N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes
Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previ...
Saved in:
Published in | BMC medical genomics Vol. 10; no. S1; pp. 27 - 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
24.05.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems.
We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses.
The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care. |
---|---|
AbstractList | Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. Results We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. Conclusion The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care. Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems.BACKGROUNDTranscriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems.We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses.RESULTSWe developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses.The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.CONCLUSIONThe greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care. Abstract Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. Results We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. Conclusion The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care. Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care. |
ArticleNumber | 27 |
Audience | Academic |
Author | Li, Haiquan Lussier, Yves A. Berghout, Joanne Schissler, A. Grant Zhang, Hao Helen Achour, Ikbel Li, Qike Kenost, Colleen Gardeux, Vincent |
Author_xml | – sequence: 1 givenname: Qike surname: Li fullname: Li, Qike – sequence: 2 givenname: A. Grant surname: Schissler fullname: Schissler, A. Grant – sequence: 3 givenname: Vincent surname: Gardeux fullname: Gardeux, Vincent – sequence: 4 givenname: Ikbel surname: Achour fullname: Achour, Ikbel – sequence: 5 givenname: Colleen surname: Kenost fullname: Kenost, Colleen – sequence: 6 givenname: Joanne surname: Berghout fullname: Berghout, Joanne – sequence: 7 givenname: Haiquan surname: Li fullname: Li, Haiquan – sequence: 8 givenname: Hao Helen surname: Zhang fullname: Zhang, Hao Helen – sequence: 9 givenname: Yves A. surname: Lussier fullname: Lussier, Yves A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28589853$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gB3BBlrjAIcVO4sTmgFRVBVYqIPFxthxnnPUqa2_tZOne-eHMdlvoVqAcHM0875vM-D3ODnzwkGXPGT1lTNRvEitkQXPKmpwWdZlXj7Ij1nCei0ZWB_feD7PjlBaU1pRL9iQ7LAQXUvDyKPv1OQ82Z_lKj_OfepPIJ3d94aMz87dEd2vtjfM9WUUwLrngyRI6hyUga6dJwt4AeZraBZiRaK-HTXKJOE86l0xYQ9yqu43XS2eImWvfQyLBkjFqn0x0qzEsIT3NHls9JHh2e55kP95ffD__mF9--TA7P7vMDZfVmLdFY8qyMh1IJgtgErjljbGtEKxldcelYWC6omVc1l1VWtM2YBuODdlakOVJNtv5dkEv1Cq6pY4bFbRTN4UQe6Xj6MwACipW0FoyoUVRaSiFFRy6tpE17UTLLHq923mtphaXYsDjTMOe6X7Hu7nqw1rxqmacMzR4dWsQw9UEaVRL3BkMg_YQpqSYpA2lZVVt0ZcP0EWYIm77hkIvXtDyL9VrHMB5G_C7ZmuqzjjlohA4EVKn_6Dw6QDvCPNlHdb3BK_3BMiMcD32ekpJzb593Wdf3F_Kn23c5Q2BZgeYGFKKYJVxox4xWfgXblCMqm2y1S7ZCpOttslWFSrZA-Wd-f81vwGPMPse |
CitedBy_id | crossref_primary_10_1002_sta4_518 crossref_primary_10_1155_2023_2352094 crossref_primary_10_3389_fmicb_2020_01044 crossref_primary_10_1038_s41698_022_00278_4 crossref_primary_10_1093_bib_bbx149 crossref_primary_10_1101_mcs_a005629 crossref_primary_10_3389_fgene_2019_00414 crossref_primary_10_1016_j_compbiolchem_2019_107139 crossref_primary_10_1016_j_ekir_2023_03_015 crossref_primary_10_1093_bioinformatics_btab290 crossref_primary_10_1186_s12920_017_0262_5 crossref_primary_10_1038_s41418_019_0433_3 crossref_primary_10_1093_bioinformatics_btz949 crossref_primary_10_3390_jpm11010024 |
Cites_doi | 10.1214/aos/1013699998 10.1016/j.jbi.2016.12.009 10.1038/nature08872 10.1111/j.1749-6632.1950.tb53974.x 10.1093/bioinformatics/btw248 10.1038/nature08987 10.1101/gr.079558.108 10.1002/0471249688 10.1146/annurev.bioeng.10.061807.160502 10.1038/75556 10.1073/pnas.1305823110 10.1093/bioinformatics/btq182 10.1093/nar/gks461 10.1093/bioinformatics/btm453 10.1016/S0962-8924(02)00002-8 10.1093/nar/gku1179 10.1186/gb-2010-11-10-r106 10.1186/1745-6150-4-14 10.1186/1471-2164-12-293 10.1136/amiajnl-2013-002519 10.1371/journal.pgen.1000676 10.1093/bioinformatics/btm051 10.1093/nar/gks042 10.1371/journal.pcbi.1002350 10.1038/nature04296 10.1186/gb-2004-5-10-r80 10.1111/j.2517-6161.1977.tb01600.x 10.1093/bioinformatics/btv253 10.1038/nmeth.1226 10.1016/j.jbi.2015.03.003 10.1038/nature14129 10.1038/nrg2484 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 The Author(s). 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 – notice: The Author(s). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12920-017-0263-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1755-8794 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_e41206918a824ae38f85edb7960d8b1f PMC5461551 A505828206 28589853 10_1186_s12920_017_0263_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: K22 LM008308 – fundername: NCI NIH HHS grantid: P30 CA023074 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FD 8FK AHSBF AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-b27c334cde9192e19e5f57cfb881b16d59c1ecd2b1596d43fcb7ef75d599bfe93 |
IEDL.DBID | M48 |
ISSN | 1755-8794 |
IngestDate | Wed Aug 27 01:22:25 EDT 2025 Thu Aug 21 14:15:05 EDT 2025 Fri Jul 11 02:58:17 EDT 2025 Fri Jul 25 18:59:07 EDT 2025 Tue Jun 17 21:38:10 EDT 2025 Tue Jun 10 20:14:59 EDT 2025 Fri Jun 27 04:07:47 EDT 2025 Thu Apr 03 07:01:11 EDT 2025 Tue Jul 01 02:55:33 EDT 2025 Thu Apr 24 23:10:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | S1 |
Keywords | Head and neck squamous cell carcinomas (HNSCCs) Single-Subject Analysis RNA-Seq Mixture Model N-of-1-pathways Precision Medicine |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-b27c334cde9192e19e5f57cfb881b16d59c1ecd2b1596d43fcb7ef75d599bfe93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12920-017-0263-4 |
PMID | 28589853 |
PQID | 1905135203 |
PQPubID | 55237 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e41206918a824ae38f85edb7960d8b1f pubmedcentral_primary_oai_pubmedcentral_nih_gov_5461551 proquest_miscellaneous_1907003441 proquest_journals_1905135203 gale_infotracmisc_A505828206 gale_infotracacademiconefile_A505828206 gale_incontextgauss_ISR_A505828206 pubmed_primary_28589853 crossref_citationtrail_10_1186_s12920_017_0263_4 crossref_primary_10_1186_s12920_017_0263_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-24 |
PublicationDateYYYYMMDD | 2017-05-24 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC medical genomics |
PublicationTitleAlternate | BMC Med Genomics |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 263_CR9 DJ McCarthy (263_CR33) 2012; 40 CGA Network (263_CR24) 2015; 517 S Anders (263_CR29) 2010; 11 AH Bild (263_CR14) 2006; 439 JC Marioni (263_CR31) 2008; 18 SR Piccolo (263_CR22) 2013; 110 263_CR34 CH Ooi (263_CR15) 2009; 5 V Gardeux (263_CR7) 2014; 7 LM McIntyre (263_CR32) 2011; 12 263_CR20 263_CR21 A Perez-Rathke (263_CR2) 2013 CJ Vaske (263_CR36) 2010; 26 RC Gentleman (263_CR26) 2004; 5 JJ Goeman (263_CR16) 2007; 23 MD Robinson (263_CR30) 2007; 23 F Wilcoxon (263_CR11) 1950; 52 ML Yarmush (263_CR5) 2009; 11 263_CR27 V Gardeux (263_CR6) 2014; 21 263_CR28 AG Schissler (263_CR12) 2015; 31 D Wu (263_CR35) 2012; 40 Z Wang (263_CR1) 2009; 10 JM Levsky (263_CR4) 2003; 13 A Oshlack (263_CR18) 2009; 4 AG Schissler (263_CR10) 2016; 32 X Yang (263_CR3) 2012; 8 V Gardeux (263_CR8) 2015; 55 TJ Hudson (263_CR23) 2010; 464 A Mortazavi (263_CR17) 2008; 5 GO Consortium (263_CR25) 2015; 43 M Ashburner (263_CR13) 2000; 25 JK Pickrell (263_CR19) 2010; 464 25079003 - BMC Med Genomics. 2014;7 Suppl 1:S1 25631445 - Nature. 2015 Jan 29;517(7536):576-82 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 20220758 - Nature. 2010 Apr 1;464(7289):768-72 28007582 - J Biomed Inform. 2017 Feb;66:32-41 20979621 - Genome Biol. 2010;11(10):R106 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 19413510 - Annu Rev Biomed Eng. 2009;11:235-57 24128763 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17778-83 17303618 - Bioinformatics. 2007 Apr 15;23(8):980-7 26072495 - Bioinformatics. 2015 Jun 15;31(12):i293-302 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97 25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 27307648 - Bioinformatics. 2016 Jun 15;32(12):i80-i89 23424121 - Pac Symp Biocomput. 2013;:159-70 25797143 - J Biomed Inform. 2015 Jun;55:94-103 20393554 - Nature. 2010 Apr 15;464(7291):993-8 22291585 - PLoS Comput Biol. 2012 Jan;8(1):e1002350 15461798 - Genome Biol. 2004;5(10):R80 12480334 - Trends Cell Biol. 2003 Jan;13(1):4-6 18516045 - Nat Methods. 2008 Jul;5(7):621-8 25301808 - J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1015-25 19371405 - Biol Direct. 2009 Apr 16;4:14 10802651 - Nat Genet. 2000 May;25(1):25-9 20529912 - Bioinformatics. 2010 Jun 15;26(12):i237-45 19798449 - PLoS Genet. 2009 Oct;5(10):e1000676 22638577 - Nucleic Acids Res. 2012 Sep 1;40(17):e133 21645359 - BMC Genomics. 2011 Jun 06;12:293 18550803 - Genome Res. 2008 Sep;18(9):1509-17 16273092 - Nature. 2006 Jan 19;439(7074):353-7 |
References_xml | – ident: 263_CR28 doi: 10.1214/aos/1013699998 – ident: 263_CR9 doi: 10.1016/j.jbi.2016.12.009 – volume: 464 start-page: 768 issue: 7289 year: 2010 ident: 263_CR19 publication-title: Nature doi: 10.1038/nature08872 – volume: 52 start-page: 808 issue: 6 year: 1950 ident: 263_CR11 publication-title: Ann Ny Acad Sci doi: 10.1111/j.1749-6632.1950.tb53974.x – volume: 32 start-page: i80 issue: 12 year: 2016 ident: 263_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw248 – volume: 464 start-page: 993 issue: 7291 year: 2010 ident: 263_CR23 publication-title: Nature doi: 10.1038/nature08987 – volume: 18 start-page: 1509 issue: 9 year: 2008 ident: 263_CR31 publication-title: Genome Res doi: 10.1101/gr.079558.108 – ident: 263_CR21 doi: 10.1002/0471249688 – volume: 11 start-page: 235 year: 2009 ident: 263_CR5 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.10.061807.160502 – volume: 25 start-page: 25 issue: 1 year: 2000 ident: 263_CR13 publication-title: Nat Genet doi: 10.1038/75556 – volume: 110 start-page: 17778 issue: 44 year: 2013 ident: 263_CR22 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1305823110 – volume: 26 start-page: i237 issue: 12 year: 2010 ident: 263_CR36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq182 – start-page: 159 volume-title: Pac Symp Biocomput: 2013: World Scientific year: 2013 ident: 263_CR2 – volume: 40 start-page: e133 issue: 17 year: 2012 ident: 263_CR35 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks461 – volume: 23 start-page: 2881 issue: 21 year: 2007 ident: 263_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm453 – volume: 13 start-page: 4 issue: 1 year: 2003 ident: 263_CR4 publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(02)00002-8 – volume: 43 start-page: D1049 issue: D1 year: 2015 ident: 263_CR25 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1179 – volume: 11 start-page: R106 issue: 10 year: 2010 ident: 263_CR29 publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 4 start-page: 1 issue: 1 year: 2009 ident: 263_CR18 publication-title: Biol Direct doi: 10.1186/1745-6150-4-14 – volume: 12 start-page: 293 issue: 1 year: 2011 ident: 263_CR32 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-293 – volume: 21 start-page: 1015 issue: 6 year: 2014 ident: 263_CR6 publication-title: J Am Med Inform Assoc doi: 10.1136/amiajnl-2013-002519 – volume: 5 start-page: e1000676 issue: 10 year: 2009 ident: 263_CR15 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000676 – volume: 23 start-page: 980 issue: 8 year: 2007 ident: 263_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm051 – volume: 40 start-page: 4288 issue: 10 year: 2012 ident: 263_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks042 – volume: 8 start-page: e1002350 issue: 1 year: 2012 ident: 263_CR3 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002350 – volume: 439 start-page: 353 issue: 7074 year: 2006 ident: 263_CR14 publication-title: Nature doi: 10.1038/nature04296 – volume: 5 start-page: R80 issue: 10 year: 2004 ident: 263_CR26 publication-title: Genome Biol doi: 10.1186/gb-2004-5-10-r80 – volume: 7 start-page: 1 issue: 1 year: 2014 ident: 263_CR7 publication-title: BMC Med Genet – ident: 263_CR27 doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 31 start-page: i293 issue: 12 year: 2015 ident: 263_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv253 – ident: 263_CR34 – volume: 5 start-page: 621 issue: 7 year: 2008 ident: 263_CR17 publication-title: Nat Methods doi: 10.1038/nmeth.1226 – ident: 263_CR20 – volume: 55 start-page: 94 year: 2015 ident: 263_CR8 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2015.03.003 – volume: 517 start-page: 576 issue: 7536 year: 2015 ident: 263_CR24 publication-title: Nature doi: 10.1038/nature14129 – volume: 10 start-page: 57 issue: 1 year: 2009 ident: 263_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg2484 – reference: 23424121 - Pac Symp Biocomput. 2013;:159-70 – reference: 15461798 - Genome Biol. 2004;5(10):R80 – reference: 19798449 - PLoS Genet. 2009 Oct;5(10):e1000676 – reference: 25797143 - J Biomed Inform. 2015 Jun;55:94-103 – reference: 12480334 - Trends Cell Biol. 2003 Jan;13(1):4-6 – reference: 20529912 - Bioinformatics. 2010 Jun 15;26(12):i237-45 – reference: 25301808 - J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1015-25 – reference: 16273092 - Nature. 2006 Jan 19;439(7074):353-7 – reference: 25428369 - Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 – reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8 – reference: 28007582 - J Biomed Inform. 2017 Feb;66:32-41 – reference: 26072495 - Bioinformatics. 2015 Jun 15;31(12):i293-302 – reference: 22287627 - Nucleic Acids Res. 2012 May;40(10):4288-97 – reference: 25079003 - BMC Med Genomics. 2014;7 Suppl 1:S1 – reference: 20393554 - Nature. 2010 Apr 15;464(7291):993-8 – reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 – reference: 19371405 - Biol Direct. 2009 Apr 16;4:14 – reference: 17303618 - Bioinformatics. 2007 Apr 15;23(8):980-7 – reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17 – reference: 25631445 - Nature. 2015 Jan 29;517(7536):576-82 – reference: 27307648 - Bioinformatics. 2016 Jun 15;32(12):i80-i89 – reference: 10802651 - Nat Genet. 2000 May;25(1):25-9 – reference: 21645359 - BMC Genomics. 2011 Jun 06;12:293 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 19413510 - Annu Rev Biomed Eng. 2009;11:235-57 – reference: 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 – reference: 24128763 - Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17778-83 – reference: 22638577 - Nucleic Acids Res. 2012 Sep 1;40(17):e133 – reference: 22291585 - PLoS Comput Biol. 2012 Jan;8(1):e1002350 – reference: 20220758 - Nature. 2010 Apr 1;464(7289):768-72 |
SSID | ssj0060591 |
Score | 2.2232478 |
Snippet | Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues... Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine... Abstract Background Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 27 |
SubjectTerms | Bioinformatics Cancer Competition Consortia Data processing Datasets Gene expression Gene Expression Profiling - methods Genetic regulation Genetic research Genomes Genomics Head & neck cancer Head and neck Head and neck carcinoma Head and Neck Neoplasms - genetics Head and neck squamous cell carcinomas (HNSCCs) Health aspects Humans Mixture Model N-of-1-pathways Neoplasms, Squamous Cell - genetics Ontology Patients Precision Medicine Properties Ribonucleic acid RNA RNA-Seq ROC Curve Single-Subject Analysis Squamous cell carcinoma Statistical analysis Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_Sg3gRv12tEkUQhNCX3WQ36a1KSxVeD2qht5BkE_ug3S3d9_y4-4d3ZpP3eIugF6-bCewmk5nf7Ex-Q8iboIR1ohRMcamY8LFmutGW6VqrypXCW4mXk-cn9fGp-HQmz7ZafWFNWKIHTgu3FwQvZ7XmyqpS2FCpqGRoXQPIu1WOR7S-4PPWwVSywYDRNc85TK7qvYFjUyaGFhlijoqJiRcayfr_NMlbPmlaL7nlgI7ukbsZOdKD9Mb3ya3QPSC35zk3_pD8PmF9hFANewz_sL8GOl_8POzAzJ3v05TpBy9Fr65zUx26zqrT7wtL8Y_BRWDDyuF_GWozVQlddBTv7WKdJ85uU_96mq4LD7SPdInObjQ9_WUYHpHTo8OvH45Z7rHAvNRiyVzZ-KoSvg0asF7gOsgoGx-dAjzL61Zqz4NvSwewp25FFb1rQmwkDGgXg64ek52u78JTQrXSXiqvWw8QRTursIUHr0PEngtctQWZrdfc-ExAjn0wLswYiKjapG0ysE0Gt8mIgrzbTLlK7Bt_E36PG7kRROLs8QGok8nqZP6lTgV5jWpgkBqjw9qbb3Y1DObjl8_mAMAixKcwvSBvs1Ds4Qu8zVcZYB2QTWsiuTuRhLPrp8NrbTPZdgyGI2Ua4OJZVZBXm2GcifVwXehXo0wzsjXygjxJyrn57lJJpQGFFaSZqO1kYaYj3eJ8ZBaXAtPU_Nn_WMnn5E45HjjJSrFLdpbXq_ACANzSvRzP6g1ofUKv priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA5aQXwRf7u1ShRBEEIvu8lu4otUaanC9UEt3FtIskl7UHfP27uq7_7hzuzmzi5CXy8TuM1MJjOZyfcR8jooYZ3IBVNcKiZ8LJmutGW61KpwufBW4uPk6Ul5fCo-z-QsXbh1qa1y4xN7R123Hu_I9zkCSUG0MCneL34wZI3C6mqi0LhJbiF0GVp1NdsmXBCpa54qmVyV-x1HaiaGfhkyj4KJ0VnUQ_b_75ivnEzjrskrx9DRPXI3xY_0YFD4fXIjNA_I7WmqkD8kf05YGyFhQ6bhn_Z3R6fzX4cNOLvzd3So98NZRRfLRK1DN7V1ejm3FO8NLgLr1g5vZ6hNgCV03lB8vYvdnji7Hljs6fBouKNtpCs88noH1H4P3SNyenT47eMxS0wLzEstVszllS8K4eugIeILXAcZZeWjUxDV8rKW2vPg69xB8FPWoojeVSFWEga0i0EXj8lO0zbhKaFaaS-V17WHQEU7q5DIg5chIvMCV3VGJps1Nz7BkCMbxoXp0xFVmkFNBtRkUE1GZOTtdspiwOC4TvgDKnIriPDZ_Q_t8syk3WiC4Pmk1FxZlQsbChWVDLWrIJ2rleMxI6_QDAwCZDTYgXNm111nPn39Yg4gZIQsFaZn5E0Sii18gbfpQQOsA2JqjST3RpKwg_14eGNtJnmQzvyz94y83A7jTOyKa0K77mWqHrORZ-TJYJzb786VVBpisYxUI7MdLcx4pJmf9_jiUmCxmu9e_7eekTt5v5Uky8Ue2Vkt1-E5BGgr96LfhX8BFoA6Sw priority: 102 providerName: ProQuest |
Title | N-of-1-pathways MixEnrich: advancing precision medicine via single-subject analysis in discovering dynamic changes of transcriptomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28589853 https://www.proquest.com/docview/1905135203 https://www.proquest.com/docview/1907003441 https://pubmed.ncbi.nlm.nih.gov/PMC5461551 https://doaj.org/article/e41206918a824ae38f85edb7960d8b1f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBf9gLGXse9664I2BoOBt8iWbGkwRjpSukDCaBfIm7BkqQ1kdhcnW_u-P3x3thNqVva0p0B092CdTnenk34_Ql47yTPDIx5KJmTIrU9ClaosVImSsYm4zQQ-Th5PkpMpH83EbIds6K3aCaxuLe2QT2q6XLy7-nH9CRz-Y-3wMnlfMaRcCnG_hYoiDvku2YfAlCKhwZhvmwqQuCvWNjZvVeuEphrB_-99-kag6l6ivBGVju-Te206SQeN_R-QHVc8JHfGbcP8Efk9CUsP9RsSD__Kris6nl8NC9j7Lj7Qpv0PoYteLlumHbpptdOf84ziMcLChdXa4GENzVr8EjovKD7mxcufqJ03pPa0eUNc0dLTFUbAej8qv7vqMZkeD799Pglb4oXQCsVXoYlSG8fc5k5BAuiYcsKL1HojIcllSS6UZc7mkYFcKMl57K1JnU8FDCjjnYqfkL2iLNwBoUoqK6RVuYW8RZlMIq8HS5xHIgYm84D0N3OubYtKjuQYC11XJzLRjZk0mEmjmTQPyNutymUDyfEv4SM05FYQ0bTrP8rluW6dUzvOon6imMxkxDMXSy-Fy00K1V0uDfMBeYXLQCNeRoEXcs6zdVXpL2enegAZJBStoB6QN62QL-ELbNa-b4B5QIitjuRhRxIc2naHN6tNb_xBM8RRg2S5Hwfk5XYYNfGSXOHKdS2T1hCOLCBPm8W5_e5ICqkgNQtI2lm2nYnpjhTzixpuXHDsXbNn_2Mmn5O7Ue1wIoz4IdlbLdfuBWR1K9Mju-ks7ZH9wWB0NoLfo-Hk62mvPiPp1X78B6O3Tz4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIQEviG8CAwwCISFZqxM7sZEQGrCpZWsfYJP6ZhLH3iptSWlaRt_5e_gbuUvSsghpb3utz1LjO9-H7-53hLxySqSZCAVTXComrI-ZTnTKdKxVlIXCphKbk4ejuH8kvozleIP8WfXCYFnlSifWijovLb6Rb3MEkgJvoRd9mP5gODUKs6urERqNWOy75TmEbNX7wWfg7-sw3Ns9_NRn7VQBZqUWc5aFiY0iYXOnwbtxXDvpZWJ9psCD43EuteXO5mEGhj7OReRtljifSFjQmXcIvgQq_xoY3h4Ge8l4HeBBZKB5mznlKt6uOI6CYmgHINKJmOjYvnpEwP-G4IIl7FZpXjB7e7fJrdZfpTuNgN0hG664S64P24z8PfJ7xEoPASJONj5PlxUdTn7tFqBcT97Rpr4AbCOdztpRPnSVy6c_JynFd4pTx6pFhq9BNG0BUuikoNgtjNWluDtfFunZxNKmSbmipadzNLG1wivPXHWfHF0JDx6QzaIs3CNCtdJWKqtzC46RzlKFg0N47DxOeuAqD0hvdebGtrDnOH3j1NThj4pNwyYDbDLIJiMC8na9ZdpgflxG_BEZuSZEuO76h3J2bNrbb5zgYS_WXKUqFKmLlFfS5VkC4WOuMu4D8hLFwCAgR4EVP8fpoqrM4NtXswMuKkTFsD0gb1oiX8IX2LRtoIBzQAyvDuVWhxI0hu0ur6TNtBqrMv_uV0BerJdxJ1bhFa5c1DRJjRHJA_KwEc71d4dKKg2-X0CSjth2Dqa7UkxOajxzKTA5zh9f_reekxv9w-GBORiM9p-Qm2F9rSQLxRbZnM8W7ik4h_PsWX0jKfl-1SrgLyiZeL4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-of-1-pathways+MixEnrich%3A+advancing+precision+medicine+via+single-subject+analysis+in+discovering+dynamic+changes+of+transcriptomes&rft.jtitle=BMC+medical+genomics&rft.au=Qike+Li&rft.au=A.+Grant+Schissler&rft.au=Vincent+Gardeux&rft.au=Ikbel+Achour&rft.date=2017-05-24&rft.pub=BMC&rft.eissn=1755-8794&rft.volume=10&rft.issue=S1&rft.spage=5&rft.epage=16&rft_id=info:doi/10.1186%2Fs12920-017-0263-4&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e41206918a824ae38f85edb7960d8b1f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8794&client=summon |