N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes

Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previ...

Full description

Saved in:
Bibliographic Details
Published inBMC medical genomics Vol. 10; no. S1; pp. 27 - 16
Main Authors Li, Qike, Schissler, A. Grant, Gardeux, Vincent, Achour, Ikbel, Kenost, Colleen, Berghout, Joanne, Li, Haiquan, Zhang, Hao Helen, Lussier, Yves A.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 24.05.2017
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
AbstractList Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. Results We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. Conclusion The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems.BACKGROUNDTranscriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems.We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses.RESULTSWe developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses.The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.CONCLUSIONThe greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
Abstract Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. Results We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. Conclusion The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.
ArticleNumber 27
Audience Academic
Author Li, Haiquan
Lussier, Yves A.
Berghout, Joanne
Schissler, A. Grant
Zhang, Hao Helen
Achour, Ikbel
Li, Qike
Kenost, Colleen
Gardeux, Vincent
Author_xml – sequence: 1
  givenname: Qike
  surname: Li
  fullname: Li, Qike
– sequence: 2
  givenname: A. Grant
  surname: Schissler
  fullname: Schissler, A. Grant
– sequence: 3
  givenname: Vincent
  surname: Gardeux
  fullname: Gardeux, Vincent
– sequence: 4
  givenname: Ikbel
  surname: Achour
  fullname: Achour, Ikbel
– sequence: 5
  givenname: Colleen
  surname: Kenost
  fullname: Kenost, Colleen
– sequence: 6
  givenname: Joanne
  surname: Berghout
  fullname: Berghout, Joanne
– sequence: 7
  givenname: Haiquan
  surname: Li
  fullname: Li, Haiquan
– sequence: 8
  givenname: Hao Helen
  surname: Zhang
  fullname: Zhang, Hao Helen
– sequence: 9
  givenname: Yves A.
  surname: Lussier
  fullname: Lussier, Yves A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28589853$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNURD_gB3BBlrjAIcVO4sTmgFRVBVYqIPFxthxnnPUqa2_tZOne-eHMdlvoVqAcHM0875vM-D3ODnzwkGXPGT1lTNRvEitkQXPKmpwWdZlXj7Ij1nCei0ZWB_feD7PjlBaU1pRL9iQ7LAQXUvDyKPv1OQ82Z_lKj_OfepPIJ3d94aMz87dEd2vtjfM9WUUwLrngyRI6hyUga6dJwt4AeZraBZiRaK-HTXKJOE86l0xYQ9yqu43XS2eImWvfQyLBkjFqn0x0qzEsIT3NHls9JHh2e55kP95ffD__mF9--TA7P7vMDZfVmLdFY8qyMh1IJgtgErjljbGtEKxldcelYWC6omVc1l1VWtM2YBuODdlakOVJNtv5dkEv1Cq6pY4bFbRTN4UQe6Xj6MwACipW0FoyoUVRaSiFFRy6tpE17UTLLHq923mtphaXYsDjTMOe6X7Hu7nqw1rxqmacMzR4dWsQw9UEaVRL3BkMg_YQpqSYpA2lZVVt0ZcP0EWYIm77hkIvXtDyL9VrHMB5G_C7ZmuqzjjlohA4EVKn_6Dw6QDvCPNlHdb3BK_3BMiMcD32ekpJzb593Wdf3F_Kn23c5Q2BZgeYGFKKYJVxox4xWfgXblCMqm2y1S7ZCpOttslWFSrZA-Wd-f81vwGPMPse
CitedBy_id crossref_primary_10_1002_sta4_518
crossref_primary_10_1155_2023_2352094
crossref_primary_10_3389_fmicb_2020_01044
crossref_primary_10_1038_s41698_022_00278_4
crossref_primary_10_1093_bib_bbx149
crossref_primary_10_1101_mcs_a005629
crossref_primary_10_3389_fgene_2019_00414
crossref_primary_10_1016_j_compbiolchem_2019_107139
crossref_primary_10_1016_j_ekir_2023_03_015
crossref_primary_10_1093_bioinformatics_btab290
crossref_primary_10_1186_s12920_017_0262_5
crossref_primary_10_1038_s41418_019_0433_3
crossref_primary_10_1093_bioinformatics_btz949
crossref_primary_10_3390_jpm11010024
Cites_doi 10.1214/aos/1013699998
10.1016/j.jbi.2016.12.009
10.1038/nature08872
10.1111/j.1749-6632.1950.tb53974.x
10.1093/bioinformatics/btw248
10.1038/nature08987
10.1101/gr.079558.108
10.1002/0471249688
10.1146/annurev.bioeng.10.061807.160502
10.1038/75556
10.1073/pnas.1305823110
10.1093/bioinformatics/btq182
10.1093/nar/gks461
10.1093/bioinformatics/btm453
10.1016/S0962-8924(02)00002-8
10.1093/nar/gku1179
10.1186/gb-2010-11-10-r106
10.1186/1745-6150-4-14
10.1186/1471-2164-12-293
10.1136/amiajnl-2013-002519
10.1371/journal.pgen.1000676
10.1093/bioinformatics/btm051
10.1093/nar/gks042
10.1371/journal.pcbi.1002350
10.1038/nature04296
10.1186/gb-2004-5-10-r80
10.1111/j.2517-6161.1977.tb01600.x
10.1093/bioinformatics/btv253
10.1038/nmeth.1226
10.1016/j.jbi.2015.03.003
10.1038/nature14129
10.1038/nrg2484
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
The Author(s). 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12920-017-0263-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1755-8794
EndPage 16
ExternalDocumentID oai_doaj_org_article_e41206918a824ae38f85edb7960d8b1f
PMC5461551
A505828206
28589853
10_1186_s12920_017_0263_4
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: K22 LM008308
– fundername: NCI NIH HHS
  grantid: P30 CA023074
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FD
8FK
AHSBF
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c594t-b27c334cde9192e19e5f57cfb881b16d59c1ecd2b1596d43fcb7ef75d599bfe93
IEDL.DBID M48
ISSN 1755-8794
IngestDate Wed Aug 27 01:22:25 EDT 2025
Thu Aug 21 14:15:05 EDT 2025
Fri Jul 11 02:58:17 EDT 2025
Fri Jul 25 18:59:07 EDT 2025
Tue Jun 17 21:38:10 EDT 2025
Tue Jun 10 20:14:59 EDT 2025
Fri Jun 27 04:07:47 EDT 2025
Thu Apr 03 07:01:11 EDT 2025
Tue Jul 01 02:55:33 EDT 2025
Thu Apr 24 23:10:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S1
Keywords Head and neck squamous cell carcinomas (HNSCCs)
Single-Subject Analysis
RNA-Seq
Mixture Model
N-of-1-pathways
Precision Medicine
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-b27c334cde9192e19e5f57cfb881b16d59c1ecd2b1596d43fcb7ef75d599bfe93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12920-017-0263-4
PMID 28589853
PQID 1905135203
PQPubID 55237
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_e41206918a824ae38f85edb7960d8b1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5461551
proquest_miscellaneous_1907003441
proquest_journals_1905135203
gale_infotracmisc_A505828206
gale_infotracacademiconefile_A505828206
gale_incontextgauss_ISR_A505828206
pubmed_primary_28589853
crossref_citationtrail_10_1186_s12920_017_0263_4
crossref_primary_10_1186_s12920_017_0263_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-24
PublicationDateYYYYMMDD 2017-05-24
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-24
  day: 24
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC medical genomics
PublicationTitleAlternate BMC Med Genomics
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 263_CR9
DJ McCarthy (263_CR33) 2012; 40
CGA Network (263_CR24) 2015; 517
S Anders (263_CR29) 2010; 11
AH Bild (263_CR14) 2006; 439
JC Marioni (263_CR31) 2008; 18
SR Piccolo (263_CR22) 2013; 110
263_CR34
CH Ooi (263_CR15) 2009; 5
V Gardeux (263_CR7) 2014; 7
LM McIntyre (263_CR32) 2011; 12
263_CR20
263_CR21
A Perez-Rathke (263_CR2) 2013
CJ Vaske (263_CR36) 2010; 26
RC Gentleman (263_CR26) 2004; 5
JJ Goeman (263_CR16) 2007; 23
MD Robinson (263_CR30) 2007; 23
F Wilcoxon (263_CR11) 1950; 52
ML Yarmush (263_CR5) 2009; 11
263_CR27
V Gardeux (263_CR6) 2014; 21
263_CR28
AG Schissler (263_CR12) 2015; 31
D Wu (263_CR35) 2012; 40
Z Wang (263_CR1) 2009; 10
JM Levsky (263_CR4) 2003; 13
A Oshlack (263_CR18) 2009; 4
AG Schissler (263_CR10) 2016; 32
X Yang (263_CR3) 2012; 8
V Gardeux (263_CR8) 2015; 55
TJ Hudson (263_CR23) 2010; 464
A Mortazavi (263_CR17) 2008; 5
GO Consortium (263_CR25) 2015; 43
M Ashburner (263_CR13) 2000; 25
JK Pickrell (263_CR19) 2010; 464
25079003 - BMC Med Genomics. 2014;7 Suppl 1:S1
25631445 - Nature. 2015 Jan 29;517(7536):576-82
17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
20220758 - Nature. 2010 Apr 1;464(7289):768-72
28007582 - J Biomed Inform. 2017 Feb;66:32-41
20979621 - Genome Biol. 2010;11(10):R106
19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63
19413510 - Annu Rev Biomed Eng. 2009;11:235-57
24128763 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17778-83
17303618 - Bioinformatics. 2007 Apr 15;23(8):980-7
26072495 - Bioinformatics. 2015 Jun 15;31(12):i293-302
22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97
25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56
27307648 - Bioinformatics. 2016 Jun 15;32(12):i80-i89
23424121 - Pac Symp Biocomput. 2013;:159-70
25797143 - J Biomed Inform. 2015 Jun;55:94-103
20393554 - Nature. 2010 Apr 15;464(7291):993-8
22291585 - PLoS Comput Biol. 2012 Jan;8(1):e1002350
15461798 - Genome Biol. 2004;5(10):R80
12480334 - Trends Cell Biol. 2003 Jan;13(1):4-6
18516045 - Nat Methods. 2008 Jul;5(7):621-8
25301808 - J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1015-25
19371405 - Biol Direct. 2009 Apr 16;4:14
10802651 - Nat Genet. 2000 May;25(1):25-9
20529912 - Bioinformatics. 2010 Jun 15;26(12):i237-45
19798449 - PLoS Genet. 2009 Oct;5(10):e1000676
22638577 - Nucleic Acids Res. 2012 Sep 1;40(17):e133
21645359 - BMC Genomics. 2011 Jun 06;12:293
18550803 - Genome Res. 2008 Sep;18(9):1509-17
16273092 - Nature. 2006 Jan 19;439(7074):353-7
References_xml – ident: 263_CR28
  doi: 10.1214/aos/1013699998
– ident: 263_CR9
  doi: 10.1016/j.jbi.2016.12.009
– volume: 464
  start-page: 768
  issue: 7289
  year: 2010
  ident: 263_CR19
  publication-title: Nature
  doi: 10.1038/nature08872
– volume: 52
  start-page: 808
  issue: 6
  year: 1950
  ident: 263_CR11
  publication-title: Ann Ny Acad Sci
  doi: 10.1111/j.1749-6632.1950.tb53974.x
– volume: 32
  start-page: i80
  issue: 12
  year: 2016
  ident: 263_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw248
– volume: 464
  start-page: 993
  issue: 7291
  year: 2010
  ident: 263_CR23
  publication-title: Nature
  doi: 10.1038/nature08987
– volume: 18
  start-page: 1509
  issue: 9
  year: 2008
  ident: 263_CR31
  publication-title: Genome Res
  doi: 10.1101/gr.079558.108
– ident: 263_CR21
  doi: 10.1002/0471249688
– volume: 11
  start-page: 235
  year: 2009
  ident: 263_CR5
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.10.061807.160502
– volume: 25
  start-page: 25
  issue: 1
  year: 2000
  ident: 263_CR13
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 110
  start-page: 17778
  issue: 44
  year: 2013
  ident: 263_CR22
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1305823110
– volume: 26
  start-page: i237
  issue: 12
  year: 2010
  ident: 263_CR36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq182
– start-page: 159
  volume-title: Pac Symp Biocomput: 2013: World Scientific
  year: 2013
  ident: 263_CR2
– volume: 40
  start-page: e133
  issue: 17
  year: 2012
  ident: 263_CR35
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks461
– volume: 23
  start-page: 2881
  issue: 21
  year: 2007
  ident: 263_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm453
– volume: 13
  start-page: 4
  issue: 1
  year: 2003
  ident: 263_CR4
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(02)00002-8
– volume: 43
  start-page: D1049
  issue: D1
  year: 2015
  ident: 263_CR25
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1179
– volume: 11
  start-page: R106
  issue: 10
  year: 2010
  ident: 263_CR29
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  ident: 263_CR18
  publication-title: Biol Direct
  doi: 10.1186/1745-6150-4-14
– volume: 12
  start-page: 293
  issue: 1
  year: 2011
  ident: 263_CR32
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-293
– volume: 21
  start-page: 1015
  issue: 6
  year: 2014
  ident: 263_CR6
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2013-002519
– volume: 5
  start-page: e1000676
  issue: 10
  year: 2009
  ident: 263_CR15
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000676
– volume: 23
  start-page: 980
  issue: 8
  year: 2007
  ident: 263_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm051
– volume: 40
  start-page: 4288
  issue: 10
  year: 2012
  ident: 263_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks042
– volume: 8
  start-page: e1002350
  issue: 1
  year: 2012
  ident: 263_CR3
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002350
– volume: 439
  start-page: 353
  issue: 7074
  year: 2006
  ident: 263_CR14
  publication-title: Nature
  doi: 10.1038/nature04296
– volume: 5
  start-page: R80
  issue: 10
  year: 2004
  ident: 263_CR26
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-10-r80
– volume: 7
  start-page: 1
  issue: 1
  year: 2014
  ident: 263_CR7
  publication-title: BMC Med Genet
– ident: 263_CR27
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 31
  start-page: i293
  issue: 12
  year: 2015
  ident: 263_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv253
– ident: 263_CR34
– volume: 5
  start-page: 621
  issue: 7
  year: 2008
  ident: 263_CR17
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1226
– ident: 263_CR20
– volume: 55
  start-page: 94
  year: 2015
  ident: 263_CR8
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.03.003
– volume: 517
  start-page: 576
  issue: 7536
  year: 2015
  ident: 263_CR24
  publication-title: Nature
  doi: 10.1038/nature14129
– volume: 10
  start-page: 57
  issue: 1
  year: 2009
  ident: 263_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2484
– reference: 23424121 - Pac Symp Biocomput. 2013;:159-70
– reference: 15461798 - Genome Biol. 2004;5(10):R80
– reference: 19798449 - PLoS Genet. 2009 Oct;5(10):e1000676
– reference: 25797143 - J Biomed Inform. 2015 Jun;55:94-103
– reference: 12480334 - Trends Cell Biol. 2003 Jan;13(1):4-6
– reference: 20529912 - Bioinformatics. 2010 Jun 15;26(12):i237-45
– reference: 25301808 - J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1015-25
– reference: 16273092 - Nature. 2006 Jan 19;439(7074):353-7
– reference: 25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 28007582 - J Biomed Inform. 2017 Feb;66:32-41
– reference: 26072495 - Bioinformatics. 2015 Jun 15;31(12):i293-302
– reference: 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97
– reference: 25079003 - BMC Med Genomics. 2014;7 Suppl 1:S1
– reference: 20393554 - Nature. 2010 Apr 15;464(7291):993-8
– reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
– reference: 19371405 - Biol Direct. 2009 Apr 16;4:14
– reference: 17303618 - Bioinformatics. 2007 Apr 15;23(8):980-7
– reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17
– reference: 25631445 - Nature. 2015 Jan 29;517(7536):576-82
– reference: 27307648 - Bioinformatics. 2016 Jun 15;32(12):i80-i89
– reference: 10802651 - Nat Genet. 2000 May;25(1):25-9
– reference: 21645359 - BMC Genomics. 2011 Jun 06;12:293
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 19413510 - Annu Rev Biomed Eng. 2009;11:235-57
– reference: 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63
– reference: 24128763 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17778-83
– reference: 22638577 - Nucleic Acids Res. 2012 Sep 1;40(17):e133
– reference: 22291585 - PLoS Comput Biol. 2012 Jan;8(1):e1002350
– reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72
SSID ssj0060591
Score 2.2232478
Snippet Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues...
Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine...
Abstract Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 27
SubjectTerms Bioinformatics
Cancer
Competition
Consortia
Data processing
Datasets
Gene expression
Gene Expression Profiling - methods
Genetic regulation
Genetic research
Genomes
Genomics
Head & neck cancer
Head and neck
Head and neck carcinoma
Head and Neck Neoplasms - genetics
Head and neck squamous cell carcinomas (HNSCCs)
Health aspects
Humans
Mixture Model
N-of-1-pathways
Neoplasms, Squamous Cell - genetics
Ontology
Patients
Precision Medicine
Properties
Ribonucleic acid
RNA
RNA-Seq
ROC Curve
Single-Subject Analysis
Squamous cell carcinoma
Statistical analysis
Transcription factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Sg3gRv12tEkUQhNCX3WQ36a1KSxVeD2qht5BkE_ug3S3d9_y4-4d3ZpP3eIugF6-bCewmk5nf7Ex-Q8iboIR1ohRMcamY8LFmutGW6VqrypXCW4mXk-cn9fGp-HQmz7ZafWFNWKIHTgu3FwQvZ7XmyqpS2FCpqGRoXQPIu1WOR7S-4PPWwVSywYDRNc85TK7qvYFjUyaGFhlijoqJiRcayfr_NMlbPmlaL7nlgI7ukbsZOdKD9Mb3ya3QPSC35zk3_pD8PmF9hFANewz_sL8GOl_8POzAzJ3v05TpBy9Fr65zUx26zqrT7wtL8Y_BRWDDyuF_GWozVQlddBTv7WKdJ85uU_96mq4LD7SPdInObjQ9_WUYHpHTo8OvH45Z7rHAvNRiyVzZ-KoSvg0asF7gOsgoGx-dAjzL61Zqz4NvSwewp25FFb1rQmwkDGgXg64ek52u78JTQrXSXiqvWw8QRTursIUHr0PEngtctQWZrdfc-ExAjn0wLswYiKjapG0ysE0Gt8mIgrzbTLlK7Bt_E36PG7kRROLs8QGok8nqZP6lTgV5jWpgkBqjw9qbb3Y1DObjl8_mAMAixKcwvSBvs1Ds4Qu8zVcZYB2QTWsiuTuRhLPrp8NrbTPZdgyGI2Ua4OJZVZBXm2GcifVwXehXo0wzsjXygjxJyrn57lJJpQGFFaSZqO1kYaYj3eJ8ZBaXAtPU_Nn_WMnn5E45HjjJSrFLdpbXq_ACANzSvRzP6g1ofUKv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA5aQXwRf7u1ShRBEEIvu8lu4otUaanC9UEt3FtIskl7UHfP27uq7_7hzuzmzi5CXy8TuM1MJjOZyfcR8jooYZ3IBVNcKiZ8LJmutGW61KpwufBW4uPk6Ul5fCo-z-QsXbh1qa1y4xN7R123Hu_I9zkCSUG0MCneL34wZI3C6mqi0LhJbiF0GVp1NdsmXBCpa54qmVyV-x1HaiaGfhkyj4KJ0VnUQ_b_75ivnEzjrskrx9DRPXI3xY_0YFD4fXIjNA_I7WmqkD8kf05YGyFhQ6bhn_Z3R6fzX4cNOLvzd3So98NZRRfLRK1DN7V1ejm3FO8NLgLr1g5vZ6hNgCV03lB8vYvdnji7Hljs6fBouKNtpCs88noH1H4P3SNyenT47eMxS0wLzEstVszllS8K4eugIeILXAcZZeWjUxDV8rKW2vPg69xB8FPWoojeVSFWEga0i0EXj8lO0zbhKaFaaS-V17WHQEU7q5DIg5chIvMCV3VGJps1Nz7BkCMbxoXp0xFVmkFNBtRkUE1GZOTtdspiwOC4TvgDKnIriPDZ_Q_t8syk3WiC4Pmk1FxZlQsbChWVDLWrIJ2rleMxI6_QDAwCZDTYgXNm111nPn39Yg4gZIQsFaZn5E0Sii18gbfpQQOsA2JqjST3RpKwg_14eGNtJnmQzvyz94y83A7jTOyKa0K77mWqHrORZ-TJYJzb786VVBpisYxUI7MdLcx4pJmf9_jiUmCxmu9e_7eekTt5v5Uky8Ue2Vkt1-E5BGgr96LfhX8BFoA6Sw
  priority: 102
  providerName: ProQuest
Title N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes
URI https://www.ncbi.nlm.nih.gov/pubmed/28589853
https://www.proquest.com/docview/1905135203
https://www.proquest.com/docview/1907003441
https://pubmed.ncbi.nlm.nih.gov/PMC5461551
https://doaj.org/article/e41206918a824ae38f85edb7960d8b1f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBf9gLGXse9664I2BoOBt8iWbGkwRjpSukDCaBfIm7BkqQ1kdhcnW_u-P3x3thNqVva0p0B092CdTnenk34_Ql47yTPDIx5KJmTIrU9ClaosVImSsYm4zQQ-Th5PkpMpH83EbIds6K3aCaxuLe2QT2q6XLy7-nH9CRz-Y-3wMnlfMaRcCnG_hYoiDvku2YfAlCKhwZhvmwqQuCvWNjZvVeuEphrB_-99-kag6l6ivBGVju-Te206SQeN_R-QHVc8JHfGbcP8Efk9CUsP9RsSD__Kris6nl8NC9j7Lj7Qpv0PoYteLlumHbpptdOf84ziMcLChdXa4GENzVr8EjovKD7mxcufqJ03pPa0eUNc0dLTFUbAej8qv7vqMZkeD799Pglb4oXQCsVXoYlSG8fc5k5BAuiYcsKL1HojIcllSS6UZc7mkYFcKMl57K1JnU8FDCjjnYqfkL2iLNwBoUoqK6RVuYW8RZlMIq8HS5xHIgYm84D0N3OubYtKjuQYC11XJzLRjZk0mEmjmTQPyNutymUDyfEv4SM05FYQ0bTrP8rluW6dUzvOon6imMxkxDMXSy-Fy00K1V0uDfMBeYXLQCNeRoEXcs6zdVXpL2enegAZJBStoB6QN62QL-ELbNa-b4B5QIitjuRhRxIc2naHN6tNb_xBM8RRg2S5Hwfk5XYYNfGSXOHKdS2T1hCOLCBPm8W5_e5ICqkgNQtI2lm2nYnpjhTzixpuXHDsXbNn_2Mmn5O7Ue1wIoz4IdlbLdfuBWR1K9Mju-ks7ZH9wWB0NoLfo-Hk62mvPiPp1X78B6O3Tz4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQEviG8CAwwCISFZqxM7sZEQGrCpZWsfYJP6ZhLH3iptSWlaRt_5e_gbuUvSsghpb3utz1LjO9-H7-53hLxySqSZCAVTXComrI-ZTnTKdKxVlIXCphKbk4ejuH8kvozleIP8WfXCYFnlSifWijovLb6Rb3MEkgJvoRd9mP5gODUKs6urERqNWOy75TmEbNX7wWfg7-sw3Ns9_NRn7VQBZqUWc5aFiY0iYXOnwbtxXDvpZWJ9psCD43EuteXO5mEGhj7OReRtljifSFjQmXcIvgQq_xoY3h4Ge8l4HeBBZKB5mznlKt6uOI6CYmgHINKJmOjYvnpEwP-G4IIl7FZpXjB7e7fJrdZfpTuNgN0hG664S64P24z8PfJ7xEoPASJONj5PlxUdTn7tFqBcT97Rpr4AbCOdztpRPnSVy6c_JynFd4pTx6pFhq9BNG0BUuikoNgtjNWluDtfFunZxNKmSbmipadzNLG1wivPXHWfHF0JDx6QzaIs3CNCtdJWKqtzC46RzlKFg0N47DxOeuAqD0hvdebGtrDnOH3j1NThj4pNwyYDbDLIJiMC8na9ZdpgflxG_BEZuSZEuO76h3J2bNrbb5zgYS_WXKUqFKmLlFfS5VkC4WOuMu4D8hLFwCAgR4EVP8fpoqrM4NtXswMuKkTFsD0gb1oiX8IX2LRtoIBzQAyvDuVWhxI0hu0ur6TNtBqrMv_uV0BerJdxJ1bhFa5c1DRJjRHJA_KwEc71d4dKKg2-X0CSjth2Dqa7UkxOajxzKTA5zh9f_reekxv9w-GBORiM9p-Qm2F9rSQLxRbZnM8W7ik4h_PsWX0jKfl-1SrgLyiZeL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-of-1-pathways+MixEnrich%3A+advancing+precision+medicine+via+single-subject+analysis+in+discovering+dynamic+changes+of+transcriptomes&rft.jtitle=BMC+medical+genomics&rft.au=Qike+Li&rft.au=A.+Grant+Schissler&rft.au=Vincent+Gardeux&rft.au=Ikbel+Achour&rft.date=2017-05-24&rft.pub=BMC&rft.eissn=1755-8794&rft.volume=10&rft.issue=S1&rft.spage=5&rft.epage=16&rft_id=info:doi/10.1186%2Fs12920-017-0263-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e41206918a824ae38f85edb7960d8b1f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8794&client=summon