Overexpression of Alternatively Spliced Tissue Factor Induces the Pro-Angiogenic Properties of Murine Cardiomyocytic HL-1 Cells
Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated...
Saved in:
Published in | Circulation Journal Vol. 75; no. 5; pp. 1235 - 1242 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF). Methods and Results: Expression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells. Conclusions: Overexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor. (Circ J 2011; 75: 1235-1242) |
---|---|
AbstractList | Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF).
Expression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells.
Overexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor. BACKGROUNDTissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF).METHODS AND RESULTSExpression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells.CONCLUSIONSOverexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor. Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic form of TF. Although the function of asTF is poorly understood, it was suggested that asTF contributes to tumor-associated growth and angiogenesis. In the heart of a developing embryo, asTF is expressed much later compared to flTF, but in adult heart, asTF exhibits a distribution pattern similar to that of flTF. Thus, it is possible that asTF may play a role in heart development via pro-angiogenic signaling. The purpose of the present study was to examine the effects of murine asTF overexpression in murine cardiomyocyte-like HL-1 cells on their pro-angiogenic potential, the chemotaxis of monocytic cells, and the expression of fibroblast growth factor-2 (FGF2), cysteine-rich 61 (Cyr61), and vascular endothelial growth factor (VEGF). Methods and Results: Expression of FGF2, Cyr61 and VEGF was assessed on reverse transcription-polymerase chain reaction and western blot. Cell migration, proliferation, and endothelial tube formation assays were carried out. It was found that overexpression of murine asTF in HL-1 cells increases their proliferation and pro-angiogenic properties. The supernatant of murine asTF-overexpressing HL-1 cells induces the chemotaxis of monocytic cells. Conclusions: Overexpression of murine asTF in murine cardiomyocytic cells increases their proliferation, monocyte migration, and pro-angiogenic properties -possibly- mediated by the induction of the pro-migratory and pro-angiogenic factors FGF2, Cyr61 and VEGF. Thus, we propose that murine asTF may serve as a migration- and angiogenesis-promoting factor. (Circ J 2011; 75: 1235-1242) |
Author | Eisenreich, Andreas Schultheiss, Heinz-Peter Boltzen, Ulrike Malz, Ronny Rauch, Ursula |
Author_xml | – sequence: 1 fullname: Eisenreich, Andreas organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin – sequence: 2 fullname: Boltzen, Ulrike organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin – sequence: 3 fullname: Malz, Ronny organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin – sequence: 4 fullname: Schultheiss, Heinz-Peter organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin – sequence: 5 fullname: Rauch, Ursula organization: Charitè-Universitätsmedizin Berlin, Campus Benjamin Franklin, Centrum für Herz- und Kreislaufmedizin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21389637$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkEtv3CAURlGUKq9mn1XFritSHsbYy5HVaRJNlUpN14jB1xNGHnDBjjqr_vXizDTZABfO_XQ5l-jUBw8I3TB6y7gUX6yLdnvbPBBGCVWVOEEXTBSKFBWnp6_nktRVIc7RZUpbSnlNZX2GzjkTVV0KdYH-Pr5AhD9DhJRc8Dh0eNGPEL0Z3Qv0e_xz6J2FFj-5lCbAS2PHEPG9bycLCY_PgH_EQBZ-48IGvLNzOUAcXX7NYd-n6DzgxsTWhd0-2P2YmbsVYbiBvk8f0YfO9Amuj_sV-rX8-tTckdXjt_tmsSJW1sVIWsVqURqhuDFGtfljwHhlJVjOu6rMA3aylrziXII0Ys1KI42smeKV7NZUiSv0-ZA7xPB7gjTqnUs2T2A8hCnpqhSFoLQsMkkPpI0hpQidHqLbmbjXjOrZun61rpuH-WK2nls-HcOn9Q7at4b_mjOwPADbNJoNvAEme7I9HBOV1HJe3pPfgWcTNXjxD6JZm0A |
CitedBy_id | crossref_primary_10_1016_j_tcm_2011_08_001 crossref_primary_10_1016_j_yjmcc_2012_01_015 crossref_primary_10_1161_ATVBAHA_111_233536 crossref_primary_10_3390_ijms18010022 crossref_primary_10_1007_s40620_015_0258_1 crossref_primary_10_1373_clinchem_2015_241521 crossref_primary_10_1073_pnas_1607710113 crossref_primary_10_1111_j_1755_5922_2011_00305_x crossref_primary_10_3892_mmr_2019_9843 crossref_primary_10_1016_j_thromres_2012_02_027 crossref_primary_10_1186_s40364_023_00504_6 crossref_primary_10_1097_HJH_0000000000000799 crossref_primary_10_1253_circj_CJ_11_0870 crossref_primary_10_1016_j_lfs_2020_118175 crossref_primary_10_2119_molmed_2011_00416 crossref_primary_10_3892_or_2013_2413 crossref_primary_10_58209_ijbc_15_1_71 crossref_primary_10_1155_2013_948765 crossref_primary_10_1186_s12933_018_0678_z crossref_primary_10_1016_j_tcm_2013_09_005 crossref_primary_10_1186_s13045_014_0054_8 crossref_primary_10_7243_2052_4358_1_8 crossref_primary_10_1002_ijc_28959 |
Cites_doi | 10.1111/j.1755-5922.2010.00206.x 10.1253/circj.CJ-09-1021 10.1182/blood.V96.1.170 10.1073/pnas.96.5.2311 10.1182/blood-2006-07-036202 10.1253/circj.CJ-07-0960 10.1038/nm841 10.1253/circj.CJ-99-0225 10.1016/j.jacc.2004.12.061 10.1111/j.1538-7836.2008.03000.x 10.1111/j.1538-7836.2005.01680.x 10.1074/jbc.M406813200 10.1073/pnas.0905325106 10.1016/j.tcm.2006.03.005 10.1016/j.intimp.2007.06.005 10.1161/CIRCRESAHA.108.183905 10.1186/bcr1871 10.1111/j.1538-7836.2009.03323.x 10.1111/j.1538-7836.2009.03368.x 10.1111/j.1538-7836.2008.02946.x 10.1016/S0049-3848(07)70126-3 10.1073/pnas.0606411103 10.1016/j.cardiores.2006.12.018 10.1161/01.RES.0000171805.24799.fa 10.1074/jbc.M702410200 10.1253/circj.72.654 10.1253/circj.68.488 10.1253/circj.CJ-08-1067 10.1111/j.1538-7836.2007.02649.x 10.1111/j.1538-7836.2004.00972.x 10.1074/jbc.275.19.14632 10.1016/S1050-1738(00)00049-9 10.1200/JCO.2009.22.6324 10.1016/j.abb.2005.06.005 10.1515/BC.2008.152 10.1182/blood.V91.8.2698.2698_2698_2703 10.1253/circj.69.1547 |
ContentType | Journal Article |
Copyright | 2011 THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2011 THE JAPANESE CIRCULATION SOCIETY |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1253/circj.CJ-10-0783 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 1242 |
ExternalDocumentID | 10_1253_circj_CJ_10_0783 21389637 article_circj_75_5_75_CJ_10_0783_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .55 .GJ 29B 2WC 3O- 53G 5GY 5RE 6J9 AAUGY ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 M~E OK1 P2P RJT RNS RYR RZJ TKC TR2 W2D X7M XSB ZXP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c594t-d71936a372aaa7d134e128c5ec22f86cedf59528225e5a3b16a5a5917285fb073 |
ISSN | 1346-9843 |
IngestDate | Sun May 12 02:28:23 EDT 2024 Fri Aug 23 02:29:07 EDT 2024 Thu May 23 23:48:25 EDT 2024 Thu Aug 17 20:30:13 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c594t-d71936a372aaa7d134e128c5ec22f86cedf59528225e5a3b16a5a5917285fb073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/75/5/75_CJ-10-0783/_article/-char/en |
PMID | 21389637 |
PQID | 863430064 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_863430064 crossref_primary_10_1253_circj_CJ_10_0783 pubmed_primary_21389637 jstage_primary_article_circj_75_5_75_CJ_10_0783_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2011-00-00 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – year: 2011 text: 2011-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2011 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 25. Kasthuri RS, Taubman MB, Mackman N. Role of tissue factor in cancer. J Clin Oncol 2009; 27: 4834-4838. 26. Eisenreich A, Boltzen U, Poller W, Schultheiss HP, Rauch U. Effects of the Cdc2-like kinase-family and DNA topoisomerase I on the alternative splicing of eNOS in TNF-alpha-stimulated human endothelial cells. Biol Chem 2008; 389: 1333-1338. 14. Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: A circulating, soluble, thrombogenic protein. Nat Med 2003; 9: 458-462. 1. Takahashi M. Role of the SDF-1/CXCR4 system in myocardial infarction. Circ J 2010; 74: 418-423. 10. Rauch U, Nemerson Y. Tissue factor, the blood, and the arterial wall. Trends Cardiovasc Med 2000; 10: 139-143. 23. Hobbs JE, Zakarija A, Cundiff DL, Doll JA, Hymen E, Cornwell M, et al. Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 2007; 120(Suppl 2): S13-S21. 24. van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W, et al. Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci USA 2009; 106: 19497-19502. 31. Szotowski B, Antoniak S, Goldin-Lang P, Tran QV, Pels K, Rosenthal P, et al. Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc Res 2007; 73: 806-812. 35. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103: 13932-13937. 18. Eisenreich A, Malz R, Pepke W, Ayral Y, Poller W, Schultheiss HP, et al. Role of the phosphatidylinositol 3-kinase/protein kinase B pathway in regulating alternative splicing of tissue factor mRNA in human endothelial cells. Circ J 2009; 73: 1746-1752. 19. Eisenreich A, Rauch U. PI3K inhibitors in cardiovascular disease. Cardiovasc Ther 2011; 29: 29-36. 37. Huang Y, Marui A, Sakaguchi H, Esaki J, Arai Y, Hirose K, et al. Sustained release of prostaglandin E1 potentiates the impaired therapeutic angiogenesis by basic fibroblast growth factor in diabetic murine hindlimb ischemia. Circ J 2008; 72: 1693-1699. 21. Szotowski B, Goldin-Lang P, Antoniak S, Bogdanov VY, Pathirana D, Pauschinger M, et al. Alterations in myocardial tissue factor expression and cellular localization in dilated cardiomyopathy. J Am Coll Cardiol 2005; 45: 1081-1089. 5. Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H, Schieffer B. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: Potential role in angiogenesis and endothelial regeneration. Blood 2007; 110: 877-885. 38. Chen N, Leu SJ, Todorovic V, Lam SC, Lau LF. Identification of a novel integrin alphavbeta3 binding site in CCN1 (CYR61) critical for pro-angiogenic activities in vascular endothelial cells. J Biol Chem 2004; 279: 44166-44176. 3. Katsumoto M, Shingu T, Kuwashima R, Nakata A, Nomura S, Chayama K. Biphasic effect of HMG-CoA reductase inhibitor, pitavastatin, on vascular endothelial cells and angiogenesis. Circ J 2005; 69: 1547-1555. 20. Pawlinski R, Tencati M, Holscher T, Pedersen B, Voet T, Tilley RE, et al. Role of cardiac myocyte tissue factor in heart hemostasis. J Thromb Haemost 2007; 5: 1693-1700. 9. Rauch U, Bonderman D, Bohrmann B, Badimon JJ, Himber J, Riederer MA, et al. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood 2000; 96: 170-175. 13. Eisenreich A, Celebi Ö, Goldin-Lang P, Schultheiss HP, Rauch U. Upregulation of tissue factor expression and thrombogenic activity in human aortic smooth muscle cells by irradiation, rapamycin and paclitaxel. Int Immunopharmacol 2008; 8: 307-311. 16. Tardos JG, Eisenreich A, Deikus G, Bechhofer DH, Chandradas S, Zafar U, et al. SR proteins ASF/SF2 and SRp55 participate in tissue factor biosynthesis in human monocytic cells. J Thromb Haemost 2008; 6: 877-884. 33. Ollivier V, Bentolila S, Chabbat J, Hakim J, de Prost D. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII. Blood 1998; 91: 2698-2703. 8. Szotowski B, Antoniak S, Poller W, Schultheiss HP, Rauch U. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 2005; 96: 1233-1239. 12. Antoniak S, Boltzen U, Eisenreich A, Stellbaum C, Poller W, Schultheiss HP, et al. Regulation of cardiomyocyte full-length tissue factor expression and microparticle release under inflammatory conditions in vitro. J Thromb Haemost 2009; 7: 871-878. 11. Mackman N. The many faces of tissue factor. J Thromb Haemost 2009; 7(Suppl 1): 136-139. 6. Sakamoto H, Sakamaki T, Kanda T, Tsuchiya Y, Sato M, Sato H, et al. Vascular endothelial growth factor is an autocrine growth factor for cardiac myxoma cells. Circ J 2004; 68: 488-493. 2. Takeda Y, Uemura S, Iwama H, Imagawa K, Nishida T, Onoue K, et al. Treatment with recombinant placental growth factor (PlGF) enhances both angiogenesis and arteriogenesis and improves survival after myocardial infarction. Circ J 2009; 73: 1674-1682. 22. Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2004; 2: 2065-2067. 4. Yu P, Passam FH, Yu DM, Denyer G, Krilis SA. Beta2-glycoprotein I inhibits vascular endothelial growth factor and basic fibroblast growth factor induced angiogenesis through its amino terminal domain. J Thromb Haemost 2008; 6: 1215-1223. 28. Ahamed J, Versteeg HH, Kerver M, Chen VM, Mueller BM, Hogg PJ, et al. Disulfide isomerization switches tissue factor from coagulation to cell signaling. Proc Natl Acad Sci USA 2006; 103: 13932-13937. 36. Takeshita Y, Katsuki Y, Katsuda Y, Kai H, Saito Y, Arima K, et al. Vitamin C reversed malfunction of peripheral blood-derived mononuclear cells in smokers through antioxidant properties. Circ J 2008; 72: 654-659. 7. Giesen PL, Rauch U, Bohrman B, Kling D, Roque M, Fallon JT, et al. Blood-borne tissue factor: Another view of thrombosis. Proc Natl Acad Sci USA 1999; 96: 2311-2315. 30. Szotowski B, Antoniak S, Rauch U. Alternatively spliced tissue factor: A previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc Med 2006; 16: 177-182. 32. Pendurthi UR, Allen KE, Ezban M, Rao LV. Factor VIIa and thrombin induce the expression of Cyr61 and connective tissue growth factor, extracellular matrix signaling proteins that could act as possible downstream mediators in factor VIIa x tissue factor-induced signal transduction. J Biol Chem 2000; 275: 14632-14641. 29. Versteeg HH, Ruf W. Tissue factor coagulant function is enhanced by protein-disulfide isomerase independent of oxidoreductase activity. J Biol Chem 2007; 282: 25416-25424. 27. Bluff JE, Brown NJ, Reed MW, Staton CA. Tissue factor, angiogenesis and tumour progression. Breast Cancer Res 2008; 10: 204. 17. Bogdanov VY, Kirk RI, Miller C, Hathcock JJ, Vele S, Gazdoiu M, et al. Identification and characterization of murine alternatively spliced tissue factor. J Thromb Haemost 2006; 4: 158-167. 15. Eisenreich A, Bogdanov VY, Zakrzewicz A, Pries A, Antoniak S, Poller W, et al. Cdc2-like kinases and DNA topoisomerase I regulate alternative splicing of tissue factor in human endothelial cells. Circ Res 2009; 104: 589-599. 34. Chu AJ. Tissue factor mediates inflammation. Arch Biochem Biophys 2005; 440: 123-132. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 19 doi: 10.1111/j.1755-5922.2010.00206.x – ident: 1 doi: 10.1253/circj.CJ-09-1021 – ident: 9 doi: 10.1182/blood.V96.1.170 – ident: 7 doi: 10.1073/pnas.96.5.2311 – ident: 5 doi: 10.1182/blood-2006-07-036202 – ident: 37 doi: 10.1253/circj.CJ-07-0960 – ident: 14 doi: 10.1038/nm841 – ident: 18 doi: 10.1253/circj.CJ-99-0225 – ident: 21 doi: 10.1016/j.jacc.2004.12.061 – ident: 4 doi: 10.1111/j.1538-7836.2008.03000.x – ident: 17 doi: 10.1111/j.1538-7836.2005.01680.x – ident: 38 doi: 10.1074/jbc.M406813200 – ident: 24 doi: 10.1073/pnas.0905325106 – ident: 30 doi: 10.1016/j.tcm.2006.03.005 – ident: 13 doi: 10.1016/j.intimp.2007.06.005 – ident: 15 doi: 10.1161/CIRCRESAHA.108.183905 – ident: 27 doi: 10.1186/bcr1871 – ident: 12 doi: 10.1111/j.1538-7836.2009.03323.x – ident: 11 doi: 10.1111/j.1538-7836.2009.03368.x – ident: 16 doi: 10.1111/j.1538-7836.2008.02946.x – ident: 23 doi: 10.1016/S0049-3848(07)70126-3 – ident: 28 doi: 10.1073/pnas.0606411103 – ident: 31 doi: 10.1016/j.cardiores.2006.12.018 – ident: 8 doi: 10.1161/01.RES.0000171805.24799.fa – ident: 29 doi: 10.1074/jbc.M702410200 – ident: 36 doi: 10.1253/circj.72.654 – ident: 6 doi: 10.1253/circj.68.488 – ident: 2 doi: 10.1253/circj.CJ-08-1067 – ident: 20 doi: 10.1111/j.1538-7836.2007.02649.x – ident: 22 doi: 10.1111/j.1538-7836.2004.00972.x – ident: 32 doi: 10.1074/jbc.275.19.14632 – ident: 10 doi: 10.1016/S1050-1738(00)00049-9 – ident: 25 doi: 10.1200/JCO.2009.22.6324 – ident: 34 doi: 10.1016/j.abb.2005.06.005 – ident: 35 doi: 10.1073/pnas.0606411103 – ident: 26 doi: 10.1515/BC.2008.152 – ident: 33 doi: 10.1182/blood.V91.8.2698.2698_2698_2703 – ident: 3 doi: 10.1253/circj.69.1547 |
SSID | ssj0029059 |
Score | 2.103713 |
Snippet | Background: Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major... Tissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major thrombogenic... BACKGROUNDTissue factor (TF) is expressed in 2 isoforms: membrane-bound "full length" (fl)TF and soluble alternatively spliced (as)TF. flTF is the major... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1235 |
SubjectTerms | Alternative Splicing Alternatively spliced tissue factor Angiogenesis Angiogenesis Inducing Agents Animals Cell Line Cell Movement Cell Proliferation Chemokines Gene Expression Growth Mice Migration Myocytes, Cardiac - cytology Myocytes, Cardiac - physiology Neovascularization, Physiologic Thromboplastin - genetics |
Title | Overexpression of Alternatively Spliced Tissue Factor Induces the Pro-Angiogenic Properties of Murine Cardiomyocytic HL-1 Cells |
URI | https://www.jstage.jst.go.jp/article/circj/75/5/75_CJ-10-0783/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/21389637 https://search.proquest.com/docview/863430064 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2011, Vol.75(5), pp.1235-1242 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKgtBeEG_KSz5wQVXKNonzOKGqYqkqFpBopd4ix3F2s4RklaaI7YVfzH9gxnaTdLWVWKQqqqxk7Hi-jGfszx5C3oxiEbhO6lkyiUMLEOJYsYCYhwvb5XEgGee4G_nkszdduLMlW_Z6fzqspXUdD8Xm2n0l_6NVKAO94i7ZG2i2EQoF8B_0C1fQMFz_ScdfoMXyl6GyKr9vnJsJvp8yB6uAi9PgUc5V7w6OVW6dAWbrQB4Wupxfq9IaF6dZCXUgSR6n5is8Y1VRY3AmXiInJMnKH5eluMTTXaefrNFgIvN81XVsJ1klTCaw5jSKfUdUYMUzGKQx-eWg-6ChkDZefrbCN890tipFveTtrH6Z1xttMxd5lX3vcHjzjeaMF0Uj6ps4W-e4KKJzxE9lVmyslpucbOdxOzbacT0rDPTpTkO5LfMBafZR17DrlCwGwKxjpXF_cGfEBxfHvnY0sVVKEAH9cD6czBSFzw-cduTcsgWuDKgNzREDLJARKQnRZBZBAUq4RW7bYBeRgfpx2TCS7PBI5fZr3s-sqoOEd1fbsONF3TmHQOJU7o-RlK80v0_umSCHjjViH5CeLB6SuyeGxvGI_N4FLi1TugNcaoBLNXCpBi41wKWgR7oLXNoCF4Vp4NJd4FIELlXAfUwWxx_mk6llMoFYgoVubSU-xBked3ybc-4n0EMS_CrBJJiVNPCgQSkLGTKiGVgXJx55nHEWYu41lsYwij0hB0VZyGeEclukOGPlxAk4r0kM7ip3PQ8s1ijl6cjtk7fbno0u9IEv0T499sl73fXNncYUmDt9FjG8tE-0N5zxCkxYn9CtziKw67hYBx9fuV5Fgee4DgYMffJU67KpxEZygef4z2_Q1BfkUK-G4O8lOairtXwF7nQdv1Yg_AsIN9Qq |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overexpression+of+Alternatively+Spliced+Tissue+Factor+Induces+the+Pro-Angiogenic+Properties+of+Murine+Cardiomyocytic+HL-1+Cells&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Eisenreich%2C+Andreas&rft.au=Boltzen%2C+Ulrike&rft.au=Malz%2C+Ronny&rft.au=Schultheiss%2C+Heinz-Peter&rft.date=2011&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=75&rft.issue=5&rft.spage=1235&rft.epage=1242&rft_id=info:doi/10.1253%2Fcircj.CJ-10-0783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_10_0783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |