A new discrete element analysis method for predicting hip joint contact stresses

Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact pat...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 46; no. 6; pp. 1121 - 1127
Main Authors Abraham, Christine L., Maas, Steve A., Weiss, Jeffrey A., Ellis, Benjamin J., Peters, Christopher L., Anderson, Andrew E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 05.04.2013
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2013.01.012

Cover

Loading…
Abstract Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ∼7s and ∼65min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6MPa) and average contact stresses (3.0–3.7MPa) than FEA (6.2–9.8 and 2.0–2.5MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
AbstractList Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ∼7s and ∼65min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6MPa) and average contact stresses (3.0–3.7MPa) than FEA (6.2–9.8 and 2.0–2.5MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: 1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, 2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and 3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and joint space in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 seconds and ~65 minutes, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6 MPa) and average contact stresses (3.0–3.7 MPa) than FEA (6.2–9.8 and 2.0–2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson’s effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Abstract Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ∼7 s and ∼65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6 MPa) and average contact stresses (3.0–3.7 MPa) than FEA (6.2–9.8 and 2.0–2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were similar to 7 s and similar to 65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8a13.6 MPa) and average contact stresses (3.0a3.7 MPa) than FEA (6.2a9.8 and 2.0a2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.
Author Ellis, Benjamin J.
Anderson, Andrew E.
Maas, Steve A.
Peters, Christopher L.
Abraham, Christine L.
Weiss, Jeffrey A.
Author_xml – sequence: 1
  givenname: Christine L.
  surname: Abraham
  fullname: Abraham, Christine L.
  organization: Harold K. Dunn Orthopaedic Research Laboratory, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
– sequence: 2
  givenname: Steve A.
  surname: Maas
  fullname: Maas, Steve A.
  organization: Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 3
  givenname: Jeffrey A.
  surname: Weiss
  fullname: Weiss, Jeffrey A.
  organization: Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
– sequence: 4
  givenname: Benjamin J.
  surname: Ellis
  fullname: Ellis, Benjamin J.
  organization: Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
– sequence: 5
  givenname: Christopher L.
  surname: Peters
  fullname: Peters, Christopher L.
  organization: Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
– sequence: 6
  givenname: Andrew E.
  surname: Anderson
  fullname: Anderson, Andrew E.
  email: Andrew.Anderson@hsc.utah.edu
  organization: Harold K. Dunn Orthopaedic Research Laboratory, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23453394$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Hb1L5QBb7yZNV-TmYAUS_ELCgrqdchkznQzziRrkm3Zf2_GbavuhS2ckIs85-XNOe8JOnLeAUKnBK8IJuL1sBpa6ycw6xXFhK0wyUWfoAVpalZS1uAjtMCYklJSiY_RSYwDxrjmtXyGjinjFWOSL9CX88LBTdHZaAIkKGCECVwqtNPjLtpYTJDWvit6H4pNgM6aZN1VsbabYvA2g8a7pE0qYgoQI8Tn6Gmvxwgvbu8l-v7-3beLj-Xl5w-fLs4vS1NJnsq2NbSnzBAQhFekb6nGrKMCE9lojSuCm5rLrmtkB51ouKmZNIK0pNFtwwlmS3S2191s2wk6k00HPapNsJMOO-W1Vf--OLtWV_5aMUFZlc8SvboVCP7nFmJSUx4CjKN24LdREcYlZ6KS4hEoaYTEVMiMvjxAB78NeZi_qZoRIasqU6d_m793fbeXDIg9YIKPMUB_jxCs5gCoQd0FQM0BUJjkmn_15qDR2KST9fMQ7Phw-9t9O-TVXVsIKhoLzuTFBzBJdd4-LHF2IGFG66zR4w_YQfwzDhWpwurrHNI5o4TlfHLJ_i_wGAe_APpO-fI
CitedBy_id crossref_primary_10_1038_s41598_024_78172_1
crossref_primary_10_1177_11207000231212403
crossref_primary_10_3389_fbioe_2020_00318
crossref_primary_10_15446_dyna_v84n202_58595
crossref_primary_10_3795_KSME_A_2016_40_1_033
crossref_primary_10_1177_0954411920905434
crossref_primary_10_1016_j_jbiomech_2020_110163
crossref_primary_10_1080_10255842_2019_1661393
crossref_primary_10_1002_cnm_2766
crossref_primary_10_1016_j_cmpb_2023_107366
crossref_primary_10_1142_S0219876219500191
crossref_primary_10_1016_j_jbiomech_2024_112079
crossref_primary_10_1007_s12541_017_0173_6
crossref_primary_10_1016_j_jbiomech_2024_112136
crossref_primary_10_1016_j_jbiomech_2018_07_036
crossref_primary_10_1016_j_clinbiomech_2023_105928
crossref_primary_10_1177_0363546520974378
crossref_primary_10_1016_j_msec_2017_03_123
crossref_primary_10_1115_1_4033547
crossref_primary_10_1080_21681163_2016_1172346
crossref_primary_10_1007_s11044_022_09828_x
crossref_primary_10_1109_TBME_2020_3018113
crossref_primary_10_1016_j_jbiomech_2017_11_014
crossref_primary_10_1016_j_jbiomech_2022_111207
crossref_primary_10_2106_JBJS_M_01178
crossref_primary_10_1016_j_jbiomech_2019_03_032
crossref_primary_10_1115_1_4043028
crossref_primary_10_1007_s10439_022_03016_w
crossref_primary_10_1177_0954411918803125
crossref_primary_10_1302_2046_3758_1212_BJR_2022_0461_R2
crossref_primary_10_1002_jor_25935
crossref_primary_10_1016_j_cmpb_2015_12_023
crossref_primary_10_1177_15563316231193426
crossref_primary_10_1177_09544119231221023
crossref_primary_10_1016_j_jmbbm_2020_104178
crossref_primary_10_1115_1_4026101
crossref_primary_10_1002_nme_5192
crossref_primary_10_1007_s11517_023_03010_x
crossref_primary_10_1007_s10237_015_0663_3
crossref_primary_10_1007_s40571_016_0103_x
crossref_primary_10_1007_s10237_013_0504_1
crossref_primary_10_1177_1947603514554992
crossref_primary_10_1097_CORR_0000000000001975
crossref_primary_10_3390_app112311170
crossref_primary_10_1016_j_jbiomech_2015_05_030
crossref_primary_10_1016_j_jbiomech_2025_112568
crossref_primary_10_1097_CORR_0000000000000621
Cites_doi 10.1115/1.1894148
10.1016/j.jbiomech.2011.06.011
10.1080/10255840601160484
10.1016/S0021-9290(01)00041-0
10.1007/s11999-008-0145-3
10.3109/17453670902947390
10.1016/0021-9290(83)90071-4
10.1016/S0021-9290(97)00009-2
10.1097/00003086-198612000-00004
10.1115/1.2953472
10.1016/0021-9290(84)90035-6
10.1109/IEMBS.2011.6092014
10.1007/s11517-006-0074-9
10.1115/1.2895693
10.1002/jor.1100120306
10.1016/j.jbiomech.2010.01.010
10.1007/s00776-004-0866-4
10.1302/0301-620X.69B4.3611154
10.1002/jor.20747
10.1007/BF00444263
10.1136/ard.58.1.27
10.1002/jor.1100170411
10.1243/09544119JEIM649
10.1016/S0021-9290(01)00040-9
10.1016/S0021-9290(97)00051-1
10.1080/00016470510030742
10.1016/0021-9290(94)00054-8
10.1115/1.3138543
10.1007/s11999-008-0682-9
10.1159/000147930
10.1016/j.jbiomech.2005.06.026
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2013
2013 Elsevier Ltd. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2013
– notice: 2013 Elsevier Ltd. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.jbiomech.2013.01.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




MEDLINE
Research Library Prep
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 1127
ExternalDocumentID PMC3623562
2919451731
23453394
10_1016_j_jbiomech_2013_01_012
S0021929013000493
1_s2_0_S0021929013000493
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01AR053344
– fundername: NIGMS NIH HHS
  grantid: R01 GM083925
– fundername: NIGMS NIH HHS
  grantid: R01GM083925
– fundername: NIAMS NIH HHS
  grantid: R01 AR053344
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS
  grantid: R01 AR053344 || AR
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c594t-bbc2f23c1e61451fb2a03d260198aa05108749dd89ded684c739c61b18ab84103
IEDL.DBID AIKHN
ISSN 0021-9290
1873-2380
IngestDate Thu Aug 21 18:07:14 EDT 2025
Fri Sep 05 14:10:29 EDT 2025
Fri Sep 05 05:45:09 EDT 2025
Wed Aug 13 04:46:28 EDT 2025
Thu Apr 03 06:54:55 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Tue Jul 29 01:58:49 EDT 2025
Fri Feb 23 02:34:49 EST 2024
Sun Feb 23 10:20:46 EST 2025
Tue Aug 26 16:33:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cartilage
Cartilage mechanics
Discrete element analysis
Computational modeling
Contact stress
Finite element analysis
Hip
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-bbc2f23c1e61451fb2a03d260198aa05108749dd89ded684c739c61b18ab84103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23453394
PQID 1317316955
PQPubID 1226346
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3623562
proquest_miscellaneous_1349436596
proquest_miscellaneous_1318690269
proquest_journals_1317316955
pubmed_primary_23453394
crossref_primary_10_1016_j_jbiomech_2013_01_012
crossref_citationtrail_10_1016_j_jbiomech_2013_01_012
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2013_01_012
elsevier_clinicalkeyesjournals_1_s2_0_S0021929013000493
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2013_01_012
PublicationCentury 2000
PublicationDate 2013-04-05
PublicationDateYYYYMMDD 2013-04-05
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Bachtar, Chen, Hisada (bib9) 2006; 44
Bartel, Burstein, Toda, Edwards (bib10) 1985; 107
Chao, Volokh, Yoshida, Shiba, Ide (bib14) 2010; 7
Henninger, Reese, Anderson, Weiss (bib23) 2010; 224
Tsumura, Kaku, Ikeda, Torisu (bib32) 2005; 10
Brown, Shaw (bib13) 1983; 16
Anderson, Ellis, Weiss (bib4) 2007; 10
Gu, D.Y., Hu, F., Wei, J.H., Dai, K.R., Chen, Y.Z., 2011. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress. In: Proceedings of the IEEE Engineering in Medicine and Biology Society Conference, pp. 8166–8169.
Maxian, Brown, Weinstein (bib28) 1995; 28
von Eisenhart, Adam, Steinlechner, Muller-Gerbl, Eckstein (bib34) 1999; 17
Anderson, Ellis, Maas, Weiss (bib3) 2010; 43
Eckstein, von Eisenhart-Rothe, Landgraf, Adam, Loehe, Muller-Gerbl, Putz (bib16) 1997; 158
Bergmann, Deuretzbacher, Heller, Graichen, Rohlmann, Strauss, Duda (bib11) 2001; 34
Genda, Iwasaki, Li, MacWilliams, Barrance, Chao (bib17) 2001; 34
Kohnlein, Ganz, Impellizzeri, Leunig (bib24) 2009; 467
Mavcic, Iglic, Kralj-Iglic, Brand, Vengust (bib27) 2008; 466
Shepherd, Seedhom (bib31) 1999; 58
Menschik (bib29) 1997; 30
Puso, M.A., Maker, B.N., Ferencz, R.M., Halloquist, J.O., 2007. Nike3d: a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. User's Manual.
Macirowski, Tepic, Mann (bib26) 1994; 116
Brown, DiGioia (bib12) 1984; 17
Li, Sakamoto, Chao (bib25) 1997; 30
Anderson, Peters, Tuttle, Weiss (bib5) 2005; 127
Henak, Ellis, Harris, Anderson, Peters, Weiss (bib22) 2011; 44
Athanasiou, Agarwal, Dzida (bib8) 1994; 12
Harris (bib21) 1986; 213
Yoshida, Faust, Wilckens, Kitagawa, Fetto, Chao (bib35) 2006; 39
Armiger, Armand, Tallroth, Lepisto, Mears (bib7) 2009; 80
Afoke, Byers, Hutton (bib1) 1987; 69
Volokh, Chao, Armand (bib33) 2007; 4
Anderson, Ellis, Maas, Peters, Weiss (bib2) 2008; 130
American Society of Mechanical Engineers, Guide for verification and validation in computational solid dynamics.
Chegini, Beck, Ferguson (bib15) 2009; 27
Armand, Lepisto, Tallroth, Elias, Chao (bib6) 2005; 76
Genda, Konishi, Hasegawa, Miura (bib18) 1995; 114
Brown (10.1016/j.jbiomech.2013.01.012_bib12) 1984; 17
10.1016/j.jbiomech.2013.01.012_bib30
Henninger (10.1016/j.jbiomech.2013.01.012_bib23) 2010; 224
Genda (10.1016/j.jbiomech.2013.01.012_bib17) 2001; 34
von Eisenhart (10.1016/j.jbiomech.2013.01.012_bib34) 1999; 17
Tsumura (10.1016/j.jbiomech.2013.01.012_bib32) 2005; 10
Athanasiou (10.1016/j.jbiomech.2013.01.012_bib8) 1994; 12
Maxian (10.1016/j.jbiomech.2013.01.012_bib28) 1995; 28
Bachtar (10.1016/j.jbiomech.2013.01.012_bib9) 2006; 44
Anderson (10.1016/j.jbiomech.2013.01.012_bib5) 2005; 127
Anderson (10.1016/j.jbiomech.2013.01.012_bib4) 2007; 10
Armand (10.1016/j.jbiomech.2013.01.012_bib6) 2005; 76
Anderson (10.1016/j.jbiomech.2013.01.012_bib2) 2008; 130
Macirowski (10.1016/j.jbiomech.2013.01.012_bib26) 1994; 116
10.1016/j.jbiomech.2013.01.012_bib20
Bergmann (10.1016/j.jbiomech.2013.01.012_bib11) 2001; 34
Genda (10.1016/j.jbiomech.2013.01.012_bib18) 1995; 114
Eckstein (10.1016/j.jbiomech.2013.01.012_bib16) 1997; 158
Afoke (10.1016/j.jbiomech.2013.01.012_bib1) 1987; 69
Brown (10.1016/j.jbiomech.2013.01.012_bib13) 1983; 16
Chegini (10.1016/j.jbiomech.2013.01.012_bib15) 2009; 27
Li (10.1016/j.jbiomech.2013.01.012_bib25) 1997; 30
Chao (10.1016/j.jbiomech.2013.01.012_bib14) 2010; 7
Menschik (10.1016/j.jbiomech.2013.01.012_bib29) 1997; 30
Volokh (10.1016/j.jbiomech.2013.01.012_bib33) 2007; 4
Armiger (10.1016/j.jbiomech.2013.01.012_bib7) 2009; 80
Yoshida (10.1016/j.jbiomech.2013.01.012_bib35) 2006; 39
10.1016/j.jbiomech.2013.01.012_bib19
Mavcic (10.1016/j.jbiomech.2013.01.012_bib27) 2008; 466
Bartel (10.1016/j.jbiomech.2013.01.012_bib10) 1985; 107
Henak (10.1016/j.jbiomech.2013.01.012_bib22) 2011; 44
Shepherd (10.1016/j.jbiomech.2013.01.012_bib31) 1999; 58
Harris (10.1016/j.jbiomech.2013.01.012_bib21) 1986; 213
Kohnlein (10.1016/j.jbiomech.2013.01.012_bib24) 2009; 467
Anderson (10.1016/j.jbiomech.2013.01.012_bib3) 2010; 43
21757198 - J Biomech. 2011 Aug 11;44(12):2201-6
17558646 - Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84
19045515 - J Biomech Eng. 2008 Oct;130(5):051008
9394956 - Acta Anat (Basel). 1997;158(3):192-204
15815861 - J Orthop Sci. 2005;10(2):145-51
17937111 - Mol Cell Biomech. 2007 Jun;4(2):67-73
19404795 - Acta Orthop. 2009 Apr;80(2):155-61
10459759 - J Orthop Res. 1999 Jul;17(4):532-9
18752280 - J Orthop Res. 2009 Feb;27(2):195-201
16060343 - J Biomech Eng. 2005 Jun;127(3):364-73
16120442 - J Biomech. 2006;39(11):1996-2004
18288549 - Clin Orthop Relat Res. 2008 Apr;466(4):884-91
6619156 - J Biomech. 1983;16(6):373-84
7662474 - Arch Orthop Trauma Surg. 1995;114(4):202-6
9302622 - J Biomech. 1997 Sep;30(9):971-3
4046559 - J Biomech Eng. 1985 Aug;107(3):193-9
10343537 - Ann Rheum Dis. 1999 Jan;58(1):27-34
7896858 - J Biomech. 1995 Feb;28(2):159-66
11410173 - J Biomech. 2001 Jul;34(7):895-905
3611154 - J Bone Joint Surg Br. 1987 Aug;69(4):536-41
8189704 - J Biomech Eng. 1994 Feb;116(1):10-8
9165398 - J Biomech. 1997 Jun;30(6):635-8
21141680 - Mol Cell Biomech. 2010 Sep;7(3):175-92
22256237 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8166-9
16156455 - Acta Orthop. 2005 Jun;76(3):303-13
8207587 - J Orthop Res. 1994 May;12(3):340-9
19130159 - Clin Orthop Relat Res. 2009 Mar;467(3):682-91
11410170 - J Biomech. 2001 Jul;34(7):859-71
20839648 - Proc Inst Mech Eng H. 2010;224(7):801-12
16937206 - Med Biol Eng Comput. 2006 Aug;44(8):643-51
6480619 - J Biomech. 1984;17(6):437-48
3780093 - Clin Orthop Relat Res. 1986 Dec;(213):20-33
20176359 - J Biomech. 2010 May 7;43(7):1351-7
References_xml – volume: 224
  start-page: 801
  year: 2010
  end-page: 812
  ident: bib23
  article-title: Validation of computational models in biomechanics
  publication-title: Proceedings of the Institution of Mechanical Engineers Part H
– volume: 116
  start-page: 10
  year: 1994
  end-page: 18
  ident: bib26
  article-title: Cartilage stresses in the human hip joint
  publication-title: Journal of Biomechanical Engineering
– volume: 16
  start-page: 373
  year: 1983
  end-page: 384
  ident: bib13
  article-title: In vitro contact stress distributions in the natural human hip
  publication-title: Journal of Biomechanics
– volume: 466
  start-page: 884
  year: 2008
  end-page: 891
  ident: bib27
  article-title: Cumulative hip contact stress predicts osteoarthritis in ddh
  publication-title: Clinical Orthopaedics and Related Research
– volume: 467
  start-page: 682
  year: 2009
  end-page: 691
  ident: bib24
  article-title: Acetabular morphology: implications for joint-preserving surgery
  publication-title: Clinical Orthopaedics and Related Research
– volume: 7
  start-page: 175
  year: 2010
  end-page: 192
  ident: bib14
  article-title: Discrete element analysis in musculoskeletal biomechanics
  publication-title: Molecular & Cellular Biomechanics
– volume: 43
  start-page: 1351
  year: 2010
  end-page: 1357
  ident: bib3
  article-title: Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip
  publication-title: Journal of Biomechanics
– volume: 107
  start-page: 193
  year: 1985
  end-page: 199
  ident: bib10
  article-title: The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants
  publication-title: Journal of Biomechanical Engineering
– volume: 30
  start-page: 635
  year: 1997
  end-page: 638
  ident: bib25
  article-title: A comparison of different methods in predicting static pressure distribution in articulating joints
  publication-title: Journal of Biomechanics
– volume: 10
  start-page: 171
  year: 2007
  end-page: 184
  ident: bib4
  article-title: Verification, validation and sensitivity studies in computational biomechanics
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 213
  start-page: 20
  year: 1986
  end-page: 33
  ident: bib21
  article-title: Etiology of osteoarthritis of the hip
  publication-title: Clinical Orthopaedics and Related Research
– volume: 28
  start-page: 159
  year: 1995
  end-page: 166
  ident: bib28
  article-title: Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of cdh
  publication-title: Journal of Biomechanics
– volume: 4
  start-page: 67
  year: 2007
  end-page: 73
  ident: bib33
  article-title: On foundations of discrete element analysis of contact in diarthrodial joints
  publication-title: Molecular & Cellular Biomechanics
– volume: 158
  start-page: 192
  year: 1997
  end-page: 204
  ident: bib16
  article-title: Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint
  publication-title: Acta Anatomica
– volume: 30
  start-page: 971
  year: 1997
  end-page: 973
  ident: bib29
  article-title: The hip joint as a conchoid shape
  publication-title: Journal of Biomechanics
– volume: 39
  start-page: 1996
  year: 2006
  end-page: 2004
  ident: bib35
  article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living
  publication-title: Journal of Biomechanics
– volume: 12
  start-page: 340
  year: 1994
  end-page: 349
  ident: bib8
  article-title: Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage
  publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
– volume: 44
  start-page: 643
  year: 2006
  end-page: 651
  ident: bib9
  article-title: Finite element contact analysis of the hip joint
  publication-title: Medical, & Biological Engineering & Computing
– reference: Gu, D.Y., Hu, F., Wei, J.H., Dai, K.R., Chen, Y.Z., 2011. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress. In: Proceedings of the IEEE Engineering in Medicine and Biology Society Conference, pp. 8166–8169.
– volume: 17
  start-page: 532
  year: 1999
  end-page: 539
  ident: bib34
  article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint
  publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
– volume: 127
  start-page: 364
  year: 2005
  end-page: 373
  ident: bib5
  article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies
  publication-title: Journal of Biomechanical Engineering
– volume: 10
  start-page: 145
  year: 2005
  end-page: 151
  ident: bib32
  article-title: A computer simulation of rotational acetabular osteotomy for dysplastic hip joint: Does the optimal transposition of the acetabular fragment exist?
  publication-title: Journal of Orthopaedic Science
– volume: 76
  start-page: 303
  year: 2005
  end-page: 313
  ident: bib6
  article-title: Outcome of periacetabular osteotomy: Joint contact pressure calculation using standing ap radiographs, 12 patients followed for average 2 years
  publication-title: Acta Orthopaedica
– volume: 69
  start-page: 536
  year: 1987
  end-page: 541
  ident: bib1
  article-title: Contact pressures in the human hip joint
  publication-title: Journal of Bone & Joint Surgery (British Volume)
– volume: 130
  start-page: 051008
  year: 2008
  ident: bib2
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: Journal of Biomechanical Engineering
– volume: 17
  start-page: 437
  year: 1984
  end-page: 448
  ident: bib12
  article-title: A contact-coupled finite element analysis of the natural adult hip
  publication-title: Journal of Biomechanics
– reference: Puso, M.A., Maker, B.N., Ferencz, R.M., Halloquist, J.O., 2007. Nike3d: a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. User's Manual.
– reference: American Society of Mechanical Engineers, Guide for verification and validation in computational solid dynamics.
– volume: 34
  start-page: 895
  year: 2001
  end-page: 905
  ident: bib17
  article-title: Normal hip joint contact pressure distribution in single-leg standing-effect of gender and anatomic parameters
  publication-title: Journal of Biomechanics
– volume: 44
  start-page: 2201
  year: 2011
  end-page: 2206
  ident: bib22
  article-title: Role of the acetabular labrum in load support across the hip joint
  publication-title: Journal of Biomechanics
– volume: 58
  start-page: 27
  year: 1999
  end-page: 34
  ident: bib31
  article-title: Thickness of human articular cartilage in joints of the lower limb
  publication-title: Annals of the Rheumatic Diseases
– volume: 114
  start-page: 202
  year: 1995
  end-page: 206
  ident: bib18
  article-title: A computer simulation study of normal and abnormal hip joint contact pressure
  publication-title: Archives of Orthopaedic and Trauma Surgery
– volume: 80
  start-page: 155
  year: 2009
  end-page: 161
  ident: bib7
  article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up
  publication-title: Acta Orthopaedica
– volume: 27
  start-page: 195
  year: 2009
  end-page: 201
  ident: bib15
  article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis
  publication-title: Journal of Orthopaedic Research
– volume: 34
  start-page: 859
  year: 2001
  end-page: 871
  ident: bib11
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: Journal of Biomechanics
– ident: 10.1016/j.jbiomech.2013.01.012_bib30
– volume: 127
  start-page: 364
  issue: 3
  year: 2005
  ident: 10.1016/j.jbiomech.2013.01.012_bib5
  article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.1894148
– volume: 44
  start-page: 2201
  issue: 12
  year: 2011
  ident: 10.1016/j.jbiomech.2013.01.012_bib22
  article-title: Role of the acetabular labrum in load support across the hip joint
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2011.06.011
– volume: 10
  start-page: 171
  issue: 3
  year: 2007
  ident: 10.1016/j.jbiomech.2013.01.012_bib4
  article-title: Verification, validation and sensitivity studies in computational biomechanics
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
  doi: 10.1080/10255840601160484
– volume: 34
  start-page: 895
  issue: 7
  year: 2001
  ident: 10.1016/j.jbiomech.2013.01.012_bib17
  article-title: Normal hip joint contact pressure distribution in single-leg standing-effect of gender and anatomic parameters
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00041-0
– volume: 7
  start-page: 175
  issue: 3
  year: 2010
  ident: 10.1016/j.jbiomech.2013.01.012_bib14
  article-title: Discrete element analysis in musculoskeletal biomechanics
  publication-title: Molecular & Cellular Biomechanics
– volume: 466
  start-page: 884
  issue: 4
  year: 2008
  ident: 10.1016/j.jbiomech.2013.01.012_bib27
  article-title: Cumulative hip contact stress predicts osteoarthritis in ddh
  publication-title: Clinical Orthopaedics and Related Research
  doi: 10.1007/s11999-008-0145-3
– volume: 80
  start-page: 155
  issue: 2
  year: 2009
  ident: 10.1016/j.jbiomech.2013.01.012_bib7
  article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up
  publication-title: Acta Orthopaedica
  doi: 10.3109/17453670902947390
– volume: 16
  start-page: 373
  issue: 6
  year: 1983
  ident: 10.1016/j.jbiomech.2013.01.012_bib13
  article-title: In vitro contact stress distributions in the natural human hip
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(83)90071-4
– volume: 30
  start-page: 635
  issue: 6
  year: 1997
  ident: 10.1016/j.jbiomech.2013.01.012_bib25
  article-title: A comparison of different methods in predicting static pressure distribution in articulating joints
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(97)00009-2
– ident: 10.1016/j.jbiomech.2013.01.012_bib20
– volume: 213
  start-page: 20
  year: 1986
  ident: 10.1016/j.jbiomech.2013.01.012_bib21
  article-title: Etiology of osteoarthritis of the hip
  publication-title: Clinical Orthopaedics and Related Research
  doi: 10.1097/00003086-198612000-00004
– volume: 130
  start-page: 051008
  issue: 5
  year: 2008
  ident: 10.1016/j.jbiomech.2013.01.012_bib2
  article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2953472
– volume: 17
  start-page: 437
  issue: 6
  year: 1984
  ident: 10.1016/j.jbiomech.2013.01.012_bib12
  article-title: A contact-coupled finite element analysis of the natural adult hip
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(84)90035-6
– ident: 10.1016/j.jbiomech.2013.01.012_bib19
  doi: 10.1109/IEMBS.2011.6092014
– volume: 44
  start-page: 643
  issue: 8
  year: 2006
  ident: 10.1016/j.jbiomech.2013.01.012_bib9
  article-title: Finite element contact analysis of the hip joint
  publication-title: Medical, & Biological Engineering & Computing
  doi: 10.1007/s11517-006-0074-9
– volume: 116
  start-page: 10
  issue: 1
  year: 1994
  ident: 10.1016/j.jbiomech.2013.01.012_bib26
  article-title: Cartilage stresses in the human hip joint
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2895693
– volume: 12
  start-page: 340
  issue: 3
  year: 1994
  ident: 10.1016/j.jbiomech.2013.01.012_bib8
  article-title: Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage
  publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
  doi: 10.1002/jor.1100120306
– volume: 43
  start-page: 1351
  issue: 7
  year: 2010
  ident: 10.1016/j.jbiomech.2013.01.012_bib3
  article-title: Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.01.010
– volume: 10
  start-page: 145
  issue: 2
  year: 2005
  ident: 10.1016/j.jbiomech.2013.01.012_bib32
  article-title: A computer simulation of rotational acetabular osteotomy for dysplastic hip joint: Does the optimal transposition of the acetabular fragment exist?
  publication-title: Journal of Orthopaedic Science
  doi: 10.1007/s00776-004-0866-4
– volume: 69
  start-page: 536
  issue: 4
  year: 1987
  ident: 10.1016/j.jbiomech.2013.01.012_bib1
  article-title: Contact pressures in the human hip joint
  publication-title: Journal of Bone & Joint Surgery (British Volume)
  doi: 10.1302/0301-620X.69B4.3611154
– volume: 27
  start-page: 195
  issue: 2
  year: 2009
  ident: 10.1016/j.jbiomech.2013.01.012_bib15
  article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis
  publication-title: Journal of Orthopaedic Research
  doi: 10.1002/jor.20747
– volume: 114
  start-page: 202
  issue: 4
  year: 1995
  ident: 10.1016/j.jbiomech.2013.01.012_bib18
  article-title: A computer simulation study of normal and abnormal hip joint contact pressure
  publication-title: Archives of Orthopaedic and Trauma Surgery
  doi: 10.1007/BF00444263
– volume: 58
  start-page: 27
  issue: 1
  year: 1999
  ident: 10.1016/j.jbiomech.2013.01.012_bib31
  article-title: Thickness of human articular cartilage in joints of the lower limb
  publication-title: Annals of the Rheumatic Diseases
  doi: 10.1136/ard.58.1.27
– volume: 17
  start-page: 532
  issue: 4
  year: 1999
  ident: 10.1016/j.jbiomech.2013.01.012_bib34
  article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint
  publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society
  doi: 10.1002/jor.1100170411
– volume: 224
  start-page: 801
  issue: 7
  year: 2010
  ident: 10.1016/j.jbiomech.2013.01.012_bib23
  article-title: Validation of computational models in biomechanics
  publication-title: Proceedings of the Institution of Mechanical Engineers Part H
  doi: 10.1243/09544119JEIM649
– volume: 34
  start-page: 859
  issue: 7
  year: 2001
  ident: 10.1016/j.jbiomech.2013.01.012_bib11
  article-title: Hip contact forces and gait patterns from routine activities
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00040-9
– volume: 30
  start-page: 971
  issue: 9
  year: 1997
  ident: 10.1016/j.jbiomech.2013.01.012_bib29
  article-title: The hip joint as a conchoid shape
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(97)00051-1
– volume: 76
  start-page: 303
  issue: 3
  year: 2005
  ident: 10.1016/j.jbiomech.2013.01.012_bib6
  article-title: Outcome of periacetabular osteotomy: Joint contact pressure calculation using standing ap radiographs, 12 patients followed for average 2 years
  publication-title: Acta Orthopaedica
  doi: 10.1080/00016470510030742
– volume: 28
  start-page: 159
  issue: 2
  year: 1995
  ident: 10.1016/j.jbiomech.2013.01.012_bib28
  article-title: Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of cdh
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(94)00054-8
– volume: 4
  start-page: 67
  issue: 2
  year: 2007
  ident: 10.1016/j.jbiomech.2013.01.012_bib33
  article-title: On foundations of discrete element analysis of contact in diarthrodial joints
  publication-title: Molecular & Cellular Biomechanics
– volume: 107
  start-page: 193
  issue: 3
  year: 1985
  ident: 10.1016/j.jbiomech.2013.01.012_bib10
  article-title: The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.3138543
– volume: 467
  start-page: 682
  issue: 3
  year: 2009
  ident: 10.1016/j.jbiomech.2013.01.012_bib24
  article-title: Acetabular morphology: implications for joint-preserving surgery
  publication-title: Clinical Orthopaedics and Related Research
  doi: 10.1007/s11999-008-0682-9
– volume: 158
  start-page: 192
  issue: 3
  year: 1997
  ident: 10.1016/j.jbiomech.2013.01.012_bib16
  article-title: Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint
  publication-title: Acta Anatomica
  doi: 10.1159/000147930
– volume: 39
  start-page: 1996
  issue: 11
  year: 2006
  ident: 10.1016/j.jbiomech.2013.01.012_bib35
  article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2005.06.026
– reference: 9165398 - J Biomech. 1997 Jun;30(6):635-8
– reference: 16120442 - J Biomech. 2006;39(11):1996-2004
– reference: 9394956 - Acta Anat (Basel). 1997;158(3):192-204
– reference: 16156455 - Acta Orthop. 2005 Jun;76(3):303-13
– reference: 8189704 - J Biomech Eng. 1994 Feb;116(1):10-8
– reference: 20176359 - J Biomech. 2010 May 7;43(7):1351-7
– reference: 20839648 - Proc Inst Mech Eng H. 2010;224(7):801-12
– reference: 9302622 - J Biomech. 1997 Sep;30(9):971-3
– reference: 3780093 - Clin Orthop Relat Res. 1986 Dec;(213):20-33
– reference: 16937206 - Med Biol Eng Comput. 2006 Aug;44(8):643-51
– reference: 18288549 - Clin Orthop Relat Res. 2008 Apr;466(4):884-91
– reference: 19130159 - Clin Orthop Relat Res. 2009 Mar;467(3):682-91
– reference: 21757198 - J Biomech. 2011 Aug 11;44(12):2201-6
– reference: 22256237 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8166-9
– reference: 7662474 - Arch Orthop Trauma Surg. 1995;114(4):202-6
– reference: 17937111 - Mol Cell Biomech. 2007 Jun;4(2):67-73
– reference: 19404795 - Acta Orthop. 2009 Apr;80(2):155-61
– reference: 21141680 - Mol Cell Biomech. 2010 Sep;7(3):175-92
– reference: 11410170 - J Biomech. 2001 Jul;34(7):859-71
– reference: 18752280 - J Orthop Res. 2009 Feb;27(2):195-201
– reference: 15815861 - J Orthop Sci. 2005;10(2):145-51
– reference: 11410173 - J Biomech. 2001 Jul;34(7):895-905
– reference: 7896858 - J Biomech. 1995 Feb;28(2):159-66
– reference: 6480619 - J Biomech. 1984;17(6):437-48
– reference: 10459759 - J Orthop Res. 1999 Jul;17(4):532-9
– reference: 17558646 - Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84
– reference: 8207587 - J Orthop Res. 1994 May;12(3):340-9
– reference: 19045515 - J Biomech Eng. 2008 Oct;130(5):051008
– reference: 16060343 - J Biomech Eng. 2005 Jun;127(3):364-73
– reference: 10343537 - Ann Rheum Dis. 1999 Jan;58(1):27-34
– reference: 4046559 - J Biomech Eng. 1985 Aug;107(3):193-9
– reference: 6619156 - J Biomech. 1983;16(6):373-84
– reference: 3611154 - J Bone Joint Surg Br. 1987 Aug;69(4):536-41
SSID ssj0007479
Score 2.3078036
Snippet Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to...
Abstract Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1121
SubjectTerms Adult
Biomedical materials
Bone and Bones - physiology
Bones
Cartilage
Cartilage mechanics
Cartilage, Articular - physiology
Computational modeling
Contact
Contact stress
Contact stresses
Discrete element analysis
Finite Element Analysis
Finite element method
Gears
Hip
Hip joint
Hip Joint - physiology
Humans
Male
Mathematical models
Models, Biological
Physical Medicine and Rehabilitation
Reproducibility of Results
Stress, Mechanical
Studies
Surgical implants
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA-6guhBdNaP6ioRxFvd5qNpc5JBXBZhxYMLcwtpkrIzaGeczh78730vTeus4ipCb80jbfKS_PI-fo-QV67h3qpW5FbaNpc2NDngOJ17r4TVbcu8Q3vH2Ud1ei4_LMpFMrj1Kaxy3BPjRu3XDm3kxwwOOsGULsu3m285Vo1C72oqoXGT3IrUZaDP1WK6cCE3fArxYDnAgGIvQ3j1ZhXz26NDgolI3cn4nw6n38HnrzGUe4fSyX1yL6FJOh-m_wG5EboZOZx3cJP--p2-pjG-MxrOZ-TuHvXgjNw-S071Q_JpTgFbU8zP3QKEpmGIKKc28ZXQoco0BXhLN1sUw1BperHc0NV6CQ0x3N26HR3yTkL_kJyfvP_87jRPhRZyV2q5y5vG8ZYLx4LCwr1tw20hPJKN6dpaXLZ1JbX3tfbBq1q6SminWMNq29SSFeIROejWXXhCqNR16YWFS5Hj0snWllLwxjNnW1V5W2ekHEfYuMRCjsUwvpgx3GxlxpkxODOmYPDwjBxPcpuBh-OvEtU4gWbMMoV90cBR8X-SoU_LuzfM9NwUBj3dDBULfYJw1RIZ0ZNkQjADMvmnXo9GLTM_O5q0PiMvp9ewA6Bbx3ZhfRnbYFkxrvR1baSWQpVaZeTxoLjTMHIhAfNrCb99RaWnBshAfvVNt7yITOSAfgQA6KfXf_ozcofHIiIyL8ojcrDbXobnAOV2zYu4Xn8Ac4hJkA
  priority: 102
  providerName: ProQuest
Title A new discrete element analysis method for predicting hip joint contact stresses
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929013000493
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929013000493
https://dx.doi.org/10.1016/j.jbiomech.2013.01.012
https://www.ncbi.nlm.nih.gov/pubmed/23453394
https://www.proquest.com/docview/1317316955
https://www.proquest.com/docview/1318690269
https://www.proquest.com/docview/1349436596
https://pubmed.ncbi.nlm.nih.gov/PMC3623562
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD60KYztYWzpLtm6osHYm5voYtl6zEpLttFQxgp5E7JkU4fOCUn6sJf99h3Zspes7MIGxgZbB1nS0dEnnRvAG5sxZ2TBIyNMEQmTZxHiOBU5J7lRRUGd9ecdF1M5uRIfZvFsD05bXxhvVhlkfyPTa2kd3gxDbw6XZel9fHG2eTUgr3Eu34cDxpWMe3Awfv9xMu0EMiLmYOlBI0-w5Sg8P5nXbu61XoLyOoInZb9ao-5i0J9NKbfWpvNH8DCASjJu_vsx7OVVHw7HFW6ov3wlb0lt5lmfn_fhwVYEwj7cuwi69UO4HBOE2MS76a4QSZO8MSwnJoQtIU2yaYIolyxXnsxbTJPrcknmixILeqt3YzekcT_J10_g6vzs8-kkCvkWIhsrsYmyzLKCcUtz6fP3FhkzI-58zDGVGuNnb5oI5VyqXO5kKmzClZU0o6nJUkFH_Cn0qkWVPwciVBo7bnBvZJmwojCx4Cxz1JpCJs6kA4jbHtY2BCP3OTFudGt1NtftyGg_MnpE8WIDGHZ0yyYcxx8pknYAdetsiuJR44rxb5T5OszytaZ6zfRI3-HEAaiOcoeZ_6rWo5bL9I-KEOVxKlUcD-B19xkFgdfumCpf3NZlfHYxJtXvyggluIyVHMCzhnG7bmRcIPRXApu9w9JdAR-IfPdLVV7XAckRBHHE0S_-o9kv4T6rE42IaBQfQW-zus1fIdzbZMewf_KN4j2ZJcdhauPz3dn08tN30-1Yxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAUHHJTDASMBbWHxJGj8gVGBTx9ZqQpu0N8-xHa0VpKXthPan-I0c50YHYiCkSXmLT5zkHB9_x-cG8MJkzOok56EWOg-FdlmIOE6G1iZcyzyn1vjzjuEoGRyJj8fx8Rp8b3JhfFhloxNLRW2nxp-Rb1Hc6DhNZBy_nX0Nfdco711tWmhUYrHnzr-hybZ4s_sB-fuSsZ3tw_eDsO4qEJpYimWYZYbljBvqEt-lNs-Yjrj1lbVkqrWX0bQnpLWptM4mqTA9Lk1CM5rqLBU04vjca7AufEZrB9bfbY8OPrW6H8F5HVRCQwQe0UpO8uT1pMyoL10glJfFQin703b4O9z9NWpzZRvcuQO3a_xK-pXA3YU1V3Rho1-g7f7lnLwiZURpeVTfhVsrxQ67cH1Yu_E34KBPEM0TnxE8R9BOXBXDTnRdIYVUfa0JAmoym3syH5xNTsczMpmOcaAPsNdmSapMF7e4B0dXwoT70CmmhXsIRMg0tlyjGWaYMCLXseAss9ToPOlZnQYQN39YmbruuW-_8Vk1AW4T1XBGec6oiOLFAthq6WZV5Y-_UvQaBqomrxU1scLN6f8o3aJWKAtF1YKpSHnfOvWC5b2QaNzxAGRLWWOmCgv906ybjZSpnxO16yyA5-1t1DnekaQLNz0rx_hGZiyRl40RUvAklkkADyrBbX8j4wKtDCnwsy-IdDvA1zy_eKcYn5a1zxFvcYTsjy5_9WdwY3A43Ff7u6O9x3CTlS1MRBjFm9BZzs_cEwSSy-xpvXoJnFy1wvgBJmmGyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwQJDyCBQwEnBbsn6sd31AKKJELaVVD1TKzXhtr5oINiFJhfrX-HWM90UKoiCkSntbzz484_E3nhfAc5szZ2TBIyNMEQnj8whxnIqck9yooqDOhvOOwyO5dyLej5PxBnxvc2FCWGWrEytF7WY2nJEPKG50nEqVJIOiCYs43h29mX-NQgep4Glt22nUInLgz7-h-bZ8vb-LvH7B2Ojdx7d7UdNhILKJEqsozy0rGLfUy9CxtsiZibkLVbZUZkyQ1ywVyrlMOe9kJmzKlZU0p5nJM0Fjjs-9BtdTjqgK11I67oy9UJe-CS-hEUKQeC07efpqWuXWV84QyquyoZT9aWP8Hfj-Gr-5tiGObsOtBsmSYS16d2DDlz3YHpZoxX85Jy9JFVtaHdr34OZa2cMebB02Dv1tOB4SxPUk5AYvEL4TX0ezE9PUSiF1h2uC0JrMF4EshGmT08mcTGcTHBhC7Y1dkTrnxS_vwsmVsOAebJaz0j8AIlSWOG7QILNMWFGYRHCWO2pNIVNnsj4k7Qxr21RAD404Pus21G2qW87owBkdU7xYHwYd3byuAfJXirRloG4zXFEna9ym_o_SLxvVstRUL5mOdfCy0yBYwR-JZh7vg-ooG_RUo6J_eutOK2X654u6FdeHZ91t1D7BpWRKPzurxoSWZkyqy8YIJbhMlOzD_Vpwu2lkXKC9oQT-9gWR7gaE6ucX75ST06oKOiIvjuD94eWf_hS2UE3oD_tHB4_gBqt6mYgoTnZgc7U4848RUa7yJ9XSJfDpqnXFD8AgiZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+discrete+element+analysis+method+for+predicting+hip+joint+contact+stresses&rft.jtitle=Journal+of+biomechanics&rft.au=Abraham%2C+Christine+L.&rft.au=Maas%2C+Steve+A.&rft.au=Weiss%2C+Jeffrey+A.&rft.au=Ellis%2C+Benjamin+J.&rft.date=2013-04-05&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=46&rft.issue=6&rft.spage=1121&rft.epage=1127&rft_id=info:doi/10.1016%2Fj.jbiomech.2013.01.012&rft.externalDocID=S0021929013000493
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929013X00053%2Fcov150h.gif