Rapid cell division of Staphylococcus aureus during colonization of the human nose
Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. In this study, we inferred that...
Saved in:
Published in | BMC genomics Vol. 20; no. 1; pp. 229 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.03.2019
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/s12864-019-5604-6 |
Cover
Loading…
Abstract | Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease.
In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours.
The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. |
---|---|
AbstractList | Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. Background Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. Results In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. Conclusions The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. Keywords: Commensal bacteria, Nasal microbiome, Replication rate, Generation time, In-vivo growth dynamics, Metagenome sequencing, Mutation rate, Mutation accumulation Background Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. Results In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. Conclusions The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. Abstract Background Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. Results In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. Conclusions The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease.BACKGROUNDStaphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease.In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours.RESULTSIn this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours.The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal.CONCLUSIONSThe cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal. |
ArticleNumber | 229 |
Audience | Academic |
Author | Szafrańska, Anna K. Junker, Vera Nübel, Ulrich Steglich, Matthias |
Author_xml | – sequence: 1 givenname: Anna K. surname: Szafrańska fullname: Szafrańska, Anna K. – sequence: 2 givenname: Vera surname: Junker fullname: Junker, Vera – sequence: 3 givenname: Matthias surname: Steglich fullname: Steglich, Matthias – sequence: 4 givenname: Ulrich orcidid: 0000-0003-3131-1656 surname: Nübel fullname: Nübel, Ulrich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30894139$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaR7tD-imGLppF071skbeFELoYyBQmLRrcX0lz2jwSFPJDkl_feXMNM2EUu5C4uo7R9LlnBZHPnhbFK8pOadUyQ-JMiVFRWhT1ZKISj4rTqiY0YpRKY4e7Y-L05TWhNCZYvWL4pgT1QjKm5NisYCtMyXavi-Nu3HJBV-GrrweYLu66wMGxDGVMEabFzNG55clhj549wuGPTysbLkaN-BLH5J9WTzvoE_21X49K358_vT98mt19e3L_PLiqsK6EUPVcgWcGG5bg7VoUDGUaBFqqSjp2o7XjAowHAy2whhk0kqULZcAJpfiZ8V852sCrPU2ug3EOx3A6ftGiEsNcXDYWy1l1yHNqkbVIhu3KHKBaikwI1qWvT7uvLZju7EGrR8i9AemhyferfQy3GgpWF3Pmmzwbm8Qw8_RpkFvXJqmCt6GMWlGm5rlb1KR0bdP0HUYo8-j0oxRyiXnkvyllpA_4HwX8r04meqLWlGuSMYydf4PKpexG4c5LZ3L_QPB-wNBZgZ7OyxhTEnPrxeH7JvHQ3mYxp_0ZIDuAIwhpWi7B4QSPSVU7xKqc0L1lFA9mc6eaNAN90nKL3f9f5S_AVnH6eo |
CitedBy_id | crossref_primary_10_1126_sciadv_aaz2299 crossref_primary_10_1099_mgen_0_001128 crossref_primary_10_1016_j_fm_2024_104625 crossref_primary_10_1186_s13028_022_00653_y crossref_primary_10_1371_journal_ppat_1009854 crossref_primary_10_3390_antibiotics9050239 crossref_primary_10_3389_fcimb_2022_1062329 crossref_primary_10_1128_mSphere_00538_21 crossref_primary_10_3390_microorganisms9061119 crossref_primary_10_3390_foods13020337 crossref_primary_10_1038_s41564_024_01748_0 crossref_primary_10_1186_s12866_020_01729_3 crossref_primary_10_3389_fcimb_2022_874138 crossref_primary_10_3390_sym14081701 crossref_primary_10_1111_cbdd_13706 crossref_primary_10_1016_j_mtbio_2021_100176 crossref_primary_10_1038_s41467_023_41424_1 crossref_primary_10_1038_s44259_024_00052_5 crossref_primary_10_1111_jam_15023 crossref_primary_10_1128_mBio_01114_21 crossref_primary_10_1016_j_ijfoodmicro_2025_111115 |
Cites_doi | 10.1128/mBio.02162-15 10.1128/CDLI.8.6.1064-1069.2001 10.1126/science.1182395 10.1101/gr.147710.112 10.1016/j.jtbi.2005.08.037 10.1128/IAI.67.7.3267-3275.1999 10.1086/423376 10.1073/pnas.88.16.7160 10.1371/journal.pone.0016166 10.1073/pnas.1512057112 10.1073/pnas.1512136112 10.1126/science.aac4812 10.1111/j.2517-6161.1995.tb02031.x 10.1371/journal.ppat.1003092 10.1038/nrmicro.2017.14 10.3389/fphys.2017.00115 10.1101/gr.213256.116 10.1371/journal.ppat.1003862 10.1016/j.chom.2013.11.005 10.1038/nrmicro.2017.104 10.1038/s41559-017-0425-y 10.1093/molbev/msv055 10.1146/annurev-micro-091014-104209 10.1101/gr.137430.112 10.1371/journal.ppat.1000855 10.1126/sciadv.1400216 10.1038/nm991 10.1128/AAC.44.11.3229-3231.2000 10.1016/S1473-3099(05)70295-4 10.1371/journal.pgen.1006570 10.1111/evo.12597 10.1128/mBio.01775-14 10.1073/pnas.1202869109 10.1086/599119 10.1016/j.molcel.2010.01.003 10.1038/ncomms10039 10.1128/mBio.00080-15 10.1038/nature18634 10.1016/S0966-842X(98)01424-3 10.1371/journal.pgen.1003968 10.1136/bmjopen-2014-007397 10.1073/pnas.1210309109 10.1371/journal.pmed.1001387 10.1186/1471-2229-10-242 10.1371/journal.pbio.2004644 10.1038/nrmicro1384 10.1128/AAC.42.10.2590 10.1038/nmeth.3253 10.1073/pnas.0804739105 10.1038/ncomms2607 10.1126/science.1082240 10.1016/0047-2484(72)90009-7 10.1371/journal.pbio.2005056 10.1038/nbt.3704 10.1128/mBio.01021-17 10.1371/journal.pone.0061319 10.1073/pnas.1000041107 10.3389/fmicb.2018.00901 10.1016/j.chom.2017.03.011 10.1371/journal.pone.0139811 10.1172/JCI104233 10.1248/bpb.b14-00398 10.1016/j.tim.2016.06.012 10.1371/journal.pbio.0060074 10.1128/AEM.01777-14 10.1371/journal.ppat.1007112 10.1038/mi.2008.5 10.1534/g3.117.300120 10.1128/CMR.00081-09 10.1098/rspb.2018.0789 10.1093/bioinformatics/btp352 10.1128/IAI.64.1.310-318.1996 10.1038/nrmicro3270 10.1073/pnas.1401006111 10.1016/S0966-842X(98)01250-5 10.1099/13500872-140-12-3407 10.1038/nrg.2016.104 10.1128/JB.02294-12 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 BioMed Central Ltd. 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2019 |
Copyright_xml | – notice: COPYRIGHT 2019 BioMed Central Ltd. – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-019-5604-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_66ffc1ada9854352bc4c4ca8b1a2d4b2 PMC6425579 A581380336 30894139 10_1186_s12864_019_5604_6 |
Genre | Journal Article |
GeographicLocations | New York United States--US |
GeographicLocations_xml | – name: New York – name: United States--US |
GrantInformation_xml | – fundername: Horizon 2020 Framework Programme grantid: 643476 – fundername: ; grantid: 643476 |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ AIXEN C24 CGR CUY CVF ECM EIF NPM PMFND 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-b38a30d3ebdc549c82c6ceca56810fbf35214ad3adcb4ddc26e6c6b36aadada83 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Aug 21 13:19:18 EDT 2025 Fri Jul 11 04:19:34 EDT 2025 Fri Jul 25 09:10:07 EDT 2025 Tue Jun 17 21:07:39 EDT 2025 Tue Jun 10 20:47:42 EDT 2025 Fri Jun 27 04:22:29 EDT 2025 Wed Feb 19 02:33:28 EST 2025 Tue Jul 01 00:39:01 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nasal microbiome In-vivo growth dynamics Commensal bacteria Metagenome sequencing Mutation rate Generation time Mutation accumulation Replication rate |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-b38a30d3ebdc549c82c6ceca56810fbf35214ad3adcb4ddc26e6c6b36aadada83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3131-1656 |
OpenAccessLink | https://doaj.org/article/66ffc1ada9854352bc4c4ca8b1a2d4b2 |
PMID | 30894139 |
PQID | 2211363360 |
PQPubID | 44682 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66ffc1ada9854352bc4c4ca8b1a2d4b2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425579 proquest_miscellaneous_2195254914 proquest_journals_2211363360 gale_infotracmisc_A581380336 gale_infotracacademiconefile_A581380336 gale_incontextgauss_ISR_A581380336 pubmed_primary_30894139 crossref_primary_10_1186_s12864_019_5604_6 crossref_citationtrail_10_1186_s12864_019_5604_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-20 |
PublicationDateYYYYMMDD | 2019-03-20 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2019 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | T Korem (5604_CR8) 2015; 349 B Gibson (5604_CR32) 2018; 285 S Gizurarson (5604_CR17) 2015; 38 T Opijnen van (5604_CR4) 2012; 22 AJ Grant (5604_CR6) 2008; 6 ME Olson (5604_CR22) 2013; 195 H Long (5604_CR43) 2018; 2 A Zipperer (5604_CR69) 2016; 535 WH Man (5604_CR18) 2017; 15 T Golubchik (5604_CR49) 2013; 8 I Bjedov (5604_CR57) 2003; 300 C Weller (5604_CR31) 2015; 69 C Strauss (5604_CR42) 2017; 8 M Wrande (5604_CR59) 2008; 105 L Sun (5604_CR47) 2018; 16 PR McAdam (5604_CR80) 2012; 109 MJ Ward (5604_CR38) 2014; 80 J Shuter (5604_CR70) 1996; 64 KP Burnham (5604_CR79) 2002 JX Yue (5604_CR30) 2010; 10 M Yan (5604_CR67) 2013; 14 Q Zheng (5604_CR73) 2017; 7 U Nübel (5604_CR34) 2010; 6 B Krismer (5604_CR20) 2014; 10 SR Harris (5604_CR33) 2010; 327 M Lynch (5604_CR45) 2016; 17 S Haller (5604_CR27) 2015; 5 MA Kohanski (5604_CR54) 2010; 37 MZ David (5604_CR11) 2010; 23 E Dominguez-Hüttinger (5604_CR2) 2017; 8 CM Liu (5604_CR66) 2015; 1 MT Holden (5604_CR35) 2013; 23 DE Kirschner (5604_CR1) 2000 AA Pezzulo (5604_CR21) 2011; 6 J-P Horst (5604_CR48) 1999; 7 JL Nouwen (5604_CR65) 2004; 39 S Katz (5604_CR58) 2013; 9 ME Mulcahy (5604_CR14) 2016; 24 CT Brown (5604_CR9) 2016; 34 C Myhrvold (5604_CR5) 2015; 6 H Lee (5604_CR41) 2012; 109 H Li (5604_CR77) 2013; 1303 AK Szafrańska (5604_CR75) 2014; 5 DM Proctor (5604_CR50) 2017; 21 S Duchêne (5604_CR37) 2016; 2 SK Linden (5604_CR68) 2008; 1 A Belkum van (5604_CR13) 2009; 199 JW Drake (5604_CR53) 1991; 88 AC Uhlemann (5604_CR81) 2014; 111 A Gutierrez (5604_CR55) 2013; 4 DE Kohne (5604_CR29) 1972; 1 EJG Pollitt (5604_CR72) 2018; 14 S Helaine (5604_CR52) 2010; 107 Y Benjamini (5604_CR74) 1995; 57 H Aubry-Damon (5604_CR40) 1998; 42 AM Cole (5604_CR62) 1999; 67 SJ Siegel (5604_CR63) 2015; 69 M Steglich (5604_CR76) 2018; 9 H Smith (5604_CR3) 1998; 6 PL Foster (5604_CR44) 2015; 112 ME Mulcahy (5604_CR15) 2012; 8 AM Cole (5604_CR19) 2001; 8 RA Proctor (5604_CR71) 2006; 4 MR Olm (5604_CR10) 2017; 27 DJ Bradshaw (5604_CR23) 1994; 140 N Stoesser (5604_CR28) 2016; 7 A Frenoy (5604_CR60) 2018; 16 HF Wertheim (5604_CR12) 2005; 5 A White (5604_CR64) 1961; 40 B Krismer (5604_CR24) 2017; 15 SH Kopf (5604_CR51) 2016; 113 FJ Schmitz (5604_CR39) 2000; 44 DI Andersson (5604_CR56) 2014; 12 EP Rocha (5604_CR36) 2006; 239 C Weidenmaier (5604_CR16) 2004; 10 A Roetzer (5604_CR25) 2013; 10 M Steglich (5604_CR26) 2015; 10 S Shewaramani (5604_CR61) 2017; 13 H Li (5604_CR78) 2009; 25 S Abel (5604_CR7) 2015; 12 W Sung (5604_CR46) 2015; 32 SL Baines (5604_CR82) 2015; 6 |
References_xml | – volume: 7 start-page: e02162 year: 2016 ident: 5604_CR28 publication-title: MBio doi: 10.1128/mBio.02162-15 – volume: 8 start-page: 1064 year: 2001 ident: 5604_CR19 publication-title: Clin Diagn Lab Immunol doi: 10.1128/CDLI.8.6.1064-1069.2001 – volume: 327 start-page: 469 year: 2010 ident: 5604_CR33 publication-title: Science doi: 10.1126/science.1182395 – volume: 23 start-page: 653 year: 2013 ident: 5604_CR35 publication-title: Genome Res doi: 10.1101/gr.147710.112 – volume: 239 start-page: 226 year: 2006 ident: 5604_CR36 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2005.08.037 – volume: 67 start-page: 3267 year: 1999 ident: 5604_CR62 publication-title: Infect Immun doi: 10.1128/IAI.67.7.3267-3275.1999 – volume: 39 start-page: 806 year: 2004 ident: 5604_CR65 publication-title: Clin Infect Dis doi: 10.1086/423376 – volume: 88 start-page: 7160 year: 1991 ident: 5604_CR53 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.16.7160 – volume: 2 start-page: e000094 year: 2016 ident: 5604_CR37 publication-title: Microb Genom – volume: 6 start-page: e16166 year: 2011 ident: 5604_CR21 publication-title: PLoS One doi: 10.1371/journal.pone.0016166 – volume: 113 start-page: E110 year: 2016 ident: 5604_CR51 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1512057112 – volume: 112 start-page: E5990 year: 2015 ident: 5604_CR44 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1512136112 – volume: 349 start-page: 1101 year: 2015 ident: 5604_CR8 publication-title: Science doi: 10.1126/science.aac4812 – volume: 57 start-page: 289 year: 1995 ident: 5604_CR74 publication-title: J R Stat Soc Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 8 start-page: e1003092 year: 2012 ident: 5604_CR15 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003092 – volume: 15 start-page: 259 year: 2017 ident: 5604_CR18 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.14 – volume: 8 start-page: 115 year: 2017 ident: 5604_CR2 publication-title: Front Physiol doi: 10.3389/fphys.2017.00115 – volume: 27 start-page: 601 year: 2017 ident: 5604_CR10 publication-title: Genome Res doi: 10.1101/gr.213256.116 – volume: 10 year: 2014 ident: 5604_CR20 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003862 – volume: 1303 start-page: 3997 year: 2013 ident: 5604_CR77 publication-title: ArXiv – volume: 14 start-page: 631 year: 2013 ident: 5604_CR67 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.11.005 – volume: 15 start-page: 675 year: 2017 ident: 5604_CR24 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.104 – volume: 2 start-page: 237 year: 2018 ident: 5604_CR43 publication-title: Nat Ecol Evol doi: 10.1038/s41559-017-0425-y – volume: 32 start-page: 1672 year: 2015 ident: 5604_CR46 publication-title: Mol Biol Evol doi: 10.1093/molbev/msv055 – volume: 69 start-page: 425 year: 2015 ident: 5604_CR63 publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-091014-104209 – volume: 22 start-page: 2541 year: 2012 ident: 5604_CR4 publication-title: Genome Res doi: 10.1101/gr.137430.112 – volume: 6 start-page: e1000855 year: 2010 ident: 5604_CR34 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000855 – volume-title: Persistant bacterial infections year: 2000 ident: 5604_CR1 – volume: 1 start-page: e1400216 year: 2015 ident: 5604_CR66 publication-title: Sci Adv doi: 10.1126/sciadv.1400216 – volume: 10 start-page: 243 year: 2004 ident: 5604_CR16 publication-title: Nat Med doi: 10.1038/nm991 – volume: 44 start-page: 3229 year: 2000 ident: 5604_CR39 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.44.11.3229-3231.2000 – volume: 5 start-page: 751 year: 2005 ident: 5604_CR12 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(05)70295-4 – volume: 13 start-page: e1006570 year: 2017 ident: 5604_CR61 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006570 – volume: 69 start-page: 643 year: 2015 ident: 5604_CR31 publication-title: Evolution doi: 10.1111/evo.12597 – volume: 5 start-page: e01775 year: 2014 ident: 5604_CR75 publication-title: MBio doi: 10.1128/mBio.01775-14 – start-page: 488 volume-title: Model selection and multimodel inference: a practical information-theoretic approach year: 2002 ident: 5604_CR79 – volume: 109 start-page: 9107 year: 2012 ident: 5604_CR80 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1202869109 – volume: 199 start-page: 1820 year: 2009 ident: 5604_CR13 publication-title: J Infect Dis doi: 10.1086/599119 – volume: 37 start-page: 311 year: 2010 ident: 5604_CR54 publication-title: Mol Cell doi: 10.1016/j.molcel.2010.01.003 – volume: 6 year: 2015 ident: 5604_CR5 publication-title: Nat Commun doi: 10.1038/ncomms10039 – volume: 6 start-page: e00080 year: 2015 ident: 5604_CR82 publication-title: MBio doi: 10.1128/mBio.00080-15 – volume: 535 start-page: 511 year: 2016 ident: 5604_CR69 publication-title: Nature doi: 10.1038/nature18634 – volume: 7 start-page: 29 year: 1999 ident: 5604_CR48 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(98)01424-3 – volume: 9 start-page: e1003968 year: 2013 ident: 5604_CR58 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003968 – volume: 5 start-page: e007397 year: 2015 ident: 5604_CR27 publication-title: BMJ Open doi: 10.1136/bmjopen-2014-007397 – volume: 109 start-page: E2774 year: 2012 ident: 5604_CR41 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1210309109 – volume: 10 start-page: e1001387 year: 2013 ident: 5604_CR25 publication-title: PLoS Med doi: 10.1371/journal.pmed.1001387 – volume: 10 start-page: 242 year: 2010 ident: 5604_CR30 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-10-242 – volume: 16 start-page: e2004644 year: 2018 ident: 5604_CR47 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2004644 – volume: 4 start-page: 295 year: 2006 ident: 5604_CR71 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1384 – volume: 42 start-page: 2590 year: 1998 ident: 5604_CR40 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.42.10.2590 – volume: 12 start-page: 223 year: 2015 ident: 5604_CR7 publication-title: Nat Methods doi: 10.1038/nmeth.3253 – volume: 105 start-page: 11863 year: 2008 ident: 5604_CR59 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804739105 – volume: 4 start-page: 1610 year: 2013 ident: 5604_CR55 publication-title: Nat Commun doi: 10.1038/ncomms2607 – volume: 300 start-page: 1404 year: 2003 ident: 5604_CR57 publication-title: Science doi: 10.1126/science.1082240 – volume: 1 start-page: 627 year: 1972 ident: 5604_CR29 publication-title: J Human Evolution doi: 10.1016/0047-2484(72)90009-7 – volume: 16 start-page: e2005056 year: 2018 ident: 5604_CR60 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2005056 – volume: 34 start-page: 1256 year: 2016 ident: 5604_CR9 publication-title: Nat Biotechnol doi: 10.1038/nbt.3704 – volume: 8 start-page: e01021 year: 2017 ident: 5604_CR42 publication-title: MBio doi: 10.1128/mBio.01021-17 – volume: 8 start-page: e61319 year: 2013 ident: 5604_CR49 publication-title: PLoS One doi: 10.1371/journal.pone.0061319 – volume: 107 start-page: 3746 year: 2010 ident: 5604_CR52 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1000041107 – volume: 9 start-page: 901 year: 2018 ident: 5604_CR76 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00901 – volume: 21 start-page: 421 year: 2017 ident: 5604_CR50 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.03.011 – volume: 10 start-page: e0139811 year: 2015 ident: 5604_CR26 publication-title: PLoS One doi: 10.1371/journal.pone.0139811 – volume: 40 start-page: 23 year: 1961 ident: 5604_CR64 publication-title: J Clin Invest doi: 10.1172/JCI104233 – volume: 38 start-page: 497 year: 2015 ident: 5604_CR17 publication-title: Biol Pharm Bull doi: 10.1248/bpb.b14-00398 – volume: 24 start-page: 872 year: 2016 ident: 5604_CR14 publication-title: Trends Microbiol doi: 10.1016/j.tim.2016.06.012 – volume: 6 start-page: e74 year: 2008 ident: 5604_CR6 publication-title: PLoS Biol doi: 10.1371/journal.pbio.0060074 – volume: 80 start-page: 7275 year: 2014 ident: 5604_CR38 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01777-14 – volume: 14 year: 2018 ident: 5604_CR72 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007112 – volume: 1 start-page: 183 year: 2008 ident: 5604_CR68 publication-title: Mucosal Immunol doi: 10.1038/mi.2008.5 – volume: 7 start-page: 3849 year: 2017 ident: 5604_CR73 publication-title: G3 (Bethesda) doi: 10.1534/g3.117.300120 – volume: 23 start-page: 616 year: 2010 ident: 5604_CR11 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00081-09 – volume: 285 start-page: 20180789 year: 2018 ident: 5604_CR32 publication-title: Proc Biol Sci doi: 10.1098/rspb.2018.0789 – volume: 25 start-page: 2078 year: 2009 ident: 5604_CR78 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 64 start-page: 310 year: 1996 ident: 5604_CR70 publication-title: Infect Immun doi: 10.1128/IAI.64.1.310-318.1996 – volume: 12 start-page: 465 year: 2014 ident: 5604_CR56 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3270 – volume: 111 start-page: 6738 year: 2014 ident: 5604_CR81 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1401006111 – volume: 6 start-page: 239 year: 1998 ident: 5604_CR3 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(98)01250-5 – volume: 140 start-page: 3407 year: 1994 ident: 5604_CR23 publication-title: Microbiology doi: 10.1099/13500872-140-12-3407 – volume: 17 start-page: 704 year: 2016 ident: 5604_CR45 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.104 – volume: 195 start-page: 1779 year: 2013 ident: 5604_CR22 publication-title: J Bacteriol doi: 10.1128/JB.02294-12 |
SSID | ssj0017825 |
Score | 2.3938804 |
Snippet | Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little... Background Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human... Abstract Background Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 229 |
SubjectTerms | Adaptation Antibiotics Bacteria Cell culture Cell Division Cloning Colonization Commensal bacteria Communicable diseases Cystic fibrosis Data processing Deoxyribonucleic acid Development and progression Disseminated infection DNA DNA sequencing Evolution, Molecular Fibrosis Gene mutation Generation time Genetic aspects Genomes Genomics Glycoproteins Health aspects Human populations Humans In-vivo growth dynamics Infectious diseases Laboratory culture Metagenome sequencing Methicillin Microorganisms Mutation Mutation Rate Mutation rates Nasal microbiome Nose Nose - microbiology Nose diseases Nucleotide sequence Opportunist infection Pathogens Peptides Population Replication rate Respiratory tract Sputum Staphylococcus aureus Staphylococcus aureus - cytology Staphylococcus aureus - genetics Staphylococcus aureus - physiology Staphylococcus aureus infections Staphylococcus infections Streptococcus infections Whole genome sequencing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifhttZRVBEEKzn7d5rGKpgj6cFvq27M5utFCS0lwe_O87k-SOC4K-yD0c3E645JfZ-UhmfsPYW9FUOQapSqg0JigmxzLYjFmKakzKQpmQqcH56zd7dq6_XJiLvVFfVBM20QNPwB1b2zQgQgq1M-jaZQSNn-CiCDLpOFpf9HnbZGp-f4B-z8zvMIWzxz1aYUvVFnWJHl6XduGFRrL-P03ynk9a1kvuOaDTB-z-HDnyk-mMH7I7uX3E7k6zJH8_Zut1uL5MnB7Ec-qxoqdgvGs4RpOIJLqsDmDoeRhuMn5N3YmcKKu3nZgkjNEgH6f28bbr8xN2fvrpx8ezch6YUIKp9aaMygVVJZVjAsz7wEmwkCGMpGNNbBA-oUNSIUHUKYG02YKNygbENwWnnrKDtmvzc8bDqk4RhHV1lDrFEBuEHAhphwmeMQWrtgB6mNnEaajFlR-zCmf9hLlHzD1h7m3B3u8OuZ6oNP4m_IHuyk6QWLDHH1A3_Kwb_l-6UbA3dE898Vy0VEjzMwx97z9_X_sT44RylVL4T-9moabDK4Aw9yUgDkSNtZA8XEjiRoTl8lZ1_GwIei8lDc3B1apgr3fLdCQVt7W5G1BG1IbydKEL9mzStN11q8rVGGfUBVstdHABzHKlvfw10oRjZmnMqn7xP5B8ye5J2j2VQrN6yA42N0M-wmhsE1-NG-8WSJM0IA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0IvhS_Da1yiqCIIRmP2_zJFUsVdCH08K9LfuVWpDkvFwe_O-dSfbOBqHkIZCdwGZ2dj42M78h5A1rquQdF2WoJAQoKvnS6QRRimhUTEwol7DA-es3fX4hv6zUKh-49TmtcqcTR0Udu4Bn5CecY_cRIXT1fv27xK5R-Hc1t9C4Te4gdBmmdC1W-4CLgfVT-U8mM_qkB12sMeeiLsHOy1LPbNEI2f-_Yr5mmeZZk9fM0Nl9cpj9R3o6LfgDciu1D8ndqaPkn0dkuXTrq0jxOJ5ipRWehdGuoeBTAj_BcHUhDD11wybBbapRpAhcvavHRGLwCenYu4-2XZ8ek4uzTz8-npe5bUIZVC23pRfGiSqK5GOA6C8YHnRIwY3QY41vwOVi0kXhYvAyxsB10kF7oZ2LcBnxhBy0XZueEeoWdfSBaVN7LqN3vnHGBw4-hoEwT6mCVDsG2pAxxbG1xS87xhZG24nnFnhukedWF-Td_pX1BKhxE_EHXJU9IWJhjw-6zaXNW8tq3TSBwcxro8D54z5IuGCizPEoPS_Ia1xTi2gXLabTXLqh7-3n70t7qgwTpgKpKsjbTNR08AXB5eoE4AMCZM0oj2eUsB3DfHgnOjarg97-E96CvNoP45uY4tambgAaEGCM1pksyNNJ0vbfLSpTg7dRF2Qxk8EZY-Yj7dXPESwc4kulFvXRzdN6Tu5x3BeVALV5TA62myG9AG9r61-OW-ov2RYqaQ priority: 102 providerName: ProQuest |
Title | Rapid cell division of Staphylococcus aureus during colonization of the human nose |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30894139 https://www.proquest.com/docview/2211363360 https://www.proquest.com/docview/2195254914 https://pubmed.ncbi.nlm.nih.gov/PMC6425579 https://doaj.org/article/66ffc1ada9854352bc4c4ca8b1a2d4b2 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF_6QOmX4tvUekQRBCE22Vc2H0RaaalCi5we3LdlX6mFktTLHdj_3pk8zgar5EMgO5tsJjM7M5ud3xDyJivTYA1liUs5BCgi2MTIAFEKK4UPGRMmYILz2bk8nfEvczHfIEN5q56BzZ2hHdaTmi2u3v_6efMRFP5Dq_BKHjQwx0rcS1EkYL95IjfJNhimHPX0jP_5qQDGUPQ_Nu_stkPus1QVMK0XIyvVgvn_PWXfslnj_ZS3DNTJA7Lbe5bxYScKD8lGqB6Re12tyZvHZDo115c-xoX6GHOwcJUsrssYvE3gNJi02rlVE5vVIsCpy16MEdJ6yNREYvAW47aqX1zVTXhCZifH3z-dJn1BhcSJgi8Ty5RhqWfBegdxoVPUSRecaUHJSluCM5Zx45nxznLvHZVBOmmZNMbDodhTslXVVXhOYpMX3rpMqsJS7q2xpVHWUfA-FASAQkQkHRioXY82jkUvrnQbdSipO_ZrYL9G9msZkXfrLtcd1Mb_iI_wq6wJESW7vVAvLnSvdFrKsnQZjLxQAtxCah2HAwaaGeq5pRF5jd9UIw5GhRttLsyqafTnb1N9KFTGVMoYPOltT1TW8AbO9HkLwAeEzhpR7o8oQVHduHkQHT3IuaYUi-pAaxqRV-tm7Imb36pQr4AmKwTG8RmPyLNO0tbvPQhsRPKRDI4YM26pLn-0MOIQeQqRF3v_vOcLskNRO1IGc-k-2VouVuEluGBLOyGb-TyfkO2j4_Ov00m7kDFple0323Qw1w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdKgtoi_i3WjVKIoghCZz28mDSKstu_aCrC30bZxbakGSdbOL9Kf8Rs_JZW0Q-lbyEMichMmZc505F0LeZEUarKEscSkHB0UEmxgZwEthhfAhY8IETHA-PJLjE_7lVJyukT99LgyGVfYysRHUvnK4R75FKXYfYUymH2e_EuwahaerfQuNliz2w8VvcNnqD5PPsL5vKd3bPf40TrquAokTOV8klinDUs-C9Q6cI6eoky4401TmKmwBFknGjWfGO8u9d1QG6aRl0hgPl2Lw3Rtkg8NMQBBs7OwefZ2uzi1A34ru7DRTcqsG6S8xyiNPwLLgiRxov6ZJwP-q4JIuHMZpXlJ8e3fJnc5ijbdbErtH1kJ5n9xse1hePCDTqZmd-xgPAGLM7cLdt7gqYrBiYQVBVVbOLevYLOcBbm1WZIylsvsMUAQGKzRuugXGZVWHh-TkWlD6iKyXVRmekNiMcm9dJlVuKffW2MIo6yhYNQocSyEikvYI1K6rYo7NNH7qxptRUrc414BzjTjXMiLvV6_M2hIeVwHv4KqsALH6dvOgmp_pjpm1lEXhMph5rgSYm9Q6DhdMNDPUc0sj8hrXVGN9jRIDeM7Msq715NtUbwuVMZUCHUfkXQdUVPAHznT5EIAHLMk1gNwcQIIAcMPhnnR0J4Bq_Y9dIvJqNYxvYlBdGaolwGS5wP2BjEfkcUtpq_9mqcrBvskjMhrQ4AAxw5Hy_EdTnhw8WiFG-dOrp_WS3BofHx7og8nR_jNymyKPpAyE9iZZX8yX4TnYegv7omOwmHy_bp7-C26Ha_4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+cell+division+of+Staphylococcus+aureus+during+colonization+of+the+human+nose&rft.jtitle=BMC+genomics&rft.au=Szafra%C5%84ska%2C+Anna+K&rft.au=Junker%2C+Vera&rft.au=Steglich%2C+Matthias&rft.au=N%C3%BCbel%2C+Ulrich&rft.date=2019-03-20&rft.eissn=1471-2164&rft.volume=20&rft.issue=1&rft.spage=229&rft_id=info:doi/10.1186%2Fs12864-019-5604-6&rft_id=info%3Apmid%2F30894139&rft.externalDocID=30894139 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |