GScluster: network-weighted gene-set clustering analysis
Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent...
Saved in:
Published in | BMC genomics Vol. 20; no. 1; p. 352 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
09.05.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets.
Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks.
Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. |
---|---|
AbstractList | BACKGROUNDGene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets.RESULTSHere, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks.CONCLUSIONSNetwork-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Abstract Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Keywords: Gene-set clustering, Gene-set analysis, Protein-protein interaction, Network |
ArticleNumber | 352 |
Audience | Academic |
Author | Kim, Seon-Young Nam, Dougu Baik, Bukyung Yoon, Sora Kim, Jinhwan Chi, Sang-Mun Kim, Seon-Kyu |
Author_xml | – sequence: 1 givenname: Sora surname: Yoon fullname: Yoon, Sora organization: School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea – sequence: 2 givenname: Jinhwan surname: Kim fullname: Kim, Jinhwan organization: School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea – sequence: 3 givenname: Seon-Kyu surname: Kim fullname: Kim, Seon-Kyu organization: Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea – sequence: 4 givenname: Bukyung surname: Baik fullname: Baik, Bukyung organization: School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea – sequence: 5 givenname: Sang-Mun surname: Chi fullname: Chi, Sang-Mun organization: School of Computer Science and Engineering, Kyungsung University, Busan, Republic of Korea – sequence: 6 givenname: Seon-Young surname: Kim fullname: Kim, Seon-Young email: kimsy@kribb.re.kr, kimsy@kribb.re.kr organization: Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. kimsy@kribb.re.kr – sequence: 7 givenname: Dougu orcidid: 0000-0003-0239-2899 surname: Nam fullname: Nam, Dougu email: dougnam@unist.ac.kr, dougnam@unist.ac.kr organization: Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. dougnam@unist.ac.kr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31072324$$D View this record in MEDLINE/PubMed |
BookMark | eNptklFvFCEUhYmpse3qD_DFbOKLfZjKhQFmfTBpmlo3aWJi9ZmwcJmyzg4VZqz99zLuWrvG8ACB75wbTs4xOehjj4S8BHoK0Mi3GVgj64rCohKKN5V8Qo6gVlAxkPXBo_MhOc55TSmoholn5JADVYyz-og0l9e2G_OA6d28x-Eupm_VHYb2ZkA3b7HHKuMw3yGhb-emN919Dvk5eepNl_HFbp-Rrx8uvpx_rK4-XS7Pz64qKxb1UFkrDF0ZJZmxxgjHVM0YIlc1MO6pX3FghWDOW8ZX0tUckHPHjRfSGEn5jCy3vi6atb5NYWPSvY4m6N8XMbXapCHYDjVzKycF1Jw6X-OkN6CkXGDjy1Dpi9f7rdftuNqgs9gPyXR7pvsvfbjRbfyhpaAKSmIz8mZnkOL3EfOgNyFb7DrTYxyzZozDgnIBqqCv_0HXcUwlvIliChjljP6lWlM-EHofy1w7meoz0UghFgATdfofqiyHm2BLJ3wo93uCkz1BYQb8ObRmzFkvrz_vs7BlbYo5J_QPeQDVU830tma61ExPNdOyaF49DvJB8adX_Bc348x7 |
CitedBy_id | crossref_primary_10_1038_s41586_021_04358_6 crossref_primary_10_1182_bloodadvances_2022007956 crossref_primary_10_1186_s12859_021_04461_5 crossref_primary_10_1186_s12859_020_03784_z crossref_primary_10_1186_s12859_024_05676_y crossref_primary_10_1093_bioinformatics_btaa077 crossref_primary_10_3389_fgene_2022_855766 crossref_primary_10_18632_aging_203509 crossref_primary_10_5808_GI_2020_18_1_e8 |
Cites_doi | 10.1093/nar/gkn923 10.1126/science.274.5293.1672 10.1007/s13277-013-0781-4 10.1016/j.tig.2012.03.004 10.1182/blood.V61.3.429.429 10.1186/gb-2007-8-9-r183 10.1111/j.1432-1033.1972.tb02529.x 10.1007/s10555-007-9055-1 10.1093/nar/gky175 10.1038/nmeth.3440 10.1038/sj.leu.2402061 10.1038/sj.onc.1204383 10.1038/sj.onc.1204389 10.1126/science.1160809 10.1186/s13059-014-0550-8 10.2174/092986712798992093 10.1038/sj.leu.2402174 10.1016/S0163-7258(03)00056-1 10.1007/s00281-013-0369-5 10.1182/blood.V128.22.1699.1699 10.1097/00043426-200201000-00015 10.1016/S0083-6729(08)00619-5 10.1038/nm.2819 10.2337/db09-1379 10.1007/s00125-002-1009-0 10.1093/nar/gkv007 10.1158/1078-0432.CCR-06-1633 10.1073/pnas.94.7.2776 10.4103/0971-5916.93435 10.1182/blood-2014-10-551507 10.1016/j.mito.2010.03.001 10.1074/jbc.M113.491654 10.1182/blood-2013-09-526590 10.1186/1745-6150-4-14 10.1093/nar/gku1179 10.1093/bioinformatics/bti551 10.1038/s41598-017-04832-0 10.1017/thg.2014.79 10.1016/j.bbrc.2009.12.115 10.1093/nar/gkv1070 10.1038/nprot.2008.211 10.1093/bioinformatics/btr260 10.1038/nm.2014 10.1016/j.cmet.2013.05.017 10.1186/2049-3002-2-3 10.1371/journal.pone.0013984 10.1111/j.1574-695X.1999.tb01397.x 10.1046/j.1523-1755.2000.07710.x 10.1016/S0145-2126(02)00281-3 10.1007/s00467-007-0720-y 10.1038/ng.2383 10.1002/eji.201444500 10.1093/bioinformatics/btp101 10.1073/pnas.0506580102 10.1126/science.123.3191.309 10.1186/1752-0509-4-58 10.1093/nar/gkw937 10.2337/diabetes.53.3.597 10.1016/j.stem.2017.01.009 10.1101/gr.074914.107 10.12688/f1000research.4536.1 10.1016/j.tranon.2016.09.009 10.1186/gb-2010-11-2-r14 10.1093/nar/gks1193 10.1093/bib/bbn001 10.1016/S1734-1140(09)70111-2 10.1371/journal.pgen.1006122 10.1186/s12864-017-3809-0 10.1093/nar/gkw985 10.1056/NEJMicm010149 10.1677/ERC-09-0087 10.1093/ajcn/86.1.189 10.1083/jcb.201404136 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2019 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-019-5738-6 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 352 |
ExternalDocumentID | oai_doaj_org_article_2dbd651430df4e56aaa17669e8f4226f A586559110 10_1186_s12864_019_5738_6 31072324 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2016M3C9A3945893 – fundername: ; grantid: 2016M3C9A3945893 |
GroupedDBID | --- -A0 0R~ 23N 2WC 2XV 3V. 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACRMQ ADBBV ADINQ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX AIXEN ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB AAYXX CITATION AFGXO ABVAZ AFNRJ 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c594t-cc5a0ba762acaa5d27422ee374123f0fb3125a02dfc23b6d431e33d3af56aa603 |
IEDL.DBID | RPM |
ISSN | 1471-2164 |
IngestDate | Tue Oct 22 15:00:36 EDT 2024 Tue Sep 17 21:22:05 EDT 2024 Fri Oct 25 05:58:39 EDT 2024 Thu Oct 10 18:36:45 EDT 2024 Thu Feb 22 23:32:48 EST 2024 Tue Nov 12 22:49:09 EST 2024 Thu Aug 01 20:30:17 EDT 2024 Thu Sep 12 16:43:07 EDT 2024 Wed Oct 16 00:50:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gene-set clustering Gene-set analysis Protein-protein interaction Network |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-cc5a0ba762acaa5d27422ee374123f0fb3125a02dfc23b6d431e33d3af56aa603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0239-2899 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507172/ |
PMID | 31072324 |
PQID | 2227120320 |
PQPubID | 44682 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2dbd651430df4e56aaa17669e8f4226f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6507172 proquest_miscellaneous_2231903517 proquest_journals_2227120320 gale_infotracmisc_A586559110 gale_infotracacademiconefile_A586559110 gale_incontextgauss_ISR_A586559110 crossref_primary_10_1186_s12864_019_5738_6 pubmed_primary_31072324 |
PublicationCentury | 2000 |
PublicationDate | 2019-05-09 |
PublicationDateYYYYMMDD | 2019-05-09 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | MG Vander Heiden (5738_CR31) 2009; 324 K Collins (5738_CR24) 1997; 94 D Szklarczyk (5738_CR14) 2017; 45 C Hinault (5738_CR54) 2011; 60 5738_CR77 A Mishra (5738_CR37) 2015; 18 5738_CR76 C Gene Ontology (5738_CR5) 2015; 43 DW Huang (5738_CR8) 2007; 8 C Rollig (5738_CR60) 2015; 125 Michael J. Mauro (5738_CR61) 2003; 349 W Kim (5738_CR40) 2010; 392 Y Hong (5738_CR18) 2007; 13 SE Geerlings (5738_CR48) 1999; 26 JK Adam (5738_CR23) 2003; 99 X Huang (5738_CR75) 2014; 206 S Yoon (5738_CR16) 2018; 46 J Rutter (5738_CR32) 2010; 10 A Liberzon (5738_CR17) 2011; 27 KD Hepp (5738_CR44) 1972; 31 G Bindea (5738_CR13) 2009; 25 d W Huang (5738_CR1) 2009; 37 DW Huang (5738_CR9) 2009; 4 Han Zhang (5738_CR36) 2016; 12 M Peracchi (5738_CR72) 1983; 61 S Patel (5738_CR51) 2009; 61 ME Ritchie (5738_CR19) 2015; 43 D Merico (5738_CR11) 2010; 5 W Jochum (5738_CR30) 2001; 20 AS Goustin (5738_CR26) 1986; 46 D Grcevic (5738_CR68) 2003; 27 VK Ramanan (5738_CR3) 2012; 28 A Subramanian (5738_CR7) 2005; 102 M Kanehisa (5738_CR6) 2016; 44 S Maere (5738_CR12) 2005; 21 J Duda (5738_CR69) 2002; 24 Erin Currie (5738_CR22) 2013; 18 AM Hodge (5738_CR49) 2007; 86 P Vigneri (5738_CR45) 2009; 16 T Minamino (5738_CR53) 2009; 15 T Barrett (5738_CR78) 2013; 41 G Alanis-Lobato (5738_CR15) 2017; 45 E Shaulian (5738_CR29) 2001; 20 O Warburg (5738_CR20) 1956; 123 H Wang (5738_CR34) 2016; 9 L Yan (5738_CR46) 2004; 53 AP Morris (5738_CR35) 2012; 44 MP Keller (5738_CR42) 2008; 18 A Oshlack (5738_CR58) 2009; 4 P Vaupel (5738_CR28) 2007; 26 AL Lehninger (5738_CR50) 2008 SE Kahn (5738_CR38) 2003; 46 AG Kotini (5738_CR55) 2017; 20 D Nam (5738_CR2) 2008; 9 A Vazquez (5738_CR21) 2010; 4 MI Love (5738_CR56) 2014; 15 RG Mihaila (5738_CR70) 2015; 26 D Zhang (5738_CR33) 2013; 34 G Wolf (5738_CR41) 2000; 77 S Yoon (5738_CR59) 2017; 18 Z Khaznadar (5738_CR62) 2014; 44 CU Louis (5738_CR71) 2008; 23 M Bordonaro (5738_CR43) 2009; 80 SPMA Oomen (5738_CR66) 2001; 15 A Arcangeli (5738_CR74) 2012; 19 P Creixell (5738_CR4) 2015; 12 A Kentsis (5738_CR67) 2012; 18 5738_CR65 HP Koeffler (5738_CR73) 1980; 40 N Masson (5738_CR27) 2014; 2 D Raspadori (5738_CR63) 2001; 15 S Elias (5738_CR64) 2014; 123 R Isserlin (5738_CR10) 2014; 3 MD Young (5738_CR57) 2010; 11 CJ Sherr (5738_CR25) 1996; 274 T Iwawaki (5738_CR39) 2013; 35 MV Jensen (5738_CR47) 2013; 288 JJ Swaroop (5738_CR52) 2012; 135 |
References_xml | – volume: 37 start-page: 1 issue: 1 year: 2009 ident: 5738_CR1 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn923 contributor: fullname: d W Huang – volume: 274 start-page: 1672 issue: 5293 year: 1996 ident: 5738_CR25 publication-title: Science doi: 10.1126/science.274.5293.1672 contributor: fullname: CJ Sherr – volume: 34 start-page: 2337 issue: 4 year: 2013 ident: 5738_CR33 publication-title: Tumour Biol doi: 10.1007/s13277-013-0781-4 contributor: fullname: D Zhang – volume: 28 start-page: 323 issue: 7 year: 2012 ident: 5738_CR3 publication-title: Trends Genet doi: 10.1016/j.tig.2012.03.004 contributor: fullname: VK Ramanan – volume: 61 start-page: 429 issue: 3 year: 1983 ident: 5738_CR72 publication-title: Blood doi: 10.1182/blood.V61.3.429.429 contributor: fullname: M Peracchi – volume: 8 start-page: R183 issue: 9 year: 2007 ident: 5738_CR8 publication-title: Genome Biol doi: 10.1186/gb-2007-8-9-r183 contributor: fullname: DW Huang – volume: 31 start-page: 266 issue: 2 year: 1972 ident: 5738_CR44 publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1972.tb02529.x contributor: fullname: KD Hepp – volume: 26 start-page: 225 issue: 2 year: 2007 ident: 5738_CR28 publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-007-9055-1 contributor: fullname: P Vaupel – volume: 46 start-page: e60 issue: 10 year: 2018 ident: 5738_CR16 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky175 contributor: fullname: S Yoon – volume: 12 start-page: 615 issue: 7 year: 2015 ident: 5738_CR4 publication-title: Nat Methods doi: 10.1038/nmeth.3440 contributor: fullname: P Creixell – volume: 15 start-page: 621 issue: 4 year: 2001 ident: 5738_CR66 publication-title: Leukemia doi: 10.1038/sj.leu.2402061 contributor: fullname: SPMA Oomen – volume: 20 start-page: 2390 issue: 19 year: 2001 ident: 5738_CR29 publication-title: Oncogene doi: 10.1038/sj.onc.1204383 contributor: fullname: E Shaulian – volume: 20 start-page: 2401 issue: 19 year: 2001 ident: 5738_CR30 publication-title: Oncogene doi: 10.1038/sj.onc.1204389 contributor: fullname: W Jochum – volume: 324 start-page: 1029 issue: 5930 year: 2009 ident: 5738_CR31 publication-title: Science doi: 10.1126/science.1160809 contributor: fullname: MG Vander Heiden – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 5738_CR56 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 contributor: fullname: MI Love – volume: 19 start-page: 683 issue: 5 year: 2012 ident: 5738_CR74 publication-title: Curr Med Chem doi: 10.2174/092986712798992093 contributor: fullname: A Arcangeli – volume: 15 start-page: 1161 issue: 8 year: 2001 ident: 5738_CR63 publication-title: Leukemia doi: 10.1038/sj.leu.2402174 contributor: fullname: D Raspadori – volume: 99 start-page: 113 issue: 1 year: 2003 ident: 5738_CR23 publication-title: Pharmacol Ther doi: 10.1016/S0163-7258(03)00056-1 contributor: fullname: JK Adam – volume: 35 start-page: 333 issue: 3 year: 2013 ident: 5738_CR39 publication-title: Semin Immunopathol doi: 10.1007/s00281-013-0369-5 contributor: fullname: T Iwawaki – ident: 5738_CR76 doi: 10.1182/blood.V128.22.1699.1699 – volume: 24 start-page: 55 issue: 1 year: 2002 ident: 5738_CR69 publication-title: Journal of Pediatric Hematology Oncology doi: 10.1097/00043426-200201000-00015 contributor: fullname: J Duda – volume: 80 start-page: 563 year: 2009 ident: 5738_CR43 publication-title: Vitam Horm doi: 10.1016/S0083-6729(08)00619-5 contributor: fullname: M Bordonaro – volume: 18 start-page: 1118 issue: 7 year: 2012 ident: 5738_CR67 publication-title: Nat Med doi: 10.1038/nm.2819 contributor: fullname: A Kentsis – ident: 5738_CR77 – volume: 60 start-page: 1210 issue: 4 year: 2011 ident: 5738_CR54 publication-title: Diabetes doi: 10.2337/db09-1379 contributor: fullname: C Hinault – volume: 26 start-page: 785 issue: 4 year: 2015 ident: 5738_CR70 publication-title: Biomedical Research-India contributor: fullname: RG Mihaila – volume: 46 start-page: 3 issue: 1 year: 2003 ident: 5738_CR38 publication-title: Diabetologia doi: 10.1007/s00125-002-1009-0 contributor: fullname: SE Kahn – volume: 43 start-page: e47 issue: 7 year: 2015 ident: 5738_CR19 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv007 contributor: fullname: ME Ritchie – volume: 13 start-page: 1107 issue: 4 year: 2007 ident: 5738_CR18 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-1633 contributor: fullname: Y Hong – volume: 94 start-page: 2776 issue: 7 year: 1997 ident: 5738_CR24 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.7.2776 contributor: fullname: K Collins – volume: 135 start-page: 127 issue: 1 year: 2012 ident: 5738_CR52 publication-title: Indian J Med Res doi: 10.4103/0971-5916.93435 contributor: fullname: JJ Swaroop – volume: 125 start-page: 3246 issue: 21 year: 2015 ident: 5738_CR60 publication-title: Blood doi: 10.1182/blood-2014-10-551507 contributor: fullname: C Rollig – volume: 10 start-page: 393 issue: 4 year: 2010 ident: 5738_CR32 publication-title: Mitochondrion doi: 10.1016/j.mito.2010.03.001 contributor: fullname: J Rutter – volume: 40 start-page: 1858 issue: 6 year: 1980 ident: 5738_CR73 publication-title: Cancer Res contributor: fullname: HP Koeffler – volume: 288 start-page: 23128 issue: 32 year: 2013 ident: 5738_CR47 publication-title: J Biol Chem doi: 10.1074/jbc.M113.491654 contributor: fullname: MV Jensen – volume: 123 start-page: 1535 issue: 10 year: 2014 ident: 5738_CR64 publication-title: Blood doi: 10.1182/blood-2013-09-526590 contributor: fullname: S Elias – volume: 4 start-page: 14 year: 2009 ident: 5738_CR58 publication-title: Biol Direct doi: 10.1186/1745-6150-4-14 contributor: fullname: A Oshlack – volume: 43 start-page: D1049 issue: Database issue year: 2015 ident: 5738_CR5 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1179 contributor: fullname: C Gene Ontology – volume: 21 start-page: 3448 issue: 16 year: 2005 ident: 5738_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti551 contributor: fullname: S Maere – ident: 5738_CR65 doi: 10.1038/s41598-017-04832-0 – volume: 18 start-page: 86 issue: 1 year: 2015 ident: 5738_CR37 publication-title: Twin Research and Human Genetics doi: 10.1017/thg.2014.79 contributor: fullname: A Mishra – volume: 392 start-page: 247 issue: 3 year: 2010 ident: 5738_CR40 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2009.12.115 contributor: fullname: W Kim – volume: 44 start-page: D457 issue: D1 year: 2016 ident: 5738_CR6 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1070 contributor: fullname: M Kanehisa – volume: 4 start-page: 44 issue: 1 year: 2009 ident: 5738_CR9 publication-title: Nat Protoc doi: 10.1038/nprot.2008.211 contributor: fullname: DW Huang – volume: 27 start-page: 1739 issue: 12 year: 2011 ident: 5738_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 contributor: fullname: A Liberzon – volume: 15 start-page: 1082 issue: 9 year: 2009 ident: 5738_CR53 publication-title: Nat Med doi: 10.1038/nm.2014 contributor: fullname: T Minamino – volume: 18 start-page: 153 issue: 2 year: 2013 ident: 5738_CR22 publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.05.017 contributor: fullname: Erin Currie – volume: 2 start-page: 3 issue: 1 year: 2014 ident: 5738_CR27 publication-title: Cancer Metab doi: 10.1186/2049-3002-2-3 contributor: fullname: N Masson – volume: 5 issue: 11 year: 2010 ident: 5738_CR11 publication-title: PLoS One doi: 10.1371/journal.pone.0013984 contributor: fullname: D Merico – volume: 26 start-page: 259 issue: 3–4 year: 1999 ident: 5738_CR48 publication-title: FEMS Immunol Med Microbiol doi: 10.1111/j.1574-695X.1999.tb01397.x contributor: fullname: SE Geerlings – volume: 77 start-page: S59 year: 2000 ident: 5738_CR41 publication-title: Kidney Int Suppl doi: 10.1046/j.1523-1755.2000.07710.x contributor: fullname: G Wolf – volume: 27 start-page: 731 issue: 8 year: 2003 ident: 5738_CR68 publication-title: Leuk Res doi: 10.1016/S0145-2126(02)00281-3 contributor: fullname: D Grcevic – volume: 23 start-page: 603 issue: 4 year: 2008 ident: 5738_CR71 publication-title: Pediatr Nephrol doi: 10.1007/s00467-007-0720-y contributor: fullname: CU Louis – volume: 44 start-page: 981 issue: 9 year: 2012 ident: 5738_CR35 publication-title: Nat Genet doi: 10.1038/ng.2383 contributor: fullname: AP Morris – volume: 44 start-page: 3068 issue: 10 year: 2014 ident: 5738_CR62 publication-title: Eur J Immunol doi: 10.1002/eji.201444500 contributor: fullname: Z Khaznadar – volume: 25 start-page: 1091 issue: 8 year: 2009 ident: 5738_CR13 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp101 contributor: fullname: G Bindea – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 5738_CR7 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506580102 contributor: fullname: A Subramanian – volume: 123 start-page: 309 issue: 3191 year: 1956 ident: 5738_CR20 publication-title: Science doi: 10.1126/science.123.3191.309 contributor: fullname: O Warburg – volume: 4 start-page: 58 year: 2010 ident: 5738_CR21 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-58 contributor: fullname: A Vazquez – volume-title: Lehninger principles of biochemistry year: 2008 ident: 5738_CR50 contributor: fullname: AL Lehninger – volume: 45 start-page: D362 issue: D1 year: 2017 ident: 5738_CR14 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw937 contributor: fullname: D Szklarczyk – volume: 53 start-page: 597 issue: 3 year: 2004 ident: 5738_CR46 publication-title: Diabetes doi: 10.2337/diabetes.53.3.597 contributor: fullname: L Yan – volume: 20 start-page: 315 issue: 3 year: 2017 ident: 5738_CR55 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.01.009 contributor: fullname: AG Kotini – volume: 18 start-page: 706 issue: 5 year: 2008 ident: 5738_CR42 publication-title: Genome Res doi: 10.1101/gr.074914.107 contributor: fullname: MP Keller – volume: 3 start-page: 141 year: 2014 ident: 5738_CR10 publication-title: F1000Res doi: 10.12688/f1000research.4536.1 contributor: fullname: R Isserlin – volume: 9 start-page: 512 issue: 6 year: 2016 ident: 5738_CR34 publication-title: Transl Oncol doi: 10.1016/j.tranon.2016.09.009 contributor: fullname: H Wang – volume: 11 start-page: R14 issue: 2 year: 2010 ident: 5738_CR57 publication-title: Genome Biol doi: 10.1186/gb-2010-11-2-r14 contributor: fullname: MD Young – volume: 41 start-page: D991 issue: D1 year: 2013 ident: 5738_CR78 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1193 contributor: fullname: T Barrett – volume: 9 start-page: 189 issue: 3 year: 2008 ident: 5738_CR2 publication-title: Brief Bioinform doi: 10.1093/bib/bbn001 contributor: fullname: D Nam – volume: 61 start-page: 595 issue: 4 year: 2009 ident: 5738_CR51 publication-title: Pharmacol Rep doi: 10.1016/S1734-1140(09)70111-2 contributor: fullname: S Patel – volume: 46 start-page: 1015 issue: 3 year: 1986 ident: 5738_CR26 publication-title: Cancer Res contributor: fullname: AS Goustin – volume: 12 start-page: e1006122 issue: 6 year: 2016 ident: 5738_CR36 publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1006122 contributor: fullname: Han Zhang – volume: 18 start-page: 408 issue: 1 year: 2017 ident: 5738_CR59 publication-title: BMC Genomics doi: 10.1186/s12864-017-3809-0 contributor: fullname: S Yoon – volume: 45 start-page: D408 issue: D1 year: 2017 ident: 5738_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw985 contributor: fullname: G Alanis-Lobato – volume: 349 start-page: 767 issue: 8 year: 2003 ident: 5738_CR61 publication-title: New England Journal of Medicine doi: 10.1056/NEJMicm010149 contributor: fullname: Michael J. Mauro – volume: 16 start-page: 1103 issue: 4 year: 2009 ident: 5738_CR45 publication-title: Endocr Relat Cancer doi: 10.1677/ERC-09-0087 contributor: fullname: P Vigneri – volume: 86 start-page: 189 issue: 1 year: 2007 ident: 5738_CR49 publication-title: Am J Clin Nutr doi: 10.1093/ajcn/86.1.189 contributor: fullname: AM Hodge – volume: 206 start-page: 151 issue: 2 year: 2014 ident: 5738_CR75 publication-title: J Cell Biol doi: 10.1083/jcb.201404136 contributor: fullname: X Huang |
SSID | ssj0017825 |
Score | 2.380009 |
Snippet | Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list... Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a... BACKGROUNDGene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a... Abstract Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 352 |
SubjectTerms | Algorithms Animals Biochemistry Cluster analysis Clustering Cytotoxicity Diabetes Mellitus, Type 2 - genetics Distance measurement DNA microarrays Gene expression Gene Expression Profiling - methods Gene Expression Regulation Gene Regulatory Networks Gene sequencing Gene-set analysis Gene-set clustering Genes Genetic research Genomics Humans Hypertension Kinases Leukemia Medical prognosis Methodology Methods Neoplasms - genetics Network Network analysis Novels Post-processing Protein interaction Protein Interaction Mapping - methods Protein-protein interaction Protein-protein interactions Proteins Ribonucleic acid RNA Software |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoNBLSPoVN9vilkChICJbtmz3ti1Nt4XkkDSQmxjrIwkUb6l3Kf33nbG1y5oeeunVGoP1Rpp5skZPACdBEqnItBc2YEELlKIRbeFREFWwVWiklcgLxfMLvbguvt6UNztXfXFN2CgPPAJ3mrvWac7q0oXClxoRWdOw8XXgQ6BhiL6y2Sym4v4B5b0y7mFmtT7tKQprrrZoRFnRDNeTLDSI9f8dkndy0rRecicBnR3AfmSO6Xz84kN44LvH8HC8S_L3E6g_X9nva5Y9eJ92Y223-DX89_QupVHiRe9XaTShfJVilCN5Ctdnn759XIh4LYKwZVOshLUlyhYpiqFFLB1vtubeK-IGuQoytIpIC8rcBZurVjuiCF4ppzAwelqqZ7DXLTt_BGmuHRZWoXaNLJRVrbW2IoKTVdiGOssSeLeByfwY1S_MsGqotRkxNYSpYUyNTuADA7k1ZOHq4QG500R3mn-5M4E37AbD0hQd177c4rrvzZerSzMv-RAtBWeZwNtoFJbkEIvxKAF1itWsJpaziSXNHTtt3njbxLnbGz4dnA0XyyfwetvMb3I9WueXa7ah0MWbsFUCz8fBse03EeaKeWoC1WTYTICZtnT3d4Oyt2Z2XuUv_geSx_Ao5wHPxZnNDPZWP9f-JRGoVftqmCt_AGpOFwA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEB60Ivgi1ltTq0QRBGHpJptsEl-kFWsV9MFaOG_LZC9tQZK2OQfx3zuT7Dk2CL5mJ5DMzuXb3dlvAF4HSaAi017YgAUtUIpGtIVHQVDBVqGRViIvFL9-08enxZdFuYgbbkMsq1zHxDFQu97yHvk-39nMxnbf7y-vBHeN4tPV2ELjNtyhMc0lXdVis-DKKPuV8SQzq_X-QLFYc81FI8qK_FzPctFI2f9vYL6RmeZVkzfS0NEDuB_xY3owTfg23PLdQ7g7dZT8_QjqTyf254rJD96l3VThLX6Nu5_epWQrXgx-mUYRylopRlKSx3B69PHHh2MRmyMIWzbFUlhbomyRYhlaxNLxkWvuvSKEkKsgQ6sIuqDMXbC5arUjoOCVcgpDqRG1VE9gq-s7vwNprh0WVqF2jSyUVa21tiKYk1XYhjrLEni7VpO5nDgwzLh2qLWZdGpIp4Z1anQCh6zIjSDTV48P-uszE73B5K51mqGadKHw_EHIRJWNrwPf7A0JvOJpMExQ0XEFzBmuhsF8PvluDkq-SkshWibwJgqFnibEYrxQQD_FnFYzyb2ZJHmQnQ-vZ9tEDx7MX3tL4OVmmN_kqrTO9yuWoQDGR7FVAk8n49j8N8HmitFqAtXMbGaKmY90F-cjv7dmjF7lu___rGdwL2dT5uLLZg-2ltcr_5wA0rJ9MXrBH4c-DjY priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qRfCl-N1olSiCIKxudje7iSBSxVoFfbAe9G3Z7EcVSq5e7tD-984kubPBPvianYRkdj5-k50PgKeJI6godGQ-OYUBiqpZo6JjCBW8STX33FGg-PmLPpypT8fl8Rasx1uNDOwuDe1ontRscfri98_zN6jwr3uFr_TLDm2splyKmpUG9VdfgatCYaBOmXzq76ECOsOyLzYyBRMYJoyHnJc-YuKm-m7-_9rsC05rmlB5wUMd3ICdEVrm-4Ms3ISt2N6Ca8OwyfPbUH048qcr6ovwKm-H5G_2q_8xGkOOYhRZF5f5SIIOLXdjv5I7MDt4_-3dIRvnJjBf1mrJvC8dbxyaOeedKwOdxooYJYIHIRNPjURU47gIyQvZ6IAYIkoZpEuldk5zeRe223kbdyEXOjjlpdOh5kp62XjvDSKgwrgmVUWRwfM1m-zZ0B7D9mFFpe3AU4s8tcRTqzN4S4zcEFJn6_7CfHFiR0WxIjRBE4rjIalIL-Soh2Udq0RFvymDJ7QNlnpXtJQcc-JWXWc_Hn21-yVV2aL15hk8G4nSHDfEu7HWAD-K2l1NKPcmlKhcfrq83m27lk1L5cNFP3k-g8ebZbqTEtbaOF8RDdo2OqU1GdwbhGPz3YioDQHZDMxEbCaMma60P773rb81wXcj7v8PEx7AdUECTdmZ9R5sLxer-BAR1LJ51OvFH7trFUg priority: 102 providerName: Scholars Portal |
Title | GScluster: network-weighted gene-set clustering analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31072324 https://www.proquest.com/docview/2227120320 https://search.proquest.com/docview/2231903517 https://pubmed.ncbi.nlm.nih.gov/PMC6507172 https://doaj.org/article/2dbd651430df4e56aaa17669e8f4226f |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UUuhL6bex9khLoVCIt8kmm6RvKlpbOBGtcG_LZj-soDkxd0j_-85sNoehb33JQ3YCyex8_DY781uAz44hqEiFTbRTOS5Q8jppcqsShAq6dDXTTNFCcXYqTi7zn_NivgHF0Avji_Z1c73X3tzutde_fW3l3a2eDnVi07PZoSAQU2bTTdhEAx2W6GHrAFNeEbYv00pMOwzAggot6qQo0bnpzCKENCUhiVEu8pT9_wbmR5lpXDX5KA0dv4DnAT_G-_17voQN276Cp_2Jkn9eQ_X9Qt-siPzgW9z2Fd7Jg__7aU2MtmKTzi7jIIJZK1aBlOQNXB4f_To8ScLhCIku6nyZaF0o1iiMZUorVRjacs2s5YgQMu6YazhCF8Uy43TGG2EQKFjODVeuEEoJxt_CVrto7TbEmTAq11wJU7Oca95orUuEOWmpGlelaQRfBzXJu54DQ_q1QyVkr16J6pWkXikiOCBFrgWJvtrfWNxfyTCJMjONEQTVmHG5pRdSRFRZ28pRZ6-L4BNNgySCipYqYK7Uquvkj4tzuV9QKy2GaBbBlyDkFjghWoWGAvwo4rQaSe6OJNGD9Hh4mG0ZPLiT1COc-uPlI_i4HqYnqSqttYsVyWAAo63YMoJ3vXGsv3uwsQjKkdmMFDMeQXP3_N7BvHf--8n38Cwjg6e6zHoXtpb3K_sBsdOymaDHzMsJPDk4Oj07n_g_EHid5dXEe9FfUcQbkw |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,21400,24330,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0IvoifhutGkUQhKWbbLK5-CJVrFdt-2BbuLdlsh9VkKQ2d4j_vTPJ3tkg-JqdQDI7H7_dnf0NwKsgCVRk2gsbsKAFSlGLpvAoCCrYKtTSSuSF4uGRnp8WnxflIm649bGsch0Th0DtOst75Dt8ZzMb2n2_O_8puGsUn67GFhpX4RrzcHEHg2qxWXBllP3KeJKZzfROT7FYc81FLcqK_FxPctFA2f9vYL6UmaZVk5fS0N5tuBXxY7o7TvgduOLbu3B97Cj5-x7MPh3bHysmP3ibtmOFt_g17H56l5KteNH7ZRpFKGulGElJ7sPp3seTD3MRmyMIW9bFUlhbomyQYhlaxNLxkWvuvSKEkKsgQ6MIuqDMXbC5arQjoOCVcgpDqRG1VA9gq-1a_wjSXDssrELtalkoqxprbUUwJ6uwCbMsS-DNWk3mfOTAMMPaYabNqFNDOjWsU6MTeM-K3AgyffXwoLs4M9EbTO4apxmqSRcKzx-ETFRZ-1ngm70hgZc8DYYJKlqugDnDVd-b_eOvZrfkq7QUomUCr6NQ6GhCLMYLBfRTzGk1kdyeSJIH2enwerZN9ODe_LW3BF5shvlNrkprfbdiGQpgfBRbJfBwNI7NfxNsrhitJlBNzGaimOlI-_3bwO-tGaNX-eP_f9ZzuDE_OTwwB_tHX57AzZzNmgsx623YWl6s_FMCS8vm2eARfwBJ_REd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIdBeuF8CAwJCQkJK68SJ0_A2BmUDNk2MSdNeLMeXbWJLqzURgl_POYlTNfC21_pEinNun-vPnwHeOIagIhY20k6luEBJi6hMrYoQKujcFUwzRQvF3T2xfZh-OcqOVq76akn7ujwbVecXo-rstOVWzi_0uOeJjfd3twSBmDwZz40bX4cbmLNM9At1v4GAjS_zm5jxRIwXWIYF0S2KKMsxxenmIgQ2OeGJQUdqhfv_L88r_WnInVxpRtM7cNxPo-Og_Bw1dTnSf_5ReLzSPO_CbQ9Rw83O5B5cs9V9uNldWvn7AUw-H-jzhvQV3odVRyKPfrV_sFoTYjjaaGHr0JtgYwyV1z15CIfTTz-2tiN__0KksyKtI60zxUqF5VJppTJDu7qJtRxBSMIdcyVHdKRYYpxOeCkMYhHLueHKZUIpwfgjWKtmlX0CYSKMSjVXwhQs5ZqXWusckVScq9JN4jiAd70P5LyT2ZDt8mQiZOc7ib6T5DspAvhAXloakkJ2-8Ps8kT67ycTUxpBaJAZl1p6IUVamIWdODo87AJ4TT6WpIFREcnmRDWLhdw5-C43Mzqti12ABfDWG7kZelsrf2YBJ0WyWQPLjYElJqkeDvehJH2RWEg6hhy3N9gH8Go5TE8S8a2ys4ZssEbSbm8ewOMu8pbz7gM4gHwQk4MPMxzBSGslxH1kPb3yky_h1v7Hqfy2s_f1GawnlFjEAi02YK2-bOxzRGp1-aLNyb_yrzu1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GScluster%3A+network-weighted+gene-set+clustering+analysis&rft.jtitle=BMC+genomics&rft.au=Yoon%2C+Sora&rft.au=Kim%2C+Jinhwan&rft.au=Kim%2C+Seon-Kyu&rft.au=Baik%2C+Bukyung&rft.date=2019-05-09&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-019-5738-6&rft.externalDBID=ISR&rft.externalDocID=A586559110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |