A new discrete element analysis method for predicting hip joint contact stresses
Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact pat...
Saved in:
Published in | Journal of biomechanics Vol. 46; no. 6; pp. 1121 - 1127 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
05.04.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2013.01.012 |
Cover
Loading…
Abstract | Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ∼7s and ∼65min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6MPa) and average contact stresses (3.0–3.7MPa) than FEA (6.2–9.8 and 2.0–2.5MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. |
---|---|
AbstractList | Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy.Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ∼7s and ∼65min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6MPa) and average contact stresses (3.0–3.7MPa) than FEA (6.2–9.8 and 2.0–2.5MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: 1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, 2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and 3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and joint space in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 seconds and ~65 minutes, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6 MPa) and average contact stresses (3.0–3.7 MPa) than FEA (6.2–9.8 and 2.0–2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson’s effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. Abstract Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ∼7 s and ∼65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8–13.6 MPa) and average contact stresses (3.0–3.7 MPa) than FEA (6.2–9.8 and 2.0–2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were ~7 s and ~65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8-13.6 MPa) and average contact stresses (3.0-3.7 MPa) than FEA (6.2-9.8 and 2.0-2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to estimate cartilage contact stresses. Previous applications of DEA have underestimated cartilage stresses and yielded unrealistic contact patterns because they assumed constant cartilage thickness and/or concentric joint geometry. The study objectives were to: (1) develop a DEA model of the hip joint with subject-specific bone and cartilage geometry, (2) validate the DEA model by comparing DEA predictions to those of a validated finite element analysis (FEA) model, and (3) verify both the DEA and FEA models with a linear-elastic boundary value problem. Springs representing cartilage in the DEA model were given lengths equivalent to the sum of acetabular and femoral cartilage thickness and gap distance in the FEA model. Material properties and boundary/loading conditions were equivalent. Walking, descending, and ascending stairs were simulated. Solution times for DEA and FEA models were similar to 7 s and similar to 65 min, respectively. Irregular, complex contact patterns predicted by DEA were in excellent agreement with FEA. DEA contact areas were 7.5%, 9.7% and 3.7% less than FEA for walking, descending stairs, and ascending stairs, respectively. DEA models predicted higher peak contact stresses (9.8a13.6 MPa) and average contact stresses (3.0a3.7 MPa) than FEA (6.2a9.8 and 2.0a2.5 MPa, respectively). DEA overestimated stresses due to the absence of the Poisson's effect and a direct contact interface between cartilage layers. Nevertheless, DEA predicted realistic contact patterns when subject-specific bone geometry and cartilage thickness were used. This DEA method may have application as an alternative to FEA for pre-operative planning of joint-preserving surgery such as acetabular reorientation during peri-acetabular osteotomy. |
Author | Ellis, Benjamin J. Anderson, Andrew E. Maas, Steve A. Peters, Christopher L. Abraham, Christine L. Weiss, Jeffrey A. |
Author_xml | – sequence: 1 givenname: Christine L. surname: Abraham fullname: Abraham, Christine L. organization: Harold K. Dunn Orthopaedic Research Laboratory, University of Utah School of Medicine, Salt Lake City, UT 84108, USA – sequence: 2 givenname: Steve A. surname: Maas fullname: Maas, Steve A. organization: Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA – sequence: 3 givenname: Jeffrey A. surname: Weiss fullname: Weiss, Jeffrey A. organization: Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA – sequence: 4 givenname: Benjamin J. surname: Ellis fullname: Ellis, Benjamin J. organization: Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA – sequence: 5 givenname: Christopher L. surname: Peters fullname: Peters, Christopher L. organization: Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA – sequence: 6 givenname: Andrew E. surname: Anderson fullname: Anderson, Andrew E. email: Andrew.Anderson@hsc.utah.edu organization: Harold K. Dunn Orthopaedic Research Laboratory, University of Utah School of Medicine, Salt Lake City, UT 84108, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23453394$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1rFDEUhoNU7Hb1L5QBb7yZNV-TmYAUS_ELCgrqdchkznQzziRrkm3Zf2_GbavuhS2ckIs85-XNOe8JOnLeAUKnBK8IJuL1sBpa6ycw6xXFhK0wyUWfoAVpalZS1uAjtMCYklJSiY_RSYwDxrjmtXyGjinjFWOSL9CX88LBTdHZaAIkKGCECVwqtNPjLtpYTJDWvit6H4pNgM6aZN1VsbabYvA2g8a7pE0qYgoQI8Tn6Gmvxwgvbu8l-v7-3beLj-Xl5w-fLs4vS1NJnsq2NbSnzBAQhFekb6nGrKMCE9lojSuCm5rLrmtkB51ouKmZNIK0pNFtwwlmS3S2191s2wk6k00HPapNsJMOO-W1Vf--OLtWV_5aMUFZlc8SvboVCP7nFmJSUx4CjKN24LdREcYlZ6KS4hEoaYTEVMiMvjxAB78NeZi_qZoRIasqU6d_m793fbeXDIg9YIKPMUB_jxCs5gCoQd0FQM0BUJjkmn_15qDR2KST9fMQ7Phw-9t9O-TVXVsIKhoLzuTFBzBJdd4-LHF2IGFG66zR4w_YQfwzDhWpwurrHNI5o4TlfHLJ_i_wGAe_APpO-fI |
CitedBy_id | crossref_primary_10_1038_s41598_024_78172_1 crossref_primary_10_1177_11207000231212403 crossref_primary_10_3389_fbioe_2020_00318 crossref_primary_10_15446_dyna_v84n202_58595 crossref_primary_10_3795_KSME_A_2016_40_1_033 crossref_primary_10_1177_0954411920905434 crossref_primary_10_1016_j_jbiomech_2020_110163 crossref_primary_10_1080_10255842_2019_1661393 crossref_primary_10_1002_cnm_2766 crossref_primary_10_1016_j_cmpb_2023_107366 crossref_primary_10_1142_S0219876219500191 crossref_primary_10_1016_j_jbiomech_2024_112079 crossref_primary_10_1007_s12541_017_0173_6 crossref_primary_10_1016_j_jbiomech_2024_112136 crossref_primary_10_1016_j_jbiomech_2018_07_036 crossref_primary_10_1016_j_clinbiomech_2023_105928 crossref_primary_10_1177_0363546520974378 crossref_primary_10_1016_j_msec_2017_03_123 crossref_primary_10_1115_1_4033547 crossref_primary_10_1080_21681163_2016_1172346 crossref_primary_10_1007_s11044_022_09828_x crossref_primary_10_1109_TBME_2020_3018113 crossref_primary_10_1016_j_jbiomech_2017_11_014 crossref_primary_10_1016_j_jbiomech_2022_111207 crossref_primary_10_2106_JBJS_M_01178 crossref_primary_10_1016_j_jbiomech_2019_03_032 crossref_primary_10_1115_1_4043028 crossref_primary_10_1007_s10439_022_03016_w crossref_primary_10_1177_0954411918803125 crossref_primary_10_1302_2046_3758_1212_BJR_2022_0461_R2 crossref_primary_10_1002_jor_25935 crossref_primary_10_1016_j_cmpb_2015_12_023 crossref_primary_10_1177_15563316231193426 crossref_primary_10_1177_09544119231221023 crossref_primary_10_1016_j_jmbbm_2020_104178 crossref_primary_10_1115_1_4026101 crossref_primary_10_1002_nme_5192 crossref_primary_10_1007_s11517_023_03010_x crossref_primary_10_1007_s10237_015_0663_3 crossref_primary_10_1007_s40571_016_0103_x crossref_primary_10_1007_s10237_013_0504_1 crossref_primary_10_1177_1947603514554992 crossref_primary_10_1097_CORR_0000000000001975 crossref_primary_10_3390_app112311170 crossref_primary_10_1016_j_jbiomech_2015_05_030 crossref_primary_10_1016_j_jbiomech_2025_112568 crossref_primary_10_1097_CORR_0000000000000621 |
Cites_doi | 10.1115/1.1894148 10.1016/j.jbiomech.2011.06.011 10.1080/10255840601160484 10.1016/S0021-9290(01)00041-0 10.1007/s11999-008-0145-3 10.3109/17453670902947390 10.1016/0021-9290(83)90071-4 10.1016/S0021-9290(97)00009-2 10.1097/00003086-198612000-00004 10.1115/1.2953472 10.1016/0021-9290(84)90035-6 10.1109/IEMBS.2011.6092014 10.1007/s11517-006-0074-9 10.1115/1.2895693 10.1002/jor.1100120306 10.1016/j.jbiomech.2010.01.010 10.1007/s00776-004-0866-4 10.1302/0301-620X.69B4.3611154 10.1002/jor.20747 10.1007/BF00444263 10.1136/ard.58.1.27 10.1002/jor.1100170411 10.1243/09544119JEIM649 10.1016/S0021-9290(01)00040-9 10.1016/S0021-9290(97)00051-1 10.1080/00016470510030742 10.1016/0021-9290(94)00054-8 10.1115/1.3138543 10.1007/s11999-008-0682-9 10.1159/000147930 10.1016/j.jbiomech.2005.06.026 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd Elsevier Ltd Copyright © 2013 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2013 2013 Elsevier Ltd. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2013 – notice: 2013 Elsevier Ltd. All rights reserved. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.jbiomech.2013.01.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 1127 |
ExternalDocumentID | PMC3623562 2919451731 23453394 10_1016_j_jbiomech_2013_01_012 S0021929013000493 1_s2_0_S0021929013000493 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01AR053344 – fundername: NIGMS NIH HHS grantid: R01 GM083925 – fundername: NIGMS NIH HHS grantid: R01GM083925 – fundername: NIAMS NIH HHS grantid: R01 AR053344 – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases : NIAMS grantid: R01 AR053344 || AR |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c594t-bbc2f23c1e61451fb2a03d260198aa05108749dd89ded684c739c61b18ab84103 |
IEDL.DBID | AIKHN |
ISSN | 0021-9290 1873-2380 |
IngestDate | Thu Aug 21 18:07:14 EDT 2025 Fri Sep 05 14:10:29 EDT 2025 Fri Sep 05 05:45:09 EDT 2025 Wed Aug 13 04:46:28 EDT 2025 Thu Apr 03 06:54:55 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Tue Jul 29 01:58:49 EDT 2025 Fri Feb 23 02:34:49 EST 2024 Sun Feb 23 10:20:46 EST 2025 Tue Aug 26 16:33:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Cartilage Cartilage mechanics Discrete element analysis Computational modeling Contact stress Finite element analysis Hip |
Language | English |
License | Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-bbc2f23c1e61451fb2a03d260198aa05108749dd89ded684c739c61b18ab84103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23453394 |
PQID | 1317316955 |
PQPubID | 1226346 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3623562 proquest_miscellaneous_1349436596 proquest_miscellaneous_1318690269 proquest_journals_1317316955 pubmed_primary_23453394 crossref_primary_10_1016_j_jbiomech_2013_01_012 crossref_citationtrail_10_1016_j_jbiomech_2013_01_012 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2013_01_012 elsevier_clinicalkeyesjournals_1_s2_0_S0021929013000493 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2013_01_012 |
PublicationCentury | 2000 |
PublicationDate | 2013-04-05 |
PublicationDateYYYYMMDD | 2013-04-05 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Bachtar, Chen, Hisada (bib9) 2006; 44 Bartel, Burstein, Toda, Edwards (bib10) 1985; 107 Chao, Volokh, Yoshida, Shiba, Ide (bib14) 2010; 7 Henninger, Reese, Anderson, Weiss (bib23) 2010; 224 Tsumura, Kaku, Ikeda, Torisu (bib32) 2005; 10 Brown, Shaw (bib13) 1983; 16 Anderson, Ellis, Weiss (bib4) 2007; 10 Gu, D.Y., Hu, F., Wei, J.H., Dai, K.R., Chen, Y.Z., 2011. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress. In: Proceedings of the IEEE Engineering in Medicine and Biology Society Conference, pp. 8166–8169. Maxian, Brown, Weinstein (bib28) 1995; 28 von Eisenhart, Adam, Steinlechner, Muller-Gerbl, Eckstein (bib34) 1999; 17 Anderson, Ellis, Maas, Weiss (bib3) 2010; 43 Eckstein, von Eisenhart-Rothe, Landgraf, Adam, Loehe, Muller-Gerbl, Putz (bib16) 1997; 158 Bergmann, Deuretzbacher, Heller, Graichen, Rohlmann, Strauss, Duda (bib11) 2001; 34 Genda, Iwasaki, Li, MacWilliams, Barrance, Chao (bib17) 2001; 34 Kohnlein, Ganz, Impellizzeri, Leunig (bib24) 2009; 467 Mavcic, Iglic, Kralj-Iglic, Brand, Vengust (bib27) 2008; 466 Shepherd, Seedhom (bib31) 1999; 58 Menschik (bib29) 1997; 30 Puso, M.A., Maker, B.N., Ferencz, R.M., Halloquist, J.O., 2007. Nike3d: a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. User's Manual. Macirowski, Tepic, Mann (bib26) 1994; 116 Brown, DiGioia (bib12) 1984; 17 Li, Sakamoto, Chao (bib25) 1997; 30 Anderson, Peters, Tuttle, Weiss (bib5) 2005; 127 Henak, Ellis, Harris, Anderson, Peters, Weiss (bib22) 2011; 44 Athanasiou, Agarwal, Dzida (bib8) 1994; 12 Harris (bib21) 1986; 213 Yoshida, Faust, Wilckens, Kitagawa, Fetto, Chao (bib35) 2006; 39 Armiger, Armand, Tallroth, Lepisto, Mears (bib7) 2009; 80 Afoke, Byers, Hutton (bib1) 1987; 69 Volokh, Chao, Armand (bib33) 2007; 4 Anderson, Ellis, Maas, Peters, Weiss (bib2) 2008; 130 American Society of Mechanical Engineers, Guide for verification and validation in computational solid dynamics. Chegini, Beck, Ferguson (bib15) 2009; 27 Armand, Lepisto, Tallroth, Elias, Chao (bib6) 2005; 76 Genda, Konishi, Hasegawa, Miura (bib18) 1995; 114 Brown (10.1016/j.jbiomech.2013.01.012_bib12) 1984; 17 10.1016/j.jbiomech.2013.01.012_bib30 Henninger (10.1016/j.jbiomech.2013.01.012_bib23) 2010; 224 Genda (10.1016/j.jbiomech.2013.01.012_bib17) 2001; 34 von Eisenhart (10.1016/j.jbiomech.2013.01.012_bib34) 1999; 17 Tsumura (10.1016/j.jbiomech.2013.01.012_bib32) 2005; 10 Athanasiou (10.1016/j.jbiomech.2013.01.012_bib8) 1994; 12 Maxian (10.1016/j.jbiomech.2013.01.012_bib28) 1995; 28 Bachtar (10.1016/j.jbiomech.2013.01.012_bib9) 2006; 44 Anderson (10.1016/j.jbiomech.2013.01.012_bib5) 2005; 127 Anderson (10.1016/j.jbiomech.2013.01.012_bib4) 2007; 10 Armand (10.1016/j.jbiomech.2013.01.012_bib6) 2005; 76 Anderson (10.1016/j.jbiomech.2013.01.012_bib2) 2008; 130 Macirowski (10.1016/j.jbiomech.2013.01.012_bib26) 1994; 116 10.1016/j.jbiomech.2013.01.012_bib20 Bergmann (10.1016/j.jbiomech.2013.01.012_bib11) 2001; 34 Genda (10.1016/j.jbiomech.2013.01.012_bib18) 1995; 114 Eckstein (10.1016/j.jbiomech.2013.01.012_bib16) 1997; 158 Afoke (10.1016/j.jbiomech.2013.01.012_bib1) 1987; 69 Brown (10.1016/j.jbiomech.2013.01.012_bib13) 1983; 16 Chegini (10.1016/j.jbiomech.2013.01.012_bib15) 2009; 27 Li (10.1016/j.jbiomech.2013.01.012_bib25) 1997; 30 Chao (10.1016/j.jbiomech.2013.01.012_bib14) 2010; 7 Menschik (10.1016/j.jbiomech.2013.01.012_bib29) 1997; 30 Volokh (10.1016/j.jbiomech.2013.01.012_bib33) 2007; 4 Armiger (10.1016/j.jbiomech.2013.01.012_bib7) 2009; 80 Yoshida (10.1016/j.jbiomech.2013.01.012_bib35) 2006; 39 10.1016/j.jbiomech.2013.01.012_bib19 Mavcic (10.1016/j.jbiomech.2013.01.012_bib27) 2008; 466 Bartel (10.1016/j.jbiomech.2013.01.012_bib10) 1985; 107 Henak (10.1016/j.jbiomech.2013.01.012_bib22) 2011; 44 Shepherd (10.1016/j.jbiomech.2013.01.012_bib31) 1999; 58 Harris (10.1016/j.jbiomech.2013.01.012_bib21) 1986; 213 Kohnlein (10.1016/j.jbiomech.2013.01.012_bib24) 2009; 467 Anderson (10.1016/j.jbiomech.2013.01.012_bib3) 2010; 43 21757198 - J Biomech. 2011 Aug 11;44(12):2201-6 17558646 - Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84 19045515 - J Biomech Eng. 2008 Oct;130(5):051008 9394956 - Acta Anat (Basel). 1997;158(3):192-204 15815861 - J Orthop Sci. 2005;10(2):145-51 17937111 - Mol Cell Biomech. 2007 Jun;4(2):67-73 19404795 - Acta Orthop. 2009 Apr;80(2):155-61 10459759 - J Orthop Res. 1999 Jul;17(4):532-9 18752280 - J Orthop Res. 2009 Feb;27(2):195-201 16060343 - J Biomech Eng. 2005 Jun;127(3):364-73 16120442 - J Biomech. 2006;39(11):1996-2004 18288549 - Clin Orthop Relat Res. 2008 Apr;466(4):884-91 6619156 - J Biomech. 1983;16(6):373-84 7662474 - Arch Orthop Trauma Surg. 1995;114(4):202-6 9302622 - J Biomech. 1997 Sep;30(9):971-3 4046559 - J Biomech Eng. 1985 Aug;107(3):193-9 10343537 - Ann Rheum Dis. 1999 Jan;58(1):27-34 7896858 - J Biomech. 1995 Feb;28(2):159-66 11410173 - J Biomech. 2001 Jul;34(7):895-905 3611154 - J Bone Joint Surg Br. 1987 Aug;69(4):536-41 8189704 - J Biomech Eng. 1994 Feb;116(1):10-8 9165398 - J Biomech. 1997 Jun;30(6):635-8 21141680 - Mol Cell Biomech. 2010 Sep;7(3):175-92 22256237 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8166-9 16156455 - Acta Orthop. 2005 Jun;76(3):303-13 8207587 - J Orthop Res. 1994 May;12(3):340-9 19130159 - Clin Orthop Relat Res. 2009 Mar;467(3):682-91 11410170 - J Biomech. 2001 Jul;34(7):859-71 20839648 - Proc Inst Mech Eng H. 2010;224(7):801-12 16937206 - Med Biol Eng Comput. 2006 Aug;44(8):643-51 6480619 - J Biomech. 1984;17(6):437-48 3780093 - Clin Orthop Relat Res. 1986 Dec;(213):20-33 20176359 - J Biomech. 2010 May 7;43(7):1351-7 |
References_xml | – volume: 224 start-page: 801 year: 2010 end-page: 812 ident: bib23 article-title: Validation of computational models in biomechanics publication-title: Proceedings of the Institution of Mechanical Engineers Part H – volume: 116 start-page: 10 year: 1994 end-page: 18 ident: bib26 article-title: Cartilage stresses in the human hip joint publication-title: Journal of Biomechanical Engineering – volume: 16 start-page: 373 year: 1983 end-page: 384 ident: bib13 article-title: In vitro contact stress distributions in the natural human hip publication-title: Journal of Biomechanics – volume: 466 start-page: 884 year: 2008 end-page: 891 ident: bib27 article-title: Cumulative hip contact stress predicts osteoarthritis in ddh publication-title: Clinical Orthopaedics and Related Research – volume: 467 start-page: 682 year: 2009 end-page: 691 ident: bib24 article-title: Acetabular morphology: implications for joint-preserving surgery publication-title: Clinical Orthopaedics and Related Research – volume: 7 start-page: 175 year: 2010 end-page: 192 ident: bib14 article-title: Discrete element analysis in musculoskeletal biomechanics publication-title: Molecular & Cellular Biomechanics – volume: 43 start-page: 1351 year: 2010 end-page: 1357 ident: bib3 article-title: Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip publication-title: Journal of Biomechanics – volume: 107 start-page: 193 year: 1985 end-page: 199 ident: bib10 article-title: The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants publication-title: Journal of Biomechanical Engineering – volume: 30 start-page: 635 year: 1997 end-page: 638 ident: bib25 article-title: A comparison of different methods in predicting static pressure distribution in articulating joints publication-title: Journal of Biomechanics – volume: 10 start-page: 171 year: 2007 end-page: 184 ident: bib4 article-title: Verification, validation and sensitivity studies in computational biomechanics publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 213 start-page: 20 year: 1986 end-page: 33 ident: bib21 article-title: Etiology of osteoarthritis of the hip publication-title: Clinical Orthopaedics and Related Research – volume: 28 start-page: 159 year: 1995 end-page: 166 ident: bib28 article-title: Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of cdh publication-title: Journal of Biomechanics – volume: 4 start-page: 67 year: 2007 end-page: 73 ident: bib33 article-title: On foundations of discrete element analysis of contact in diarthrodial joints publication-title: Molecular & Cellular Biomechanics – volume: 158 start-page: 192 year: 1997 end-page: 204 ident: bib16 article-title: Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint publication-title: Acta Anatomica – volume: 30 start-page: 971 year: 1997 end-page: 973 ident: bib29 article-title: The hip joint as a conchoid shape publication-title: Journal of Biomechanics – volume: 39 start-page: 1996 year: 2006 end-page: 2004 ident: bib35 article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living publication-title: Journal of Biomechanics – volume: 12 start-page: 340 year: 1994 end-page: 349 ident: bib8 article-title: Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society – volume: 44 start-page: 643 year: 2006 end-page: 651 ident: bib9 article-title: Finite element contact analysis of the hip joint publication-title: Medical, & Biological Engineering & Computing – reference: Gu, D.Y., Hu, F., Wei, J.H., Dai, K.R., Chen, Y.Z., 2011. Contributions of non-spherical hip joint cartilage surface to hip joint contact stress. In: Proceedings of the IEEE Engineering in Medicine and Biology Society Conference, pp. 8166–8169. – volume: 17 start-page: 532 year: 1999 end-page: 539 ident: bib34 article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society – volume: 127 start-page: 364 year: 2005 end-page: 373 ident: bib5 article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies publication-title: Journal of Biomechanical Engineering – volume: 10 start-page: 145 year: 2005 end-page: 151 ident: bib32 article-title: A computer simulation of rotational acetabular osteotomy for dysplastic hip joint: Does the optimal transposition of the acetabular fragment exist? publication-title: Journal of Orthopaedic Science – volume: 76 start-page: 303 year: 2005 end-page: 313 ident: bib6 article-title: Outcome of periacetabular osteotomy: Joint contact pressure calculation using standing ap radiographs, 12 patients followed for average 2 years publication-title: Acta Orthopaedica – volume: 69 start-page: 536 year: 1987 end-page: 541 ident: bib1 article-title: Contact pressures in the human hip joint publication-title: Journal of Bone & Joint Surgery (British Volume) – volume: 130 start-page: 051008 year: 2008 ident: bib2 article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint publication-title: Journal of Biomechanical Engineering – volume: 17 start-page: 437 year: 1984 end-page: 448 ident: bib12 article-title: A contact-coupled finite element analysis of the natural adult hip publication-title: Journal of Biomechanics – reference: Puso, M.A., Maker, B.N., Ferencz, R.M., Halloquist, J.O., 2007. Nike3d: a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics. User's Manual. – reference: American Society of Mechanical Engineers, Guide for verification and validation in computational solid dynamics. – volume: 34 start-page: 895 year: 2001 end-page: 905 ident: bib17 article-title: Normal hip joint contact pressure distribution in single-leg standing-effect of gender and anatomic parameters publication-title: Journal of Biomechanics – volume: 44 start-page: 2201 year: 2011 end-page: 2206 ident: bib22 article-title: Role of the acetabular labrum in load support across the hip joint publication-title: Journal of Biomechanics – volume: 58 start-page: 27 year: 1999 end-page: 34 ident: bib31 article-title: Thickness of human articular cartilage in joints of the lower limb publication-title: Annals of the Rheumatic Diseases – volume: 114 start-page: 202 year: 1995 end-page: 206 ident: bib18 article-title: A computer simulation study of normal and abnormal hip joint contact pressure publication-title: Archives of Orthopaedic and Trauma Surgery – volume: 80 start-page: 155 year: 2009 end-page: 161 ident: bib7 article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up publication-title: Acta Orthopaedica – volume: 27 start-page: 195 year: 2009 end-page: 201 ident: bib15 article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis publication-title: Journal of Orthopaedic Research – volume: 34 start-page: 859 year: 2001 end-page: 871 ident: bib11 article-title: Hip contact forces and gait patterns from routine activities publication-title: Journal of Biomechanics – ident: 10.1016/j.jbiomech.2013.01.012_bib30 – volume: 127 start-page: 364 issue: 3 year: 2005 ident: 10.1016/j.jbiomech.2013.01.012_bib5 article-title: Subject-specific finite element model of the pelvis: development, validation and sensitivity studies publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.1894148 – volume: 44 start-page: 2201 issue: 12 year: 2011 ident: 10.1016/j.jbiomech.2013.01.012_bib22 article-title: Role of the acetabular labrum in load support across the hip joint publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2011.06.011 – volume: 10 start-page: 171 issue: 3 year: 2007 ident: 10.1016/j.jbiomech.2013.01.012_bib4 article-title: Verification, validation and sensitivity studies in computational biomechanics publication-title: Computer Methods in Biomechanics and Biomedical Engineering doi: 10.1080/10255840601160484 – volume: 34 start-page: 895 issue: 7 year: 2001 ident: 10.1016/j.jbiomech.2013.01.012_bib17 article-title: Normal hip joint contact pressure distribution in single-leg standing-effect of gender and anatomic parameters publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00041-0 – volume: 7 start-page: 175 issue: 3 year: 2010 ident: 10.1016/j.jbiomech.2013.01.012_bib14 article-title: Discrete element analysis in musculoskeletal biomechanics publication-title: Molecular & Cellular Biomechanics – volume: 466 start-page: 884 issue: 4 year: 2008 ident: 10.1016/j.jbiomech.2013.01.012_bib27 article-title: Cumulative hip contact stress predicts osteoarthritis in ddh publication-title: Clinical Orthopaedics and Related Research doi: 10.1007/s11999-008-0145-3 – volume: 80 start-page: 155 issue: 2 year: 2009 ident: 10.1016/j.jbiomech.2013.01.012_bib7 article-title: Three-dimensional mechanical evaluation of joint contact pressure in 12 periacetabular osteotomy patients with 10-year follow-up publication-title: Acta Orthopaedica doi: 10.3109/17453670902947390 – volume: 16 start-page: 373 issue: 6 year: 1983 ident: 10.1016/j.jbiomech.2013.01.012_bib13 article-title: In vitro contact stress distributions in the natural human hip publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(83)90071-4 – volume: 30 start-page: 635 issue: 6 year: 1997 ident: 10.1016/j.jbiomech.2013.01.012_bib25 article-title: A comparison of different methods in predicting static pressure distribution in articulating joints publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(97)00009-2 – ident: 10.1016/j.jbiomech.2013.01.012_bib20 – volume: 213 start-page: 20 year: 1986 ident: 10.1016/j.jbiomech.2013.01.012_bib21 article-title: Etiology of osteoarthritis of the hip publication-title: Clinical Orthopaedics and Related Research doi: 10.1097/00003086-198612000-00004 – volume: 130 start-page: 051008 issue: 5 year: 2008 ident: 10.1016/j.jbiomech.2013.01.012_bib2 article-title: Validation of finite element predictions of cartilage contact pressure in the human hip joint publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2953472 – volume: 17 start-page: 437 issue: 6 year: 1984 ident: 10.1016/j.jbiomech.2013.01.012_bib12 article-title: A contact-coupled finite element analysis of the natural adult hip publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(84)90035-6 – ident: 10.1016/j.jbiomech.2013.01.012_bib19 doi: 10.1109/IEMBS.2011.6092014 – volume: 44 start-page: 643 issue: 8 year: 2006 ident: 10.1016/j.jbiomech.2013.01.012_bib9 article-title: Finite element contact analysis of the hip joint publication-title: Medical, & Biological Engineering & Computing doi: 10.1007/s11517-006-0074-9 – volume: 116 start-page: 10 issue: 1 year: 1994 ident: 10.1016/j.jbiomech.2013.01.012_bib26 article-title: Cartilage stresses in the human hip joint publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2895693 – volume: 12 start-page: 340 issue: 3 year: 1994 ident: 10.1016/j.jbiomech.2013.01.012_bib8 article-title: Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society doi: 10.1002/jor.1100120306 – volume: 43 start-page: 1351 issue: 7 year: 2010 ident: 10.1016/j.jbiomech.2013.01.012_bib3 article-title: Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2010.01.010 – volume: 10 start-page: 145 issue: 2 year: 2005 ident: 10.1016/j.jbiomech.2013.01.012_bib32 article-title: A computer simulation of rotational acetabular osteotomy for dysplastic hip joint: Does the optimal transposition of the acetabular fragment exist? publication-title: Journal of Orthopaedic Science doi: 10.1007/s00776-004-0866-4 – volume: 69 start-page: 536 issue: 4 year: 1987 ident: 10.1016/j.jbiomech.2013.01.012_bib1 article-title: Contact pressures in the human hip joint publication-title: Journal of Bone & Joint Surgery (British Volume) doi: 10.1302/0301-620X.69B4.3611154 – volume: 27 start-page: 195 issue: 2 year: 2009 ident: 10.1016/j.jbiomech.2013.01.012_bib15 article-title: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis publication-title: Journal of Orthopaedic Research doi: 10.1002/jor.20747 – volume: 114 start-page: 202 issue: 4 year: 1995 ident: 10.1016/j.jbiomech.2013.01.012_bib18 article-title: A computer simulation study of normal and abnormal hip joint contact pressure publication-title: Archives of Orthopaedic and Trauma Surgery doi: 10.1007/BF00444263 – volume: 58 start-page: 27 issue: 1 year: 1999 ident: 10.1016/j.jbiomech.2013.01.012_bib31 article-title: Thickness of human articular cartilage in joints of the lower limb publication-title: Annals of the Rheumatic Diseases doi: 10.1136/ard.58.1.27 – volume: 17 start-page: 532 issue: 4 year: 1999 ident: 10.1016/j.jbiomech.2013.01.012_bib34 article-title: Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint publication-title: Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society doi: 10.1002/jor.1100170411 – volume: 224 start-page: 801 issue: 7 year: 2010 ident: 10.1016/j.jbiomech.2013.01.012_bib23 article-title: Validation of computational models in biomechanics publication-title: Proceedings of the Institution of Mechanical Engineers Part H doi: 10.1243/09544119JEIM649 – volume: 34 start-page: 859 issue: 7 year: 2001 ident: 10.1016/j.jbiomech.2013.01.012_bib11 article-title: Hip contact forces and gait patterns from routine activities publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00040-9 – volume: 30 start-page: 971 issue: 9 year: 1997 ident: 10.1016/j.jbiomech.2013.01.012_bib29 article-title: The hip joint as a conchoid shape publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(97)00051-1 – volume: 76 start-page: 303 issue: 3 year: 2005 ident: 10.1016/j.jbiomech.2013.01.012_bib6 article-title: Outcome of periacetabular osteotomy: Joint contact pressure calculation using standing ap radiographs, 12 patients followed for average 2 years publication-title: Acta Orthopaedica doi: 10.1080/00016470510030742 – volume: 28 start-page: 159 issue: 2 year: 1995 ident: 10.1016/j.jbiomech.2013.01.012_bib28 article-title: Chronic stress tolerance levels for human articular cartilage: two nonuniform contact models applied to long-term follow-up of cdh publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(94)00054-8 – volume: 4 start-page: 67 issue: 2 year: 2007 ident: 10.1016/j.jbiomech.2013.01.012_bib33 article-title: On foundations of discrete element analysis of contact in diarthrodial joints publication-title: Molecular & Cellular Biomechanics – volume: 107 start-page: 193 issue: 3 year: 1985 ident: 10.1016/j.jbiomech.2013.01.012_bib10 article-title: The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.3138543 – volume: 467 start-page: 682 issue: 3 year: 2009 ident: 10.1016/j.jbiomech.2013.01.012_bib24 article-title: Acetabular morphology: implications for joint-preserving surgery publication-title: Clinical Orthopaedics and Related Research doi: 10.1007/s11999-008-0682-9 – volume: 158 start-page: 192 issue: 3 year: 1997 ident: 10.1016/j.jbiomech.2013.01.012_bib16 article-title: Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint publication-title: Acta Anatomica doi: 10.1159/000147930 – volume: 39 start-page: 1996 issue: 11 year: 2006 ident: 10.1016/j.jbiomech.2013.01.012_bib35 article-title: Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2005.06.026 – reference: 9165398 - J Biomech. 1997 Jun;30(6):635-8 – reference: 16120442 - J Biomech. 2006;39(11):1996-2004 – reference: 9394956 - Acta Anat (Basel). 1997;158(3):192-204 – reference: 16156455 - Acta Orthop. 2005 Jun;76(3):303-13 – reference: 8189704 - J Biomech Eng. 1994 Feb;116(1):10-8 – reference: 20176359 - J Biomech. 2010 May 7;43(7):1351-7 – reference: 20839648 - Proc Inst Mech Eng H. 2010;224(7):801-12 – reference: 9302622 - J Biomech. 1997 Sep;30(9):971-3 – reference: 3780093 - Clin Orthop Relat Res. 1986 Dec;(213):20-33 – reference: 16937206 - Med Biol Eng Comput. 2006 Aug;44(8):643-51 – reference: 18288549 - Clin Orthop Relat Res. 2008 Apr;466(4):884-91 – reference: 19130159 - Clin Orthop Relat Res. 2009 Mar;467(3):682-91 – reference: 21757198 - J Biomech. 2011 Aug 11;44(12):2201-6 – reference: 22256237 - Conf Proc IEEE Eng Med Biol Soc. 2011;2011:8166-9 – reference: 7662474 - Arch Orthop Trauma Surg. 1995;114(4):202-6 – reference: 17937111 - Mol Cell Biomech. 2007 Jun;4(2):67-73 – reference: 19404795 - Acta Orthop. 2009 Apr;80(2):155-61 – reference: 21141680 - Mol Cell Biomech. 2010 Sep;7(3):175-92 – reference: 11410170 - J Biomech. 2001 Jul;34(7):859-71 – reference: 18752280 - J Orthop Res. 2009 Feb;27(2):195-201 – reference: 15815861 - J Orthop Sci. 2005;10(2):145-51 – reference: 11410173 - J Biomech. 2001 Jul;34(7):895-905 – reference: 7896858 - J Biomech. 1995 Feb;28(2):159-66 – reference: 6480619 - J Biomech. 1984;17(6):437-48 – reference: 10459759 - J Orthop Res. 1999 Jul;17(4):532-9 – reference: 17558646 - Comput Methods Biomech Biomed Engin. 2007 Jun;10(3):171-84 – reference: 8207587 - J Orthop Res. 1994 May;12(3):340-9 – reference: 19045515 - J Biomech Eng. 2008 Oct;130(5):051008 – reference: 16060343 - J Biomech Eng. 2005 Jun;127(3):364-73 – reference: 10343537 - Ann Rheum Dis. 1999 Jan;58(1):27-34 – reference: 4046559 - J Biomech Eng. 1985 Aug;107(3):193-9 – reference: 6619156 - J Biomech. 1983;16(6):373-84 – reference: 3611154 - J Bone Joint Surg Br. 1987 Aug;69(4):536-41 |
SSID | ssj0007479 |
Score | 2.3078036 |
Snippet | Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient method to... Abstract Quantifying cartilage contact stress is paramount to understanding hip osteoarthritis. Discrete element analysis (DEA) is a computationally efficient... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1121 |
SubjectTerms | Adult Biomedical materials Bone and Bones - physiology Bones Cartilage Cartilage mechanics Cartilage, Articular - physiology Computational modeling Contact Contact stress Contact stresses Discrete element analysis Finite Element Analysis Finite element method Gears Hip Hip joint Hip Joint - physiology Humans Male Mathematical models Models, Biological Physical Medicine and Rehabilitation Reproducibility of Results Stress, Mechanical Studies Surgical implants |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA-6guhBdNaP6ioRxFvd5qNpc5JBXBZhxYMLcwtpkrIzaGeczh78730vTeus4ipCb80jbfKS_PI-fo-QV67h3qpW5FbaNpc2NDngOJ17r4TVbcu8Q3vH2Ud1ei4_LMpFMrj1Kaxy3BPjRu3XDm3kxwwOOsGULsu3m285Vo1C72oqoXGT3IrUZaDP1WK6cCE3fArxYDnAgGIvQ3j1ZhXz26NDgolI3cn4nw6n38HnrzGUe4fSyX1yL6FJOh-m_wG5EboZOZx3cJP--p2-pjG-MxrOZ-TuHvXgjNw-S071Q_JpTgFbU8zP3QKEpmGIKKc28ZXQoco0BXhLN1sUw1BperHc0NV6CQ0x3N26HR3yTkL_kJyfvP_87jRPhRZyV2q5y5vG8ZYLx4LCwr1tw20hPJKN6dpaXLZ1JbX3tfbBq1q6SminWMNq29SSFeIROejWXXhCqNR16YWFS5Hj0snWllLwxjNnW1V5W2ekHEfYuMRCjsUwvpgx3GxlxpkxODOmYPDwjBxPcpuBh-OvEtU4gWbMMoV90cBR8X-SoU_LuzfM9NwUBj3dDBULfYJw1RIZ0ZNkQjADMvmnXo9GLTM_O5q0PiMvp9ewA6Bbx3ZhfRnbYFkxrvR1baSWQpVaZeTxoLjTMHIhAfNrCb99RaWnBshAfvVNt7yITOSAfgQA6KfXf_ozcofHIiIyL8ojcrDbXobnAOV2zYu4Xn8Ac4hJkA priority: 102 providerName: ProQuest |
Title | A new discrete element analysis method for predicting hip joint contact stresses |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929013000493 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929013000493 https://dx.doi.org/10.1016/j.jbiomech.2013.01.012 https://www.ncbi.nlm.nih.gov/pubmed/23453394 https://www.proquest.com/docview/1317316955 https://www.proquest.com/docview/1318690269 https://www.proquest.com/docview/1349436596 https://pubmed.ncbi.nlm.nih.gov/PMC3623562 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD60KYztYWzpLtm6osHYm5voYtl6zEpLttFQxgp5E7JkU4fOCUn6sJf99h3Zspes7MIGxgZbB1nS0dEnnRvAG5sxZ2TBIyNMEQmTZxHiOBU5J7lRRUGd9ecdF1M5uRIfZvFsD05bXxhvVhlkfyPTa2kd3gxDbw6XZel9fHG2eTUgr3Eu34cDxpWMe3Awfv9xMu0EMiLmYOlBI0-w5Sg8P5nXbu61XoLyOoInZb9ao-5i0J9NKbfWpvNH8DCASjJu_vsx7OVVHw7HFW6ov3wlb0lt5lmfn_fhwVYEwj7cuwi69UO4HBOE2MS76a4QSZO8MSwnJoQtIU2yaYIolyxXnsxbTJPrcknmixILeqt3YzekcT_J10_g6vzs8-kkCvkWIhsrsYmyzLKCcUtz6fP3FhkzI-58zDGVGuNnb5oI5VyqXO5kKmzClZU0o6nJUkFH_Cn0qkWVPwciVBo7bnBvZJmwojCx4Cxz1JpCJs6kA4jbHtY2BCP3OTFudGt1NtftyGg_MnpE8WIDGHZ0yyYcxx8pknYAdetsiuJR44rxb5T5OszytaZ6zfRI3-HEAaiOcoeZ_6rWo5bL9I-KEOVxKlUcD-B19xkFgdfumCpf3NZlfHYxJtXvyggluIyVHMCzhnG7bmRcIPRXApu9w9JdAR-IfPdLVV7XAckRBHHE0S_-o9kv4T6rE42IaBQfQW-zus1fIdzbZMewf_KN4j2ZJcdhauPz3dn08tN30-1Yxg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4ancTlAUHHJTDASMBbWHxJGj8gVGBTx9ZqQpu0N8-xHa0VpKXthPan-I0c50YHYiCkSXmLT5zkHB9_x-cG8MJkzOok56EWOg-FdlmIOE6G1iZcyzyn1vjzjuEoGRyJj8fx8Rp8b3JhfFhloxNLRW2nxp-Rb1Hc6DhNZBy_nX0Nfdco711tWmhUYrHnzr-hybZ4s_sB-fuSsZ3tw_eDsO4qEJpYimWYZYbljBvqEt-lNs-Yjrj1lbVkqrWX0bQnpLWptM4mqTA9Lk1CM5rqLBU04vjca7AufEZrB9bfbY8OPrW6H8F5HVRCQwQe0UpO8uT1pMyoL10glJfFQin703b4O9z9NWpzZRvcuQO3a_xK-pXA3YU1V3Rho1-g7f7lnLwiZURpeVTfhVsrxQ67cH1Yu_E34KBPEM0TnxE8R9BOXBXDTnRdIYVUfa0JAmoym3syH5xNTsczMpmOcaAPsNdmSapMF7e4B0dXwoT70CmmhXsIRMg0tlyjGWaYMCLXseAss9ToPOlZnQYQN39YmbruuW-_8Vk1AW4T1XBGec6oiOLFAthq6WZV5Y-_UvQaBqomrxU1scLN6f8o3aJWKAtF1YKpSHnfOvWC5b2QaNzxAGRLWWOmCgv906ybjZSpnxO16yyA5-1t1DnekaQLNz0rx_hGZiyRl40RUvAklkkADyrBbX8j4wKtDCnwsy-IdDvA1zy_eKcYn5a1zxFvcYTsjy5_9WdwY3A43Ff7u6O9x3CTlS1MRBjFm9BZzs_cEwSSy-xpvXoJnFy1wvgBJmmGyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlVwQJDyCBQwEnBbsn6sd31AKKJELaVVD1TKzXhtr5oINiFJhfrX-HWM90UKoiCkSntbzz484_E3nhfAc5szZ2TBIyNMEQnj8whxnIqck9yooqDOhvOOwyO5dyLej5PxBnxvc2FCWGWrEytF7WY2nJEPKG50nEqVJIOiCYs43h29mX-NQgep4Glt22nUInLgz7-h-bZ8vb-LvH7B2Ojdx7d7UdNhILKJEqsozy0rGLfUy9CxtsiZibkLVbZUZkyQ1ywVyrlMOe9kJmzKlZU0p5nJM0Fjjs-9BtdTjqgK11I67oy9UJe-CS-hEUKQeC07efpqWuXWV84QyquyoZT9aWP8Hfj-Gr-5tiGObsOtBsmSYS16d2DDlz3YHpZoxX85Jy9JFVtaHdr34OZa2cMebB02Dv1tOB4SxPUk5AYvEL4TX0ezE9PUSiF1h2uC0JrMF4EshGmT08mcTGcTHBhC7Y1dkTrnxS_vwsmVsOAebJaz0j8AIlSWOG7QILNMWFGYRHCWO2pNIVNnsj4k7Qxr21RAD404Pus21G2qW87owBkdU7xYHwYd3byuAfJXirRloG4zXFEna9ym_o_SLxvVstRUL5mOdfCy0yBYwR-JZh7vg-ooG_RUo6J_eutOK2X654u6FdeHZ91t1D7BpWRKPzurxoSWZkyqy8YIJbhMlOzD_Vpwu2lkXKC9oQT-9gWR7gaE6ucX75ST06oKOiIvjuD94eWf_hS2UE3oD_tHB4_gBqt6mYgoTnZgc7U4848RUa7yJ9XSJfDpqnXFD8AgiZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+discrete+element+analysis+method+for+predicting+hip+joint+contact+stresses&rft.jtitle=Journal+of+biomechanics&rft.au=Abraham%2C+Christine+L.&rft.au=Maas%2C+Steve+A.&rft.au=Weiss%2C+Jeffrey+A.&rft.au=Ellis%2C+Benjamin+J.&rft.date=2013-04-05&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=46&rft.issue=6&rft.spage=1121&rft.epage=1127&rft_id=info:doi/10.1016%2Fj.jbiomech.2013.01.012&rft.externalDocID=S0021929013000493 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929013X00053%2Fcov150h.gif |