Overexpression of Alternatively Spliced Tissue Factor Induces the Pro-Angiogenic Properties of Murine Cardiomyocytic HL-1 Cells

Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 75; no. 5; pp. 1235 - 1242
Main Authors Eisenreich, Andreas, Boltzen, Ulrike, Malz, Ronny, Schultheiss, Heinz-Peter, Rauch, Ursula
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF). Methods and Results: Expression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells. Conclusions: Overexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor. (Circ J 2011; 75: 1235-1242)
AbstractList Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF). Expression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells. Overexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor.
BACKGROUNDTissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF).METHODS AND RESULTSExpression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells.CONCLUSIONSOverexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor.
Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF). Methods and Results: Expression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells. Conclusions: Overexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor. (Circ J 2011; 75: 1235-1242)
Author Eisenreich, Andreas
Schultheiss, Heinz-Peter
Boltzen, Ulrike
Malz, Ronny
Rauch, Ursula
Author_xml – sequence: 1
  fullname: Eisenreich, Andreas
  organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin
– sequence: 2
  fullname: Boltzen, Ulrike
  organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin
– sequence: 3
  fullname: Malz, Ronny
  organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin
– sequence: 4
  fullname: Schultheiss, Heinz-Peter
  organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin
– sequence: 5
  fullname: Rauch, Ursula
  organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21389637$$D View this record in MEDLINE/PubMed
BookMark eNpFkEtv3CAURlGUKq9mn1XFritSHsbYy5HVaRJNlUpN14jB1xNGHnDBjjqr_vXizDTZABfO_XQ5l-jUBw8I3TB6y7gUX6yLdnvbPBBGCVWVOEEXTBSKFBWnp6_nktRVIc7RZUpbSnlNZX2GzjkTVV0KdYH-Pr5AhD9DhJRc8Dh0eNGPEL0Z3Qv0e_xz6J2FFj-5lCbAS2PHEPG9bycLCY_PgH_EQBZ-48IGvLNzOUAcXX7NYd-n6DzgxsTWhd0-2P2YmbsVYbiBvk8f0YfO9Amuj_sV-rX8-tTckdXjt_tmsSJW1sVIWsVqURqhuDFGtfljwHhlJVjOu6rMA3aylrziXII0Ys1KI42smeKV7NZUiSv0-ZA7xPB7gjTqnUs2T2A8hCnpqhSFoLQsMkkPpI0hpQidHqLbmbjXjOrZun61rpuH-WK2nls-HcOn9Q7at4b_mjOwPADbNJoNvAEme7I9HBOV1HJe3pPfgWcTNXjxD6JZm0A
CitedBy_id crossref_primary_10_1016_j_tcm_2011_08_001
crossref_primary_10_1016_j_yjmcc_2012_01_015
crossref_primary_10_1161_ATVBAHA_111_233536
crossref_primary_10_3390_ijms18010022
crossref_primary_10_1007_s40620_015_0258_1
crossref_primary_10_1373_clinchem_2015_241521
crossref_primary_10_1073_pnas_1607710113
crossref_primary_10_1111_j_1755_5922_2011_00305_x
crossref_primary_10_3892_mmr_2019_9843
crossref_primary_10_1016_j_thromres_2012_02_027
crossref_primary_10_1186_s40364_023_00504_6
crossref_primary_10_1097_HJH_0000000000000799
crossref_primary_10_1253_circj_CJ_11_0870
crossref_primary_10_1016_j_lfs_2020_118175
crossref_primary_10_2119_molmed_2011_00416
crossref_primary_10_3892_or_2013_2413
crossref_primary_10_58209_ijbc_15_1_71
crossref_primary_10_1155_2013_948765
crossref_primary_10_1186_s12933_018_0678_z
crossref_primary_10_1016_j_tcm_2013_09_005
crossref_primary_10_1186_s13045_014_0054_8
crossref_primary_10_7243_2052_4358_1_8
crossref_primary_10_1002_ijc_28959
Cites_doi 10.1111/j.1755-5922.2010.00206.x
10.1253/circj.CJ-09-1021
10.1182/blood.V96.1.170
10.1073/pnas.96.5.2311
10.1182/blood-2006-07-036202
10.1253/circj.CJ-07-0960
10.1038/nm841
10.1253/circj.CJ-99-0225
10.1016/j.jacc.2004.12.061
10.1111/j.1538-7836.2008.03000.x
10.1111/j.1538-7836.2005.01680.x
10.1074/jbc.M406813200
10.1073/pnas.0905325106
10.1016/j.tcm.2006.03.005
10.1016/j.intimp.2007.06.005
10.1161/CIRCRESAHA.108.183905
10.1186/bcr1871
10.1111/j.1538-7836.2009.03323.x
10.1111/j.1538-7836.2009.03368.x
10.1111/j.1538-7836.2008.02946.x
10.1016/S0049-3848(07)70126-3
10.1073/pnas.0606411103
10.1016/j.cardiores.2006.12.018
10.1161/01.RES.0000171805.24799.fa
10.1074/jbc.M702410200
10.1253/circj.72.654
10.1253/circj.68.488
10.1253/circj.CJ-08-1067
10.1111/j.1538-7836.2007.02649.x
10.1111/j.1538-7836.2004.00972.x
10.1074/jbc.275.19.14632
10.1016/S1050-1738(00)00049-9
10.1200/JCO.2009.22.6324
10.1016/j.abb.2005.06.005
10.1515/BC.2008.152
10.1182/blood.V91.8.2698.2698_2698_2703
10.1253/circj.69.1547
ContentType Journal Article
Copyright 2011 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2011 THE JAPANESE CIRCULATION SOCIETY
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1253/circj.CJ-10-0783
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 1242
ExternalDocumentID 10_1253_circj_CJ_10_0783
21389637
article_circj_75_5_75_CJ_10_0783_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
AAUGY
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
M~E
OK1
P2P
RJT
RNS
RYR
RZJ
TKC
TR2
W2D
X7M
XSB
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c594t-d71936a372aaa7d134e128c5ec22f86cedf59528225e5a3b16a5a5917285fb073
ISSN 1346-9843
IngestDate Sun May 12 02:28:23 EDT 2024
Fri Aug 23 02:29:07 EDT 2024
Thu May 23 23:48:25 EDT 2024
Thu Aug 17 20:30:13 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594t-d71936a372aaa7d134e128c5ec22f86cedf59528225e5a3b16a5a5917285fb073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/75/5/75_CJ-10-0783/_article/-char/en
PMID 21389637
PQID 863430064
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_863430064
crossref_primary_10_1253_circj_CJ_10_0783
pubmed_primary_21389637
jstage_primary_article_circj_75_5_75_CJ_10_0783_article_char_en
PublicationCentury 2000
PublicationDate 2011-00-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2011
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 25. Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 2009; 27: 4834-4838.
26. Eisenreich A, Boltzen U, Poller W, Schultheiss HP, Rauch U. Effects of the Cdc2-like kinase-family and DNA topoisomerase I on the alternative splicing of eNOS in TNF-alpha-stimulated human endothelial cells. Biol Chem 2008; 389: 1333-1338.
14. Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: A circulating, soluble, thrombogenic protein. Nat Med 2003; 9: 458-462.
1. Takahashi M. Role of the SDF-1/CXCR4 system in myocardial infarction. Circ J 2010; 74: 418-423.
10. Rauch U, Nemerson Y. Tissue factor, the blood, and the arterial wall. Trends Cardiovasc Med 2000; 10: 139-143.
23. Hobbs JE, Zakarija A, Cundiff DL, Doll JA, Hymen E, Cornwell M, et al. Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 2007; 120(Suppl 2): S13-S21.
24. van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W, et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci USA 2009; 106: 19497-19502.
31. Szotowski B, Antoniak S, Goldin-Lang P, Tran QV, Pels K, Rosenthal P, et al. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc Res 2007; 73: 806-812.
35. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103: 13932-13937.
18. Eisenreich A, Malz R, Pepke W, Ayral Y, Poller W, Schultheiss HP, et al. Role of the phosphatidylinositol 3-kinase/protein kinase B pathway in regulating alternative splicing of tissue factor mRNA in human endothelial cells. Circ J 2009; 73: 1746-1752.
19. Eisenreich A, Rauch U. PI3K inhibitors in cardiovascular disease. Cardiovasc Ther 2011; 29: 29-36.
37. Huang Y, Marui A, Sakaguchi H, Esaki J, Arai Y, Hirose K, et al. Sustained release of prostaglandin E1 potentiates the impaired therapeutic angiogenesis by basic fibroblast growth factor in diabetic murine hindlimb ischemia. Circ J 2008; 72: 1693-1699.
21. Szotowski B, Goldin-Lang P, Antoniak S, Bogdanov VY, Pathirana D, Pauschinger M, et al. Alterations in myocardial tissue factor expression and cellular localization in dilated cardiomyopathy. J Am Coll Cardiol 2005; 45: 1081-1089.
5. Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H, Schieffer B. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: Potential role in angiogenesis and endothelial regeneration. Blood 2007; 110: 877-885.
38. Chen N, Leu SJ, Todorovic V, Lam SC, Lau LF. Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 2004; 279: 44166-44176.
3. Katsumoto M, Shingu T, Kuwashima R, Nakata A, Nomura S, Chayama K. Biphasic effect of HMG-CoA reductase inhibitor, pitavastatin, on vascular endothelial cells and angiogenesis. Circ J 2005; 69: 1547-1555.
20. Pawlinski R, Tencati M, Holscher T, Pedersen B, Voet T, Tilley RE, et al. Role of cardiac myocyte tissue factor in heart hemostasis. J Thromb Haemost 2007; 5: 1693-1700.
9. Rauch U, Bonderman D, Bohrmann B, Badimon JJ, Himber J, Riederer MA, et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 2000; 96: 170-175.
13. Eisenreich A, Celebi Ö, Goldin-Lang P, Schultheiss HP, Rauch U. Upregulation of tissue factor expression and thrombogenic activity in human aortic smooth muscle cells by irradiation, rapamycin and paclitaxel. Int Immunopharmacol 2008; 8: 307-311.
16. Tardos JG, Eisenreich A, Deikus G, Bechhofer DH, Chandradas S, Zafar U, et al. SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocytic cells. J Thromb Haemost 2008; 6: 877-884.
33. Ollivier V, Bentolila S, Chabbat J, Hakim J, de Prost D. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII. Blood 1998; 91: 2698-2703.
8. Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 2005; 96: 1233-1239.
12. Antoniak S, Boltzen U, Eisenreich A, Stellbaum C, Poller W, Schultheiss HP, et al. Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro. J Thromb Haemost 2009; 7: 871-878.
11. Mackman N. The many faces of tissue factor. J Thromb Haemost 2009; 7(Suppl 1): 136-139.
6. Sakamoto H, Sakamaki T, Kanda T, Tsuchiya Y, Sato M, Sato H, et al. Vascular endothelial growth factor is an autocrine growth factor for cardiac myxoma cells. Circ J 2004; 68: 488-493.
2. Takeda Y, Uemura S, Iwama H, Imagawa K, Nishida T, Onoue K, et al. Treatment with recombinant placental growth factor (PlGF) enhances both angiogenesis and arteriogenesis and improves survival after myocardial infarction. Circ J 2009; 73: 1674-1682.
22. Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2004; 2: 2065-2067.
4. Yu P, Passam FH, Yu DM, Denyer G, Krilis SA. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J Thromb Haemost 2008; 6: 1215-1223.
28. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103: 13932-13937.
36. Takeshita Y, Katsuki Y, Katsuda Y, Kai H, Saito Y, Arima K, et al. Vitamin C reversed malfunction of peripheral blood-derived mononuclear cells in smokers through antioxidant properties. Circ J 2008; 72: 654-659.
7. Giesen PL, Rauch U, Bohrman B, Kling D, Roque M, Fallon JT, et al. Blood-borne tissue factor: Another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-2315.
30. Szotowski B, Antoniak S, Rauch U. Alternatively spliced tissue factor: A previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc Med 2006; 16: 177-182.
32. Pendurthi UR, Allen KE, Ezban M, Rao LV. Factor VIIa and thrombin induce the expression of Cyr61 and connective tissue growth factor, extracellular matrix signaling proteins that could act as possible downstream mediators in factor VIIa x tissue factor-induced signal transduction. J Biol Chem 2000; 275: 14632-14641.
29. Versteeg HH, Ruf W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem 2007; 282: 25416-25424.
27. Bluff JE, Brown NJ, Reed MW, Staton CA. Tissue factor, angiogenesis and tumour progression. Breast Cancer Res 2008; 10: 204.
17. Bogdanov VY, Kirk RI, Miller C, Hathcock JJ, Vele S, Gazdoiu M, et al. Identification and characterization of murine alternatively spliced tissue factor. J Thromb Haemost 2006; 4: 158-167.
15. Eisenreich A, Bogdanov VY, Zakrzewicz A, Pries A, Antoniak S, Poller W, et al. Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells. Circ Res 2009; 104: 589-599.
34. Chu AJ. Tissue factor mediates inflammation. Arch Biochem Biophys 2005; 440: 123-132.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 19
  doi: 10.1111/j.1755-5922.2010.00206.x
– ident: 1
  doi: 10.1253/circj.CJ-09-1021
– ident: 9
  doi: 10.1182/blood.V96.1.170
– ident: 7
  doi: 10.1073/pnas.96.5.2311
– ident: 5
  doi: 10.1182/blood-2006-07-036202
– ident: 37
  doi: 10.1253/circj.CJ-07-0960
– ident: 14
  doi: 10.1038/nm841
– ident: 18
  doi: 10.1253/circj.CJ-99-0225
– ident: 21
  doi: 10.1016/j.jacc.2004.12.061
– ident: 4
  doi: 10.1111/j.1538-7836.2008.03000.x
– ident: 17
  doi: 10.1111/j.1538-7836.2005.01680.x
– ident: 38
  doi: 10.1074/jbc.M406813200
– ident: 24
  doi: 10.1073/pnas.0905325106
– ident: 30
  doi: 10.1016/j.tcm.2006.03.005
– ident: 13
  doi: 10.1016/j.intimp.2007.06.005
– ident: 15
  doi: 10.1161/CIRCRESAHA.108.183905
– ident: 27
  doi: 10.1186/bcr1871
– ident: 12
  doi: 10.1111/j.1538-7836.2009.03323.x
– ident: 11
  doi: 10.1111/j.1538-7836.2009.03368.x
– ident: 16
  doi: 10.1111/j.1538-7836.2008.02946.x
– ident: 23
  doi: 10.1016/S0049-3848(07)70126-3
– ident: 28
  doi: 10.1073/pnas.0606411103
– ident: 31
  doi: 10.1016/j.cardiores.2006.12.018
– ident: 8
  doi: 10.1161/01.RES.0000171805.24799.fa
– ident: 29
  doi: 10.1074/jbc.M702410200
– ident: 36
  doi: 10.1253/circj.72.654
– ident: 6
  doi: 10.1253/circj.68.488
– ident: 2
  doi: 10.1253/circj.CJ-08-1067
– ident: 20
  doi: 10.1111/j.1538-7836.2007.02649.x
– ident: 22
  doi: 10.1111/j.1538-7836.2004.00972.x
– ident: 32
  doi: 10.1074/jbc.275.19.14632
– ident: 10
  doi: 10.1016/S1050-1738(00)00049-9
– ident: 25
  doi: 10.1200/JCO.2009.22.6324
– ident: 34
  doi: 10.1016/j.abb.2005.06.005
– ident: 35
  doi: 10.1073/pnas.0606411103
– ident: 26
  doi: 10.1515/BC.2008.152
– ident: 33
  doi: 10.1182/blood.V91.8.2698.2698_2698_2703
– ident: 3
  doi: 10.1253/circj.69.1547
SSID ssj0029059
Score 2.103713
Snippet Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major...
Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic...
BACKGROUNDTissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 1235
SubjectTerms Alternative Splicing
Alternatively spliced tissue factor
Angiogenesis
Angiogenesis Inducing Agents
Animals
Cell Line
Cell Movement
Cell Proliferation
Chemokines
Gene Expression
Growth
Mice
Migration
Myocytes, Cardiac - cytology
Myocytes, Cardiac - physiology
Neovascularization, Physiologic
Thromboplastin - genetics
Title Overexpression of Alternatively Spliced Tissue Factor Induces the Pro-Angiogenic Properties of Murine Cardiomyocytic HL-1 Cells
URI https://www.jstage.jst.go.jp/article/circj/75/5/75_CJ-10-0783/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/21389637
https://search.proquest.com/docview/863430064
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2011, Vol.75(5), pp.1235-1242
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKgtBeEG_KSz5wQVXKNonzOKGqYqkqFpBopd4ix3F2s4RklaaI7YVfzH9gxnaTdLWVWKQqqqxk7Hi-jGfszx5C3oxiEbhO6lkyiUMLEOJYsYCYhwvb5XEgGee4G_nkszdduLMlW_Z6fzqspXUdD8Xm2n0l_6NVKAO94i7ZG2i2EQoF8B_0C1fQMFz_ScdfoMXyl6GyKr9vnJsJvp8yB6uAi9PgUc5V7w6OVW6dAWbrQB4Wupxfq9IaF6dZCXUgSR6n5is8Y1VRY3AmXiInJMnKH5eluMTTXaefrNFgIvN81XVsJ1klTCaw5jSKfUdUYMUzGKQx-eWg-6ChkDZefrbCN890tipFveTtrH6Z1xttMxd5lX3vcHjzjeaMF0Uj6ps4W-e4KKJzxE9lVmyslpucbOdxOzbacT0rDPTpTkO5LfMBafZR17DrlCwGwKxjpXF_cGfEBxfHvnY0sVVKEAH9cD6czBSFzw-cduTcsgWuDKgNzREDLJARKQnRZBZBAUq4RW7bYBeRgfpx2TCS7PBI5fZr3s-sqoOEd1fbsONF3TmHQOJU7o-RlK80v0_umSCHjjViH5CeLB6SuyeGxvGI_N4FLi1TugNcaoBLNXCpBi41wKWgR7oLXNoCF4Vp4NJd4FIELlXAfUwWxx_mk6llMoFYgoVubSU-xBked3ybc-4n0EMS_CrBJJiVNPCgQSkLGTKiGVgXJx55nHEWYu41lsYwij0hB0VZyGeEclukOGPlxAk4r0kM7ip3PQ8s1ijl6cjtk7fbno0u9IEv0T499sl73fXNncYUmDt9FjG8tE-0N5zxCkxYn9CtziKw67hYBx9fuV5Fgee4DgYMffJU67KpxEZygef4z2_Q1BfkUK-G4O8lOairtXwF7nQdv1Yg_AsIN9Qq
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overexpression+of+Alternatively+Spliced+Tissue+Factor+Induces+the+Pro-Angiogenic+Properties+of+Murine+Cardiomyocytic+HL-1+Cells&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Eisenreich%2C+Andreas&rft.au=Boltzen%2C+Ulrike&rft.au=Malz%2C+Ronny&rft.au=Schultheiss%2C+Heinz-Peter&rft.date=2011&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=75&rft.issue=5&rft.spage=1235&rft.epage=1242&rft_id=info:doi/10.1253%2Fcircj.CJ-10-0783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_10_0783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon