Validation of ‘Somnivore’, a Machine Learning Algorithm for Automated Scoring and Analysis of Polysomnography Data

Manual scoring of polysomnography data is labor-intensive and time-consuming, and most existing software does not account for subjective differences and user variability. Therefore, we evaluated a supervised machine learning algorithm, Somnivore , for automated wake-sleep stage classification. We de...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 13; p. 207
Main Authors Allocca, Giancarlo, Ma, Sherie, Martelli, Davide, Cerri, Matteo, Del Vecchio, Flavia, Bastianini, Stefano, Zoccoli, Giovanna, Amici, Roberto, Morairty, Stephen R., Aulsebrook, Anne E., Blackburn, Shaun, Lesku, John A., Rattenborg, Niels C., Vyssotski, Alexei L., Wams, Emma, Porcheret, Kate, Wulff, Katharina, Foster, Russell, Chan, Julia K. M., Nicholas, Christian L., Freestone, Dean R., Johnston, Leigh A., Gundlach, Andrew L.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 18.03.2019
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…