The widely distributed hard tick, Haemaphysalis longicornis, can retain canine parvovirus, but not be infected in laboratory condition
Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovi...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 77; no. 4; pp. 405 - 411 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2015
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick, Haemaphysalis longicornis, in laboratory condition. After inoculation of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was recovered from the inoculated ticks using a cell culture, indicating that the virus retained intact in the ticks after inoculation, but significant positive reaction indicating virus infection was not detected in the tick organs by immunofluorescence antibody test using a monoclonal antibody. In the case of ticks inoculated with feline leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These findings provide significant important information on the characteristic interaction of tick with non-tick-borne virus. |
---|---|
AbstractList | Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick, Haemaphysalis longicornis, in laboratory condition. After inoculation of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was recovered from the inoculated ticks using a cell culture, indicating that the virus retained intact in the ticks after inoculation, but significant positive reaction indicating virus infection was not detected in the tick organs by immunofluorescence antibody test using a monoclonal antibody. In the case of ticks inoculated with feline leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These findings provide significant important information on the characteristic interaction of tick with non-tick-borne virus. Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick, Haemaphysalis longicornis , in laboratory condition. After inoculation of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was recovered from the inoculated ticks using a cell culture, indicating that the virus retained intact in the ticks after inoculation, but significant positive reaction indicating virus infection was not detected in the tick organs by immunofluorescence antibody test using a monoclonal antibody. In the case of ticks inoculated with feline leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These findings provide significant important information on the characteristic interaction of tick with non-tick-borne virus. Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick, Haemaphysalis longicornis, in laboratory condition. After inoculation of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was recovered from the inoculated ticks using a cell culture, indicating that the virus retained intact in the ticks after inoculation, but significant positive reaction indicating virus infection was not detected in the tick organs by immunofluorescence antibody test using a monoclonal antibody. In the case of ticks inoculated with feline leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These findings provide significant important information on the characteristic interaction of tick with non-tick-borne virus.Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding on their interaction and biology is still lacking. The aim of this study was to experimentally assess the interaction between canine parvovirus (CPV) and a widely distributed hard tick, Haemaphysalis longicornis, in laboratory condition. After inoculation of CPV into the hemocoel of the ticks, polymerase chain reaction assay revealed that CPV persisted in inoculated unfed adult female ticks for 28 days. Canine parvovirus was recovered from the inoculated ticks using a cell culture, indicating that the virus retained intact in the ticks after inoculation, but significant positive reaction indicating virus infection was not detected in the tick organs by immunofluorescence antibody test using a monoclonal antibody. In the case of ticks inoculated with feline leukemia virus, the virus had shorter persistence in the ticks compared to CPV. These findings provide significant important information on the characteristic interaction of tick with non-tick-borne virus. |
Author | MOCHIZUKI, Masami TANAKA, Tetsuya MORI, Hiroyuki |
Author_xml | – sequence: 1 fullname: MORI, Hiroyuki organization: Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan – sequence: 2 fullname: TANAKA, Tetsuya organization: Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan – sequence: 3 fullname: MOCHIZUKI, Masami organization: Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25650060$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksuKFDEUhgsZcS66cy0BNy66xiSVS2Uj6KCOMOBmXIdU6lR32uqkTVIt_QI-tym6p9EBcZELnO_8nMt_WZ354KGqXhJ8Taiib9e7TbomrMZEqSfVBWmYrCVr1Fl1gRURtaQcn1eXKa0xpoQJ9aw6p1xwjAW-qH7drwD9dD2Me9S7lKPrpgw9WpnYo-zs9wW6NbAx29U-mdElNAa_dDZE79ICWeNRhGycn7_OA9qauAs7F6cSLUrIh4w6QM4PYGfdQo6mC9HkEPfIBt-77IJ_Xj0dzJjgxfG9qr59-nh_c1vfff385eb9XW25YrlW0GHcUiU5w62wqm1txwcDqukwkVgAF5QBM4Li0mjT80GZFszATV8Oh-aqenfQ3U7dBnoLPkcz6m10GxP3Ohin_454t9LLsNOMUSkZLgJvjgIx_JggZb1xycI4Gg9hSpq0pVDRUiH_j4q27Ixx2hT09SN0HaboyyQ0kVzgeZ9toV79Wfyp6odtFoAeABtDShEGbV0283xLL27UBOvZMnq2jCZMz5YpSYtHSQ-6_8A_HPB1ymYJJ9jE4pYRDrCUms3XMekUtMVWGnzzG_-v3Yw |
CitedBy_id | crossref_primary_10_1371_journal_pntd_0006805 crossref_primary_10_1089_vbz_2022_0025 crossref_primary_10_1007_s11262_019_01661_3 |
Cites_doi | 10.1007/s10493-007-9065-2 10.1016/j.tvjl.2012.07.004 10.1590/0037-8682-1673-2013 10.1136/vr.110.10.225 10.1128/JVI.73.10.8587-8598.1999 10.4269/ajtmh.2007.76.694 10.1016/j.ibmb.2009.12.009 10.1097/00002030-199303000-00006 10.1016/j.vetmic.2006.04.003 10.1016/j.jip.2006.05.006 10.1007/s00430-003-0178-x 10.1017/S0031182004005220 10.1056/NEJMoa1203378 10.1007/s10493-010-9359-7 10.1007/s10493-009-9268-9 10.1371/journal.pone.0033504 10.1128/JCM.34.9.2101-2105.1996 10.4149/av_2013_02_123 10.1128/JVI.75.8.3896-3902.2001 10.1177/030098588502200617 10.1016/0020-7519(94)00114-4 10.7601/mez.27.207 10.1292/jvms1939.51.264 10.1017/S0031182004005967 10.1006/expr.1996.0039 10.1292/jvms1939.43.243 10.1177/030098588001700508 10.1016/j.jviromet.2005.06.017 10.1007/s10493-013-9722-6 10.1016/j.ttbdis.2013.09.004 10.1051/vetres/2010011 10.1128/JVI.77.18.10099-10105.2003 10.1016/j.prevetmed.2014.02.005 10.1128/JVI.77.3.1718-1726.2003 |
ContentType | Journal Article |
Copyright | 2015 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency 2015 2015 The Japanese Society of Veterinary Science 2015 |
Copyright_xml | – notice: 2015 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency 2015 – notice: 2015 The Japanese Society of Veterinary Science 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 7SS 5PM |
DOI | 10.1292/jvms.14-0199 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Entomology Abstracts (Full archive) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Entomology Abstracts |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 411 |
ExternalDocumentID | PMC4427740 3919544231 25650060 10_1292_jvms_14_0199 article_jvms_77_4_77_14_0199_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECGQY ECM EIF EYRJQ NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 7SS 5PM |
ID | FETCH-LOGICAL-c594t-9eb00829754086c988cb5fae93b01706e5624e4a6204693d5f9a8eaf5adf5a5e3 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 17:32:29 EDT 2025 Fri Jul 11 07:30:05 EDT 2025 Thu Jul 10 17:25:58 EDT 2025 Mon Jun 30 06:39:17 EDT 2025 Mon Jul 21 05:51:39 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Tue Jul 01 04:14:26 EDT 2025 Wed Apr 05 08:57:02 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-9eb00829754086c988cb5fae93b01706e5624e4a6204693d5f9a8eaf5adf5a5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.14-0199 |
PMID | 25650060 |
PQID | 1756074398 |
PQPubID | 2028964 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4427740 proquest_miscellaneous_1859468267 proquest_miscellaneous_1680194523 proquest_journals_1756074398 pubmed_primary_25650060 crossref_citationtrail_10_1292_jvms_14_0199 crossref_primary_10_1292_jvms_14_0199 jstage_primary_article_jvms_77_4_77_14_0199_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2015 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 9. Fujisaki, K. 1978. Development of acquired resistance precipitating antibody in rabbits experimentally infested with females of Haemaphysalis longicornis (Ixodoidea: Ixodidae). Natl. Inst. Anim. Health Q. (Tokyo) 18: 27–38. 7. Buresová, V., Franta, Z. and Kopácek, P. 2006. A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J. Invertebr. Pathol. 93: 96–104. 25. Lubinga, J. C., Tuppurainen, E. S., Coetzer, J. A., Stoltsz, W. H. and Venter, E. H. 2014. Transovarial passage and transmission of LSDV by Amblyomma hebraeum, Rhipicephalus appendiculatus and Rhipicephalus decoloratus. Exp. Appl. Acarol. 62: 67–75. 14. Hueffer, K., Govindasamy, L., Agbandje-McKenna, M. and Parrish, C. R. 2003. Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. J. Virol. 77: 10099–10105. 34. Robinson, W. F., Wilcox, G. E. and Flower, R. L. 1980. Canine parvoviral disease: experimental reproduction of the enteric form with a parvovirus isolated from a case of myocarditis. Vet. Pathol. 17: 589–599. 27. Meunier, P. C., Cooper, B. J., Appel, M. J. and Slauson, D. O. 1985. Pathogenesis of canine parvovirus enteritis: the importance of viremia. Vet. Pathol. 22: 60–71. 13. Hoelzer, K. and Parrish, C. R. 2010. The emergence of parvoviruses of carnivores. Vet. Res. 41: 39. 22. Korshus, J. B., Munderloh, U. G., Bey, R. F. and Kurtti, T. J. 2004. Experimental infection of dogs with Borrelia burgdorferi sensu stricto using Ixodes scapularis ticks artificially infected by capillary feeding. Med. Microbiol. Immunol. (Berl.) 193: 27–34. 16. Humphery-Smith, I., Donker, G., Turzo, A., Chastel, C. and Schmidt-Mayerova, H. 1993. Evaluation of mechanical transmission of HIV by the African soft tick, Ornithodoros moubata. AIDS 7: 341–347. 4. Bagshaw, C., Isdell, A. E., Thiruvaiyaru, D. S., Brisbin, I. L. Jr. and Sanchez, S. 2014. Molecular detection of canine parvovirus in flies (Diptera) at open and closed canine facilities in the eastern United States. Prev. Vet. Med. 114: 276–284. 28. Mochizuki, M., Konishi, S., Ajiki, M. and Akaboshi, T. 1989. Comparison of feline parvovirus subspecific strains using monoclonal antibodies against a feline panleukopenia virus. Nihon Juigaku Zasshi 51: 264–272. 11. Hatta, T., Miyoshi, T., Matsubayashi, M., Islam, M. K., Alim, M. A., Anisuzzaman, ., Yamaji, K., Fujisaki, K. and Tsuji, N. 2012. Semi-artificial mouse skin membrane feeding technique for adult tick, Haemaphysalis longicornis. Parasit. Vectors 5: 263. 2. Aung, K. M., Boldbaatar, D., Umemiya-Shirafuji, R., Liao, M., Tsuji, N., Xuenan, X., Suzuki, H., Kume, A., Galay, R. L., Tanaka, T. and Fujisaki, K. 2012. HlSRB, a Class B scavenger receptor, is key to the granulocyte-mediated microbial phagocytosis in ticks. PLoS ONE 7: e33504. 3. Azetaka, M., Hirasawa, T., Konishi, S. and Ogata, M. 1981. Studies on canine parvovirus isolation, experimental infection and serologic survey. Nihon Juigaku Zasshi 43: 243–255. 6. Bouwknegt, C., van Rijn, P. A., Schipper, J. J., Hölzel, D., Boonstra, J., Nijhof, A. M., van Rooij, E. M. and Jongejan, F. 2010. Potential role of ticks as vectors of bluetongue virus. Exp. Appl. Acarol. 52: 183–192. 36. Tandon, R., Cattori, V., Gomes-Keller, M. A., Meli, M. L., Golder, M. C., Lutz, H. and Hofmann-Lehmann, R. 2005. Quantitation of feline leukaemia virus viral and proviral loads by TaqMan real-time polymerase chain reaction. J. Virol. Methods 130: 124–132. 33. Rickard, C. G., Post, J. E., Noronha, F. and Barr, L. M. 1969. A transmissible virus-induced lymphocytic leukemia of the cat. J. Natl. Cancer Inst. 42: 987–1014. 21. Kleiboeker, S. B., Scoles, G. A., Burrage, T. G. and Sur, J. 1999. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J. Virol. 73: 8587–8598. 20. Kaufman, W. R. and Nuttall, P. A. 1996. Amblyomma variegatum (Acari: Ixodidae): mechanism and control of arbovirus secretion in tick saliva. Exp. Parasitol. 82: 316–323. 24. Levin, M. L., Killmaster, L., Zemtsova, G., Grant, D., Mumcuoglu, K. Y., Eremeeva, M. E. and Dasch, G. A. 2009. Incongruent effects of two isolates of Rickettsia conorii on the survival of Rhipicephalus sanguineus ticks. Exp. Appl. Acarol. 49: 347–359. 37. Truyen, U. 2006. Evolution of canine parvovirus—a need for new vaccines? Vet. Microbiol. 117: 9–13. 38. Uchikawa, K. 1976. A membrane feeding method for Argas japonicus (Ixodoidea: Argasidae) and applications of this method for culturing the tick and for oral infection of Japanese encephalitis virus. Jap. J. Sanit. Zool. 27: 207–216. 12. Havlíková, S., Ličková, M. and Klempa, B. 2013. Non-viraemic transmission of tick-borne viruses. Acta Virol. 57: 123–129. 18. Jarrett, O., Golder, M. C. and Stewart, M. F. 1982. Detection of transient and persistent feline leukaemia virus infections. Vet. Rec. 110: 225–228. 31. Morris, S. D., Bryson, N. R., de Waal, D. T., Matthee, O., du Preez, E. R., van Vuuren, M. and Kadish, E. S. 1996. The possible role of two common three-host ticks, Rhipicephalus appendiculatus and Amblyomma hebraeum, in the transmission of bovine leukosis virus. J. S. Afr. Vet. Assoc. 67: 148–150. 1. Agyei, A. D. and Runham, N. W. 1995. Studies on the morphological changes in the midguts of two ixodid tick species Boophilus microplus and Rhipicephalus appendiculatus during digestion of the blood meal. Int. J. Parasitol. 25: 55–62. 17. Ikadai, H., Sasaki, M., Ishida, H., Matsuu, A., Igarashi, I., Fujisaki, K. and Oyamada, T. 2007. Molecular evidence of Babesia equi transmission in Haemaphysalis longicornis. Am. J. Trop. Med. Hyg. 76: 694–697. 19. Jongejan, F. and Uilenberg, G. 2004. The global importance of ticks. Parasitology 129 Suppl: S3–S14. 29. Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M. C., Yasuda, N. and Uno, T. 1996. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia. J. Clin. Microbiol. 34: 2101–2105. 32. Parker, J. S., Murphy, W. J., Wang, D., O’Brien, S. J. and Parrish, C. R. 2001. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J. Virol. 75: 3896–3902. 39. Willett, B. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 24268885 - Ticks Tick Borne Dis. 2014 Mar;5(2):121-6 8631383 - Exp Parasitol. 1996 Apr;82(3):316-23 24679715 - Prev Vet Med. 2014 Jun 1;114(3-4):276-84 7797373 - Int J Parasitol. 1995 Jan;25(1):55-62 10482612 - J Virol. 1999 Oct;73(10):8587-98 20040373 - Insect Biochem Mol Biol. 2010 Jan;40(1):49-57 7404970 - Vet Pathol. 1980 Sep;17(5):589-99 22479406 - PLoS One. 2012;7(3):e33504 8471196 - AIDS. 1993 Mar;7(3):341-7 5793196 - J Natl Cancer Inst. 1969 Jun;42(6):987-1014 2983478 - Vet Pathol. 1985 Jan;22(1):60-71 77478 - Natl Inst Anim Health Q (Tokyo). 1978 Spring;18(1):27-38 16765539 - Vet Microbiol. 2006 Oct 5;117(1):9-13 8862565 - J Clin Microbiol. 1996 Sep;34(9):2101-5 16793056 - J Invertebr Pathol. 2006 Oct;93(2):96-104 17406794 - Exp Appl Acarol. 2007;41(4):289-303 20358393 - Exp Appl Acarol. 2010 Oct;52(2):183-92 17426172 - Am J Trop Med Hyg. 2007 Apr;76(4):694-7 23153119 - Parasit Vectors. 2012;5:263 11264378 - J Virol. 2001 Apr;75(8):3896-902 9120860 - J S Afr Vet Assoc. 1996 Sep;67(3):148-50 15938513 - Parasitology. 2004;129 Suppl:S221-45 12941920 - J Virol. 2003 Sep;77(18):10099-105 7289337 - Nihon Juigaku Zasshi. 1981 Apr;43(2):243-55 22931317 - N Engl J Med. 2012 Aug 30;367(9):834-41 20152105 - Vet Res. 2010 Nov-Dec;41(6):39 24474026 - Rev Soc Bras Med Trop. 2013 Nov-Dec;46(6):788-90 2544758 - Nihon Juigaku Zasshi. 1989 Apr;51(2):264-72 23975564 - Exp Appl Acarol. 2014 Jan;62(1):67-75 19421877 - Exp Appl Acarol. 2009 Dec;49(4):347-59 12884036 - Med Microbiol Immunol. 2004 Feb;193(1):27-34 15938502 - Parasitology. 2004;129 Suppl:S3-14 6281958 - Vet Rec. 1982 Mar 6;110(10):225-8 16054243 - J Virol Methods. 2005 Dec;130(1-2):124-32 12525605 - J Virol. 2003 Feb;77(3):1718-26 22867855 - Vet J. 2013 Jan;195(1):16-23 23600870 - Acta Virol. 2013;57(2):123-9 |
References_xml | – reference: 34. Robinson, W. F., Wilcox, G. E. and Flower, R. L. 1980. Canine parvoviral disease: experimental reproduction of the enteric form with a parvovirus isolated from a case of myocarditis. Vet. Pathol. 17: 589–599. – reference: 36. Tandon, R., Cattori, V., Gomes-Keller, M. A., Meli, M. L., Golder, M. C., Lutz, H. and Hofmann-Lehmann, R. 2005. Quantitation of feline leukaemia virus viral and proviral loads by TaqMan real-time polymerase chain reaction. J. Virol. Methods 130: 124–132. – reference: 29. Mochizuki, M., Horiuchi, M., Hiragi, H., San Gabriel, M. C., Yasuda, N. and Uno, T. 1996. Isolation of canine parvovirus from a cat manifesting clinical signs of feline panleukopenia. J. Clin. Microbiol. 34: 2101–2105. – reference: 14. Hueffer, K., Govindasamy, L., Agbandje-McKenna, M. and Parrish, C. R. 2003. Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses. J. Virol. 77: 10099–10105. – reference: 5. Boldbaatar, D., Battur, B., Umemiya-Shirafuji, R., Liao, M., Tanaka, T. and Fujisaki, K. 2010. GATA transcription, translation and regulation in Haemaphysalis longicornis tick: analysis of the cDNA and an essential role for vitellogenesis. Insect Biochem. Mol. Biol. 40: 49–57. – reference: 15. Hueffer, K., Parker, J. S., Weichert, W. S., Geisel, R. E., Sgro, J. Y. and Parrish, C. R. 2003. The natural host range shift and subsequent evolution of canine parvovirus resulted from virus-specific binding to the canine transferrin receptor. J. Virol. 77: 1718–1726. – reference: 23. Labuda, M. and Nuttall, P. A. 2004. Tick-borne viruses. Parasitology 129 Suppl: S221–S245. – reference: 22. Korshus, J. B., Munderloh, U. G., Bey, R. F. and Kurtti, T. J. 2004. Experimental infection of dogs with Borrelia burgdorferi sensu stricto using Ixodes scapularis ticks artificially infected by capillary feeding. Med. Microbiol. Immunol. (Berl.) 193: 27–34. – reference: 35. Sonenshine, D. E. 1991. Biology of Ticks, Oxford University Press, New York. – reference: 4. Bagshaw, C., Isdell, A. E., Thiruvaiyaru, D. S., Brisbin, I. L. Jr. and Sanchez, S. 2014. Molecular detection of canine parvovirus in flies (Diptera) at open and closed canine facilities in the eastern United States. Prev. Vet. Med. 114: 276–284. – reference: 26. McMullan, L. K., Folk, S. M., Kelly, A. J., MacNeil, A., Goldsmith, C. S., Metcalfe, M. G., Batten, B. C., Albariño, C. G., Zaki, S. R., Rollin, P. E., Nicholson, W. L. and Nichol, S. T. 2012. A new phlebovirus associated with severe febrile illness in Missouri. N. Engl. J. Med. 367: 834–841. – reference: 28. Mochizuki, M., Konishi, S., Ajiki, M. and Akaboshi, T. 1989. Comparison of feline parvovirus subspecific strains using monoclonal antibodies against a feline panleukopenia virus. Nihon Juigaku Zasshi 51: 264–272. – reference: 10. Gao, J., Luo, J., Li, Y., Fan, R., Zhao, H., Guan, G., Liu, J., Wiske, B., Sugimoto, C. and Yin, H. 2007. Cloning and characterization of a ribosomal protein L23a from Haemaphysalis qinghaiensis eggs by immuno screening of a cDNA expression library. Exp. Appl. Acarol. 41: 289–303. – reference: 20. Kaufman, W. R. and Nuttall, P. A. 1996. Amblyomma variegatum (Acari: Ixodidae): mechanism and control of arbovirus secretion in tick saliva. Exp. Parasitol. 82: 316–323. – reference: 27. Meunier, P. C., Cooper, B. J., Appel, M. J. and Slauson, D. O. 1985. Pathogenesis of canine parvovirus enteritis: the importance of viremia. Vet. Pathol. 22: 60–71. – reference: 7. Buresová, V., Franta, Z. and Kopácek, P. 2006. A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J. Invertebr. Pathol. 93: 96–104. – reference: 8. Favoretto, S. R., de Almeida, M. F., Martorelli, L. F., Aires, C. C., Labruna, M. B., Kataoka, A. P., Campos, A. C., Sacramento, D. R., Durigon, E. L. and Koprowski, H. 2013. Experimental infection of the bat tick Carios fonsecai (Acari: Ixodidae) with the rabies virus. Rev. Soc. Bras. Med. Trop. 46: 788–790. – reference: 24. Levin, M. L., Killmaster, L., Zemtsova, G., Grant, D., Mumcuoglu, K. Y., Eremeeva, M. E. and Dasch, G. A. 2009. Incongruent effects of two isolates of Rickettsia conorii on the survival of Rhipicephalus sanguineus ticks. Exp. Appl. Acarol. 49: 347–359. – reference: 37. Truyen, U. 2006. Evolution of canine parvovirus—a need for new vaccines? Vet. Microbiol. 117: 9–13. – reference: 12. Havlíková, S., Ličková, M. and Klempa, B. 2013. Non-viraemic transmission of tick-borne viruses. Acta Virol. 57: 123–129. – reference: 33. Rickard, C. G., Post, J. E., Noronha, F. and Barr, L. M. 1969. A transmissible virus-induced lymphocytic leukemia of the cat. J. Natl. Cancer Inst. 42: 987–1014. – reference: 17. Ikadai, H., Sasaki, M., Ishida, H., Matsuu, A., Igarashi, I., Fujisaki, K. and Oyamada, T. 2007. Molecular evidence of Babesia equi transmission in Haemaphysalis longicornis. Am. J. Trop. Med. Hyg. 76: 694–697. – reference: 18. Jarrett, O., Golder, M. C. and Stewart, M. F. 1982. Detection of transient and persistent feline leukaemia virus infections. Vet. Rec. 110: 225–228. – reference: 25. Lubinga, J. C., Tuppurainen, E. S., Coetzer, J. A., Stoltsz, W. H. and Venter, E. H. 2014. Transovarial passage and transmission of LSDV by Amblyomma hebraeum, Rhipicephalus appendiculatus and Rhipicephalus decoloratus. Exp. Appl. Acarol. 62: 67–75. – reference: 2. Aung, K. M., Boldbaatar, D., Umemiya-Shirafuji, R., Liao, M., Tsuji, N., Xuenan, X., Suzuki, H., Kume, A., Galay, R. L., Tanaka, T. and Fujisaki, K. 2012. HlSRB, a Class B scavenger receptor, is key to the granulocyte-mediated microbial phagocytosis in ticks. PLoS ONE 7: e33504. – reference: 19. Jongejan, F. and Uilenberg, G. 2004. The global importance of ticks. Parasitology 129 Suppl: S3–S14. – reference: 32. Parker, J. S., Murphy, W. J., Wang, D., O’Brien, S. J. and Parrish, C. R. 2001. Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J. Virol. 75: 3896–3902. – reference: 38. Uchikawa, K. 1976. A membrane feeding method for Argas japonicus (Ixodoidea: Argasidae) and applications of this method for culturing the tick and for oral infection of Japanese encephalitis virus. Jap. J. Sanit. Zool. 27: 207–216. – reference: 16. Humphery-Smith, I., Donker, G., Turzo, A., Chastel, C. and Schmidt-Mayerova, H. 1993. Evaluation of mechanical transmission of HIV by the African soft tick, Ornithodoros moubata. AIDS 7: 341–347. – reference: 30. Mori, H., Galay, R. L., Maeda, H., Matsuo, T., Umemiya-Shirafuji, R., Mochizuki, M., Fujisaki, K. and Tanaka, T. 2014. Host-derived transferrin is maintained and transferred from midgut to ovary in Haemaphysalis longicornis ticks. Ticks Tick Borne Dis. 5: 121–126. – reference: 3. Azetaka, M., Hirasawa, T., Konishi, S. and Ogata, M. 1981. Studies on canine parvovirus isolation, experimental infection and serologic survey. Nihon Juigaku Zasshi 43: 243–255. – reference: 6. Bouwknegt, C., van Rijn, P. A., Schipper, J. J., Hölzel, D., Boonstra, J., Nijhof, A. M., van Rooij, E. M. and Jongejan, F. 2010. Potential role of ticks as vectors of bluetongue virus. Exp. Appl. Acarol. 52: 183–192. – reference: 9. Fujisaki, K. 1978. Development of acquired resistance precipitating antibody in rabbits experimentally infested with females of Haemaphysalis longicornis (Ixodoidea: Ixodidae). Natl. Inst. Anim. Health Q. (Tokyo) 18: 27–38. – reference: 31. Morris, S. D., Bryson, N. R., de Waal, D. T., Matthee, O., du Preez, E. R., van Vuuren, M. and Kadish, E. S. 1996. The possible role of two common three-host ticks, Rhipicephalus appendiculatus and Amblyomma hebraeum, in the transmission of bovine leukosis virus. J. S. Afr. Vet. Assoc. 67: 148–150. – reference: 13. Hoelzer, K. and Parrish, C. R. 2010. The emergence of parvoviruses of carnivores. Vet. Res. 41: 39. – reference: 21. Kleiboeker, S. B., Scoles, G. A., Burrage, T. G. and Sur, J. 1999. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J. Virol. 73: 8587–8598. – reference: 1. Agyei, A. D. and Runham, N. W. 1995. Studies on the morphological changes in the midguts of two ixodid tick species Boophilus microplus and Rhipicephalus appendiculatus during digestion of the blood meal. Int. J. Parasitol. 25: 55–62. – reference: 11. Hatta, T., Miyoshi, T., Matsubayashi, M., Islam, M. K., Alim, M. A., Anisuzzaman, ., Yamaji, K., Fujisaki, K. and Tsuji, N. 2012. Semi-artificial mouse skin membrane feeding technique for adult tick, Haemaphysalis longicornis. Parasit. Vectors 5: 263. – reference: 39. Willett, B. J. and Hosie, M. J. 2013. Feline leukaemia virus: half a century since its discovery. Vet. J. 195: 16–23. – ident: 10 doi: 10.1007/s10493-007-9065-2 – ident: 39 doi: 10.1016/j.tvjl.2012.07.004 – ident: 8 doi: 10.1590/0037-8682-1673-2013 – ident: 18 doi: 10.1136/vr.110.10.225 – ident: 35 – ident: 33 – ident: 21 doi: 10.1128/JVI.73.10.8587-8598.1999 – ident: 31 – ident: 17 doi: 10.4269/ajtmh.2007.76.694 – ident: 5 doi: 10.1016/j.ibmb.2009.12.009 – ident: 16 doi: 10.1097/00002030-199303000-00006 – ident: 37 doi: 10.1016/j.vetmic.2006.04.003 – ident: 9 – ident: 7 doi: 10.1016/j.jip.2006.05.006 – ident: 22 doi: 10.1007/s00430-003-0178-x – ident: 23 doi: 10.1017/S0031182004005220 – ident: 26 doi: 10.1056/NEJMoa1203378 – ident: 6 doi: 10.1007/s10493-010-9359-7 – ident: 24 doi: 10.1007/s10493-009-9268-9 – ident: 2 doi: 10.1371/journal.pone.0033504 – ident: 29 doi: 10.1128/JCM.34.9.2101-2105.1996 – ident: 12 doi: 10.4149/av_2013_02_123 – ident: 32 doi: 10.1128/JVI.75.8.3896-3902.2001 – ident: 11 – ident: 27 doi: 10.1177/030098588502200617 – ident: 1 doi: 10.1016/0020-7519(94)00114-4 – ident: 38 doi: 10.7601/mez.27.207 – ident: 28 doi: 10.1292/jvms1939.51.264 – ident: 19 doi: 10.1017/S0031182004005967 – ident: 20 doi: 10.1006/expr.1996.0039 – ident: 3 doi: 10.1292/jvms1939.43.243 – ident: 34 doi: 10.1177/030098588001700508 – ident: 36 doi: 10.1016/j.jviromet.2005.06.017 – ident: 25 doi: 10.1007/s10493-013-9722-6 – ident: 30 doi: 10.1016/j.ttbdis.2013.09.004 – ident: 13 doi: 10.1051/vetres/2010011 – ident: 14 doi: 10.1128/JVI.77.18.10099-10105.2003 – ident: 4 doi: 10.1016/j.prevetmed.2014.02.005 – ident: 15 doi: 10.1128/JVI.77.3.1718-1726.2003 – reference: 24679715 - Prev Vet Med. 2014 Jun 1;114(3-4):276-84 – reference: 2983478 - Vet Pathol. 1985 Jan;22(1):60-71 – reference: 2544758 - Nihon Juigaku Zasshi. 1989 Apr;51(2):264-72 – reference: 7797373 - Int J Parasitol. 1995 Jan;25(1):55-62 – reference: 12941920 - J Virol. 2003 Sep;77(18):10099-105 – reference: 7289337 - Nihon Juigaku Zasshi. 1981 Apr;43(2):243-55 – reference: 16765539 - Vet Microbiol. 2006 Oct 5;117(1):9-13 – reference: 20040373 - Insect Biochem Mol Biol. 2010 Jan;40(1):49-57 – reference: 17406794 - Exp Appl Acarol. 2007;41(4):289-303 – reference: 22867855 - Vet J. 2013 Jan;195(1):16-23 – reference: 16793056 - J Invertebr Pathol. 2006 Oct;93(2):96-104 – reference: 77478 - Natl Inst Anim Health Q (Tokyo). 1978 Spring;18(1):27-38 – reference: 22931317 - N Engl J Med. 2012 Aug 30;367(9):834-41 – reference: 7404970 - Vet Pathol. 1980 Sep;17(5):589-99 – reference: 23600870 - Acta Virol. 2013;57(2):123-9 – reference: 10482612 - J Virol. 1999 Oct;73(10):8587-98 – reference: 24268885 - Ticks Tick Borne Dis. 2014 Mar;5(2):121-6 – reference: 20152105 - Vet Res. 2010 Nov-Dec;41(6):39 – reference: 19421877 - Exp Appl Acarol. 2009 Dec;49(4):347-59 – reference: 11264378 - J Virol. 2001 Apr;75(8):3896-902 – reference: 8862565 - J Clin Microbiol. 1996 Sep;34(9):2101-5 – reference: 8471196 - AIDS. 1993 Mar;7(3):341-7 – reference: 8631383 - Exp Parasitol. 1996 Apr;82(3):316-23 – reference: 12884036 - Med Microbiol Immunol. 2004 Feb;193(1):27-34 – reference: 16054243 - J Virol Methods. 2005 Dec;130(1-2):124-32 – reference: 5793196 - J Natl Cancer Inst. 1969 Jun;42(6):987-1014 – reference: 22479406 - PLoS One. 2012;7(3):e33504 – reference: 15938513 - Parasitology. 2004;129 Suppl:S221-45 – reference: 17426172 - Am J Trop Med Hyg. 2007 Apr;76(4):694-7 – reference: 6281958 - Vet Rec. 1982 Mar 6;110(10):225-8 – reference: 9120860 - J S Afr Vet Assoc. 1996 Sep;67(3):148-50 – reference: 12525605 - J Virol. 2003 Feb;77(3):1718-26 – reference: 15938502 - Parasitology. 2004;129 Suppl:S3-14 – reference: 20358393 - Exp Appl Acarol. 2010 Oct;52(2):183-92 – reference: 23153119 - Parasit Vectors. 2012;5:263 – reference: 24474026 - Rev Soc Bras Med Trop. 2013 Nov-Dec;46(6):788-90 – reference: 23975564 - Exp Appl Acarol. 2014 Jan;62(1):67-75 |
SSID | ssj0021469 |
Score | 2.0476701 |
Snippet | Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding... Ticks are known to transmit various pathogens, radically threatening humans and animals. Despite the close contact between ticks and viruses, our understanding... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 405 |
SubjectTerms | Animals canine parvovirus experimental inoculation feline leukemia virus Female Haemaphysalis longicornis Host-Pathogen Interactions ixodid tick Ixodidae Ixodidae - virology Larva - virology Leukemia Virus, Feline - physiology Nymph - virology Ovum Parvoviridae Parvovirus, Canine - physiology Retroviridae vector Virology |
Title | The widely distributed hard tick, Haemaphysalis longicornis, can retain canine parvovirus, but not be infected in laboratory condition |
URI | https://www.jstage.jst.go.jp/article/jvms/77/4/77_14-0199/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/25650060 https://www.proquest.com/docview/1756074398 https://www.proquest.com/docview/1680194523 https://www.proquest.com/docview/1859468267 https://pubmed.ncbi.nlm.nih.gov/PMC4427740 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2015, Vol.77(4), pp.405-411 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VwoELgvJKKZWR4EQD6cZOYiGEEKJaQOXEot4ie-2ULduk3Rf0D_C7-SYvsVXLIatInliRZyb-Zj3zDdHz2Emn4siF8RgWLI2MQmOzJISuXVoYpYomy_drMhzJz0fqaIO6bqPtAs6vDO24n9RoNn31-_ziHRz-bc2NoAevT1anc3g8omKtb9BN7Ekp9zI4lP15Anev1m3a--UnmA4YqIaJSdb2plsngGfH_irkeTmB8p8d6eAu3WmhpHjf6P4ebfhyi7a-c35LXWQrDttz8_v0B9YgfjGj1YVwTJXLXa68E1xyJfD4zz0xNP6UuavnzIgoplWJTyLXbM33BFZfcFripORbTCjOzGxVrSazJUYxkyirhbBeNJldmBeSrXVVeA-E3K7ODHtAo4OP3z4Mw7YDQzhWWi5CzZ2F6uJbidBnrLNsbFVhvI5tzbvjgZ6kl4ZJ7RMdO1Vok3lTKONwKR8_pM2yKv1jEi4q9gd2oMy-LaSNCitdJAvOdZOWWQMDetmtfT5u6cm5S8Y05zAFSstZaYhUclZaQC966bOGluMauTeNGnup1iEbqTTNJf-00v0gV7zhsxHQTqf7vLPMHHgrYdyls4Ce9cNwSj5pMaWvlpBJsPFriSD_PzIZljhBdJcG9Kgxp_4lO4MMKF0ztF6AScHXR8rJj5ocXMoBEH20fe2cT-g2QJ9q_kbaoc3FbOmfAlgt7C5Cik9fdmvP-QtVwCiA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+widely+distributed+hard+tick%2C+Haemaphysalis+longicornis%2C+can+retain+canine+parvovirus%2C+but+not+be+infected+in+laboratory+condition&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Mori%2C+Hiroyuki&rft.au=Tanaka%2C+Tetsuya&rft.au=Mochizuki%2C+Masami&rft.date=2015&rft.eissn=1347-7439&rft.volume=77&rft.issue=4&rft.spage=405&rft_id=info:doi/10.1292%2Fjvms.14-0199&rft_id=info%3Apmid%2F25650060&rft.externalDocID=25650060 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |