Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia
Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associa...
Saved in:
Published in | Acta neuropathologica communications Vol. 8; no. 1; pp. 214 - 20 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
07.12.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two
ATL1
missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs,
ATL1
mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly,
ATL1
mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia. |
---|---|
AbstractList | Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia.Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia. Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia. Keywords: Hereditary spastic paraplegia, Human pluripotent stem cells, Cortical projection neurons, Cholesterol homeostasis, Axonal degeneration, Astrocytes Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia. Abstract Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia. Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection neurons (PNs) degenerate remains elusive. We generated isogenic human pluripotent stem cell (hPSC) lines for two ATL1 missense mutations associated with SPG3A, the most common early-onset autosomal dominant HSP. In hPSC-derived cortical PNs, ATL1 mutations resulted in reduced axonal outgrowth, impaired axonal transport, and accumulated axonal swellings, recapitulating disease-specific phenotypes. Importantly, ATL1 mutations dysregulated proteolipid gene expression, reduced lipid droplet size in astrocytes, and unexpectedly disrupted cholesterol transfer from glia to neurons, leading to cholesterol deficiency in SPG3A cortical PNs. Applying cholesterol or conditioned medium from control astrocytes, a major source of cholesterol in the brain, rescued aberrant axonal transport and swellings in SPG3A cortical PNs. Furthermore, treatment with the NR1H2 agonist GW3965 corrected lipid droplet defects in SPG3A astrocytes and promoted cholesterol efflux from astrocytes, leading to restoration of cholesterol levels and rescue of axonal degeneration in SPG3A cortical PNs. These results reveal a non-cell autonomous mechanism underlying axonal degeneration of cortical PNs mediated by impaired cholesterol homeostasis in glia. |
ArticleNumber | 214 |
Audience | Academic |
Author | Dong, Yi Li, Xue-Jun Chen, Zhenyu Mou, Yongchao Denton, Kyle R. Duff, Michael O. Zhang, Su-Chun Blackstone, Craig |
Author_xml | – sequence: 1 givenname: Yongchao surname: Mou fullname: Mou, Yongchao – sequence: 2 givenname: Yi surname: Dong fullname: Dong, Yi – sequence: 3 givenname: Zhenyu surname: Chen fullname: Chen, Zhenyu – sequence: 4 givenname: Kyle R. surname: Denton fullname: Denton, Kyle R. – sequence: 5 givenname: Michael O. surname: Duff fullname: Duff, Michael O. – sequence: 6 givenname: Craig surname: Blackstone fullname: Blackstone, Craig – sequence: 7 givenname: Su-Chun surname: Zhang fullname: Zhang, Su-Chun – sequence: 8 givenname: Xue-Jun orcidid: 0000-0003-1899-9134 surname: Li fullname: Li, Xue-Jun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33287888$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1r3DAQhk1JadI0f6CHYiiUXpxKtmzLl0II_VgI9NKexaw03tUiS65kB3Lpb-94N02zoVQ-aBi_80gzel9mJz54zLLXnF1yLpsPSTDRyoKVrGCcSYqeZWclq3lRdw07eRSfZhcp7RitjvNKyhfZaVWVspVSnmW_VsMINqLJnR2tyQecYB2cTUNufQ5pikHfTZjy2RuMzlJkcIMeI0w2-Dz0uQ5xshpcPsawQ71Pe5xj8GlhbJHodoJ4l6eRgFbnI0QYHW4svMqe9-ASXtzv59mPz5--X38tbr59WV1f3RS67sRUdJ1hmnWGo8F116HuDRdmzRC5rnvBgLeNxrLSpem4rADWqDlvDe91J7GF6jxbHbgmwE6N0Q50HxXAqn0ixI2CpQuHquwFELivaolClEJq0K1h0LdEkloT6-OBNc7rAY1GP0VwR9DjP95u1SbcqrYtmWANAd7fA2L4OWOa1GCTRufAY5iTKkUj6YXqipH07RPpLszR06hI1XLOG1GJv6oNUAPW94HO1QtUXTU1azgpW1Jd_kNFn8HBanJXbyl_VPDuUcEWwU3bFNy8vHA6Fr55PJGHUfyxGQnKg0DHkFLE_kHCmVrsrA52VmRntbezWnqXT4o02Wg5nO5t3f9KfwN_zfuH |
CitedBy_id | crossref_primary_10_1089_genbio_2023_0017 crossref_primary_10_1093_stmcls_sxab006 crossref_primary_10_3389_fcell_2022_863907 crossref_primary_10_3390_cells13070577 crossref_primary_10_1098_rsob_240100 crossref_primary_10_3390_ijms241512281 crossref_primary_10_3389_fnins_2024_1416093 crossref_primary_10_4103_1673_5374_327342 crossref_primary_10_1089_ars_2024_0794 crossref_primary_10_4103_NRR_NRR_D_24_00138 crossref_primary_10_1083_jcb_202102136 crossref_primary_10_1016_j_nbd_2023_106293 crossref_primary_10_1007_s00125_023_05935_2 crossref_primary_10_3390_antiox11010022 crossref_primary_10_3389_fmolb_2021_673977 crossref_primary_10_4103_NRR_NRR_D_23_01401 crossref_primary_10_1093_hmg_ddac072 crossref_primary_10_1172_JCI162836 crossref_primary_10_1016_j_brainresbull_2022_10_016 crossref_primary_10_3390_ph14060565 crossref_primary_10_1073_pnas_2410996121 crossref_primary_10_1186_s40478_023_01699_3 |
Cites_doi | 10.1111/j.1471-4159.2009.06258.x 10.1136/jmg.40.2.81 10.1093/hmg/ddw315 10.1038/s41598-019-45246-4 10.1016/s1388-1981(00)00050-0 10.1212/01.wnl.0000070781.92512.a4 10.1111/j.1750-3639.1993.tb00729.x 10.1212/01.wnl.0000191390.20564.8e 10.1093/hmg/ddu280 10.1016/j.celrep.2013.04.015 10.1038/nn1426 10.1002/stem.408 10.1016/j.expneurol.2012.06.003 10.1038/nbt1063 10.1371/journal.pgen.1005149 10.1038/nrn2946 10.1161/STROKEAHA.112.677682 10.1016/j.neuron.2014.10.019 10.1016/S1474-4422(08)70258-8 10.1007/s13238-014-0131-3 10.1016/j.conb.2018.04.025 10.1038/s41431-019-0497-z 10.1111/j.1471-4159.2009.06104.x 10.1073/pnas.1908409116 10.1016/S0021-9258(18)47945-8 10.1210/mend.16.6.0835 10.1523/JNEUROSCI.21-03-00812.2001 10.1016/j.tem.2011.02.004 10.1111/j.1471-4159.2009.05917.x 10.1016/j.yexcr.2016.09.015 10.1074/jbc.M601019200 10.1038/cdd.2014.162 10.1007/s11910-996-0011-1 10.1096/fj.201800779RR 10.3791/60548 10.1038/nature08280 10.1016/j.nbd.2017.02.009 10.1038/s41467-019-08478-6 10.1242/dmm.008946 10.4103/2349-3666.240602 10.1159/000107704 10.1016/j.cell.2015.12.054 10.1038/ng758 10.1038/s42003-019-0615-z615 10.1046/j.0022-3042.2001.00686.x 10.1038/nn.2662 10.1515/BC.2009.035 10.7554/elife.28202 10.1007/s00018-003-3018-7 10.1038/nrendo.2017.91 10.1111/j.1399-0004.2010.01501.xcge1501 10.1093/hmg/ddl054 10.1016/j.jpain.2013.03.005 10.1016/j.cmet.2012.03.007 10.3791/50321 10.1186/s40478-015-0240-0 10.1002/humu.22521 10.1016/j.envres.2017.07.048 10.1038/nprot.2012.016 10.1093/jnen/nlw114 10.1242/dev.036624 10.1093/hmg/dds191 10.1016/j.ydbio.2009.03.019 10.1002/stem.1569 10.1073/pnas.1620506114 10.1074/jbc.M116.759795 10.1016/j.cell.2009.05.025 10.1016/j.bbalip.2012.09.007 10.1074/jbc.M306702200 10.1007/s00401-017-1738-2 10.1172/JCI20138 10.1523/JNEUROSCI.1898-10.2010 10.1126/science.294.5545.1354 10.1038/nprot.2011.405 10.1016/S0005-2736(03)00024-5 10.1083/jcb.200808041 10.1172/jci40979/40979 10.1093/hmg/ddu200 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40478-020-01088-0 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2051-5960 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_2f4a0eef358e44248cac7d0af78e78cc PMC7720406 A650617117 33287888 10_1186_s40478_020_01088_0 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | Fiji |
GeographicLocations_xml | – name: Fiji |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS118066 – fundername: NINDS NIH HHS grantid: R01 NS096282 – fundername: NINDS NIH HHS grantid: R01NS118066 – fundername: ; grantid: R01NS118066; R01 NS096282; Intramural Research Program |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFS ACIHN ACMJI ACUHS ADBBV ADRAZ ADUKV AEAQA AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ASPBG AVWKF BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SOJ TUS UKHRP NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-99d0c09d1edeb99ecfd14db0ee1c5f40a176ce23c2d9183aabec117d1fc98e7a3 |
IEDL.DBID | 7X7 |
ISSN | 2051-5960 |
IngestDate | Wed Aug 27 01:17:55 EDT 2025 Thu Aug 21 18:04:17 EDT 2025 Fri Jul 11 03:40:13 EDT 2025 Fri Jul 25 08:31:08 EDT 2025 Tue Jun 17 21:25:32 EDT 2025 Tue Jun 10 20:27:25 EDT 2025 Thu May 22 21:06:17 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Tue Jul 01 02:28:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hereditary spastic paraplegia Human pluripotent stem cells Astrocytes Axonal degeneration Cholesterol homeostasis Cortical projection neurons |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-99d0c09d1edeb99ecfd14db0ee1c5f40a176ce23c2d9183aabec117d1fc98e7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1899-9134 |
OpenAccessLink | https://www.proquest.com/docview/2471116434?pq-origsite=%requestingapplication% |
PMID | 33287888 |
PQID | 2471116434 |
PQPubID | 2040178 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f4a0eef358e44248cac7d0af78e78cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7720406 proquest_miscellaneous_2468332530 proquest_journals_2471116434 gale_infotracmisc_A650617117 gale_infotracacademiconefile_A650617117 gale_healthsolutions_A650617117 pubmed_primary_33287888 crossref_primary_10_1186_s40478_020_01088_0 crossref_citationtrail_10_1186_s40478_020_01088_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-07 |
PublicationDateYYYYMMDD | 2020-12-07 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Acta neuropathologica communications |
PublicationTitleAlternate | Acta Neuropathol Commun |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | XJ Li (1088_CR36) 2009; 136 L Borghese (1088_CR5) 2010; 28 DS McCorquodale 3rd (1088_CR44) 2011; 79 FW Pfrieger (1088_CR57) 2003; 1610 H Rene (1088_CR63) 2016; 3 G Saher (1088_CR66) 2005; 8 S Grehan (1088_CR25) 2001; 21 KE McAleese (1088_CR43) 2017; 134 G Zhao (1088_CR75) 2016; 349 C Blackstone (1088_CR2) 2018; 51 JM Dietschy (1088_CR13) 2009; 390 B Renvoise (1088_CR65) 2012; 21 X Liu (1088_CR38) 2019; 10 RE Pitas (1088_CR58) 1987; 262 S Pawar (1088_CR53) 2017; 6 J Chen (1088_CR8) 2013; 1831 J Hu (1088_CR27) 2009; 138 F Perez-Branguli (1088_CR55) 2014; 23 M Valenza (1088_CR71) 2015; 22 G Thiel (1088_CR69) 1993; 3 C Fassier (1088_CR18) 2013; 6 X Cui (1088_CR11) 2013; 44 X Zhao (1088_CR76) 2001; 29 M Lee (1088_CR34) 2009; 330 K Nieweg (1088_CR48) 2009; 109 M Pennings (1088_CR54) 2020; 28 PP Zhu (1088_CR77) 2014; 23 V Gudi (1088_CR26) 2017 R Prior (1088_CR59) 2017; 105 E Reid (1088_CR62) 2003; 40 JE Vance (1088_CR72) 2000; 1486 C Blackstone (1088_CR3) 2010; 12 A Rai (1088_CR60) 2016; 164 QW Fan (1088_CR16) 2002; 80 LR Fischer (1088_CR23) 2007; 4 KE McAleese (1088_CR42) 2015; 3 MH Marra (1088_CR40) 2015; 13 S Maday (1088_CR39) 2014; 84 EM Boisvert (1088_CR4) 2013 HT Cheng (1088_CR9) 2013; 14 AE Libby (1088_CR37) 2016; 291 K Rehbach (1088_CR61) 2019; 9 G Cermenati (1088_CR7) 2010; 30 PP Zhu (1088_CR78) 2003; 278 PP Zhu (1088_CR79) 2006; 15 W Fei (1088_CR19) 2011; 22 L Niu (1088_CR49) 2019; 116 C Trapnell (1088_CR70) 2012; 7 G Orso (1088_CR50) 2009; 460 FW Pfrieger (1088_CR56) 2003; 60 M Lee (1088_CR33) 2019; 33 DH Mauch (1088_CR41) 2001; 294 SH Park (1088_CR52) 2010; 120 S Fu (1088_CR24) 2012; 15 HA Ferris (1088_CR21) 2017; 114 M Boutry (1088_CR6) 2019; 2 SW Eastman (1088_CR14) 2009; 184 F Ferreirinha (1088_CR20) 2004; 113 K Abildayeva (1088_CR1) 2006; 281 C Fassier (1088_CR17) 2010; 13 J Zhang (1088_CR74) 2015; 6 H Shimano (1088_CR68) 2017; 13 KD Whitney (1088_CR73) 2002; 16 MP Muriel (1088_CR46) 2009; 110 M Namekawa (1088_CR47) 2006; 66 Y Mou (1088_CR45) 2020 KR Denton (1088_CR12) 2014; 32 JK Fink (1088_CR22) 2006; 6 RW Klemm (1088_CR30) 2013; 3 J Falk (1088_CR15) 2014; 35 R Krencik (1088_CR31) 2011; 6 XJ Li (1088_CR35) 2005; 23 G Lauria (1088_CR32) 2003; 61 S Salinas (1088_CR67) 2008; 7 C Papadopoulos (1088_CR51) 2015; 11 NM Kanaan (1088_CR28) 2013; 246 PR Kasher (1088_CR29) 2009; 110 B Renvoise (1088_CR64) 2016; 25 CE Cicero (1088_CR10) 2017; 159 |
References_xml | – volume: 110 start-page: 1607 year: 2009 ident: 1088_CR46 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2009.06258.x – volume: 40 start-page: 81 year: 2003 ident: 1088_CR62 publication-title: J Med Genet doi: 10.1136/jmg.40.2.81 – volume: 25 start-page: 5111 year: 2016 ident: 1088_CR64 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddw315 – volume: 13 start-page: A215 year: 2015 ident: 1088_CR40 publication-title: J Undergrad Neurosci Educ – volume: 9 start-page: 9615 year: 2019 ident: 1088_CR61 publication-title: Sci Rep doi: 10.1038/s41598-019-45246-4 – volume: 1486 start-page: 84 year: 2000 ident: 1088_CR72 publication-title: Biochim Biophys Acta doi: 10.1016/s1388-1981(00)00050-0 – volume: 61 start-page: 631 year: 2003 ident: 1088_CR32 publication-title: Neurology doi: 10.1212/01.wnl.0000070781.92512.a4 – volume: 3 start-page: 87 year: 1993 ident: 1088_CR69 publication-title: Brain Pathol doi: 10.1111/j.1750-3639.1993.tb00729.x – volume: 66 start-page: 112 year: 2006 ident: 1088_CR47 publication-title: Neurology doi: 10.1212/01.wnl.0000191390.20564.8e – volume: 23 start-page: 5638 year: 2014 ident: 1088_CR77 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu280 – volume: 3 start-page: 1465 year: 2013 ident: 1088_CR30 publication-title: Cell Rep doi: 10.1016/j.celrep.2013.04.015 – volume: 8 start-page: 468 year: 2005 ident: 1088_CR66 publication-title: Nat Neurosci doi: 10.1038/nn1426 – volume: 28 start-page: 955 year: 2010 ident: 1088_CR5 publication-title: Stem Cells doi: 10.1002/stem.408 – volume: 246 start-page: 44 year: 2013 ident: 1088_CR28 publication-title: Exp Neurol doi: 10.1016/j.expneurol.2012.06.003 – volume: 23 start-page: 215 year: 2005 ident: 1088_CR35 publication-title: Nat Biotechnol doi: 10.1038/nbt1063 – volume: 11 start-page: e1005149 year: 2015 ident: 1088_CR51 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005149 – volume: 12 start-page: 31 year: 2010 ident: 1088_CR3 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2946 – volume: 44 start-page: 153 year: 2013 ident: 1088_CR11 publication-title: Stroke doi: 10.1161/STROKEAHA.112.677682 – volume: 84 start-page: 292 year: 2014 ident: 1088_CR39 publication-title: Neuron doi: 10.1016/j.neuron.2014.10.019 – volume: 7 start-page: 1127 year: 2008 ident: 1088_CR67 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70258-8 – volume: 6 start-page: 254 year: 2015 ident: 1088_CR74 publication-title: Protein Cell doi: 10.1007/s13238-014-0131-3 – volume: 51 start-page: 139 year: 2018 ident: 1088_CR2 publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2018.04.025 – volume: 28 start-page: 40 year: 2020 ident: 1088_CR54 publication-title: Eur J Hum Genet doi: 10.1038/s41431-019-0497-z – volume: 110 start-page: 34 year: 2009 ident: 1088_CR29 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2009.06104.x – volume: 116 start-page: 14029 year: 2019 ident: 1088_CR49 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1908409116 – volume: 262 start-page: 14352 year: 1987 ident: 1088_CR58 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)47945-8 – volume: 16 start-page: 1378 year: 2002 ident: 1088_CR73 publication-title: Mol Endocrinol doi: 10.1210/mend.16.6.0835 – volume: 21 start-page: 812 year: 2001 ident: 1088_CR25 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-03-00812.2001 – volume: 22 start-page: 204 year: 2011 ident: 1088_CR19 publication-title: Trends Endocrinol Metab doi: 10.1016/j.tem.2011.02.004 – volume: 109 start-page: 125 year: 2009 ident: 1088_CR48 publication-title: J Neurochem doi: 10.1111/j.1471-4159.2009.05917.x – volume: 349 start-page: 32 year: 2016 ident: 1088_CR75 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2016.09.015 – volume: 281 start-page: 12799 year: 2006 ident: 1088_CR1 publication-title: J Biol Chem doi: 10.1074/jbc.M601019200 – volume: 22 start-page: 690 year: 2015 ident: 1088_CR71 publication-title: Cell Death Differ doi: 10.1038/cdd.2014.162 – volume: 6 start-page: 65 year: 2006 ident: 1088_CR22 publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-996-0011-1 – volume: 33 start-page: 3590 year: 2019 ident: 1088_CR33 publication-title: FASEB J doi: 10.1096/fj.201800779RR – year: 2020 ident: 1088_CR45 publication-title: J Vis Exp doi: 10.3791/60548 – volume: 460 start-page: 978 year: 2009 ident: 1088_CR50 publication-title: Nature doi: 10.1038/nature08280 – volume: 105 start-page: 300 year: 2017 ident: 1088_CR59 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2017.02.009 – volume: 10 start-page: 568 year: 2019 ident: 1088_CR38 publication-title: Nat Commun doi: 10.1038/s41467-019-08478-6 – volume: 6 start-page: 72 year: 2013 ident: 1088_CR18 publication-title: Dis Model Mech doi: 10.1242/dmm.008946 – volume: 3 start-page: 104 year: 2016 ident: 1088_CR63 publication-title: Biomed Res J doi: 10.4103/2349-3666.240602 – volume: 4 start-page: 431 year: 2007 ident: 1088_CR23 publication-title: Neurodegener Dis doi: 10.1159/000107704 – volume: 164 start-page: 722 year: 2016 ident: 1088_CR60 publication-title: Cell doi: 10.1016/j.cell.2015.12.054 – volume: 29 start-page: 326 year: 2001 ident: 1088_CR76 publication-title: Nat Genet doi: 10.1038/ng758 – volume: 2 start-page: 380 year: 2019 ident: 1088_CR6 publication-title: Commun Biol doi: 10.1038/s42003-019-0615-z615 – volume: 80 start-page: 178 year: 2002 ident: 1088_CR16 publication-title: J Neurochem doi: 10.1046/j.0022-3042.2001.00686.x – volume: 13 start-page: 1380 year: 2010 ident: 1088_CR17 publication-title: Nat Neurosci doi: 10.1038/nn.2662 – volume: 390 start-page: 287 year: 2009 ident: 1088_CR13 publication-title: Biol Chem doi: 10.1515/BC.2009.035 – volume: 6 start-page: e28202 year: 2017 ident: 1088_CR53 publication-title: Elife doi: 10.7554/elife.28202 – volume: 60 start-page: 1158 year: 2003 ident: 1088_CR56 publication-title: Cell Mol Life Sci doi: 10.1007/s00018-003-3018-7 – volume: 13 start-page: 710 year: 2017 ident: 1088_CR68 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2017.91 – volume: 79 start-page: 523 year: 2011 ident: 1088_CR44 publication-title: Clin Genet doi: 10.1111/j.1399-0004.2010.01501.xcge1501 – volume: 15 start-page: 1343 year: 2006 ident: 1088_CR79 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddl054 – volume: 14 start-page: 941 year: 2013 ident: 1088_CR9 publication-title: J Pain doi: 10.1016/j.jpain.2013.03.005 – volume: 15 start-page: 623 year: 2012 ident: 1088_CR24 publication-title: Cell Metab doi: 10.1016/j.cmet.2012.03.007 – year: 2013 ident: 1088_CR4 publication-title: J Vis Exp doi: 10.3791/50321 – volume: 3 start-page: 60 year: 2015 ident: 1088_CR42 publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-015-0240-0 – volume: 35 start-page: 497 year: 2014 ident: 1088_CR15 publication-title: Hum Mutat doi: 10.1002/humu.22521 – volume: 159 start-page: 82 year: 2017 ident: 1088_CR10 publication-title: Environ Res doi: 10.1016/j.envres.2017.07.048 – volume: 7 start-page: 562 year: 2012 ident: 1088_CR70 publication-title: Nat Protoc doi: 10.1038/nprot.2012.016 – year: 2017 ident: 1088_CR26 publication-title: J Neuropathol Exp Neurol doi: 10.1093/jnen/nlw114 – volume: 136 start-page: 4055 year: 2009 ident: 1088_CR36 publication-title: Development doi: 10.1242/dev.036624 – volume: 21 start-page: 3604 year: 2012 ident: 1088_CR65 publication-title: Hum Mol Genet doi: 10.1093/hmg/dds191 – volume: 330 start-page: 250 year: 2009 ident: 1088_CR34 publication-title: Dev Biol doi: 10.1016/j.ydbio.2009.03.019 – volume: 32 start-page: 414 year: 2014 ident: 1088_CR12 publication-title: Stem Cells doi: 10.1002/stem.1569 – volume: 114 start-page: 1189 year: 2017 ident: 1088_CR21 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1620506114 – volume: 291 start-page: 24231 year: 2016 ident: 1088_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.M116.759795 – volume: 138 start-page: 549 year: 2009 ident: 1088_CR27 publication-title: Cell doi: 10.1016/j.cell.2009.05.025 – volume: 1831 start-page: 263 year: 2013 ident: 1088_CR8 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbalip.2012.09.007 – volume: 278 start-page: 49063 year: 2003 ident: 1088_CR78 publication-title: J Biol Chem doi: 10.1074/jbc.M306702200 – volume: 134 start-page: 459 year: 2017 ident: 1088_CR43 publication-title: Acta Neuropathol doi: 10.1007/s00401-017-1738-2 – volume: 113 start-page: 231 year: 2004 ident: 1088_CR20 publication-title: J Clin Invest doi: 10.1172/JCI20138 – volume: 30 start-page: 11896 year: 2010 ident: 1088_CR7 publication-title: J Neurosci Off J Soc Neurosc doi: 10.1523/JNEUROSCI.1898-10.2010 – volume: 294 start-page: 1354 year: 2001 ident: 1088_CR41 publication-title: Science doi: 10.1126/science.294.5545.1354 – volume: 6 start-page: 1710 year: 2011 ident: 1088_CR31 publication-title: Nat Protoc doi: 10.1038/nprot.2011.405 – volume: 1610 start-page: 271 year: 2003 ident: 1088_CR57 publication-title: Biochim Biophys Acta doi: 10.1016/S0005-2736(03)00024-5 – volume: 184 start-page: 881 year: 2009 ident: 1088_CR14 publication-title: J Cell Biol doi: 10.1083/jcb.200808041 – volume: 120 start-page: 1097 year: 2010 ident: 1088_CR52 publication-title: J Clin Invest doi: 10.1172/jci40979/40979 – volume: 23 start-page: 4859 year: 2014 ident: 1088_CR55 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddu200 |
SSID | ssj0000911388 |
Score | 2.3252518 |
Snippet | Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical projection... Abstract Hereditary spastic paraplegias (HSPs) are caused by a length-dependent axonopathy of long corticospinal neurons, but how axons of these cortical... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 214 |
SubjectTerms | Astrocytes Axonal degeneration Cholesterol Cholesterol homeostasis Cortical projection neurons Gene expression Genetic aspects Hereditary spastic paraplegia Human pluripotent stem cells Lipids Metabolism Mutation Neurons Paralysis Paralysis, Spastic Proteins Spasticity Stem cells |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2gBSMhcUBR7dhJ7GNBVAWpnKjUm-X40UbaZleb9NALv70zTjbaCAkuXO3xaj3vcexvCPkYPPcR9DaH0BWwQFG5FVHkJRcBorFiVcQvuuc_q7ML-eOyvNxr9YV3wkZ44JFxx0WUloUQRamClIVUzrraMxtrFWrlHHpfiHl7xVTywWDDQqndKxlVHfcScWhyrJagBAH1YItIlAD7_3TLe3FpeWdyLwidPiGPp-yRnoz_-il5ELpn5OH59H38Ofn9HawbnJinq3bTenoTBhDyqu1vaNtR2w8Qru4guaT4dGwL6WdPfbhKyNMoILqOFKrRdLxNpzMaHE6gl12Pv3GNvT3bwW7vKPgiBHmmiB6-WYWr1r4gF6fffn09y6cOC7krtRxyrT1zTHsefGi0Di56Ln0D_OaujJJZXmPHMOEKr8H2rQWJc157Hp0G9lvxkhx06y68JtRykKp2AZZEiHHOCt9E1bgKZMcLV2SE77ht3AQ_jl0wViaVIaoyo4QMSMgkCRmWkc_zms0IvvFX6i8oxJkSgbPTAKiTmdTJ_EudMvIeVcCMr1Bn8zcnkMlCsgebz8inRIEOADYA68d3DMAGhNJaUB4uKMFw3XJ6p2Zmchy9KSBZ4FDCCpmRD_M0rsTLcF1Y3yJNpYQoSgFbfjVq5bxpGFd4qpGReqGvC64sZ7r2OsGK19iviFVv_gcb35JHBZoa3vupD8nBsL0NR5C9Dc27ZKj3zKJF5A priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA7LCuKLeLe6agTBB6k2TS_pg8gqLqswPjmwbyHNZbbQ7cy2XXBe_O2ek17Y4rKvyckwJ-eeJt8h5J01zDjQ2xBCl8UCRYSKOx6mjFuIxiLKHH7RXf3KTtfJz7P07IBM7Y7GDexuLO2wn9S6rT_-udx_AYP_7A1eZJ-6BCFmQiyEoLoAyUMJfwciU46GuhrTfe-ZwbK5ENPbmRuXLuKTh_H_31lfi1bLm5TXQtPJA3J_zCnp8aAED8mBbR6Ru6vxq_lj8vcH2Dy4NkPralcZemF7EH1ddRe0aqjqeghie0g5KT4oayEp7aixG49HjWKjW0ehRvWH3nQ8ucFhD4XZdPgb59jxs-pVu6fgoRD6mSKm-K62m0o9IeuT77-_nYZj34VQp0XSh0VhIh0Vhlljy6Kw2hmWmDKylunUJZFiOfYR4zo2BXgEpUAPGMsNc7oQNlf8KTlsto19TqhiIOtCW1jiIPJpxU3pRKkzax2LdRwQNu221CMoOfbGqKUvTkQmBwlJkJD0EpJRQD7Ma3YDJMet1F9RiDMlwmn7gW27kaN1ytglCthzPBU2SeJEaKVzEymXAz9C64C8QRWQw9vU2SnIY8hvIQUE5gPy3lOgogIDsH543QDbgABbC8qjBSWYs15OT2omJ2uQMaQQDApbngTk7TyNK_GKXGO3V0iTCc7jlAPLzwatnJmGcYFnHQHJF_q62JXlTFOde7DxHLsYRdmL2__WS3IvRiPCez75ETns2yv7CrK1vnztTfAfNTc_Og priority: 102 providerName: Scholars Portal |
Title | Impaired lipid metabolism in astrocytes underlies degeneration of cortical projection neurons in hereditary spastic paraplegia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33287888 https://www.proquest.com/docview/2471116434 https://www.proquest.com/docview/2468332530 https://pubmed.ncbi.nlm.nih.gov/PMC7720406 https://doaj.org/article/2f4a0eef358e44248cac7d0af78e78cc |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtAqWX0nfcplsVCj0UE8uSbflUkpKQFjaU0sDehFaPjWFjb9fOIZf-9s7IXjemkMsepJHZ0YxmRiPpG0I-OsusB72NwXU53KDIWHPP44xxB95YJrnHE935RX5-Kb4vssWQcGuHa5U7mxgMtW0M5siPUrCiDGJ7Lr5sfsdYNQpPV4cSGg_JPkKX4ZWuYlGMORbwhYxLuXsrI_OjViAaTYx7JtiIgJIkE38UYPv_N853vNP05uQdV3T2lDwZYkh63Av9GXng6ufk0Xw4JX9B_nyDNQ6mzNJ1taksvXYdiHpdtde0qqluO3BatxBiUnxAtoUgtKXWrQL-NIqJNp7CnjQkuemQqcHmAH1Zt_iNK6zwWXV6e0vBIiHUM0UM8c3arSr9klyenf76eh4PdRZik5Wii8vSJiYpLXPWLcvSGW-ZsMvEOWYyLxLNCqwbxk1qS7AAWoPcGSss86aUrtD8Fdmrm9odEKoZyLY0DoZ48HRGc7v0cmly5zxLTRoRtpttZQYQcqyFsVZhMyJz1UtIgYRUkJBKIvJ5HLPpITjupT5BIY6UCJ8dGprtSg2rUaVeaGDP80w6IVIhjTaFTbQvgB9pTETeowqo_i3qaATUMcSzEPIB8xH5FCjQDAADML5_zQDTgIBaE8rDCSUsXzPt3qmZGsxHq_4pe0Q-jN04Eq_E1a65QZpccp5mHFh-3WvlyDS0S8xtRKSY6OtkVqY9dXUVwMULrFqU5G_u_1tvyeMUFxHe6ykOyV63vXHvIDrrlrOwBGdk_-T04sfPWchxwO9cyL8S9T92 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuiDeBQo0E4oCixnEezgGhFlrt0m6FUCv15nr92EbaZpfNVmgv_CR-IzN50Qipt17tcZTxfJ6HHzOEvLOGGQe49cF0WQxQhK-4437MuAVrLILE4Ynu-DgZnkbfzuKzDfKnfQuD1ypbnVgpajPXuEe-E4IWZeDb8-jz4qePVaPwdLUtoVHD4tCuf0HIVn4afQX5vg_Dg_2TL0O_qSrg6ziLVn6WmUAHmWHW2EmWWe0Mi8wksJbp2EWBYilWyeI6NBngXSngkrHUMKczYVPF4bt3yGbEIZQZkM29_ePvP7pdHbC-jAvRvs4RyU4ZYf4bH6M0CH0AlkHPAlaFAv43B9fsYf-u5jXjd_CQPGi8Vrpbw-wR2bDFY3J33JzLPyG_R6BVQHkaOssXuaGXdgXgmuXlJc0LqsoVmMk1OLUUn6wtwe0tqbHTKuM1AoPOHYUouNpWp83eEDZXyTaLEr9xgTVF85VarinoQEwuTTFr-WJmp7l6Sk5vRQbPyKCYF_YFoYoBmjJtYYgD26oVNxMnJjqx1rFQhx5h7WxL3aQ9x-obM1mFPyKRtYQkSEhWEpKBRz52YxZ10o8bqfdQiB0lJuyuGubLqWzWvwxdpIA9x2NhoyiMhFY6NYFyKfAjtPbINkJA1q9fO7Ujd8GDBicTmPfIh4oCFQ8wAOPr9xMwDZjCq0e51aMEhaH73S3MZKOwSvlveXnkbdeNI_ESXmHnV0iTCM7DmAPLz2tUdkxDu8DdFI-kPbz2ZqXfU-QXVTrzFOskBcnLm39rm9wbnoyP5NHo-PAVuR_igsJbRekWGayWV_Y1-IaryZtmQVJyfts64C-Lz30Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impaired+lipid+metabolism+in+astrocytes+underlies+degeneration+of+cortical+projection+neurons+in+hereditary+spastic+paraplegia&rft.jtitle=Acta+neuropathologica+communications&rft.au=Mou%2C+Yongchao&rft.au=Dong%2C+Yi&rft.au=Chen%2C+Zhenyu&rft.au=Denton%2C+Kyle+R&rft.date=2020-12-07&rft.pub=BioMed+Central&rft.eissn=2051-5960&rft.volume=8&rft.spage=1&rft_id=info:doi/10.1186%2Fs40478-020-01088-0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-5960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-5960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-5960&client=summon |