdjWFQQFZASKP_Pp0E1jqMAIuYyjhgug6VskH6mZ1srdfN0Z8Z983Fuxom5PcmSQfbwmCeneZJ-jZ7NMP2-HmX9m-z92NxfmOFrfvWWv1zOgiklunFY_csKaNZXm7V1q7G5tlFbbliSeMQKCQy5kAIHTDK3hXjLhQo6jFJPMYZdqhQJBA-IDCBjnEpXKSolRlgRrhB1KmBhsvZAaCV02-_09vd0cdDXR215GPz-W4BIYc5NTLnd0-3dqHADIXdU1A19x8HUczl2fgBpsnA-
ClassificationCodes S153.6~+21%TP183
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W95
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1002-6819.2010.01.015
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Method for spatial variety of soil organic matter based on radial basis function neural network
DocumentTitle_FL Method for spatial variety of soil organic matter based on radial basis function neural network
EndPage 93
ExternalDocumentID nygcxb201001015
33269482
GrantInformation_xml – fundername: 科技部科技支撑计划项目(2008BAD98B05; 2007BAD89B15; 2008BAK51B02); 教育部重点项目
  funderid: 科技部科技支撑计划项目(2008BAD98B05; 2007BAD89B15; 2008BAK51B02); (03110)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDYEO
CHDYS
CQIGP
CUKSK
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
W95
~WA
4A8
93N
ABJNI
ACUHS
PSX
ID FETCH-LOGICAL-c595-e50e8aca2b7c74d18d40f037669f77246ff5ba8b5cb07786c4ff6cc212f58f163
ISSN 1002-6819
IngestDate Thu May 29 04:04:16 EDT 2025
Fri Nov 25 02:42:00 EST 2022
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 径向基函数网络
普通克里格
ordinary kriging
error analysis
有机质
radial basis function networks
organic matter
spatial heterogeneity
空间异质性
soils
误差分析
土壤
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c595-e50e8aca2b7c74d18d40f037669f77246ff5ba8b5cb07786c4ff6cc212f58f163
Notes ordinary kriging
TP183
error analysis
radial basis function networks; error analysis; soils; organic matter; spatial heterogeneity; ordinary kriging
radial basis function networks
organic matter
11-2047/S
spatial heterogeneity
S153.621
soils
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201001015
chongqing_backfile_33269482
PublicationCentury 2000
PublicationDate 2010
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: 2010
PublicationDecade 2010
PublicationTitle Nong ye gong cheng xue bao
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL TRANSACTIONS OF THE CHINESE SOCIETY OF AGRICULTURAL ENGINEERING
PublicationYear 2010
Publisher 四川农业大学资源环境学院,雅安,625014
中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101
中国科学院地理科学与资源研究所,北京,100101
Publisher_xml – name: 中国科学院地理科学与资源研究所,北京,100101
– name: 中国科学院研究生院,北京,100039%四川农业大学资源环境学院,雅安,625014%中国科学院地理科学与资源研究所,北京,100101
– name: 四川农业大学资源环境学院,雅安,625014
SSID ssib017478172
ssj0041925
ssib001101065
ssib023167668
ssib051370041
Score 1.8729937
Snippet ...
S153.6~+21%TP183;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 87
SubjectTerms 土壤
径向基函数网络
普通克里格
有机质
空间异质性
误差分析
Title 基于RBF神经网络的土壤有机质空间变异研究方法
URI http://lib.cqvip.com/qk/90712X/20101/33269482.html
https://d.wanfangdata.com.cn/periodical/nygcxb201001015
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsEkiiB7EJ8ao7CF93DjTM93TfZKZ3VliQA8SIbdlnhsQNpgHaI7ixYtB8IWsRlDBnA2CG_0bd0f_wqqe3ochvgLD0NTU1KNrZqq6qaohZDZ23NRmUVp1MtytSkVcVVGaVK2UJUmcSMvTLYWu3xDzt9yFJb40MflqLGtpYz2eSzYPrCs5jFUBBnbFKtn_sOyQKABgDPaFM1gYzv9kYxpyqho08Gno4lmGN4MGDT3qAzzEQRBQqSFBnSrbQFQNBwrwXU2hhkRg4DvUB4hAiFRmgMQlDVzqS01ZaYiiykMg3AX0lcRBAHcxjWNR5Q6QhaYjaKAJBg4t_3Y5CIg1Bc0IVZAoFZLSKiAFSWWgZatTX5OSPlwaPCaadh301npY1G8MIM4IxcPrSEWgoLKmWQJFOUIBjgxlQ0Yuil3O4W8YgbyBNb5dYlJm8dHWggR4lGrATQdqiGy8McVgirm2h8D5BVVKsf3SMAwUGkOG2VcIZDU9DlAdvBqi2VgNFptWWTNr3A36IyGN0zD-qOwg8Mt7tzYemZRhihZeUVnXUw-WLkvR93tERwmlPSLymxvyMzmNNhx8FAkM8zPb91rJ3RhxsAUhnyRHmOfZmDHbuLYwirZt3FAYugOGTRXEaPXKbQf_nTDMuMJ8A66TD4wQR8mskfDKn-TDrifLK-3WHYjldGldO4_arbEocPEkOWGWbxW_fBdPkYnN5dPkuN9aNS1ssjPkam-7-637CN7E4v3rYm-r-Pq42OsULx_0Otu9t-_6nYf9Tvf77odip_vj-W5v60Xvy_3izZNi51P_2ef-x6dnyWIjXKzNV81vSqoJV7yacSuTURKx2Es8-PDJ1LVyC_y2UDksXV2R5zyOZMyT2MJmjYmb51isYLOcyxyWQ-fIVHulnZ0nFaZSnkH0aMd56npeHglXxm5miSx1cmZF02RmOBMQ5Sa3sXdb03GwGl2yaVIxc9M036i15j5DXvg7ygw5VibI4C7jRTK1vrqRXYK4ez2-rK3_EyXcpZw
linkProvider Ingenta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ERBF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%9C%9F%E5%A3%A4%E6%9C%89%E6%9C%BA%E8%B4%A8%E7%A9%BA%E9%97%B4%E5%8F%98%E5%BC%82%E7%A0%94%E7%A9%B6%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E5%90%AF%E6%9D%83&rft.au=%E7%8E%8B%E6%98%8C%E5%85%A8&rft.au=%E5%B2%B3%E5%A4%A9%E7%A5%A5&rft.au=%E6%9D%8E%E5%86%B0&rft.date=2010&rft.pub=%E5%9B%9B%E5%B7%9D%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E7%8E%AF%E5%A2%83%E5%AD%A6%E9%99%A2%2C%E9%9B%85%E5%AE%89%2C625014&rft.issn=1002-6819&rft.volume=26&rft.issue=1&rft.spage=87&rft.epage=%E5%89%8D%E6%8F%924&rft_id=info:doi/10.3969%2Fj.issn.1002-6819.2010.01.015&rft.externalDocID=nygcxb201001015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg