Distinct Genetic Interactions between Multiple Vegf Receptors Are Required for Development of Different Blood Vessel Types in Zebrafish

Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-s...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 103; no. 17; pp. 6554 - 6559
Main Authors Covassin, L. D., Villefranc, J. A., Kacergis, M. C., Weinstein, B. M., Lawson, N. D.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.04.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Fit4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.
AbstractList Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.
Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Fit4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.
Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra , which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr - 2 ortholog, referred to as kdrb , which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.
Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development.
Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos, whereas less is known about signals that govern vein formation. In zebrafish, loss of vegfa blocks segmental artery formation and reduces artery-specific gene expression, whereas veins are largely unaffected. Here, we describe a mutation in the zebrafish vegf receptor-2 homolog, kdra, which eliminates its kinase activity and leads to specific defects in artery development. We further find that Flt4, a receptor for Vegfc, cooperates with Kdr during artery morphogenesis, but not differentiation. We also identify an additional zebrafish vegfr-2 ortholog, referred to as kdrb, which can partially compensate for loss of kdra but is dispensable for vascular development in wild-type embryos. Interestingly, we find that these Vegf receptors are also required for formation of veins but in distinct genetic interactions that differ from those required for artery development. Taken together, our results indicate that formation of arteries and veins in the embryo is governed in part by different Vegf receptor combinations and suggest a genetic mechanism for generating blood vessel diversity during vertebrate development. [PUBLICATION ABSTRACT]
Author Kacergis, M. C.
Villefranc, J. A.
Covassin, L. D.
Lawson, N. D.
Weinstein, B. M.
Author_xml – sequence: 1
  givenname: L. D.
  surname: Covassin
  fullname: Covassin, L. D.
– sequence: 2
  givenname: J. A.
  surname: Villefranc
  fullname: Villefranc, J. A.
– sequence: 3
  givenname: M. C.
  surname: Kacergis
  fullname: Kacergis, M. C.
– sequence: 4
  givenname: B. M.
  surname: Weinstein
  fullname: Weinstein, B. M.
– sequence: 5
  givenname: N. D.
  surname: Lawson
  fullname: Lawson, N. D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16617120$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1rVDEUDVKx0-ralRJcuJv25uN9bYTa0VqoCFJduAl5mZs2w5vkNcmr9Bf4t80wddSCCIFwyTmHk3vOAdnzwSMhzxkcMWjE8eh1OoIK6ratGYhHZMagY_NadrBHZgC8mbeSy31ykNIKALqqhSdkn9U1axiHGfmxcCk7bzI9Q4_ZGXruM0Ztsgs-0R7zd0RPP05DduOA9CteWfoZDY45xERPIpbpZnIRl9SGSBd4i0MY1-gzDZYunLUYN8PbIYRloaeEA728GzFR5-k37KO2Ll0_JY-tHhI-u78PyZf37y5PP8wvPp2dn55czE3VyTzve0RdtRINR9MDa7CDBrispexZOUYYaTR0trdL2TdVw1ux5Jo3vbBGChSH5M1Wd5z6NS5NsRb1oMbo1jreqaCd-vvFu2t1FW4Vk1XbcV4EXt8LxHAzYcpq7ZLBYdAew5RU3RRHVcv-CywBSNmKjeKrB8BVmKIvW1AcmORtLZoCevmn753hX0kWQLUFmBhSimiVcVlvUizfcINioDaNUZvGqN-NKbzjB7yd9D8ZL7aMVSod2MEFQFX204mfYN3P2Q
CitedBy_id crossref_primary_10_1210_en_2011_1888
crossref_primary_10_1128_MCB_02214_07
crossref_primary_10_1182_blood_2006_04_016378
crossref_primary_10_26508_lsa_202000666
crossref_primary_10_1186_s40659_021_00341_7
crossref_primary_10_3390_cancers15112961
crossref_primary_10_1242_dev_091876
crossref_primary_10_1007_s00432_022_04560_7
crossref_primary_10_1161_CIRCRESAHA_109_207670
crossref_primary_10_1002_bies_201800198
crossref_primary_10_3390_ph14070614
crossref_primary_10_1242_dev_039990
crossref_primary_10_1016_j_celrep_2020_107883
crossref_primary_10_1089_zeb_2006_3_383
crossref_primary_10_1016_j_ydbio_2009_10_035
crossref_primary_10_1096_fj_08_106088
crossref_primary_10_1016_j_semcdb_2014_04_037
crossref_primary_10_1371_journal_pbio_1001590
crossref_primary_10_1007_s11655_022_3625_5
crossref_primary_10_1016_j_celrep_2019_07_055
crossref_primary_10_1161_ATVBAHA_116_307517
crossref_primary_10_1016_j_yexcr_2013_01_019
crossref_primary_10_1371_journal_pone_0011324
crossref_primary_10_1038_s41467_020_16552_7
crossref_primary_10_1371_journal_pgen_1000064
crossref_primary_10_1016_j_semcdb_2019_10_010
crossref_primary_10_1016_j_ecoenv_2022_113620
crossref_primary_10_1073_pnas_0901932106
crossref_primary_10_1002_dvdy_22641
crossref_primary_10_1021_cb9002865
crossref_primary_10_7554_eLife_08817
crossref_primary_10_1016_j_ydbio_2009_02_031
crossref_primary_10_3389_fphar_2020_625498
crossref_primary_10_1172_JCI24311
crossref_primary_10_1371_journal_pone_0011438
crossref_primary_10_1016_j_devcel_2012_01_008
crossref_primary_10_1016_j_ydbio_2016_01_002
crossref_primary_10_4199_C00097ED1V01Y201310PAC006
crossref_primary_10_1002_dvdy_21542
crossref_primary_10_1016_j_isci_2022_103784
crossref_primary_10_1073_pnas_0703446104
crossref_primary_10_1073_pnas_1423278112
crossref_primary_10_1038_nature05577
crossref_primary_10_12997_jla_2021_10_2_145
crossref_primary_10_1038_s41467_019_08590_7
crossref_primary_10_1038_srep30677
crossref_primary_10_1364_BOE_382114
crossref_primary_10_7554_eLife_04645
crossref_primary_10_1242_dev_200131
crossref_primary_10_1038_s41598_022_17127_w
crossref_primary_10_1242_jcs_108555
crossref_primary_10_1242_dev_063933
crossref_primary_10_1242_dev_199858
crossref_primary_10_1161_ATVBAHA_107_161539
crossref_primary_10_1016_j_ydbio_2016_04_019
crossref_primary_10_1093_bfgp_eln043
crossref_primary_10_1038_nature07083
crossref_primary_10_1016_j_celrep_2023_113028
crossref_primary_10_1089_lrb_2008_1024
crossref_primary_10_1016_j_bbrc_2012_04_019
crossref_primary_10_1002_bdrc_20204
crossref_primary_10_1016_j_taap_2025_117295
crossref_primary_10_1182_blood_2007_08_106302
crossref_primary_10_1242_dmm_024950
crossref_primary_10_3390_biomedicines12081795
crossref_primary_10_3390_ijms22062804
crossref_primary_10_1002_dvdy_23946
crossref_primary_10_7554_eLife_62196
crossref_primary_10_1016_j_isci_2021_103189
crossref_primary_10_1016_j_devcel_2017_08_015
crossref_primary_10_1016_j_ydbio_2015_10_017
crossref_primary_10_1016_j_matbio_2009_04_010
crossref_primary_10_3389_fcell_2024_1362228
crossref_primary_10_1016_j_bbagen_2012_06_008
crossref_primary_10_1371_journal_pone_0025013
crossref_primary_10_1016_j_aquatox_2012_04_008
crossref_primary_10_1002_bdrc_20213
crossref_primary_10_1111_cge_13965
crossref_primary_10_1111_j_1365_2443_2010_01448_x
crossref_primary_10_1038_nn_4558
crossref_primary_10_1182_blood_2013_04_495432
crossref_primary_10_1007_s11010_022_04537_7
crossref_primary_10_1016_j_ydbio_2022_11_007
crossref_primary_10_1002_bdrc_20210
crossref_primary_10_4161_cib_28820
crossref_primary_10_1161_CIRCRESAHA_112_279711
crossref_primary_10_1016_j_ydbio_2020_06_007
crossref_primary_10_1242_dev_129247
crossref_primary_10_1007_s10456_013_9379_0
crossref_primary_10_1038_ng_321
crossref_primary_10_1002_wsbm_1579
crossref_primary_10_1093_jmcb_mjw024
crossref_primary_10_1101_cshperspect_a037176
crossref_primary_10_1016_j_fct_2023_113671
crossref_primary_10_7554_eLife_24369
crossref_primary_10_1016_j_aquatox_2014_03_010
crossref_primary_10_1083_jcb_200708022
crossref_primary_10_1016_j_ydbio_2008_01_028
crossref_primary_10_1007_s12565_009_0026_1
crossref_primary_10_3389_fcell_2021_735598
crossref_primary_10_1242_dev_066779
crossref_primary_10_1242_dev_091702
crossref_primary_10_1242_dev_083774
crossref_primary_10_1016_j_ydbio_2011_06_037
crossref_primary_10_1016_j_cbi_2022_110011
crossref_primary_10_1111_micc_12289
crossref_primary_10_1002_bies_20736
crossref_primary_10_1038_nature08889
crossref_primary_10_1242_dev_068460
crossref_primary_10_7554_eLife_30454
crossref_primary_10_1242_dev_132431
crossref_primary_10_1038_ncomms12061
crossref_primary_10_1016_j_devcel_2011_06_033
crossref_primary_10_1038_ncomms1977
crossref_primary_10_1002_dvdy_24209
crossref_primary_10_1016_j_celrep_2019_05_052
crossref_primary_10_1016_j_ydbio_2009_04_037
crossref_primary_10_1074_jbc_M111_289371
crossref_primary_10_1182_blood_2007_07_100412
crossref_primary_10_1242_dev_146969
crossref_primary_10_1242_dev_199498
crossref_primary_10_1111_j_1476_5381_2010_00871_x
crossref_primary_10_1242_dev_084152
crossref_primary_10_1111_dgd_12938
crossref_primary_10_1038_nbt1398
crossref_primary_10_1186_s12929_015_0209_0
crossref_primary_10_3390_life11101088
crossref_primary_10_1007_s00395_013_0362_0
crossref_primary_10_1042_BSR20160572
crossref_primary_10_1182_blood_2009_09_244640
crossref_primary_10_1242_dev_097352
crossref_primary_10_1073_pnas_2211690119
crossref_primary_10_1242_dev_058776
crossref_primary_10_1016_j_devcel_2014_04_012
crossref_primary_10_3390_biology10040252
crossref_primary_10_1242_dev_137901
crossref_primary_10_1101_gad_1813509
crossref_primary_10_1242_dev_003244
crossref_primary_10_7554_eLife_06489
crossref_primary_10_1371_journal_pgen_0030140
crossref_primary_10_1242_bio_039768
crossref_primary_10_1016_j_taap_2014_09_005
crossref_primary_10_1007_s00018_021_03790_1
crossref_primary_10_1016_j_bbrc_2012_12_076
crossref_primary_10_1016_j_devcel_2022_02_015
crossref_primary_10_1158_0008_5472_CAN_06_3567
crossref_primary_10_1016_j_genrep_2016_12_001
crossref_primary_10_1182_blood_2011_10_383729
crossref_primary_10_1016_j_bbrc_2020_06_085
crossref_primary_10_1038_s41419_020_2522_0
crossref_primary_10_1242_dev_059881
crossref_primary_10_1016_j_exphem_2014_05_002
crossref_primary_10_1515_biol_2022_0533
crossref_primary_10_1242_dev_123059
crossref_primary_10_1007_s10456_009_9132_x
crossref_primary_10_1182_blood_2009_11_254557
crossref_primary_10_1002_jcp_21905
crossref_primary_10_1158_1535_7163_MCT_11_0866_T
crossref_primary_10_3389_fgene_2015_00037
crossref_primary_10_1161_CIRCRESAHA_118_313250
crossref_primary_10_1016_j_bcmd_2013_07_010
crossref_primary_10_1016_j_cub_2012_07_037
crossref_primary_10_1152_physrev_00067_2017
crossref_primary_10_1161_CIRCRESAHA_108_181388
crossref_primary_10_1093_abbs_gmu055
crossref_primary_10_1242_dmm_004036
crossref_primary_10_1038_ncomms13991
crossref_primary_10_1016_j_devcel_2014_11_018
crossref_primary_10_1038_s41569_022_00770_1
crossref_primary_10_1016_j_ejphar_2015_10_031
crossref_primary_10_1016_j_ydbio_2016_02_003
crossref_primary_10_1016_j_ydbio_2007_01_023
crossref_primary_10_1242_dev_137919
crossref_primary_10_1016_j_ydbio_2022_07_009
crossref_primary_10_1161_CIRCRESAHA_108_180745
crossref_primary_10_1016_j_ceb_2010_08_010
crossref_primary_10_1016_j_aquatox_2018_07_012
crossref_primary_10_7554_eLife_86066
crossref_primary_10_1371_journal_pgen_1009769
crossref_primary_10_1038_ncb2331
crossref_primary_10_1161_CIRCRESAHA_108_191189
crossref_primary_10_1126_science_1243452
crossref_primary_10_1182_blood_2009_10_248856
crossref_primary_10_1016_j_jgg_2017_07_005
crossref_primary_10_1016_j_aquatox_2011_05_006
crossref_primary_10_1016_j_mvr_2014_06_001
crossref_primary_10_1038_s41467_024_47434_x
crossref_primary_10_1074_jbc_RA117_001383
crossref_primary_10_1016_j_ydbio_2010_01_011
crossref_primary_10_1101_gad_432007
crossref_primary_10_1182_blood_2011_07_370635
crossref_primary_10_1161_ATVBAHA_116_308120
crossref_primary_10_1161_CIRCRESAHA_108_181818
crossref_primary_10_1242_dev_02550
crossref_primary_10_1038_s41467_018_07732_7
crossref_primary_10_1038_ncb2232
crossref_primary_10_1161_CIRCRESAHA_121_319929
crossref_primary_10_1038_ncb3443
Cites_doi 10.1073/pnas.95.16.9349
10.1038/75997
10.1006/dbio.1998.8887
10.1242/dev.129.12.3009
10.1016/S0960-9822(02)01044-8
10.1074/jbc.275.7.5096
10.1038/380435a0
10.1038/nm884
10.1016/S1534-5807(02)00198-3
10.1038/nature03511
10.1023/A:1026598300052
10.1016/S0021-9258(18)47116-5
10.1016/S0092-8674(02)00757-2
10.1242/dev.128.19.3675
10.1126/science.3291115
10.1038/sj.embor.7400047
10.1182/blood.V96.12.3793.h8003793_3793_3800
10.1093/emboj/20.11.2768
10.1242/dev.00733
10.1101/gad.1072203
10.1126/science.282.5390.946
10.1016/S0008-6363(00)00268-6
10.1182/blood-2002-05-1329
10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5
10.1046/j.1365-313X.1998.00124.x
10.1002/j.1460-2075.1996.tb00359.x
10.1038/376062a0
10.1182/blood.V99.7.2397
10.1006/dbio.2002.0711
10.1038/376066a0
10.1242/dev.124.2.381
10.1002/aja.1002040303
10.1038/nm0603-669
10.1016/S1537-1891(03)00011-9
10.1210/edrv.18.1.0287
10.1073/pnas.122109599
10.1073/pnas.90.22.10705
10.1074/jbc.M304499200
10.1172/JCI0214362
ContentType Journal Article
Copyright Copyright 2006 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 25, 2006
2006 by The National Academy of Sciences of the USA 2006
Copyright_xml – notice: Copyright 2006 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 25, 2006
– notice: 2006 by The National Academy of Sciences of the USA 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
F1W
H95
L.G
7X8
5PM
DOI 10.1073/pnas.0506886103
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
MEDLINE
Virology and AIDS Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1091-6490
EndPage 6559
ExternalDocumentID PMC1458922
1050990211
16617120
10_1073_pnas_0506886103
30052239
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01CA107454
– fundername: NCI NIH HHS
  grantid: R01 CA107454
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
F1W
H95
L.G
7X8
5PM
ID FETCH-LOGICAL-c594t-bbeea584ec2ecb017e907024644b14b1c3c4ca09fbfd4b757283d2a27b3fc43e3
ISSN 0027-8424
IngestDate Thu Aug 21 14:03:38 EDT 2025
Thu Jul 10 18:32:23 EDT 2025
Fri Jul 11 10:44:15 EDT 2025
Mon Jun 30 08:32:33 EDT 2025
Wed Feb 19 01:46:05 EST 2025
Tue Jul 01 02:29:46 EDT 2025
Thu Apr 24 23:11:57 EDT 2025
Thu May 29 08:42:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c594t-bbeea584ec2ecb017e907024644b14b1c3c4ca09fbfd4b757283d2a27b3fc43e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: L.D.C. and N.D.L. designed research; L.D.C., J.A.V., M.C.K., and N.D.L. performed research; B.M.W. contributed new reagents/analytic tools; L.D.C., J.A.V., and N.D.L. analyzed data; and N.D.L. wrote the paper.
Edited by Kathryn V. Anderson, Sloan–Kettering Institute, New York, NY, and approved March 7, 2006
OpenAccessLink http://doi.org/10.1073/pnas.0506886103
PMID 16617120
PQID 201428637
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1458922
proquest_miscellaneous_67907581
proquest_miscellaneous_17144832
proquest_journals_201428637
pubmed_primary_16617120
crossref_citationtrail_10_1073_pnas_0506886103
crossref_primary_10_1073_pnas_0506886103
jstor_primary_30052239
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04-25
PublicationDateYYYYMMDD 2006-04-25
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-25
  day: 25
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Westerfield M. (e_1_3_3_39_2) 1993
e_1_3_3_6_2
Fong T. A. (e_1_3_3_32_2) 1999; 59
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
12048246 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8219-24
10671553 - J Biol Chem. 2000 Feb 18;275(7):5096-103
8602241 - Nature. 1996 Apr 4;380(6573):435-9
12050147 - Development. 2002 Jun;129(12):3009-19
9630750 - Dev Biol. 1998 May 15;197(2):248-69
9034784 - Endocr Rev. 1997 Feb;18(1):4-25
9689083 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9349-54
9892193 - Cancer Res. 1999 Jan 1;59(1):99-106
7596436 - Nature. 1995 Jul 6;376(6535):66-70
14710191 - EMBO Rep. 2004 Jan;5(1):78-84
8573716 - Dev Dyn. 1995 Nov;204(3):228-39
11585794 - Development. 2001 Oct;128(19):3675-83
12747962 - Vascul Pharmacol. 2002 Nov;39(4-5):225-37
9628033 - Plant J. 1998 May;14(3):387-92
11387210 - EMBO J. 2001 Jun 1;20(11):2768-78
8248162 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9
11090062 - Blood. 2000 Dec 1;96(12):3793-800
11895772 - Blood. 2002 Apr 1;99(7):2397-407
9794766 - Science. 1998 Oct 30;282(5390):946-9
12194822 - Curr Biol. 2002 Aug 20;12(16):1405-12
12167406 - Dev Biol. 2002 Aug 15;248(2):307-18
7596435 - Nature. 1995 Jul 6;376(6535):62-6
12086669 - Cell. 2002 Jun 14;109(6):693-705
9053314 - Development. 1997 Jan;124(2):381-9
12796773 - Nat Med. 2003 Jul;9(7):936-43
15875024 - Nature. 2005 May 5;435(7038):98-104
11166270 - Cardiovasc Res. 2001 Feb 16;49(3):568-81
12881528 - J Biol Chem. 2003 Oct 17;278(42):40973-9
14517415 - Angiogenesis. 1999;3(4):353-9
12393458 - Blood. 2003 Feb 15;101(4):1367-74
7929439 - J Biol Chem. 1994 Oct 28;269(43):26988-95
12778165 - Nat Med. 2003 Jun;9(6):669-76
12954720 - Development. 2003 Nov;130(21):5281-90
11827992 - J Clin Invest. 2002 Feb;109(3):327-36
12110173 - Dev Cell. 2002 Jul;3(1):127-36
10835628 - Nat Genet. 2000 Jun;25(2):153-9
3291115 - Science. 1988 Jul 1;241(4861):42-52
11119306 - Yeast. 2000 Dec;17(4):294-301
12782653 - Genes Dev. 2003 Jun 1;17(11):1346-51
8617204 - EMBO J. 1996 Jan 15;15(2):290-98
References_xml – ident: e_1_3_3_14_2
  doi: 10.1073/pnas.95.16.9349
– ident: e_1_3_3_37_2
  doi: 10.1038/75997
– ident: e_1_3_3_27_2
  doi: 10.1006/dbio.1998.8887
– volume-title: The Zebrafish Book
  year: 1993
  ident: e_1_3_3_39_2
– ident: e_1_3_3_40_2
  doi: 10.1242/dev.129.12.3009
– ident: e_1_3_3_36_2
  doi: 10.1016/S0960-9822(02)01044-8
– ident: e_1_3_3_4_2
  doi: 10.1074/jbc.275.7.5096
– ident: e_1_3_3_1_2
  doi: 10.1038/380435a0
– ident: e_1_3_3_38_2
  doi: 10.1038/nm884
– ident: e_1_3_3_19_2
  doi: 10.1016/S1534-5807(02)00198-3
– ident: e_1_3_3_25_2
  doi: 10.1038/nature03511
– ident: e_1_3_3_33_2
  doi: 10.1023/A:1026598300052
– ident: e_1_3_3_10_2
  doi: 10.1016/S0021-9258(18)47116-5
– ident: e_1_3_3_20_2
  doi: 10.1016/S0092-8674(02)00757-2
– ident: e_1_3_3_41_2
  doi: 10.1242/dev.128.19.3675
– ident: e_1_3_3_29_2
  doi: 10.1126/science.3291115
– ident: e_1_3_3_34_2
  doi: 10.1038/sj.embor.7400047
– ident: e_1_3_3_16_2
  doi: 10.1182/blood.V96.12.3793.h8003793_3793_3800
– ident: e_1_3_3_5_2
  doi: 10.1093/emboj/20.11.2768
– ident: e_1_3_3_24_2
  doi: 10.1242/dev.00733
– ident: e_1_3_3_23_2
  doi: 10.1101/gad.1072203
– ident: e_1_3_3_15_2
  doi: 10.1126/science.282.5390.946
– ident: e_1_3_3_6_2
  doi: 10.1016/S0008-6363(00)00268-6
– ident: e_1_3_3_17_2
  doi: 10.1182/blood-2002-05-1329
– ident: e_1_3_3_31_2
  doi: 10.1002/1097-0061(200012)17:4<294::AID-YEA54>3.0.CO;2-5
– ident: e_1_3_3_28_2
  doi: 10.1046/j.1365-313X.1998.00124.x
– ident: e_1_3_3_35_2
  doi: 10.1002/j.1460-2075.1996.tb00359.x
– ident: e_1_3_3_7_2
  doi: 10.1038/376062a0
– ident: e_1_3_3_13_2
  doi: 10.1182/blood.V99.7.2397
– ident: e_1_3_3_30_2
  doi: 10.1006/dbio.2002.0711
– ident: e_1_3_3_12_2
  doi: 10.1038/376066a0
– ident: e_1_3_3_26_2
  doi: 10.1242/dev.124.2.381
– ident: e_1_3_3_9_2
  doi: 10.1002/aja.1002040303
– ident: e_1_3_3_11_2
  doi: 10.1038/nm0603-669
– volume: 59
  start-page: 99
  year: 1999
  ident: e_1_3_3_32_2
  publication-title: Cancer Res
– ident: e_1_3_3_2_2
  doi: 10.1016/S1537-1891(03)00011-9
– ident: e_1_3_3_3_2
  doi: 10.1210/edrv.18.1.0287
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.122109599
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.90.22.10705
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M304499200
– ident: e_1_3_3_21_2
  doi: 10.1172/JCI0214362
– reference: 12782653 - Genes Dev. 2003 Jun 1;17(11):1346-51
– reference: 11895772 - Blood. 2002 Apr 1;99(7):2397-407
– reference: 9628033 - Plant J. 1998 May;14(3):387-92
– reference: 15875024 - Nature. 2005 May 5;435(7038):98-104
– reference: 11827992 - J Clin Invest. 2002 Feb;109(3):327-36
– reference: 12194822 - Curr Biol. 2002 Aug 20;12(16):1405-12
– reference: 11585794 - Development. 2001 Oct;128(19):3675-83
– reference: 8573716 - Dev Dyn. 1995 Nov;204(3):228-39
– reference: 12086669 - Cell. 2002 Jun 14;109(6):693-705
– reference: 12048246 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8219-24
– reference: 12050147 - Development. 2002 Jun;129(12):3009-19
– reference: 8248162 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9
– reference: 3291115 - Science. 1988 Jul 1;241(4861):42-52
– reference: 9630750 - Dev Biol. 1998 May 15;197(2):248-69
– reference: 9053314 - Development. 1997 Jan;124(2):381-9
– reference: 12881528 - J Biol Chem. 2003 Oct 17;278(42):40973-9
– reference: 10671553 - J Biol Chem. 2000 Feb 18;275(7):5096-103
– reference: 8617204 - EMBO J. 1996 Jan 15;15(2):290-98
– reference: 8602241 - Nature. 1996 Apr 4;380(6573):435-9
– reference: 10835628 - Nat Genet. 2000 Jun;25(2):153-9
– reference: 9892193 - Cancer Res. 1999 Jan 1;59(1):99-106
– reference: 11090062 - Blood. 2000 Dec 1;96(12):3793-800
– reference: 11387210 - EMBO J. 2001 Jun 1;20(11):2768-78
– reference: 12796773 - Nat Med. 2003 Jul;9(7):936-43
– reference: 9034784 - Endocr Rev. 1997 Feb;18(1):4-25
– reference: 14710191 - EMBO Rep. 2004 Jan;5(1):78-84
– reference: 14517415 - Angiogenesis. 1999;3(4):353-9
– reference: 12778165 - Nat Med. 2003 Jun;9(6):669-76
– reference: 12167406 - Dev Biol. 2002 Aug 15;248(2):307-18
– reference: 12110173 - Dev Cell. 2002 Jul;3(1):127-36
– reference: 12954720 - Development. 2003 Nov;130(21):5281-90
– reference: 7596436 - Nature. 1995 Jul 6;376(6535):66-70
– reference: 9794766 - Science. 1998 Oct 30;282(5390):946-9
– reference: 11166270 - Cardiovasc Res. 2001 Feb 16;49(3):568-81
– reference: 12393458 - Blood. 2003 Feb 15;101(4):1367-74
– reference: 7929439 - J Biol Chem. 1994 Oct 28;269(43):26988-95
– reference: 11119306 - Yeast. 2000 Dec;17(4):294-301
– reference: 12747962 - Vascul Pharmacol. 2002 Nov;39(4-5):225-37
– reference: 9689083 - Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9349-54
– reference: 7596435 - Nature. 1995 Jul 6;376(6535):62-6
SSID ssj0009580
Score 2.3284492
Snippet Recent evidence indicates a specific role for vascular endothelial growth factor a (Vegfa) during artery development in both zebrafish and mouse embryos,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6554
SubjectTerms Animals
Aorta
Arteries
Base Sequence
Biological Sciences
Biology
Blood vessels
Blood Vessels - embryology
Blood Vessels - metabolism
Danio rerio
Developmental biology
DNA, Complementary - genetics
Embryos
Endothelial cells
Fish
Gene expression
Genetic mutation
Genetics
Molecular Sequence Data
Mutation
Phenotype
Phylogeny
Receptors
Receptors, Vascular Endothelial Growth Factor - genetics
Receptors, Vascular Endothelial Growth Factor - metabolism
Rodents
Siblings
Vascular Endothelial Growth Factor C - metabolism
Vascular Endothelial Growth Factor Receptor-2 - genetics
Vascular Endothelial Growth Factor Receptor-2 - metabolism
Vascular Endothelial Growth Factor Receptor-3 - genetics
Vascular Endothelial Growth Factor Receptor-3 - metabolism
Veins
Veins & arteries
Zebrafish - embryology
Zebrafish - genetics
Zebrafish - metabolism
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
Title Distinct Genetic Interactions between Multiple Vegf Receptors Are Required for Development of Different Blood Vessel Types in Zebrafish
URI https://www.jstor.org/stable/30052239
https://www.ncbi.nlm.nih.gov/pubmed/16617120
https://www.proquest.com/docview/201428637
https://www.proquest.com/docview/17144832
https://www.proquest.com/docview/67907581
https://pubmed.ncbi.nlm.nih.gov/PMC1458922
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF5Z6aWXqmmblqSPPfSQCkHNsrBwTJ1WUVtbPiRpbgjWS2IpxZbBPeQP9F9XnX2wYMuR2kgWstmFxczHzOzyzQxC73kgSjpjxAsSlns0Dksv5UnhFSkTZUiTNM7lesd4Ep9d0K9X0dVg8KfHWlo3hc_vdsaVPESqsA_kKqNk_0Oy9qSwA76DfGELEobtP8n4VD6gFW9kHWQZjKiSP6x0qEJtKViWM3gprksXNJxYqhI7kvO1EpIJDE6nZBvOOgKR9CHb2imNZre7v2Sa8Vu1aKtItHfynXM5r2_6Du7UGsS6pR9M2vXGky56xaiU2vXc6aSrhTySzNhapzX47runfttwKUMWS1kERMHOd09s07eci9W1TpUw9t2Rbfgh5uD7mmKen3xo3F7ioJ4Oh-5nCN95mX3dTsDeUh2R7QutzsEb8mKqC5JafT8M-8BmPfUdRxHtuQLwM91pZkAvytrIVV77w0iW7YnNSXugW_5UqAvAAWIBGXb21rIgp-NRQKMkJeBCPCIwzSHKsPSTRic6hMr8szY1FQs_bo0tc9-agTYcLM2x3TV72iYB97yq86foiZkO4RON7X00ENUztN_ednxssqJ_eI5-t2DHBuy4D3ZswI5bsGMJdmzBjgHsuAU7BrDjHtjxosQW7FiBHWuwYwV2GAlbsL9AF18-n4_OPFNFxONRShuvKITIwc0WnAhegAESKZg5QmEiUATw4SGnPB-mZVHOaMEiBg73jOSEFWHJaSjCA7RXLSrxCuFhmvAkJ4DCWUlTKboSPO6UCpj7sRmPHOS3tz7jJsW-rPRymymqBwszKbasE5uDju0BS51d5v6uB0qWtp-sMwG-feqgo1a4mdFNdQZuPSVJHDIHvbOtYDjk28C8Eot1nQFYKAV7fn-PmMGdipLAQS81VLprNFhzENsAke0gk9ZvtlTzG5W83iD-8MFHHqHHnY54jfaa1Vq8gYlBU7xVT89f5okVUg
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+genetic+interactions+between+multiple+Vegf+receptors+are+required+for+development+of+different+blood+vessel+types+in+zebrafish&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Covassin%2C+L.+D.&rft.au=Villefranc%2C+J.+A.&rft.au=Kacergis%2C+M.+C.&rft.au=Weinstein%2C+B.+M.&rft.date=2006-04-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=103&rft.issue=17&rft.spage=6554&rft.epage=6559&rft_id=info:doi/10.1073%2Fpnas.0506886103&rft_id=info%3Apmid%2F16617120&rft.externalDocID=PMC1458922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon