Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas
Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. Herein, we for the first time characterized the genomic architecture of A. muciniphila based on who...
Saved in:
Published in | BMC genomics Vol. 18; no. 1; pp. 800 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
18.10.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content.
Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer.
The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. |
---|---|
AbstractList | Background Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. Results Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer. Conclusions The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. Keywords: Akkermansia muciniphila, Genome diversity, Population structure, Mammalian gut microbiota, Antibiotic resistance Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer. The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. Background Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. Results Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer. Conclusions The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer. The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content.BACKGROUNDAkkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content.Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer.RESULTSHerein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer.The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium.CONCLUSIONSThe genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. Abstract Background Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however, little is known about its genomic content. Results Herein, we for the first time characterized the genomic architecture of A. muciniphila based on whole-genome sequencing, assembling, and annotating of 39 isolates derived from human and mouse feces. We revealed a flexible open pangenome of A. muciniphila currently consisting of 5644 unique proteins. Phylogenetic analysis identified three species-level A. muciniphila phylogroups exhibiting distinct metabolic and functional features. Based on the comprehensive genome catalogue, we reconstructed 106 newly A. muciniphila metagenome assembled genomes (MAGs) from available metagenomic datasets of human, mouse and pig gut microbiomes, revealing a transcontinental distribution of A. muciniphila phylogroups across mammalian gut microbiotas. Accurate quantitative analysis of A. muciniphila phylogroups in human subjects further demonstrated its strong correlation with body mass index and anti-diabetic drug usage. Furthermore, we found that, during their mammalian gut evolution history, A. muciniphila acquired extra genes, especially antibiotic resistance genes, from symbiotic microbes via recent lateral gene transfer. Conclusions The genome repertoire of A. muciniphila provided insights into population structure, evolutionary and functional specificity of this significant bacterium. |
ArticleNumber | 800 |
Audience | Academic |
Author | Peng, Yongzheng Jie, Zhuye Zhang, Min Wu, Feifan Guo, Xianfeng Yan, Qiulong Ou, Zihao Yi, Jiangfeng Li, Xiangchun Li, Peng Zhang, Jiachun Li, Shenghui Wu, Dan |
Author_xml | – sequence: 1 givenname: Xianfeng surname: Guo fullname: Guo, Xianfeng – sequence: 2 givenname: Shenghui surname: Li fullname: Li, Shenghui – sequence: 3 givenname: Jiachun surname: Zhang fullname: Zhang, Jiachun – sequence: 4 givenname: Feifan surname: Wu fullname: Wu, Feifan – sequence: 5 givenname: Xiangchun surname: Li fullname: Li, Xiangchun – sequence: 6 givenname: Dan surname: Wu fullname: Wu, Dan – sequence: 7 givenname: Min surname: Zhang fullname: Zhang, Min – sequence: 8 givenname: Zihao surname: Ou fullname: Ou, Zihao – sequence: 9 givenname: Zhuye surname: Jie fullname: Jie, Zhuye – sequence: 10 givenname: Qiulong surname: Yan fullname: Yan, Qiulong – sequence: 11 givenname: Peng surname: Li fullname: Li, Peng – sequence: 12 givenname: Jiangfeng surname: Yi fullname: Yi, Jiangfeng – sequence: 13 givenname: Yongzheng orcidid: 0000-0003-1071-8510 surname: Peng fullname: Peng, Yongzheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29047329$$D View this record in MEDLINE/PubMed |
BookMark | eNp9k8tu1TAQhiNURC_wAGyQJTYgNSW-JE42SEcVlEqVkLisrYkvqdvEPthORV-LJ8Q5p5SeCqEsEs18_z_xzPiw2HPe6aJ4iasTjNvmXcSkbVhZYV4y3NUlfVIcYMZxSXDD9h587xeHMV5VGWxJ_azYJ13FOCXdQfHrTDs_aRT1j1k7ad2AvEG0Q6vrax0mcNECmuacsOtLOwKy0Y-QdERB32gYI7IporVfzzlqvUMxhVmmOehjNCzWViJwCpnZySUPI1L2Rgcbbbo93qSG0febcJbaft64WIcmmCYYLTg0zAlln-B76xPE58VTkwvrF3fvo-L7xw_fTj-VF5_Pzk9XF6WsO5ZK01NOaE1URw03wLEyWDPVsZoDl0q3Vc8MV20lueobxbqWQ28MNU1DW1JJelScb32VhyuxDnaCcCs8WLEJ-DAICMnKUQtN-iqLOw7QsqqreqJyKY5xo2ow0GSv91uv9dxPWkntUoBxx3Q34-ylGPyNqBvWsppkgzd3BsHnScUkJhulHkdw2s9R5PHneXLKWEZfP0Kv_Bxy56MglLW0xryjf6kB8gGsMz7XlYupWNW4ooQt7FFx8g8qP0rnieRtNDbHdwRvdwSZSfpnGmCOUZx__bLLvnrYlPtu_NnODOAtkGcfY9DmHsGVWG6A2N4AkRdbLDdALOfijzTSps1q5j-343-UvwGX4w2M |
CitedBy_id | crossref_primary_10_1186_s12967_022_03631_0 crossref_primary_10_1186_s12866_021_02360_6 crossref_primary_10_3390_ijerph19159152 crossref_primary_10_2144_btn_2018_0134 crossref_primary_10_3390_ijms241914700 crossref_primary_10_1080_19490976_2024_2406379 crossref_primary_10_1016_j_anaerobe_2019_102138 crossref_primary_10_3390_foods13131979 crossref_primary_10_1128_msphere_00569_22 crossref_primary_10_3233_JPD_223500 crossref_primary_10_1016_j_ijfoodmicro_2024_110998 crossref_primary_10_1080_10408398_2024_2416481 crossref_primary_10_1128_spectrum_02439_21 crossref_primary_10_1016_j_tim_2022_08_003 crossref_primary_10_1128_spectrum_03361_22 crossref_primary_10_1080_1040841X_2022_2037506 crossref_primary_10_1080_10408398_2022_2045894 crossref_primary_10_1007_s00253_021_11453_1 crossref_primary_10_1128_mBio_00478_21 crossref_primary_10_1038_s41575_022_00631_9 crossref_primary_10_1007_s12223_022_00973_6 crossref_primary_10_1097_IN9_0000000000000029 crossref_primary_10_1038_s41467_024_48770_8 crossref_primary_10_1128_mBio_02507_20 crossref_primary_10_1002_mbo3_990 crossref_primary_10_2903_j_efsa_2020_6174 crossref_primary_10_1016_j_jgg_2022_11_001 crossref_primary_10_3389_fmicb_2024_1354447 crossref_primary_10_14336_AD_2023_0325 crossref_primary_10_1128_spectrum_00199_23 crossref_primary_10_1128_AEM_01487_21 crossref_primary_10_2903_j_efsa_2021_6780 crossref_primary_10_3389_fcimb_2019_00224 crossref_primary_10_3389_fcimb_2022_957439 crossref_primary_10_3389_fmicb_2022_841920 crossref_primary_10_20517_mrr_2024_09 crossref_primary_10_1111_1462_2920_15317 crossref_primary_10_3389_fmicb_2023_1172400 crossref_primary_10_1186_s40168_021_01108_8 crossref_primary_10_3390_biomedicines13040779 crossref_primary_10_2217_fmb_2019_0175 crossref_primary_10_1099_jmm_0_001435 crossref_primary_10_36233_0372_9311_2019_4_105_115 crossref_primary_10_3389_fgstr_2022_1024393 crossref_primary_10_1007_s11596_021_2464_5 crossref_primary_10_3389_fmicb_2024_1500886 crossref_primary_10_1002_fft2_87 crossref_primary_10_1099_ijsem_0_005697 crossref_primary_10_20517_mrr_2024_12 crossref_primary_10_3389_fcimb_2019_00239 crossref_primary_10_3390_ijms24043900 crossref_primary_10_1146_annurev_ecolsys_110617_062453 crossref_primary_10_1038_s41579_024_01106_1 crossref_primary_10_3390_microorganisms8020189 crossref_primary_10_1126_sciadv_add8766 crossref_primary_10_1016_j_cyto_2024_156833 crossref_primary_10_1128_AEM_02117_19 crossref_primary_10_1126_sciadv_aaz2299 crossref_primary_10_1038_s41467_025_57631_x crossref_primary_10_1016_j_micpath_2020_104353 crossref_primary_10_1016_j_ejim_2023_10_002 crossref_primary_10_1111_1751_7915_13033 crossref_primary_10_3389_fimmu_2024_1370658 crossref_primary_10_3390_microorganisms10071350 crossref_primary_10_1016_j_aquaculture_2023_739465 crossref_primary_10_3390_diagnostics13182960 crossref_primary_10_1038_s41467_022_29919_9 crossref_primary_10_1155_2020_2969287 crossref_primary_10_1128_jb_00334_23 crossref_primary_10_1016_j_tim_2023_07_014 crossref_primary_10_1038_s41598_022_23980_6 crossref_primary_10_1093_femsec_fiae078 crossref_primary_10_1080_10408398_2018_1517725 crossref_primary_10_1080_19490976_2018_1511663 crossref_primary_10_1007_s00125_019_4848_7 crossref_primary_10_1016_j_clnu_2022_08_029 crossref_primary_10_1016_j_eng_2020_09_016 crossref_primary_10_1080_19490976_2021_2025017 crossref_primary_10_1016_j_biopha_2024_116416 crossref_primary_10_3389_fmicb_2023_1238580 crossref_primary_10_3390_microorganisms12081627 crossref_primary_10_1128_aem_01128_22 crossref_primary_10_1210_endrev_bnad029 crossref_primary_10_1186_s13059_021_02427_7 crossref_primary_10_1186_s42523_024_00375_8 crossref_primary_10_1016_j_mib_2022_102150 crossref_primary_10_3389_fmicb_2018_00976 crossref_primary_10_1007_s00438_022_01937_8 crossref_primary_10_3389_fphar_2021_640347 crossref_primary_10_3390_microorganisms13010134 crossref_primary_10_1111_1751_7915_13410 crossref_primary_10_21508_1027_4065_2021_66_1_31_38 crossref_primary_10_3390_vetsci7020044 crossref_primary_10_1016_j_medmic_2021_100047 crossref_primary_10_1038_s41522_022_00338_4 crossref_primary_10_3390_microorganisms6030075 crossref_primary_10_1016_j_matdes_2022_111303 crossref_primary_10_1007_s12602_023_10118_x crossref_primary_10_3390_life13061247 crossref_primary_10_1038_s41597_024_04153_8 crossref_primary_10_1038_s41467_022_30857_9 crossref_primary_10_1089_acm_2020_0148 crossref_primary_10_3389_fmicb_2022_982712 crossref_primary_10_3390_ani14223305 crossref_primary_10_1038_s41538_024_00339_x crossref_primary_10_3389_fnut_2021_689456 crossref_primary_10_1128_mSystems_01048_20 crossref_primary_10_1016_j_mimet_2024_106975 |
Cites_doi | 10.1186/1471-2105-13-S14-S8 10.1093/nar/gkt1076 10.1093/bioinformatics/btq683 10.1099/ijs.0.02873-0 10.1161/CIRCULATIONAHA.115.019645 10.1093/bioinformatics/btv033 10.1016/j.micpath.2016.02.005 10.3920/BM2016.0009 10.1136/gutjnl-2014-308778 10.1128/AEM.05212-11 10.1073/pnas.1219451110 10.1093/bioinformatics/btp324 10.1038/nature11209 10.1038/nature11711 10.1186/1471-2148-7-37 10.1016/j.plasmid.2009.05.001 10.1016/0378-1119(89)90273-4 10.1093/nar/gkv1248 10.1126/science.aad3503 10.1093/nar/gkn663 10.1038/ismej.2011.38 10.1371/journal.pone.0047656 10.1186/1471-2105-11-119 10.1038/ismej.2012.6 10.1093/bioinformatics/btv421 10.1016/j.drup.2010.08.003 10.1093/bioinformatics/btu153 10.1136/gutjnl-2012-303839 10.1093/nar/gkm160 10.1093/bioinformatics/btp352 10.3389/fmicb.2011.00166 10.1038/nbt.2942 10.1128/AEM.01226-07 10.1073/pnas.0906412106 10.1128/AEM.01561-09 10.1093/jac/dki015 10.1099/ijs.0.64483-0 10.1093/nar/gkh152 10.1038/nature11450 10.1038/srep16643 10.1016/j.chom.2015.05.012 10.1126/science.1155725 10.1093/molbev/msw054 10.1038/oby.2012.110 10.1093/bioinformatics/btu033 10.1371/journal.pone.0016876 10.2337/dc16-1324 10.1038/nature12506 10.1038/nbt.3353 10.1007/s00125-012-2564-7 10.1128/AEM.04050-14 10.1128/AEM.01477-07 10.1101/gr.074492.107 10.1038/ajg.2010.281 10.1038/nmicrobiol.2016.161 10.1128/AEM.70.10.5875-5881.2004 10.1111/jam.13022 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2017 |
DBID | AAYXX CITATION NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-017-4195-3 |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database AUTh Library subscriptions: ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_e2b0abf97aa84090b2de4d7116d5afa6 PMC5648452 A510324348 29047329 10_1186_s12864_017_4195_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2015A020213002 – fundername: ; grantid: 81441066 – fundername: ; grantid: 201511 – fundername: ; grantid: S2013010014850 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ AIXEN C24 NPM PMFND 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AHSBF AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-fb372352d93f7fa71df1e4d9457a7cde80b4f7d80c7db6d4987abff3f663820c3 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:29:38 EDT 2025 Thu Aug 21 13:29:46 EDT 2025 Fri Jul 11 05:52:40 EDT 2025 Fri Jul 25 19:16:34 EDT 2025 Tue Jun 17 21:55:13 EDT 2025 Tue Jun 10 20:31:34 EDT 2025 Fri Jun 27 04:04:40 EDT 2025 Wed Feb 19 02:43:58 EST 2025 Thu Apr 24 23:09:25 EDT 2025 Tue Jul 01 02:22:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Genome diversity Population structure Akkermansia muciniphila Mammalian gut microbiota Antibiotic resistance |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-fb372352d93f7fa71df1e4d9457a7cde80b4f7d80c7db6d4987abff3f663820c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1071-8510 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-017-4195-3 |
PMID | 29047329 |
PQID | 2348351793 |
PQPubID | 44682 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e2b0abf97aa84090b2de4d7116d5afa6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5648452 proquest_miscellaneous_1953297344 proquest_journals_2348351793 gale_infotracmisc_A510324348 gale_infotracacademiconefile_A510324348 gale_incontextgauss_ISR_A510324348 pubmed_primary_29047329 crossref_primary_10_1186_s12864_017_4195_3 crossref_citationtrail_10_1186_s12864_017_4195_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-18 |
PublicationDateYYYYMMDD | 2017-10-18 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | LL Presley (4195_CR7) 2010; 76 CH Hansen (4195_CR19) 2012; 55 M Daly (4195_CR43) 2005; 55 MS Ramirez (4195_CR44) 2010; 13 E Le Chatelier (4195_CR2) 2013; 500 D Hyatt (4195_CR53) 2010; 11 MC Collado (4195_CR5) 2007; 73 S Schloissnig (4195_CR26) 2013; 493 M Richter (4195_CR27) 2009; 106 Human Microbiome Project C (4195_CR31) 2012; 486 K Lagesen (4195_CR50) 2007; 35 A Everard (4195_CR14) 2013; 110 JR Kultima (4195_CR61) 2012; 7 TL Weir (4195_CR23) 2013; 8 M Schneeberger (4195_CR15) 2015; 5 J Huerta-Cepas (4195_CR28) 2016; 44 G Roeselers (4195_CR9) 2011; 5 J Li (4195_CR34) 2016; 133 NR Shin (4195_CR16) 2014; 63 AJ Page (4195_CR55) 2015; 31 4195_CR33 J Goris (4195_CR56) 2007; 57 J Li (4195_CR30) 2014; 32 BL Cantarel (4195_CR54) 2009; 37 M Derrien (4195_CR12) 2011; 2 MW van Passel (4195_CR24) 2011; 6 H Li (4195_CR57) 2009; 25 M Kanehisa (4195_CR29) 2014; 42 J de la Cuesta-Zuluaga (4195_CR35) 2017; 40 L Wang (4195_CR21) 2011; 77 T Seemann (4195_CR49) 2014; 30 4195_CR48 L Xiao (4195_CR32) 2015; 33 4195_CR45 MC Dao (4195_CR18) 2016; 65 G Falony (4195_CR3) 2016; 352 F Backhed (4195_CR4) 2015; 17 F Van Herreweghen (4195_CR39) 2016 X Guo (4195_CR25) 2016; 120 CW Png (4195_CR20) 2010; 105 P Sangwan (4195_CR36) 2004; 70 M Boetzer (4195_CR47) 2011; 27 P Scholz (4195_CR41) 1989; 75 A El Kaoutari (4195_CR40) 2013; 11 J Reunanen (4195_CR11) 2015; 81 R Meyer (4195_CR42) 2009; 62 M Derrien (4195_CR10) 2004; 54 CL Karlsson (4195_CR17) 2012; 20 RE Ley (4195_CR6) 2008; 320 J Qin (4195_CR22) 2012; 490 H Li (4195_CR58) 2009; 25 DR Zerbino (4195_CR46) 2008; 18 S Kumar (4195_CR60) 2016; 33 D Laslett (4195_CR51) 2004; 32 D Li (4195_CR62) 2015; 31 M Derrien (4195_CR1) 2008; 74 C Belzer (4195_CR8) 2012; 6 B Yee (4195_CR37) 2007; 7 C Gomez-Gallego (4195_CR38) 2016; 7 A Stamatakis (4195_CR59) 2014; 30 4195_CR13 4195_CR52 17933936 - Appl Environ Microbiol. 2007 Dec;73(23):7767-70 26100928 - Gut. 2016 Mar;65(3):426-36 27126039 - Science. 2016 Apr 29;352(6285):560-4 22699610 - Nature. 2012 Jun 13;486(7402):215-21 26563823 - Sci Rep. 2015 Nov 13;5:16643 23222524 - Nature. 2013 Jan 3;493(7430):45-50 24214961 - Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 20648002 - Am J Gastroenterol. 2010 Nov;105(11):2420-8 26414350 - Nat Biotechnol. 2015 Oct;33(10):1103-8 23023125 - Nature. 2012 Oct 4;490(7418):55-60 24997786 - Nat Biotechnol. 2014 Aug;32(8):834-41 26875998 - Microb Pathog. 2017 May;106:171-181 27291403 - Benef Microbes. 2016 Sep;7(4):571-84 25795669 - Appl Environ Microbiol. 2015 Jun;81(11):3655-62 23748339 - Nat Rev Microbiol. 2013 Jul;11(7):497-504 17349062 - BMC Evol Biol. 2007 Mar 12;7:37 15388697 - Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-76 26666632 - J Appl Microbiol. 2016 Feb;120(2):452-9 23940645 - PLoS One. 2013 Aug 06;8(8):e70803 20008175 - Appl Environ Microbiol. 2010 Feb;76(3):936-41 23095524 - BMC Bioinformatics. 2012;13 Suppl 14:S8 21472014 - ISME J. 2011 Oct;5(10):1595-608 19465049 - Plasmid. 2009 Sep;62(2):57-70 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 15722395 - J Antimicrob Chemother. 2005 Apr;55(4):558-61 2653965 - Gene. 1989 Feb 20;75(2):271-88 21904534 - Front Microbiol. 2011 Aug 01;2:166 22572803 - Diabetologia. 2012 Aug;55(8):2285-94 18497261 - Science. 2008 Jun 20;320(5883):1647-51 27999002 - Diabetes Care. 2017 Jan;40(1):54-62 25609793 - Bioinformatics. 2015 May 15;31(10):1674-6 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4 21390229 - PLoS One. 2011 Mar 03;6(3):e16876 18083887 - Appl Environ Microbiol. 2008 Mar;74(5):1646-8 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 27143680 - Circulation. 2016 Jun 14;133(24):2434-46 15466527 - Appl Environ Microbiol. 2004 Oct;70(10):5875-81 26582926 - Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 17220447 - Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91 23804561 - Gut. 2014 May;63(5):727-35 26198102 - Bioinformatics. 2015 Nov 15;31(22):3691-3 17452365 - Nucleic Acids Res. 2007;35(9):3100-8 21784919 - Appl Environ Microbiol. 2011 Sep;77(18):6718-21 14704338 - Nucleic Acids Res. 2004 Jan 02;32(1):11-6 23671105 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71 20833577 - Drug Resist Updat. 2010 Dec;13(6):151-71 22437156 - ISME J. 2012 Aug;6(8):1449-58 21149342 - Bioinformatics. 2011 Feb 15;27(4):578-9 23985870 - Nature. 2013 Aug 29;500(7464):541-6 26308884 - Cell Host Microbe. 2015 Jun 10;17(6):852 27643971 - Nat Microbiol. 2016 Sep 19;:16161 27824274 - Benef Microbes. 2017 Feb 7;8(1):81-96 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 23082188 - PLoS One. 2012;7(10):e47656 18349386 - Genome Res. 2008 May;18(5):821-9 19855009 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 24642063 - Bioinformatics. 2014 Jul 15;30(14):2068-9 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3 22546742 - Obesity (Silver Spring). 2012 Nov;20(11):2257-61 20211023 - BMC Bioinformatics. 2010 Mar 08;11:119 |
References_xml | – ident: 4195_CR48 doi: 10.1186/1471-2105-13-S14-S8 – volume: 42 start-page: D199 issue: Database issue year: 2014 ident: 4195_CR29 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1076 – volume: 27 start-page: 578 issue: 4 year: 2011 ident: 4195_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq683 – volume: 54 start-page: 1469 issue: Pt 5 year: 2004 ident: 4195_CR10 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02873-0 – volume: 133 start-page: 2434 issue: 24 year: 2016 ident: 4195_CR34 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.019645 – volume: 31 start-page: 1674 issue: 10 year: 2015 ident: 4195_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – ident: 4195_CR13 doi: 10.1016/j.micpath.2016.02.005 – volume: 7 start-page: 571 issue: 4 year: 2016 ident: 4195_CR38 publication-title: Benefic Microbes doi: 10.3920/BM2016.0009 – volume: 65 start-page: 426 issue: 3 year: 2016 ident: 4195_CR18 publication-title: Gut doi: 10.1136/gutjnl-2014-308778 – volume: 77 start-page: 6718 issue: 18 year: 2011 ident: 4195_CR21 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05212-11 – volume: 110 start-page: 9066 issue: 22 year: 2013 ident: 4195_CR14 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1219451110 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: 4195_CR57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 486 start-page: 215 issue: 7402 year: 2012 ident: 4195_CR31 publication-title: Nature doi: 10.1038/nature11209 – volume: 493 start-page: 45 issue: 7430 year: 2013 ident: 4195_CR26 publication-title: Nature doi: 10.1038/nature11711 – volume: 7 start-page: 37 year: 2007 ident: 4195_CR37 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-37 – volume: 62 start-page: 57 issue: 2 year: 2009 ident: 4195_CR42 publication-title: Plasmid doi: 10.1016/j.plasmid.2009.05.001 – volume: 75 start-page: 271 issue: 2 year: 1989 ident: 4195_CR41 publication-title: Gene doi: 10.1016/0378-1119(89)90273-4 – volume: 44 start-page: D286 issue: D1 year: 2016 ident: 4195_CR28 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1248 – volume: 352 start-page: 560 issue: 6285 year: 2016 ident: 4195_CR3 publication-title: Science doi: 10.1126/science.aad3503 – volume: 37 start-page: D233 issue: Database issue year: 2009 ident: 4195_CR54 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn663 – volume: 5 start-page: 1595 issue: 10 year: 2011 ident: 4195_CR9 publication-title: The ISME journal doi: 10.1038/ismej.2011.38 – volume: 7 issue: 10 year: 2012 ident: 4195_CR61 publication-title: PLoS One doi: 10.1371/journal.pone.0047656 – volume: 11 start-page: 119 year: 2010 ident: 4195_CR53 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 6 start-page: 1449 issue: 8 year: 2012 ident: 4195_CR8 publication-title: The ISME journal doi: 10.1038/ismej.2012.6 – volume: 31 start-page: 3691 issue: 22 year: 2015 ident: 4195_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv421 – volume: 13 start-page: 151 issue: 6 year: 2010 ident: 4195_CR44 publication-title: Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy doi: 10.1016/j.drup.2010.08.003 – volume: 30 start-page: 2068 issue: 14 year: 2014 ident: 4195_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu153 – volume: 63 start-page: 727 issue: 5 year: 2014 ident: 4195_CR16 publication-title: Gut doi: 10.1136/gutjnl-2012-303839 – volume: 35 start-page: 3100 issue: 9 year: 2007 ident: 4195_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm160 – volume: 25 start-page: 2078 issue: 16 year: 2009 ident: 4195_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 2 start-page: 166 year: 2011 ident: 4195_CR12 publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00166 – volume: 32 start-page: 834 issue: 8 year: 2014 ident: 4195_CR30 publication-title: Nat Biotechnol doi: 10.1038/nbt.2942 – volume: 74 start-page: 1646 issue: 5 year: 2008 ident: 4195_CR1 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01226-07 – volume: 11 start-page: 497 issue: 7 year: 2013 ident: 4195_CR40 publication-title: Microbiology – volume: 106 start-page: 19126 issue: 45 year: 2009 ident: 4195_CR27 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0906412106 – volume: 76 start-page: 936 issue: 3 year: 2010 ident: 4195_CR7 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01561-09 – volume: 55 start-page: 558 issue: 4 year: 2005 ident: 4195_CR43 publication-title: J Antimicrob Chemother doi: 10.1093/jac/dki015 – volume: 57 start-page: 81 issue: Pt 1 year: 2007 ident: 4195_CR56 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.64483-0 – volume: 32 start-page: 11 issue: 1 year: 2004 ident: 4195_CR51 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh152 – ident: 4195_CR45 – volume: 490 start-page: 55 issue: 7418 year: 2012 ident: 4195_CR22 publication-title: Nature doi: 10.1038/nature11450 – volume: 5 year: 2015 ident: 4195_CR15 publication-title: Sci Rep doi: 10.1038/srep16643 – volume: 17 start-page: 852 issue: 6 year: 2015 ident: 4195_CR4 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.05.012 – volume: 320 start-page: 1647 issue: 5883 year: 2008 ident: 4195_CR6 publication-title: Science doi: 10.1126/science.1155725 – volume: 33 start-page: 1870 issue: 7 year: 2016 ident: 4195_CR60 publication-title: Mol Biol Evol doi: 10.1093/molbev/msw054 – volume: 20 start-page: 2257 issue: 11 year: 2012 ident: 4195_CR17 publication-title: Obesity doi: 10.1038/oby.2012.110 – volume: 30 start-page: 1312 issue: 9 year: 2014 ident: 4195_CR59 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 6 issue: 3 year: 2011 ident: 4195_CR24 publication-title: PLoS One doi: 10.1371/journal.pone.0016876 – volume: 40 start-page: 54 issue: 1 year: 2017 ident: 4195_CR35 publication-title: Diabetes Care doi: 10.2337/dc16-1324 – volume: 500 start-page: 541 issue: 7464 year: 2013 ident: 4195_CR2 publication-title: Nature doi: 10.1038/nature12506 – start-page: 1 volume-title: Vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent. Beneficial microbes year: 2016 ident: 4195_CR39 – ident: 4195_CR52 – volume: 33 start-page: 1103 issue: 10 year: 2015 ident: 4195_CR32 publication-title: Nat Biotechnol doi: 10.1038/nbt.3353 – volume: 55 start-page: 2285 issue: 8 year: 2012 ident: 4195_CR19 publication-title: Diabetologia doi: 10.1007/s00125-012-2564-7 – volume: 81 start-page: 3655 issue: 11 year: 2015 ident: 4195_CR11 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.04050-14 – volume: 73 start-page: 7767 issue: 23 year: 2007 ident: 4195_CR5 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01477-07 – volume: 8 issue: 8 year: 2013 ident: 4195_CR23 publication-title: PLoS One – volume: 18 start-page: 821 issue: 5 year: 2008 ident: 4195_CR46 publication-title: Genome Res doi: 10.1101/gr.074492.107 – volume: 105 start-page: 2420 issue: 11 year: 2010 ident: 4195_CR20 publication-title: Am J Gastroenterol doi: 10.1038/ajg.2010.281 – ident: 4195_CR33 doi: 10.1038/nmicrobiol.2016.161 – volume: 70 start-page: 5875 issue: 10 year: 2004 ident: 4195_CR36 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.10.5875-5881.2004 – volume: 120 start-page: 452 issue: 2 year: 2016 ident: 4195_CR25 publication-title: J Appl Microbiol doi: 10.1111/jam.13022 – reference: 19855009 - Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19126-31 – reference: 20833577 - Drug Resist Updat. 2010 Dec;13(6):151-71 – reference: 26308884 - Cell Host Microbe. 2015 Jun 10;17(6):852 – reference: 21390229 - PLoS One. 2011 Mar 03;6(3):e16876 – reference: 18838391 - Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 – reference: 18083887 - Appl Environ Microbiol. 2008 Mar;74(5):1646-8 – reference: 22572803 - Diabetologia. 2012 Aug;55(8):2285-94 – reference: 23985870 - Nature. 2013 Aug 29;500(7464):541-6 – reference: 27824274 - Benef Microbes. 2017 Feb 7;8(1):81-96 – reference: 23671105 - Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066-71 – reference: 23222524 - Nature. 2013 Jan 3;493(7430):45-50 – reference: 20648002 - Am J Gastroenterol. 2010 Nov;105(11):2420-8 – reference: 23023125 - Nature. 2012 Oct 4;490(7418):55-60 – reference: 23804561 - Gut. 2014 May;63(5):727-35 – reference: 15722395 - J Antimicrob Chemother. 2005 Apr;55(4):558-61 – reference: 26198102 - Bioinformatics. 2015 Nov 15;31(22):3691-3 – reference: 25609793 - Bioinformatics. 2015 May 15;31(10):1674-6 – reference: 26666632 - J Appl Microbiol. 2016 Feb;120(2):452-9 – reference: 19465049 - Plasmid. 2009 Sep;62(2):57-70 – reference: 22699610 - Nature. 2012 Jun 13;486(7402):215-21 – reference: 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4 – reference: 21904534 - Front Microbiol. 2011 Aug 01;2:166 – reference: 17349062 - BMC Evol Biol. 2007 Mar 12;7:37 – reference: 21472014 - ISME J. 2011 Oct;5(10):1595-608 – reference: 24997786 - Nat Biotechnol. 2014 Aug;32(8):834-41 – reference: 26414350 - Nat Biotechnol. 2015 Oct;33(10):1103-8 – reference: 14704338 - Nucleic Acids Res. 2004 Jan 02;32(1):11-6 – reference: 17220447 - Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91 – reference: 18349386 - Genome Res. 2008 May;18(5):821-9 – reference: 21149342 - Bioinformatics. 2011 Feb 15;27(4):578-9 – reference: 27999002 - Diabetes Care. 2017 Jan;40(1):54-62 – reference: 24642063 - Bioinformatics. 2014 Jul 15;30(14):2068-9 – reference: 26100928 - Gut. 2016 Mar;65(3):426-36 – reference: 19505943 - Bioinformatics. 2009 Aug 15;25(16):2078-9 – reference: 27143680 - Circulation. 2016 Jun 14;133(24):2434-46 – reference: 23082188 - PLoS One. 2012;7(10):e47656 – reference: 17452365 - Nucleic Acids Res. 2007;35(9):3100-8 – reference: 21784919 - Appl Environ Microbiol. 2011 Sep;77(18):6718-21 – reference: 27643971 - Nat Microbiol. 2016 Sep 19;:16161 – reference: 15466527 - Appl Environ Microbiol. 2004 Oct;70(10):5875-81 – reference: 23748339 - Nat Rev Microbiol. 2013 Jul;11(7):497-504 – reference: 15388697 - Int J Syst Evol Microbiol. 2004 Sep;54(Pt 5):1469-76 – reference: 23095524 - BMC Bioinformatics. 2012;13 Suppl 14:S8 – reference: 26563823 - Sci Rep. 2015 Nov 13;5:16643 – reference: 22546742 - Obesity (Silver Spring). 2012 Nov;20(11):2257-61 – reference: 18497261 - Science. 2008 Jun 20;320(5883):1647-51 – reference: 27291403 - Benef Microbes. 2016 Sep;7(4):571-84 – reference: 22437156 - ISME J. 2012 Aug;6(8):1449-58 – reference: 26875998 - Microb Pathog. 2017 May;106:171-181 – reference: 27126039 - Science. 2016 Apr 29;352(6285):560-4 – reference: 20008175 - Appl Environ Microbiol. 2010 Feb;76(3):936-41 – reference: 24451623 - Bioinformatics. 2014 May 1;30(9):1312-3 – reference: 17933936 - Appl Environ Microbiol. 2007 Dec;73(23):7767-70 – reference: 26582926 - Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 – reference: 25795669 - Appl Environ Microbiol. 2015 Jun;81(11):3655-62 – reference: 20211023 - BMC Bioinformatics. 2010 Mar 08;11:119 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 2653965 - Gene. 1989 Feb 20;75(2):271-88 – reference: 23940645 - PLoS One. 2013 Aug 06;8(8):e70803 – reference: 24214961 - Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 |
SSID | ssj0017825 |
Score | 2.544949 |
Snippet | Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health, however,... Background Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in human health,... Abstract Background Akkermansia muciniphila is one of the most dominant bacteria that resides on the mucus layer of intestinal tract and plays key role in... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 800 |
SubjectTerms | Akkermansia muciniphila Antibiotic resistance Antibiotics Bacteria Biodiversity Biological evolution Biosynthesis Body mass index Body size Diabetes Diabetes mellitus Digestive system DNA sequencing Evolutionary genetics Feces Gastrointestinal tract Gene sequencing Gene transfer Genes Genome diversity Genomes Genomics Homeostasis Intestinal microflora Intestine Mammalian gut microbiota Mammals Metabolism Metagenomics Microbial drug resistance Microbiomes Microbiota (Symbiotic organisms) Mucus Phylogenetics Phylogeny Population Population structure Principal components analysis Proteins Signal transduction Whole genome sequencing |
SummonAdditionalLinks | – databaseName: Open Access: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_rZ6ShRBkCvXNj_7uIrnKeiDenBvIWmSu3LX7mK7D_5b_oXOtN2yRdAXXztT2GS-ZCbNt98Q8sqJ3EEdmqc2L1TKeeFTHZhIZXRKel3aOMgufv4iT8_4p3NxvtfqCzlhozzwOHHHoXCZdbFU1uJZJHOFD9yrPJde2GgHsW3IebvD1HR_AHlPTHeYuZbHHezCEtkWCm89RcoWWWgQ6_9zS97LSUu-5F4COrlDbk-VI12Nv_guuRHae-Tm2Evy533y60No102gEzcaMhJdR8pKurq6wt237WpLmy0Y6s1lfW1pDajDQpOiiBOAkNZ9RzdzPy86Kstuf4QjikKuTV1R23qKiXD8fkg9cjpqJHUcDaZRXAQed3MbLVq3tLFNM3xNoRfbnjb1KP3U2-4BOTt5__3daTo1ZEgrUfI-jY6pAio2X7KoolW5jzkEo-RCWVX5oDPHo_I6q5R30vNSKwhdZBHKGqg0KvaQHLTrNjwmNERdVioPRRY5dyw6KJ8hsNLlUntRioRkuwCZalIrx6YZ12Y4tWhpxpgaiKnBmBqWkDfzK5tRquNvzm8x6rMjqmwPDwB7ZsKe-Rf2EvISMWNQR6NFos6F3Xad-fjtq1kNSoWccZ2Q15NTXMMIKjv97wHmAaW3Fp6HC09Y6NXSvIOmmTaazhRgYCizBiN6MZvxTSTPtWG97QzelGKLMs4T8mhE8jzuosy4AmtC1ALji4lZWtr6cpAhF5JrLoon_2Mmn5JbBa5OpArpQ3IACA_PoNrr3fNhYf8GrQ1W8g priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3re6ShRBkC3bSy7tk4ziugr6oC7MW0iaZLbsth23Mw_-LX-h57SZukXY154Emp5rkq_fIeS14amBOjSNdZrJmLHMxoXLeSy8kcIWpfYD7eLXb-LklH1Z8mU4cOsDrHIXE4dAbbsKz8iPspxBsYDm9G79K8auUXi7Glpo3CS3kLoMIV1yOW24Ush-PNxkpoU46iEWC8RcSLz75HE-y0UDZf__gflKZpqjJq-koeN75G6oH-liVPh9csO1D8jtsaPk74fkzyfXdo2jASENeYl2nuYlXZyfYwxu-1rTZguCen1WX2hag-1huUmRyglMkdabnq6nrl505JfdXrpDinSuTV1R3VqK6XA8RaQWkR01QjsOB9FIMQKP-6mZFq1b2uimGc5U6Gq7oU09EkBtdP-InB5__PnhJA5tGeKKl2wTe5PLDOo2W-Zeei1T61PHbMm41LKyrkgM89IWSSWtEZaVhdTG-9xDcQP1RpU_Jntt17p9Qp0vykqmLks8Yyb3Bopo65gwqSgsL3lEkp2CVBU4y7F1xoUa9i6FUKNOFehUoU5VHpG305T1SNhx3eD3qPVpIHJtDw-6y5UKrqtcZhJYQCm1xt1wYjJ4RSvTVFiuvRYReYU2o5BNo0W4zkpv-159_vFdLQa-QgamG5E3YZDvYAWVDn8_wHdAAq7ZyIPZSHD3ai7emaYK4aZX_5wjIi8nMc5ECF3rum2v8L4UG5UxFpEnoyVP687KhEmQRkTObHz2YeaStj4byMi5YAXj2dPrX-sZuZOh3yEUqDgge2C77jlUcxvzYnDZv9CHTV8 priority: 102 providerName: ProQuest |
Title | Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29047329 https://www.proquest.com/docview/2348351793 https://www.proquest.com/docview/1953297344 https://pubmed.ncbi.nlm.nih.gov/PMC5648452 https://doaj.org/article/e2b0abf97aa84090b2de4d7116d5afa6 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEA_3QPCL-LZ6LlEEQa7aR9q0H0T25M5TuENOF-5bSJpkr9y2Xbe74P1b_oXOpN31iof4tTMtzTwyk2TyG0JeqSRUkIeGvgwj7jMWaT8zceKnVvFUZ7m0Dnbx5DQ9nrAv58n5Flm3t-oF2N64tMN-UpPF7O3PH1cfwOHfO4fP0nctzLEp1lJwPNNM_Hib7EJg4uinJ-zPoQIEw8RdNuKhH8EyoT_kvPETgzDl0Pz_nrOvBa1hQeW1CHV0l9zpU0s67mzhHtky9X1yq2s2efWA_Ppk6qYytC-ehpBFG0vjnI4vL3F6rttS0moFhHJ-Uc4kLcEsMROliPIE0qLlsqXzTcMv2kHPrhZmnyLSa1UWVNaaYqTsNhipxqKPEqs-9h2pQx-Bx-2mzxYta1rJqnLbLXS6WtKq7LChlrJ9SCZHh98_Hvt9xwa_SHK29K2KeQQpnc5jy63kobahYTpnCZe80CYLFLNcZ0HBtUo1yzMulbWxhbwHUpEifkR26qY2Twg1NssLHpoosIyp2CrIr7VhqQrTTCd54pFgrSBR9HDm2FVjJtyyJktFp1MBOhWoUxF75M3mlXmH5fEv5gPU-oYRYbjdg2YxFb1XCxOpAAaQcylxoRyoCH5R8zBMdSKtTD3yEm1GINBGjZU8U7lqW_H525kYOyhDFrPMI697JtvACArZX4wAOSA214Bzb8AJM0ExJK9NU6wdSURAiBGHDUb0YkPGN7G6rjbNqhV4lIo9zBjzyOPOkjfjjvKAcaB6hA9sfCCYIaUuLxxOeZKyjCXR0_8RwjNyO0Lvw1qhbI_sgAWb55DuLdWIbPNzPiK7B4enX89GbtNk5Bz7N_yTV6A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwQXxJtAAYNASKhR83Di5IBQCy279CFUWqk3Y8f2NmqTLM2uUP8UB34hM0k2NELqrdfMJIoz43l4Jt8Q8kZFvoI41HelH3CXsUC7iQkjN7aKxzpJpW1gF_f249ER-3ocHS-R34t_YbCtcmETG0OtqwzPyNeDkEGwgOr0cfrTxalRWF1djNBo1WLHXPyClK3-MP4M8n0bBNtbh59GbjdVwM2ilM1cq0IeQNih09ByK7mvrW-YTlnEJc-0STzFLNeJl3GtYs0gKZfK2tCCbwZ3mYXw3BtkhYWQyiyTlc2t_W8Hfd0C_G3U1U79JF6vwfrH2OXBsdoaueHA-zVDAv53BZd84bBP85Lj275L7nQRK91oVeweWTLlfXKznWF58YD8-WLKqjC068kGT0grS8OUbpyeotUv61zSYg6EfHqSn0mag7ZjgEsRPAqUn-azmk77OWK0RbSdn5s1igCyRZ5RWWqKDrg9t6Qae0lybCZZa0gtqAlcrvvxXTQvaSGLojnFoZP5jBZ5Czk1k_VDcnQtIntElsuqNE8INTZJM-6bwLOMqdAqCNu1YbHy40RHaeQQbyEgkXUo6Tis40w02VISi1amAmQqUKYidMj7_pZpCxFyFfMmSr1nRHTv5kJ1PhGdsRAmUB4sIOVSYv7tqQBeUXPfj3UkrYwd8hp1RiB-R4kNQhM5r2sx_n4gNhqERAabxSHvOiZbwQoy2f1vAd8BIb8GnKsDTjAw2ZC8UE3RGbha_NuODnnVk_FObNorTTWvBVZocTQaYw553Gpyv-4g9RgHqkP4QMcHH2ZIKfOTBv48ilnCouDp1a_1ktwaHe7tit3x_s4zcjvAPYiNSMkqWQY9Ns8hlpypF90GpuTHdduMv51FjMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+sequencing+of+39+Akkermansia+muciniphila+isolates+reveals+its+population+structure%2C+genomic+and+functional+diverisity%2C+and+global+distribution+in+mammalian+gut+microbiotas&rft.jtitle=BMC+genomics&rft.au=Guo%2C+Xianfeng&rft.au=Li%2C+Shenghui&rft.au=Zhang%2C+Jiachun&rft.au=Wu%2C+Feifan&rft.date=2017-10-18&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-017-4195-3&rft.externalDBID=ISR&rft.externalDocID=A510324348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |