GScluster: network-weighted gene-set clustering analysis

Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 20; no. 1; p. 352
Main Authors Yoon, Sora, Kim, Jinhwan, Kim, Seon-Kyu, Baik, Bukyung, Chi, Sang-Mun, Kim, Seon-Young, Nam, Dougu
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 09.05.2019
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
AbstractList BACKGROUNDGene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets.RESULTSHere, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks.CONCLUSIONSNetwork-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Abstract Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis.
Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list of gene-sets, necessitating efficient post-processing for improved interpretation. Existing methods cluster the gene-sets based on the extent of their overlap to summarize the GSA results without considering interactions between gene-sets. Results Here, we presented a novel network-weighted gene-set clustering that incorporates both the gene-set overlap and protein-protein interaction (PPI) networks. Three examples were demonstrated for microarray gene expression, GWAS summary, and RNA-sequencing data to which different GSA methods were applied. These examples as well as a global analysis show that the proposed method increases PPI densities and functional relevance of the resulting clusters. Additionally, distinct properties of gene-set distance measures were compared. The methods are implemented as an R/Shiny package GScluster that provides gene-set clustering and diverse functions for visualization of gene-sets and PPI networks. Conclusions Network-weighted gene-set clustering provides functionally more relevant gene-set clusters and related network analysis. Keywords: Gene-set clustering, Gene-set analysis, Protein-protein interaction, Network
ArticleNumber 352
Audience Academic
Author Kim, Seon-Young
Nam, Dougu
Baik, Bukyung
Yoon, Sora
Kim, Jinhwan
Chi, Sang-Mun
Kim, Seon-Kyu
Author_xml – sequence: 1
  givenname: Sora
  surname: Yoon
  fullname: Yoon, Sora
  organization: School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
– sequence: 2
  givenname: Jinhwan
  surname: Kim
  fullname: Kim, Jinhwan
  organization: School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
– sequence: 3
  givenname: Seon-Kyu
  surname: Kim
  fullname: Kim, Seon-Kyu
  organization: Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
– sequence: 4
  givenname: Bukyung
  surname: Baik
  fullname: Baik, Bukyung
  organization: School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
– sequence: 5
  givenname: Sang-Mun
  surname: Chi
  fullname: Chi, Sang-Mun
  organization: School of Computer Science and Engineering, Kyungsung University, Busan, Republic of Korea
– sequence: 6
  givenname: Seon-Young
  surname: Kim
  fullname: Kim, Seon-Young
  email: kimsy@kribb.re.kr, kimsy@kribb.re.kr
  organization: Genome Editing Research Center, Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. kimsy@kribb.re.kr
– sequence: 7
  givenname: Dougu
  orcidid: 0000-0003-0239-2899
  surname: Nam
  fullname: Nam, Dougu
  email: dougnam@unist.ac.kr, dougnam@unist.ac.kr
  organization: Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea. dougnam@unist.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31072324$$D View this record in MEDLINE/PubMed
BookMark eNptklFvFCEUhYmpse3qD_DFbOKLfZjKhQFmfTBpmlo3aWJi9ZmwcJmyzg4VZqz99zLuWrvG8ACB75wbTs4xOehjj4S8BHoK0Mi3GVgj64rCohKKN5V8Qo6gVlAxkPXBo_MhOc55TSmoholn5JADVYyz-og0l9e2G_OA6d28x-Eupm_VHYb2ZkA3b7HHKuMw3yGhb-emN919Dvk5eepNl_HFbp-Rrx8uvpx_rK4-XS7Pz64qKxb1UFkrDF0ZJZmxxgjHVM0YIlc1MO6pX3FghWDOW8ZX0tUckHPHjRfSGEn5jCy3vi6atb5NYWPSvY4m6N8XMbXapCHYDjVzKycF1Jw6X-OkN6CkXGDjy1Dpi9f7rdftuNqgs9gPyXR7pvsvfbjRbfyhpaAKSmIz8mZnkOL3EfOgNyFb7DrTYxyzZozDgnIBqqCv_0HXcUwlvIliChjljP6lWlM-EHofy1w7meoz0UghFgATdfofqiyHm2BLJ3wo93uCkz1BYQb8ObRmzFkvrz_vs7BlbYo5J_QPeQDVU830tma61ExPNdOyaF49DvJB8adX_Bc348x7
CitedBy_id crossref_primary_10_1038_s41586_021_04358_6
crossref_primary_10_1182_bloodadvances_2022007956
crossref_primary_10_1186_s12859_021_04461_5
crossref_primary_10_1186_s12859_020_03784_z
crossref_primary_10_1186_s12859_024_05676_y
crossref_primary_10_1093_bioinformatics_btaa077
crossref_primary_10_3389_fgene_2022_855766
crossref_primary_10_18632_aging_203509
crossref_primary_10_5808_GI_2020_18_1_e8
Cites_doi 10.1093/nar/gkn923
10.1126/science.274.5293.1672
10.1007/s13277-013-0781-4
10.1016/j.tig.2012.03.004
10.1182/blood.V61.3.429.429
10.1186/gb-2007-8-9-r183
10.1111/j.1432-1033.1972.tb02529.x
10.1007/s10555-007-9055-1
10.1093/nar/gky175
10.1038/nmeth.3440
10.1038/sj.leu.2402061
10.1038/sj.onc.1204383
10.1038/sj.onc.1204389
10.1126/science.1160809
10.1186/s13059-014-0550-8
10.2174/092986712798992093
10.1038/sj.leu.2402174
10.1016/S0163-7258(03)00056-1
10.1007/s00281-013-0369-5
10.1182/blood.V128.22.1699.1699
10.1097/00043426-200201000-00015
10.1016/S0083-6729(08)00619-5
10.1038/nm.2819
10.2337/db09-1379
10.1007/s00125-002-1009-0
10.1093/nar/gkv007
10.1158/1078-0432.CCR-06-1633
10.1073/pnas.94.7.2776
10.4103/0971-5916.93435
10.1182/blood-2014-10-551507
10.1016/j.mito.2010.03.001
10.1074/jbc.M113.491654
10.1182/blood-2013-09-526590
10.1186/1745-6150-4-14
10.1093/nar/gku1179
10.1093/bioinformatics/bti551
10.1038/s41598-017-04832-0
10.1017/thg.2014.79
10.1016/j.bbrc.2009.12.115
10.1093/nar/gkv1070
10.1038/nprot.2008.211
10.1093/bioinformatics/btr260
10.1038/nm.2014
10.1016/j.cmet.2013.05.017
10.1186/2049-3002-2-3
10.1371/journal.pone.0013984
10.1111/j.1574-695X.1999.tb01397.x
10.1046/j.1523-1755.2000.07710.x
10.1016/S0145-2126(02)00281-3
10.1007/s00467-007-0720-y
10.1038/ng.2383
10.1002/eji.201444500
10.1093/bioinformatics/btp101
10.1073/pnas.0506580102
10.1126/science.123.3191.309
10.1186/1752-0509-4-58
10.1093/nar/gkw937
10.2337/diabetes.53.3.597
10.1016/j.stem.2017.01.009
10.1101/gr.074914.107
10.12688/f1000research.4536.1
10.1016/j.tranon.2016.09.009
10.1186/gb-2010-11-2-r14
10.1093/nar/gks1193
10.1093/bib/bbn001
10.1016/S1734-1140(09)70111-2
10.1371/journal.pgen.1006122
10.1186/s12864-017-3809-0
10.1093/nar/gkw985
10.1056/NEJMicm010149
10.1677/ERC-09-0087
10.1093/ajcn/86.1.189
10.1083/jcb.201404136
ContentType Journal Article
Copyright COPYRIGHT 2019 BioMed Central Ltd.
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2019
Copyright_xml – notice: COPYRIGHT 2019 BioMed Central Ltd.
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2019
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-019-5738-6
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Chemoreception Abstracts
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 352
ExternalDocumentID oai_doaj_org_article_2dbd651430df4e56aaa17669e8f4226f
A586559110
10_1186_s12864_019_5738_6
31072324
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2016M3C9A3945893
– fundername: ;
  grantid: 2016M3C9A3945893
GroupedDBID ---
-A0
0R~
23N
2WC
2XV
3V.
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACRMQ
ADBBV
ADINQ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
AIXEN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
AFGXO
ABVAZ
AFNRJ
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c594t-cc5a0ba762acaa5d27422ee374123f0fb3125a02dfc23b6d431e33d3af56aa603
IEDL.DBID RPM
ISSN 1471-2164
IngestDate Tue Oct 22 15:00:36 EDT 2024
Tue Sep 17 21:22:05 EDT 2024
Fri Oct 25 05:58:39 EDT 2024
Thu Oct 10 18:36:45 EDT 2024
Thu Feb 22 23:32:48 EST 2024
Tue Nov 12 22:49:09 EST 2024
Thu Aug 01 20:30:17 EDT 2024
Thu Sep 12 16:43:07 EDT 2024
Wed Oct 16 00:50:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gene-set clustering
Gene-set analysis
Protein-protein interaction
Network
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-cc5a0ba762acaa5d27422ee374123f0fb3125a02dfc23b6d431e33d3af56aa603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0239-2899
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507172/
PMID 31072324
PQID 2227120320
PQPubID 44682
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_2dbd651430df4e56aaa17669e8f4226f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6507172
proquest_miscellaneous_2231903517
proquest_journals_2227120320
gale_infotracmisc_A586559110
gale_infotracacademiconefile_A586559110
gale_incontextgauss_ISR_A586559110
crossref_primary_10_1186_s12864_019_5738_6
pubmed_primary_31072324
PublicationCentury 2000
PublicationDate 2019-05-09
PublicationDateYYYYMMDD 2019-05-09
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-09
  day: 09
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2019
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References MG Vander Heiden (5738_CR31) 2009; 324
K Collins (5738_CR24) 1997; 94
D Szklarczyk (5738_CR14) 2017; 45
C Hinault (5738_CR54) 2011; 60
5738_CR77
A Mishra (5738_CR37) 2015; 18
5738_CR76
C Gene Ontology (5738_CR5) 2015; 43
DW Huang (5738_CR8) 2007; 8
C Rollig (5738_CR60) 2015; 125
Michael J. Mauro (5738_CR61) 2003; 349
W Kim (5738_CR40) 2010; 392
Y Hong (5738_CR18) 2007; 13
SE Geerlings (5738_CR48) 1999; 26
JK Adam (5738_CR23) 2003; 99
X Huang (5738_CR75) 2014; 206
S Yoon (5738_CR16) 2018; 46
J Rutter (5738_CR32) 2010; 10
A Liberzon (5738_CR17) 2011; 27
KD Hepp (5738_CR44) 1972; 31
G Bindea (5738_CR13) 2009; 25
d W Huang (5738_CR1) 2009; 37
DW Huang (5738_CR9) 2009; 4
Han Zhang (5738_CR36) 2016; 12
M Peracchi (5738_CR72) 1983; 61
S Patel (5738_CR51) 2009; 61
ME Ritchie (5738_CR19) 2015; 43
D Merico (5738_CR11) 2010; 5
W Jochum (5738_CR30) 2001; 20
AS Goustin (5738_CR26) 1986; 46
D Grcevic (5738_CR68) 2003; 27
VK Ramanan (5738_CR3) 2012; 28
A Subramanian (5738_CR7) 2005; 102
M Kanehisa (5738_CR6) 2016; 44
S Maere (5738_CR12) 2005; 21
J Duda (5738_CR69) 2002; 24
Erin Currie (5738_CR22) 2013; 18
AM Hodge (5738_CR49) 2007; 86
P Vigneri (5738_CR45) 2009; 16
T Minamino (5738_CR53) 2009; 15
T Barrett (5738_CR78) 2013; 41
G Alanis-Lobato (5738_CR15) 2017; 45
E Shaulian (5738_CR29) 2001; 20
O Warburg (5738_CR20) 1956; 123
H Wang (5738_CR34) 2016; 9
L Yan (5738_CR46) 2004; 53
AP Morris (5738_CR35) 2012; 44
MP Keller (5738_CR42) 2008; 18
A Oshlack (5738_CR58) 2009; 4
P Vaupel (5738_CR28) 2007; 26
AL Lehninger (5738_CR50) 2008
SE Kahn (5738_CR38) 2003; 46
AG Kotini (5738_CR55) 2017; 20
D Nam (5738_CR2) 2008; 9
A Vazquez (5738_CR21) 2010; 4
MI Love (5738_CR56) 2014; 15
RG Mihaila (5738_CR70) 2015; 26
D Zhang (5738_CR33) 2013; 34
G Wolf (5738_CR41) 2000; 77
S Yoon (5738_CR59) 2017; 18
Z Khaznadar (5738_CR62) 2014; 44
CU Louis (5738_CR71) 2008; 23
M Bordonaro (5738_CR43) 2009; 80
SPMA Oomen (5738_CR66) 2001; 15
A Arcangeli (5738_CR74) 2012; 19
P Creixell (5738_CR4) 2015; 12
A Kentsis (5738_CR67) 2012; 18
5738_CR65
HP Koeffler (5738_CR73) 1980; 40
N Masson (5738_CR27) 2014; 2
D Raspadori (5738_CR63) 2001; 15
S Elias (5738_CR64) 2014; 123
R Isserlin (5738_CR10) 2014; 3
MD Young (5738_CR57) 2010; 11
CJ Sherr (5738_CR25) 1996; 274
T Iwawaki (5738_CR39) 2013; 35
MV Jensen (5738_CR47) 2013; 288
JJ Swaroop (5738_CR52) 2012; 135
References_xml – volume: 37
  start-page: 1
  issue: 1
  year: 2009
  ident: 5738_CR1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn923
  contributor:
    fullname: d W Huang
– volume: 274
  start-page: 1672
  issue: 5293
  year: 1996
  ident: 5738_CR25
  publication-title: Science
  doi: 10.1126/science.274.5293.1672
  contributor:
    fullname: CJ Sherr
– volume: 34
  start-page: 2337
  issue: 4
  year: 2013
  ident: 5738_CR33
  publication-title: Tumour Biol
  doi: 10.1007/s13277-013-0781-4
  contributor:
    fullname: D Zhang
– volume: 28
  start-page: 323
  issue: 7
  year: 2012
  ident: 5738_CR3
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2012.03.004
  contributor:
    fullname: VK Ramanan
– volume: 61
  start-page: 429
  issue: 3
  year: 1983
  ident: 5738_CR72
  publication-title: Blood
  doi: 10.1182/blood.V61.3.429.429
  contributor:
    fullname: M Peracchi
– volume: 8
  start-page: R183
  issue: 9
  year: 2007
  ident: 5738_CR8
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-9-r183
  contributor:
    fullname: DW Huang
– volume: 31
  start-page: 266
  issue: 2
  year: 1972
  ident: 5738_CR44
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1972.tb02529.x
  contributor:
    fullname: KD Hepp
– volume: 26
  start-page: 225
  issue: 2
  year: 2007
  ident: 5738_CR28
  publication-title: Cancer Metastasis Rev
  doi: 10.1007/s10555-007-9055-1
  contributor:
    fullname: P Vaupel
– volume: 46
  start-page: e60
  issue: 10
  year: 2018
  ident: 5738_CR16
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky175
  contributor:
    fullname: S Yoon
– volume: 12
  start-page: 615
  issue: 7
  year: 2015
  ident: 5738_CR4
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3440
  contributor:
    fullname: P Creixell
– volume: 15
  start-page: 621
  issue: 4
  year: 2001
  ident: 5738_CR66
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2402061
  contributor:
    fullname: SPMA Oomen
– volume: 20
  start-page: 2390
  issue: 19
  year: 2001
  ident: 5738_CR29
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204383
  contributor:
    fullname: E Shaulian
– volume: 20
  start-page: 2401
  issue: 19
  year: 2001
  ident: 5738_CR30
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1204389
  contributor:
    fullname: W Jochum
– volume: 324
  start-page: 1029
  issue: 5930
  year: 2009
  ident: 5738_CR31
  publication-title: Science
  doi: 10.1126/science.1160809
  contributor:
    fullname: MG Vander Heiden
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 5738_CR56
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
  contributor:
    fullname: MI Love
– volume: 19
  start-page: 683
  issue: 5
  year: 2012
  ident: 5738_CR74
  publication-title: Curr Med Chem
  doi: 10.2174/092986712798992093
  contributor:
    fullname: A Arcangeli
– volume: 15
  start-page: 1161
  issue: 8
  year: 2001
  ident: 5738_CR63
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2402174
  contributor:
    fullname: D Raspadori
– volume: 99
  start-page: 113
  issue: 1
  year: 2003
  ident: 5738_CR23
  publication-title: Pharmacol Ther
  doi: 10.1016/S0163-7258(03)00056-1
  contributor:
    fullname: JK Adam
– volume: 35
  start-page: 333
  issue: 3
  year: 2013
  ident: 5738_CR39
  publication-title: Semin Immunopathol
  doi: 10.1007/s00281-013-0369-5
  contributor:
    fullname: T Iwawaki
– ident: 5738_CR76
  doi: 10.1182/blood.V128.22.1699.1699
– volume: 24
  start-page: 55
  issue: 1
  year: 2002
  ident: 5738_CR69
  publication-title: Journal of Pediatric Hematology Oncology
  doi: 10.1097/00043426-200201000-00015
  contributor:
    fullname: J Duda
– volume: 80
  start-page: 563
  year: 2009
  ident: 5738_CR43
  publication-title: Vitam Horm
  doi: 10.1016/S0083-6729(08)00619-5
  contributor:
    fullname: M Bordonaro
– volume: 18
  start-page: 1118
  issue: 7
  year: 2012
  ident: 5738_CR67
  publication-title: Nat Med
  doi: 10.1038/nm.2819
  contributor:
    fullname: A Kentsis
– ident: 5738_CR77
– volume: 60
  start-page: 1210
  issue: 4
  year: 2011
  ident: 5738_CR54
  publication-title: Diabetes
  doi: 10.2337/db09-1379
  contributor:
    fullname: C Hinault
– volume: 26
  start-page: 785
  issue: 4
  year: 2015
  ident: 5738_CR70
  publication-title: Biomedical Research-India
  contributor:
    fullname: RG Mihaila
– volume: 46
  start-page: 3
  issue: 1
  year: 2003
  ident: 5738_CR38
  publication-title: Diabetologia
  doi: 10.1007/s00125-002-1009-0
  contributor:
    fullname: SE Kahn
– volume: 43
  start-page: e47
  issue: 7
  year: 2015
  ident: 5738_CR19
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
  contributor:
    fullname: ME Ritchie
– volume: 13
  start-page: 1107
  issue: 4
  year: 2007
  ident: 5738_CR18
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-06-1633
  contributor:
    fullname: Y Hong
– volume: 94
  start-page: 2776
  issue: 7
  year: 1997
  ident: 5738_CR24
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.7.2776
  contributor:
    fullname: K Collins
– volume: 135
  start-page: 127
  issue: 1
  year: 2012
  ident: 5738_CR52
  publication-title: Indian J Med Res
  doi: 10.4103/0971-5916.93435
  contributor:
    fullname: JJ Swaroop
– volume: 125
  start-page: 3246
  issue: 21
  year: 2015
  ident: 5738_CR60
  publication-title: Blood
  doi: 10.1182/blood-2014-10-551507
  contributor:
    fullname: C Rollig
– volume: 10
  start-page: 393
  issue: 4
  year: 2010
  ident: 5738_CR32
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2010.03.001
  contributor:
    fullname: J Rutter
– volume: 40
  start-page: 1858
  issue: 6
  year: 1980
  ident: 5738_CR73
  publication-title: Cancer Res
  contributor:
    fullname: HP Koeffler
– volume: 288
  start-page: 23128
  issue: 32
  year: 2013
  ident: 5738_CR47
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.491654
  contributor:
    fullname: MV Jensen
– volume: 123
  start-page: 1535
  issue: 10
  year: 2014
  ident: 5738_CR64
  publication-title: Blood
  doi: 10.1182/blood-2013-09-526590
  contributor:
    fullname: S Elias
– volume: 4
  start-page: 14
  year: 2009
  ident: 5738_CR58
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-4-14
  contributor:
    fullname: A Oshlack
– volume: 43
  start-page: D1049
  issue: Database issue
  year: 2015
  ident: 5738_CR5
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1179
  contributor:
    fullname: C Gene Ontology
– volume: 21
  start-page: 3448
  issue: 16
  year: 2005
  ident: 5738_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti551
  contributor:
    fullname: S Maere
– ident: 5738_CR65
  doi: 10.1038/s41598-017-04832-0
– volume: 18
  start-page: 86
  issue: 1
  year: 2015
  ident: 5738_CR37
  publication-title: Twin Research and Human Genetics
  doi: 10.1017/thg.2014.79
  contributor:
    fullname: A Mishra
– volume: 392
  start-page: 247
  issue: 3
  year: 2010
  ident: 5738_CR40
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2009.12.115
  contributor:
    fullname: W Kim
– volume: 44
  start-page: D457
  issue: D1
  year: 2016
  ident: 5738_CR6
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1070
  contributor:
    fullname: M Kanehisa
– volume: 4
  start-page: 44
  issue: 1
  year: 2009
  ident: 5738_CR9
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
  contributor:
    fullname: DW Huang
– volume: 27
  start-page: 1739
  issue: 12
  year: 2011
  ident: 5738_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
  contributor:
    fullname: A Liberzon
– volume: 15
  start-page: 1082
  issue: 9
  year: 2009
  ident: 5738_CR53
  publication-title: Nat Med
  doi: 10.1038/nm.2014
  contributor:
    fullname: T Minamino
– volume: 18
  start-page: 153
  issue: 2
  year: 2013
  ident: 5738_CR22
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2013.05.017
  contributor:
    fullname: Erin Currie
– volume: 2
  start-page: 3
  issue: 1
  year: 2014
  ident: 5738_CR27
  publication-title: Cancer Metab
  doi: 10.1186/2049-3002-2-3
  contributor:
    fullname: N Masson
– volume: 5
  issue: 11
  year: 2010
  ident: 5738_CR11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013984
  contributor:
    fullname: D Merico
– volume: 26
  start-page: 259
  issue: 3–4
  year: 1999
  ident: 5738_CR48
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1111/j.1574-695X.1999.tb01397.x
  contributor:
    fullname: SE Geerlings
– volume: 77
  start-page: S59
  year: 2000
  ident: 5738_CR41
  publication-title: Kidney Int Suppl
  doi: 10.1046/j.1523-1755.2000.07710.x
  contributor:
    fullname: G Wolf
– volume: 27
  start-page: 731
  issue: 8
  year: 2003
  ident: 5738_CR68
  publication-title: Leuk Res
  doi: 10.1016/S0145-2126(02)00281-3
  contributor:
    fullname: D Grcevic
– volume: 23
  start-page: 603
  issue: 4
  year: 2008
  ident: 5738_CR71
  publication-title: Pediatr Nephrol
  doi: 10.1007/s00467-007-0720-y
  contributor:
    fullname: CU Louis
– volume: 44
  start-page: 981
  issue: 9
  year: 2012
  ident: 5738_CR35
  publication-title: Nat Genet
  doi: 10.1038/ng.2383
  contributor:
    fullname: AP Morris
– volume: 44
  start-page: 3068
  issue: 10
  year: 2014
  ident: 5738_CR62
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201444500
  contributor:
    fullname: Z Khaznadar
– volume: 25
  start-page: 1091
  issue: 8
  year: 2009
  ident: 5738_CR13
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp101
  contributor:
    fullname: G Bindea
– volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 5738_CR7
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506580102
  contributor:
    fullname: A Subramanian
– volume: 123
  start-page: 309
  issue: 3191
  year: 1956
  ident: 5738_CR20
  publication-title: Science
  doi: 10.1126/science.123.3191.309
  contributor:
    fullname: O Warburg
– volume: 4
  start-page: 58
  year: 2010
  ident: 5738_CR21
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-58
  contributor:
    fullname: A Vazquez
– volume-title: Lehninger principles of biochemistry
  year: 2008
  ident: 5738_CR50
  contributor:
    fullname: AL Lehninger
– volume: 45
  start-page: D362
  issue: D1
  year: 2017
  ident: 5738_CR14
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw937
  contributor:
    fullname: D Szklarczyk
– volume: 53
  start-page: 597
  issue: 3
  year: 2004
  ident: 5738_CR46
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.3.597
  contributor:
    fullname: L Yan
– volume: 20
  start-page: 315
  issue: 3
  year: 2017
  ident: 5738_CR55
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.01.009
  contributor:
    fullname: AG Kotini
– volume: 18
  start-page: 706
  issue: 5
  year: 2008
  ident: 5738_CR42
  publication-title: Genome Res
  doi: 10.1101/gr.074914.107
  contributor:
    fullname: MP Keller
– volume: 3
  start-page: 141
  year: 2014
  ident: 5738_CR10
  publication-title: F1000Res
  doi: 10.12688/f1000research.4536.1
  contributor:
    fullname: R Isserlin
– volume: 9
  start-page: 512
  issue: 6
  year: 2016
  ident: 5738_CR34
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2016.09.009
  contributor:
    fullname: H Wang
– volume: 11
  start-page: R14
  issue: 2
  year: 2010
  ident: 5738_CR57
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-2-r14
  contributor:
    fullname: MD Young
– volume: 41
  start-page: D991
  issue: D1
  year: 2013
  ident: 5738_CR78
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1193
  contributor:
    fullname: T Barrett
– volume: 9
  start-page: 189
  issue: 3
  year: 2008
  ident: 5738_CR2
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbn001
  contributor:
    fullname: D Nam
– volume: 61
  start-page: 595
  issue: 4
  year: 2009
  ident: 5738_CR51
  publication-title: Pharmacol Rep
  doi: 10.1016/S1734-1140(09)70111-2
  contributor:
    fullname: S Patel
– volume: 46
  start-page: 1015
  issue: 3
  year: 1986
  ident: 5738_CR26
  publication-title: Cancer Res
  contributor:
    fullname: AS Goustin
– volume: 12
  start-page: e1006122
  issue: 6
  year: 2016
  ident: 5738_CR36
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1006122
  contributor:
    fullname: Han Zhang
– volume: 18
  start-page: 408
  issue: 1
  year: 2017
  ident: 5738_CR59
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3809-0
  contributor:
    fullname: S Yoon
– volume: 45
  start-page: D408
  issue: D1
  year: 2017
  ident: 5738_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw985
  contributor:
    fullname: G Alanis-Lobato
– volume: 349
  start-page: 767
  issue: 8
  year: 2003
  ident: 5738_CR61
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMicm010149
  contributor:
    fullname: Michael J. Mauro
– volume: 16
  start-page: 1103
  issue: 4
  year: 2009
  ident: 5738_CR45
  publication-title: Endocr Relat Cancer
  doi: 10.1677/ERC-09-0087
  contributor:
    fullname: P Vigneri
– volume: 86
  start-page: 189
  issue: 1
  year: 2007
  ident: 5738_CR49
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/86.1.189
  contributor:
    fullname: AM Hodge
– volume: 206
  start-page: 151
  issue: 2
  year: 2014
  ident: 5738_CR75
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201404136
  contributor:
    fullname: X Huang
SSID ssj0017825
Score 2.380009
Snippet Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a long list...
Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a...
BACKGROUNDGene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often yields a...
Abstract Background Gene-set analysis (GSA) has been commonly used to identify significantly altered pathways or functions from omics data. However, GSA often...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 352
SubjectTerms Algorithms
Animals
Biochemistry
Cluster analysis
Clustering
Cytotoxicity
Diabetes Mellitus, Type 2 - genetics
Distance measurement
DNA microarrays
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation
Gene Regulatory Networks
Gene sequencing
Gene-set analysis
Gene-set clustering
Genes
Genetic research
Genomics
Humans
Hypertension
Kinases
Leukemia
Medical prognosis
Methodology
Methods
Neoplasms - genetics
Network
Network analysis
Novels
Post-processing
Protein interaction
Protein Interaction Mapping - methods
Protein-protein interaction
Protein-protein interactions
Proteins
Ribonucleic acid
RNA
Software
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1KoNBLSPoVN9vilkChICJbtmz3ti1Nt4XkkDSQmxjrIwkUb6l3Kf33nbG1y5oeeunVGoP1Rpp5skZPACdBEqnItBc2YEELlKIRbeFREFWwVWiklcgLxfMLvbguvt6UNztXfXFN2CgPPAJ3mrvWac7q0oXClxoRWdOw8XXgQ6BhiL6y2Sym4v4B5b0y7mFmtT7tKQprrrZoRFnRDNeTLDSI9f8dkndy0rRecicBnR3AfmSO6Xz84kN44LvH8HC8S_L3E6g_X9nva5Y9eJ92Y223-DX89_QupVHiRe9XaTShfJVilCN5Ctdnn759XIh4LYKwZVOshLUlyhYpiqFFLB1vtubeK-IGuQoytIpIC8rcBZurVjuiCF4ppzAwelqqZ7DXLTt_BGmuHRZWoXaNLJRVrbW2IoKTVdiGOssSeLeByfwY1S_MsGqotRkxNYSpYUyNTuADA7k1ZOHq4QG500R3mn-5M4E37AbD0hQd177c4rrvzZerSzMv-RAtBWeZwNtoFJbkEIvxKAF1itWsJpaziSXNHTtt3njbxLnbGz4dnA0XyyfwetvMb3I9WueXa7ah0MWbsFUCz8fBse03EeaKeWoC1WTYTICZtnT3d4Oyt2Z2XuUv_geSx_Ao5wHPxZnNDPZWP9f-JRGoVftqmCt_AGpOFwA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEB60Ivgi1ltTq0QRBGHpJptsEl-kFWsV9MFaOG_LZC9tQZK2OQfx3zuT7Dk2CL5mJ5DMzuXb3dlvAF4HSaAi017YgAUtUIpGtIVHQVDBVqGRViIvFL9-08enxZdFuYgbbkMsq1zHxDFQu97yHvk-39nMxnbf7y-vBHeN4tPV2ELjNtyhMc0lXdVis-DKKPuV8SQzq_X-QLFYc81FI8qK_FzPctFI2f9vYL6RmeZVkzfS0NEDuB_xY3owTfg23PLdQ7g7dZT8_QjqTyf254rJD96l3VThLX6Nu5_epWQrXgx-mUYRylopRlKSx3B69PHHh2MRmyMIWzbFUlhbomyRYhlaxNLxkWvuvSKEkKsgQ6sIuqDMXbC5arUjoOCVcgpDqRG1VE9gq-s7vwNprh0WVqF2jSyUVa21tiKYk1XYhjrLEni7VpO5nDgwzLh2qLWZdGpIp4Z1anQCh6zIjSDTV48P-uszE73B5K51mqGadKHw_EHIRJWNrwPf7A0JvOJpMExQ0XEFzBmuhsF8PvluDkq-SkshWibwJgqFnibEYrxQQD_FnFYzyb2ZJHmQnQ-vZ9tEDx7MX3tL4OVmmN_kqrTO9yuWoQDGR7FVAk8n49j8N8HmitFqAtXMbGaKmY90F-cjv7dmjF7lu___rGdwL2dT5uLLZg-2ltcr_5wA0rJ9MXrBH4c-DjY
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qRfCl-N1olSiCIKxudje7iSBSxVoFfbAe9G3Z7EcVSq5e7tD-984kubPBPvianYRkdj5-k50PgKeJI6godGQ-OYUBiqpZo6JjCBW8STX33FGg-PmLPpypT8fl8Rasx1uNDOwuDe1ontRscfri98_zN6jwr3uFr_TLDm2splyKmpUG9VdfgatCYaBOmXzq76ECOsOyLzYyBRMYJoyHnJc-YuKm-m7-_9rsC05rmlB5wUMd3ICdEVrm-4Ms3ISt2N6Ca8OwyfPbUH048qcr6ovwKm-H5G_2q_8xGkOOYhRZF5f5SIIOLXdjv5I7MDt4_-3dIRvnJjBf1mrJvC8dbxyaOeedKwOdxooYJYIHIRNPjURU47gIyQvZ6IAYIkoZpEuldk5zeRe223kbdyEXOjjlpdOh5kp62XjvDSKgwrgmVUWRwfM1m-zZ0B7D9mFFpe3AU4s8tcRTqzN4S4zcEFJn6_7CfHFiR0WxIjRBE4rjIalIL-Soh2Udq0RFvymDJ7QNlnpXtJQcc-JWXWc_Hn21-yVV2aL15hk8G4nSHDfEu7HWAD-K2l1NKPcmlKhcfrq83m27lk1L5cNFP3k-g8ebZbqTEtbaOF8RDdo2OqU1GdwbhGPz3YioDQHZDMxEbCaMma60P773rb81wXcj7v8PEx7AdUECTdmZ9R5sLxer-BAR1LJ51OvFH7trFUg
  priority: 102
  providerName: Scholars Portal
Title GScluster: network-weighted gene-set clustering analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/31072324
https://www.proquest.com/docview/2227120320
https://search.proquest.com/docview/2231903517
https://pubmed.ncbi.nlm.nih.gov/PMC6507172
https://doaj.org/article/2dbd651430df4e56aaa17669e8f4226f
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UUuhL6bex9khLoVCIt8kmm6RvKlpbOBGtcG_LZj-soDkxd0j_-85sNoehb33JQ3YCyex8_DY781uAz44hqEiFTbRTOS5Q8jppcqsShAq6dDXTTNFCcXYqTi7zn_NivgHF0Avji_Z1c73X3tzutde_fW3l3a2eDnVi07PZoSAQU2bTTdhEAx2W6GHrAFNeEbYv00pMOwzAggot6qQo0bnpzCKENCUhiVEu8pT9_wbmR5lpXDX5KA0dv4DnAT_G-_17voQN276Cp_2Jkn9eQ_X9Qt-siPzgW9z2Fd7Jg__7aU2MtmKTzi7jIIJZK1aBlOQNXB4f_To8ScLhCIku6nyZaF0o1iiMZUorVRjacs2s5YgQMu6YazhCF8Uy43TGG2EQKFjODVeuEEoJxt_CVrto7TbEmTAq11wJU7Oca95orUuEOWmpGlelaQRfBzXJu54DQ_q1QyVkr16J6pWkXikiOCBFrgWJvtrfWNxfyTCJMjONEQTVmHG5pRdSRFRZ28pRZ6-L4BNNgySCipYqYK7Uquvkj4tzuV9QKy2GaBbBlyDkFjghWoWGAvwo4rQaSe6OJNGD9Hh4mG0ZPLiT1COc-uPlI_i4HqYnqSqttYsVyWAAo63YMoJ3vXGsv3uwsQjKkdmMFDMeQXP3_N7BvHf--8n38Cwjg6e6zHoXtpb3K_sBsdOymaDHzMsJPDk4Oj07n_g_EHid5dXEe9FfUcQbkw
link.rule.ids 230,315,730,783,787,867,888,2109,12068,21400,24330,27936,27937,31731,31732,33756,33757,43322,43817,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0IvoifhutGkUQhKWbbLK5-CJVrFdt-2BbuLdlsh9VkKQ2d4j_vTPJ3tkg-JqdQDI7H7_dnf0NwKsgCVRk2gsbsKAFSlGLpvAoCCrYKtTSSuSF4uGRnp8WnxflIm649bGsch0Th0DtOst75Dt8ZzMb2n2_O_8puGsUn67GFhpX4RrzcHEHg2qxWXBllP3KeJKZzfROT7FYc81FLcqK_FxPctFA2f9vYL6UmaZVk5fS0N5tuBXxY7o7TvgduOLbu3B97Cj5-x7MPh3bHysmP3ibtmOFt_g17H56l5KteNH7ZRpFKGulGElJ7sPp3seTD3MRmyMIW9bFUlhbomyQYhlaxNLxkWvuvSKEkKsgQ6MIuqDMXbC5arQjoOCVcgpDqRG1VA9gq-1a_wjSXDssrELtalkoqxprbUUwJ6uwCbMsS-DNWk3mfOTAMMPaYabNqFNDOjWsU6MTeM-K3AgyffXwoLs4M9EbTO4apxmqSRcKzx-ETFRZ-1ngm70hgZc8DYYJKlqugDnDVd-b_eOvZrfkq7QUomUCr6NQ6GhCLMYLBfRTzGk1kdyeSJIH2enwerZN9ODe_LW3BF5shvlNrkprfbdiGQpgfBRbJfBwNI7NfxNsrhitJlBNzGaimOlI-_3bwO-tGaNX-eP_f9ZzuDE_OTwwB_tHX57AzZzNmgsx623YWl6s_FMCS8vm2eARfwBJ_REd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIdBeuF8CAwJCQkJK68SJ0_A2BmUDNk2MSdNeLMeXbWJLqzURgl_POYlTNfC21_pEinNun-vPnwHeOIagIhY20k6luEBJi6hMrYoQKujcFUwzRQvF3T2xfZh-OcqOVq76akn7ujwbVecXo-rstOVWzi_0uOeJjfd3twSBmDwZz40bX4cbmLNM9At1v4GAjS_zm5jxRIwXWIYF0S2KKMsxxenmIgQ2OeGJQUdqhfv_L88r_WnInVxpRtM7cNxPo-Og_Bw1dTnSf_5ReLzSPO_CbQ9Rw83O5B5cs9V9uNldWvn7AUw-H-jzhvQV3odVRyKPfrV_sFoTYjjaaGHr0JtgYwyV1z15CIfTTz-2tiN__0KksyKtI60zxUqF5VJppTJDu7qJtRxBSMIdcyVHdKRYYpxOeCkMYhHLueHKZUIpwfgjWKtmlX0CYSKMSjVXwhQs5ZqXWusckVScq9JN4jiAd70P5LyT2ZDt8mQiZOc7ib6T5DspAvhAXloakkJ2-8Ps8kT67ycTUxpBaJAZl1p6IUVamIWdODo87AJ4TT6WpIFREcnmRDWLhdw5-C43Mzqti12ABfDWG7kZelsrf2YBJ0WyWQPLjYElJqkeDvehJH2RWEg6hhy3N9gH8Go5TE8S8a2ys4ZssEbSbm8ewOMu8pbz7gM4gHwQk4MPMxzBSGslxH1kPb3yky_h1v7Hqfy2s_f1GawnlFjEAi02YK2-bOxzRGp1-aLNyb_yrzu1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GScluster%3A+network-weighted+gene-set+clustering+analysis&rft.jtitle=BMC+genomics&rft.au=Yoon%2C+Sora&rft.au=Kim%2C+Jinhwan&rft.au=Kim%2C+Seon-Kyu&rft.au=Baik%2C+Bukyung&rft.date=2019-05-09&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=20&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-019-5738-6&rft.externalDBID=ISR&rft.externalDocID=A586559110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon