Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to da...
Saved in:
Published in | Nature neuroscience Vol. 22; no. 7; pp. 1075 - 1088 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that
Cx3cl1
is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies
Cx3cr1
−/−
and
Cx3cl1
−/−
synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Microglia are resident immune cells of the CNS. Here the authors show that neurons communicate to microglia via activity-dependent fractalkine and ADAM10 signaling to induce removal of synapses in the brain after sensory loss. |
---|---|
AbstractList | Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remains a key open question. Here, whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. We show that this synapse elimination is dependent on the microglial fractalkine receptor, CX3CR1, but not complement receptor 3, signaling. Further, mice deficient in the CX3CR1 ligand (CX3CL1) also have profound defects in synapse elimination. Single-cell RNAseq then revealed that
Cx3cl1
is cortical neuron-derived and
Adam10
, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and microglia following whisker lesioning. Finally, inhibition of
Adam10
phenocopies
Cx3cr1
−/−
and
Cx3cl1
−/−
synapse elimination defects. Together, these results identify novel neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1 −/− and Cx3cl1 −/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia are resident immune cells of the CNS. Here the authors show that neurons communicate to microglia via activity-dependent fractalkine and ADAM10 signaling to induce removal of synapses in the brain after sensory loss. Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1.sup.-/- and Cx3cl1.sup.-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1 and Cx3cl1 synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1−/− and Cx3cl1−/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1.sup.-/- and Cx3cl1.sup.-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia are resident immune cells of the CNS. Here the authors show that neurons communicate to microglia via activity-dependent fractalkine and ADAM10 signaling to induce removal of synapses in the brain after sensory loss. Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. |
Audience | Academic |
Author | Schafer, Dorothy P. Cheadle, Lucas Badimon, Ana Bemiller, Shane M. Lamb, Bruce T. Nagy, M. Aurel Kim, Ki-Wook Lira, Sergio A. Tapper, Andrew R. Schaefer, Anne Gunner, Georgia Liu, Liwang Mondo, Erica Ransohoff, Richard M. Johnson, Kasey M. Ayata, Pinar Greenberg, Michael E. |
AuthorAffiliation | 1 Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA 3 Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA 4 Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA 5 Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA 2 Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA 6 Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA 7 Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA 8 Third Rock Ventures, Boston, MA 02116, USA |
AuthorAffiliation_xml | – name: 6 Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA – name: 7 Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA – name: 5 Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA – name: 2 Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA – name: 1 Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA – name: 8 Third Rock Ventures, Boston, MA 02116, USA – name: 3 Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA – name: 4 Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA |
Author_xml | – sequence: 1 givenname: Georgia orcidid: 0000-0002-6734-9632 surname: Gunner fullname: Gunner, Georgia organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School – sequence: 2 givenname: Lucas surname: Cheadle fullname: Cheadle, Lucas organization: Department of Neurobiology, Harvard Medical School – sequence: 3 givenname: Kasey M. surname: Johnson fullname: Johnson, Kasey M. organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School – sequence: 4 givenname: Pinar orcidid: 0000-0001-7621-832X surname: Ayata fullname: Ayata, Pinar organization: Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai – sequence: 5 givenname: Ana surname: Badimon fullname: Badimon, Ana organization: Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai – sequence: 6 givenname: Erica surname: Mondo fullname: Mondo, Erica organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School – sequence: 7 givenname: M. Aurel surname: Nagy fullname: Nagy, M. Aurel organization: Department of Neurobiology, Harvard Medical School – sequence: 8 givenname: Liwang orcidid: 0000-0003-4689-1964 surname: Liu fullname: Liu, Liwang organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School – sequence: 9 givenname: Shane M. surname: Bemiller fullname: Bemiller, Shane M. organization: Stark Neurosciences Research Institute, Indiana University – sequence: 10 givenname: Ki-Wook surname: Kim fullname: Kim, Ki-Wook organization: Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine – sequence: 11 givenname: Sergio A. surname: Lira fullname: Lira, Sergio A. organization: Precision Immunology Institute, Icahn School of Medicine at Mount Sinai – sequence: 12 givenname: Bruce T. orcidid: 0000-0001-8507-2561 surname: Lamb fullname: Lamb, Bruce T. organization: Stark Neurosciences Research Institute, Indiana University – sequence: 13 givenname: Andrew R. orcidid: 0000-0002-8358-6937 surname: Tapper fullname: Tapper, Andrew R. organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School – sequence: 14 givenname: Richard M. orcidid: 0000-0003-0175-6910 surname: Ransohoff fullname: Ransohoff, Richard M. organization: Third Rock Ventures – sequence: 15 givenname: Michael E. orcidid: 0000-0003-1380-2160 surname: Greenberg fullname: Greenberg, Michael E. organization: Department of Neurobiology, Harvard Medical School – sequence: 16 givenname: Anne orcidid: 0000-0002-1051-3710 surname: Schaefer fullname: Schaefer, Anne organization: Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai – sequence: 17 givenname: Dorothy P. orcidid: 0000-0003-2201-6276 surname: Schafer fullname: Schafer, Dorothy P. email: Dorothy.schafer@umassmed.edu organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31209379$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wA9igSGxgkeJHbMcbpFF5VSpCorBElpNcBxfHmcZJRf49dzotZSpAluzI_s6Jfe49zPbiECHLnlJyTAmvXqWSCs0LQnVBSpyWB9kBFaUsqGJyD7-JVoVkQu5nhyldEEKUqPSjbJ9TRjRX-iD7dg4xDeOSB0h-iD52uY_t3EDKe9-MQxe8DXlaol0nyCH43kc7IZlfeZuv3qw-UpLb2OZutM1kww8fIU--izag1-PsobMhwZOb9Sj7-u7tl5MPxdmn96cnq7OiEbqcikoCd7Li1LVCgmhVDdLWrcWV1NaCrnnrnNIt5Y5xDUpJrpxsCVNC1LziR9nrre96rntoG4jTaINZj76342IG683uSfTfTTdcGSm0xOTQ4MWNwThczpAm0_vUQAg2wjAnw1jJKqa05og-v4deDPOI772mJOOk5PKO6mwA46Mb8L_NxtSshCZScyZLpI7_QuFoAdPHYjuP-zuClzsCZCb4OXV2Tsmcnn_eZZ_9GcrvNG6Lj4DaAljnlEZwpvHTdXHxFj4YSsymzcy2zQy2mdm0mVlQSe8pb83_p2FbTUI2djDe5fZv0S-fsORv |
CitedBy_id | crossref_primary_10_1007_s00281_024_01017_6 crossref_primary_10_1016_j_mcn_2022_103791 crossref_primary_10_1016_j_conb_2024_102877 crossref_primary_10_3389_fcell_2021_661486 crossref_primary_10_3390_cells11213421 crossref_primary_10_4103_1673_5374_389630 crossref_primary_10_3389_fncel_2023_1189348 crossref_primary_10_1002_glia_23790 crossref_primary_10_1016_j_bbi_2024_07_007 crossref_primary_10_3390_brainsci11101299 crossref_primary_10_1016_j_neuron_2020_08_002 crossref_primary_10_1016_j_bbr_2025_115435 crossref_primary_10_1152_jn_00348_2020 crossref_primary_10_1186_s12974_020_01923_0 crossref_primary_10_1038_s41593_022_01222_2 crossref_primary_10_1038_s41467_021_25960_2 crossref_primary_10_1016_j_celrep_2023_112383 crossref_primary_10_1016_j_immuni_2023_01_028 crossref_primary_10_1016_j_brainresbull_2021_06_005 crossref_primary_10_1126_sciadv_adf5672 crossref_primary_10_3389_fopht_2023_1310226 crossref_primary_10_1523_ENEURO_0197_22_2023 crossref_primary_10_1016_j_bbi_2021_08_210 crossref_primary_10_3389_fncel_2022_826483 crossref_primary_10_1016_j_neures_2020_11_005 crossref_primary_10_1007_s00429_021_02321_9 crossref_primary_10_1111_ejn_15009 crossref_primary_10_3389_fcell_2021_693342 crossref_primary_10_3233_JAD_221042 crossref_primary_10_1002_glia_23780 crossref_primary_10_1186_s12974_024_03073_z crossref_primary_10_1016_j_conb_2021_09_003 crossref_primary_10_1002_glia_24114 crossref_primary_10_1093_bfgp_elad011 crossref_primary_10_1371_journal_pone_0252118 crossref_primary_10_1038_s41380_022_01703_7 crossref_primary_10_1038_s41573_023_00823_1 crossref_primary_10_3390_ijms21186906 crossref_primary_10_1073_pnas_2106294118 crossref_primary_10_1073_pnas_2207817119 crossref_primary_10_1038_s41593_020_00756_7 crossref_primary_10_2174_1568026620666200221172619 crossref_primary_10_1126_sciadv_abk1131 crossref_primary_10_4103_1673_5374_322423 crossref_primary_10_1038_s41386_022_01451_w crossref_primary_10_3389_fncel_2020_00163 crossref_primary_10_1016_j_ecoenv_2024_117620 crossref_primary_10_1016_j_neuron_2020_11_007 crossref_primary_10_1016_j_conb_2023_102732 crossref_primary_10_1038_s41398_020_01189_3 crossref_primary_10_1007_s11571_024_10185_y crossref_primary_10_15252_embr_202051696 crossref_primary_10_1002_glia_24101 crossref_primary_10_1002_glia_24343 crossref_primary_10_1016_j_conb_2023_102692 crossref_primary_10_1016_j_conb_2022_102607 crossref_primary_10_1016_j_immuni_2023_04_011 crossref_primary_10_1083_jcb_202312043 crossref_primary_10_1097_MAO_0000000000003884 crossref_primary_10_1002_stem_3374 crossref_primary_10_1523_JNEUROSCI_1922_21_2022 crossref_primary_10_3390_ijms24098026 crossref_primary_10_3389_fncel_2021_770453 crossref_primary_10_1016_j_bbih_2021_100301 crossref_primary_10_1038_s41392_021_00748_4 crossref_primary_10_1186_s40478_021_01213_7 crossref_primary_10_3390_cells13020177 crossref_primary_10_1016_j_immuni_2024_05_005 crossref_primary_10_1038_s41593_024_01818_w crossref_primary_10_1073_pnas_2303392120 crossref_primary_10_1111_febs_16190 crossref_primary_10_1155_2023_4637073 crossref_primary_10_1038_s41467_023_41502_4 crossref_primary_10_3390_cells11121943 crossref_primary_10_1002_glia_24053 crossref_primary_10_1016_j_cell_2024_02_020 crossref_primary_10_1038_s41587_020_0605_1 crossref_primary_10_1038_s41593_024_01833_x crossref_primary_10_1111_cns_14674 crossref_primary_10_1002_glia_24574 crossref_primary_10_3389_fnins_2022_840266 crossref_primary_10_3390_ijms22041868 crossref_primary_10_1016_j_ynstr_2025_100714 crossref_primary_10_1007_s11427_021_2223_4 crossref_primary_10_1038_s41593_020_0672_0 crossref_primary_10_1186_s12916_022_02705_6 crossref_primary_10_3389_fgene_2020_574543 crossref_primary_10_1111_jnc_15327 crossref_primary_10_3390_cells13121000 crossref_primary_10_1254_fpj_23004 crossref_primary_10_1016_j_celrep_2022_111369 crossref_primary_10_1111_jnc_15689 crossref_primary_10_1016_j_bbih_2024_100911 crossref_primary_10_3389_fnagi_2020_00110 crossref_primary_10_3390_ijms22010118 crossref_primary_10_1101_cshperspect_a041347 crossref_primary_10_3389_fimmu_2021_629979 crossref_primary_10_3389_fimmu_2020_01416 crossref_primary_10_3389_fimmu_2021_644294 crossref_primary_10_1002_dneu_22777 crossref_primary_10_1016_j_jri_2024_104392 crossref_primary_10_3389_fimmu_2022_1088124 crossref_primary_10_3389_fcell_2025_1540052 crossref_primary_10_3389_fnins_2022_1072667 crossref_primary_10_1016_j_bcp_2019_08_016 crossref_primary_10_1038_s41593_020_0654_2 crossref_primary_10_1016_j_conb_2022_102674 crossref_primary_10_1523_JNEUROSCI_1354_23_2023 crossref_primary_10_1002_glia_24323 crossref_primary_10_1073_pnas_2115539118 crossref_primary_10_1186_s13064_019_0137_x crossref_primary_10_1186_s12974_020_01828_y crossref_primary_10_1016_j_coi_2020_01_003 crossref_primary_10_1007_s12264_020_00477_8 crossref_primary_10_1002_glia_24281 crossref_primary_10_1016_j_it_2024_03_009 crossref_primary_10_1242_dev_189019 crossref_primary_10_15252_embj_2020105380 crossref_primary_10_7554_eLife_50531 crossref_primary_10_1016_j_reth_2024_04_002 crossref_primary_10_1523_JNEUROSCI_2851_18_2019 crossref_primary_10_1093_procel_pwad020 crossref_primary_10_1371_journal_pone_0279736 crossref_primary_10_1016_j_canlet_2024_216674 crossref_primary_10_3389_fncel_2022_953534 crossref_primary_10_1038_s41423_021_00751_3 crossref_primary_10_1016_j_immuni_2021_09_014 crossref_primary_10_1016_j_immuni_2022_10_018 crossref_primary_10_3389_fncel_2020_627987 crossref_primary_10_1083_jcb_202208061 crossref_primary_10_1242_dev_201633 crossref_primary_10_1016_j_bbii_2023_100030 crossref_primary_10_1016_j_immuni_2019_12_004 crossref_primary_10_1186_s12974_021_02168_1 crossref_primary_10_7554_eLife_76707 crossref_primary_10_1002_wsbm_1545 crossref_primary_10_1016_j_tins_2021_04_001 crossref_primary_10_3389_fcell_2021_661462 crossref_primary_10_1016_j_lfs_2022_120564 crossref_primary_10_3390_jpm11050371 crossref_primary_10_1016_j_semcdb_2022_07_011 crossref_primary_10_1084_jem_20212476 crossref_primary_10_1038_s41467_021_22054_x crossref_primary_10_1038_s41583_021_00507_y crossref_primary_10_1016_j_dcit_2024_100029 crossref_primary_10_1523_JNEUROSCI_1660_20_2020 crossref_primary_10_1016_j_celrep_2021_108823 crossref_primary_10_1016_j_bbi_2021_07_025 crossref_primary_10_1016_j_pharmthera_2021_107989 crossref_primary_10_3390_biom14091087 crossref_primary_10_1016_j_jtemb_2023_127380 crossref_primary_10_3390_biom12111722 crossref_primary_10_4103_1673_5374_385854 crossref_primary_10_1159_000541379 crossref_primary_10_1111_acer_14694 crossref_primary_10_1016_j_neuron_2021_06_012 crossref_primary_10_1038_s41596_024_01048_1 crossref_primary_10_1186_s12974_021_02309_6 crossref_primary_10_3389_fncel_2023_1247335 crossref_primary_10_1093_jleuko_qiae098 crossref_primary_10_3390_ijms24021428 crossref_primary_10_1016_j_jare_2024_01_006 crossref_primary_10_1186_s12974_023_02973_w crossref_primary_10_1002_glia_23961 crossref_primary_10_1186_s12974_023_02901_y crossref_primary_10_1016_j_stemcr_2021_06_011 crossref_primary_10_1002_glia_23842 crossref_primary_10_1016_j_neubiorev_2021_09_023 crossref_primary_10_53053_JTQA7225 crossref_primary_10_1111_nyas_15105 crossref_primary_10_1016_j_conb_2020_11_013 crossref_primary_10_1016_j_brainresbull_2023_110664 crossref_primary_10_3389_fnmol_2021_749737 crossref_primary_10_1002_glia_24134 crossref_primary_10_1111_ejn_15225 crossref_primary_10_3389_fcell_2024_1418100 crossref_primary_10_3389_fimmu_2021_703527 crossref_primary_10_1080_15622975_2020_1755451 crossref_primary_10_1016_j_neuropharm_2021_108941 crossref_primary_10_1038_s41598_021_01131_7 crossref_primary_10_1038_s41467_023_42809_y crossref_primary_10_3389_fpsyt_2021_734837 crossref_primary_10_1016_j_celrep_2022_111209 crossref_primary_10_1016_j_jphs_2020_12_007 crossref_primary_10_1038_s41386_020_00861_y crossref_primary_10_1038_s41598_021_85625_4 crossref_primary_10_1002_jgm_3319 crossref_primary_10_3389_fncel_2023_1139357 crossref_primary_10_1038_s44319_024_00130_9 |
Cites_doi | 10.1523/ENEURO.0209-16.2016 10.1038/nature18283 10.1126/science.179.4071.395 10.1111/j.1460-9568.2012.08075.x 10.1016/j.cell.2015.04.044 10.1016/0006-8993(70)90079-X 10.1126/science.aal3589 10.1016/S0014-5793(98)00583-3 10.1016/j.cell.2019.02.014 10.1523/JNEUROSCI.12-05-01826.1992 10.1186/gb-2009-10-3-r25 10.1523/JNEUROSCI.1167-12.2012 10.1186/s12987-016-0038-x 10.1016/j.bpsc.2016.09.002 10.1038/nbt.2859 10.1111/nyas.12805 10.1371/journal.pbio.1000527 10.1016/j.neuron.2012.03.026 10.1038/nprot.2016.154 10.1182/blood-2011-04-348946 10.1016/S0306-4522(02)00025-8 10.1016/j.neuron.2009.10.015 10.1176/appi.ajp.2012.12010056 10.1038/s41467-018-03566-5 10.1016/j.neuron.2012.03.022 10.1046/j.1460-9568.1998.00222.x 10.1002/cne.10518 10.1016/j.expneurol.2017.01.008 10.1038/s41593-017-0029-5 10.1038/nature24014 10.1002/glia.23192 10.1371/journal.pone.0101879 10.1128/MCB.20.11.4106-4114.2000 10.1126/science.290.5499.2155 10.1016/j.cell.2007.10.036 10.1038/nature20587 10.1038/nmeth.3833 10.1182/blood-2002-12-3775 10.1523/JNEUROSCI.2679-16.2017 10.1126/science.1202529 10.1080/15548627.2017.1379633 10.1126/science.aad8373 10.1038/ncomms10905 10.1016/j.semcdb.2008.09.005 10.1016/j.conb.2015.12.004 10.1002/cne.22483 10.1016/j.cell.2016.04.001 10.1038/s41598-016-0013-4 10.1016/j.neuroscience.2018.07.034 10.1016/j.it.2015.08.008 10.1093/nar/30.1.207 10.1016/j.neuron.2012.10.003 10.1098/rsob.160091 10.1038/nn.3641 10.1179/016164103101201193 10.1038/nbt.3192 10.1016/S0166-2236(00)01958-5 10.3389/fncel.2013.00026 10.1038/nn.3554 10.1186/s12974-019-1397-4 10.1002/glia.22929 10.1038/s41588-019-0358-2 10.1201/9781420039849 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 COPYRIGHT 2019 Nature Publishing Group Copyright Nature Publishing Group Jul 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019 – notice: COPYRIGHT 2019 Nature Publishing Group – notice: Copyright Nature Publishing Group Jul 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1038/s41593-019-0419-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central (subscription) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central Basic Toxicology Abstracts ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Medicine |
EISSN | 1546-1726 |
EndPage | 1088 |
ExternalDocumentID | PMC6596419 A590693264 31209379 10_1038_s41593_019_0419_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI095213 – fundername: NIDA NIH HHS grantid: P01 DA047233 – fundername: NIDDK NIH HHS grantid: R01 DK110352 – fundername: NIA NIH HHS grantid: T32 AG049688 – fundername: NIMH NIH HHS grantid: R21 MH115353 – fundername: NIMH NIH HHS grantid: R01 MH118329 – fundername: NCI NIH HHS grantid: R01 CA161373 – fundername: NIMH NIH HHS grantid: R01 MH113743 – fundername: NIGMS NIH HHS grantid: T32 GM007753 – fundername: NIMH NIH HHS grantid: R00 MH102351 |
GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 85S 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ISR ITC M1P M2M M7P MVM N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT YNT YQT ZGI ~8M AAYXX ABFSG ACSTC AETEA AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT ADXHL CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7XB 8FD 8FE 8FH 8FK C1K FR3 H94 K9. LK8 P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c594t-86e3f6831fd56e5d7be6abda7be0baae9b3dff79d13f239e77637f6d02755b383 |
IEDL.DBID | 7X7 |
ISSN | 1097-6256 1546-1726 |
IngestDate | Thu Aug 21 18:18:38 EDT 2025 Fri Jul 11 00:43:48 EDT 2025 Fri Jul 25 09:04:04 EDT 2025 Tue Jun 17 21:06:47 EDT 2025 Tue Jun 10 20:42:24 EDT 2025 Fri Jun 27 04:52:06 EDT 2025 Mon Jul 21 05:41:03 EDT 2025 Tue Jul 01 03:21:47 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Fri Feb 21 02:39:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-86e3f6831fd56e5d7be6abda7be0baae9b3dff79d13f239e77637f6d02755b383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Authors contributed equally G.G. and D.P.S. designed the study, performed most experiments, analyzed most data, and wrote the manuscript, K.M.J. assisted in the design of initial experiments and performed experiments to identify initial synapse remodeling and engulfment phenotypes, L.C., M.A.N., and M.E.G. performed single-cell sequencing experiments. E.M. performed in situ hybridization experiments, P.A., A.B., and A.S. performed bulk RNAseq experiments of whole barrel cortex, L.L. and A.R.T. performed electrophysiology experiments. K.-W.K., S.M.B. and B.T.L. performed experiments related to Cx3cl1−/− mice, S.A.L. provided Cx3cl1−/− mice, R.M.R. provided critical input into study design and feedback on writing of the manuscript. Author Contributions |
ORCID | 0000-0002-8358-6937 0000-0001-7621-832X 0000-0003-4689-1964 0000-0003-0175-6910 0000-0003-2201-6276 0000-0002-1051-3710 0000-0002-6734-9632 0000-0003-1380-2160 0000-0001-8507-2561 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6596419 |
PMID | 31209379 |
PQID | 2246230436 |
PQPubID | 44706 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596419 proquest_miscellaneous_2242827993 proquest_journals_2246230436 gale_infotracmisc_A590693264 gale_infotracacademiconefile_A590693264 gale_incontextgauss_ISR_A590693264 pubmed_primary_31209379 crossref_citationtrail_10_1038_s41593_019_0419_y crossref_primary_10_1038_s41593_019_0419_y springer_journals_10_1038_s41593_019_0419_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature neuroscience |
PublicationTitleAbbrev | Nat Neurosci |
PublicationTitleAlternate | Nat Neurosci |
PublicationYear | 2019 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Vasek (CR5) 2016; 534 Tremblay, Lowery, Majewska (CR25) 2010; 8 Zilionis (CR60) 2017; 12 Droguett (CR55) 2014; 9 Venkatesh (CR35) 2017; 549 Vainchtein (CR40) 2018; 359 Hrvatin (CR30) 2018; 21 Oberlaender, Ramirez, Bruno (CR20) 2012; 74 Erzurumlu, Kind (CR22) 2001; 24 Pruessmeyer, Ludwig (CR45) 2009; 20 Schecter (CR11) 2017; 37 Kunkle (CR47) 2019; 51 Schafer (CR2) 2012; 74 Suzuki (CR32) 2012; 76 Funk, Klein (CR58) 2019; 16 Stevens (CR4) 2007; 131 Schafer, Lehrman, Heller, Stevens (CR59) 2014; 88 Van der Loos, Woolsey (CR17) 1973; 179 Nishiyori (CR10) 1998; 429 Glazewski, McKenna, Jacquin, Fox (CR19) 1998; 10 Lui (CR6) 2016; 165 Woodward, Giraldo-Chica, Rogers, Cascio (CR41) 2017; 2 CR46 Yang (CR51) 2017; 13 Woodward, Karbasforoushan, Heckers (CR42) 2012; 169 Manabe (CR52) 2003; 25 Erzurumlu, Gaspar (CR24) 2012; 35 Hickman (CR36) 2013; 16 Jung (CR9) 2000; 20 Eyo (CR37) 2017; 3 Hoshiko, Arnoux, Avignone, Yamamoto, Audinat (CR14) 2012; 32 Satija, Farrell, Gennert, Schier, Regev (CR62) 2015; 33 Martorell (CR49) 2019; 177 Iaccarino (CR48) 2016; 540 Viganò (CR56) 2016; 64 Lauro, Catalano, Trettel, Limatola (CR44) 2015; 1351 Woolsey, Van der Loos (CR16) 1970; 17 Kim (CR28) 2011; 118 Langmead, Trapnell, Pop, Salzberg (CR61) 2009; 10 Lowery, Tremblay, Hopkins, Majewska (CR12) 2017; 65 Wimmer, Broser, Kuner, Bruno (CR21) 2010; 518 Trapnell (CR63) 2014; 32 Sipe (CR26) 2016; 7 Shackleton, Crawford, Bachmeier (CR34) 2016; 13 Edgar, Domrachev, Lash (CR64) 2002; 30 Sadaka, Weinfeld, Lev, White (CR23) 2003; 457 Hao (CR54) 2017; 291 Madoux (CR33) 2016; 6 Wolf, Yona, Kim, Jung (CR8) 2013; 7 Weinhard (CR27) 2018; 9 Chozinski (CR50) 2016; 13 Fox (CR18) 1992; 12 Klein (CR29) 2015; 161 Huh (CR39) 2000; 290 Datwani (CR38) 2009; 64 Kluge (CR57) 2018; 393 Wu, Dissing-Olesen, MacVicar, Stevens (CR1) 2015; 36 Hong, Dissing-Olesen, Stevens (CR3) 2016; 36 Hundhausen (CR31) 2003; 102 Paolicelli (CR13) 2011; 333 Chen, Cohen, Hallett (CR43) 2002; 111 Gey (CR53) 2016; 6 Zhan (CR15) 2014; 17 Hong (CR7) 2016; 352 AJ Martorell (419_CR49) 2019; 177 RC Paolicelli (419_CR13) 2011; 333 RW Schecter (419_CR11) 2017; 37 ND Woodward (419_CR41) 2017; 2 R Edgar (419_CR64) 2002; 30 S Hong (419_CR7) 2016; 352 C Trapnell (419_CR63) 2014; 32 B Shackleton (419_CR34) 2016; 13 RL Lowery (419_CR12) 2017; 65 M Hoshiko (419_CR14) 2012; 32 ID Vainchtein (419_CR40) 2018; 359 S Hrvatin (419_CR30) 2018; 21 TA Woolsey (419_CR16) 1970; 17 B Langmead (419_CR61) 2009; 10 Y Zhan (419_CR15) 2014; 17 R Chen (419_CR43) 2002; 111 DP Schafer (419_CR59) 2014; 88 F Madoux (419_CR33) 2016; 6 HS Venkatesh (419_CR35) 2017; 549 H Van der Loos (419_CR17) 1973; 179 K Fox (419_CR18) 1992; 12 M Gey (419_CR53) 2016; 6 DP Schafer (419_CR2) 2012; 74 C Hundhausen (419_CR31) 2003; 102 Y Wu (419_CR1) 2015; 36 A Nishiyori (419_CR10) 1998; 429 Y Sadaka (419_CR23) 2003; 457 L Weinhard (419_CR27) 2018; 9 J Pruessmeyer (419_CR45) 2009; 20 A Droguett (419_CR55) 2014; 9 RS Erzurumlu (419_CR24) 2012; 35 A Datwani (419_CR38) 2009; 64 TJ Chozinski (419_CR50) 2016; 13 F Viganò (419_CR56) 2016; 64 AM Klein (419_CR29) 2015; 161 KW Kim (419_CR28) 2011; 118 KE Funk (419_CR58) 2019; 16 SE Hickman (419_CR36) 2013; 16 B Stevens (419_CR4) 2007; 131 Y Manabe (419_CR52) 2003; 25 S Hong (419_CR3) 2016; 36 MJ Vasek (419_CR5) 2016; 534 419_CR46 ND Woodward (419_CR42) 2012; 169 R Satija (419_CR62) 2015; 33 K Suzuki (419_CR32) 2012; 76 S Glazewski (419_CR19) 1998; 10 BW Kunkle (419_CR47) 2019; 51 HF Iaccarino (419_CR48) 2016; 540 S Jung (419_CR9) 2000; 20 F Hao (419_CR54) 2017; 291 C Lauro (419_CR44) 2015; 1351 VC Wimmer (419_CR21) 2010; 518 UB Eyo (419_CR37) 2017; 3 MG Kluge (419_CR57) 2018; 393 H Lui (419_CR6) 2016; 165 GO Sipe (419_CR26) 2016; 7 R Zilionis (419_CR60) 2017; 12 RS Erzurumlu (419_CR22) 2001; 24 M Oberlaender (419_CR20) 2012; 74 C Yang (419_CR51) 2017; 13 ME Tremblay (419_CR25) 2010; 8 Y Wolf (419_CR8) 2013; 7 GS Huh (419_CR39) 2000; 290 |
References_xml | – volume: 3 start-page: ENEURO.0209-16.2016 year: 2017 ident: CR37 article-title: Regulation of physical microglia–neuron interactions by fractalkine signaling after status epilepticus publication-title: eNeuro doi: 10.1523/ENEURO.0209-16.2016 – volume: 534 start-page: 538 year: 2016 end-page: 543 ident: CR5 article-title: A complement–microglial axis drives synapse loss during virus-induced memory impairment publication-title: Nature doi: 10.1038/nature18283 – volume: 179 start-page: 395 year: 1973 end-page: 398 ident: CR17 article-title: Somatosensory cortex: structural alterations following early injury to sense organs publication-title: Science doi: 10.1126/science.179.4071.395 – volume: 35 start-page: 1540 year: 2012 end-page: 1553 ident: CR24 article-title: Development and critical period plasticity of the barrel cortex publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2012.08075.x – volume: 161 start-page: 1187 year: 2015 end-page: 1201 ident: CR29 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 17 start-page: 205 year: 1970 end-page: 242 ident: CR16 article-title: The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units publication-title: Brain Res. doi: 10.1016/0006-8993(70)90079-X – volume: 359 start-page: 1269 year: 2018 end-page: 1273 ident: CR40 article-title: Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development publication-title: Science doi: 10.1126/science.aal3589 – volume: 429 start-page: 167 year: 1998 end-page: 172 ident: CR10 article-title: Localization of and mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia? publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00583-3 – volume: 177 start-page: 256 year: 2019 end-page: 271.e222 ident: CR49 article-title: Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition publication-title: Cell doi: 10.1016/j.cell.2019.02.014 – volume: 12 start-page: 1826 year: 1992 end-page: 1838 ident: CR18 article-title: A critical period for experience-dependent synaptic plasticity in rat barrel cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-05-01826.1992 – volume: 10 year: 2009 ident: CR61 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 32 start-page: 15106 year: 2012 end-page: 15111 ident: CR14 article-title: Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1167-12.2012 – volume: 13 year: 2016 ident: CR34 article-title: Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding publication-title: Fluids Barriers CNS doi: 10.1186/s12987-016-0038-x – volume: 2 start-page: 76 year: 2017 end-page: 84 ident: CR41 article-title: Thalamocortical dysconnectivity in autism spectrum disorder: an analysis of the Autism Brain Imaging Data Exchange publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging doi: 10.1016/j.bpsc.2016.09.002 – ident: CR46 – volume: 32 start-page: 381 year: 2014 end-page: 386 ident: CR63 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 1351 start-page: 141 year: 2015 end-page: 148 ident: CR44 article-title: Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? publication-title: Ann. NY Acad. Sci. doi: 10.1111/nyas.12805 – volume: 8 start-page: e1000527 year: 2010 ident: CR25 article-title: Microglial interactions with synapses are modulated by visual experience publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000527 – volume: 74 start-page: 691 year: 2012 end-page: 705 ident: CR2 article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 12 start-page: 44 year: 2017 end-page: 73 ident: CR60 article-title: Single-cell barcoding and sequencing using droplet microfluidics publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.154 – volume: 118 start-page: e156 year: 2011 end-page: e167 ident: CR28 article-title: In vivo structure/function and expression analysis of the CX3C chemokine fractalkine publication-title: Blood doi: 10.1182/blood-2011-04-348946 – volume: 111 start-page: 761 year: 2002 end-page: 773 ident: CR43 article-title: Nervous system reorganization following injury publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00025-8 – volume: 64 start-page: 463 year: 2009 end-page: 470 ident: CR38 article-title: Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity publication-title: Neuron doi: 10.1016/j.neuron.2009.10.015 – volume: 169 start-page: 1092 year: 2012 end-page: 1099 ident: CR42 article-title: Thalamocortical dysconnectivity in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2012.12010056 – volume: 9 year: 2018 ident: CR27 article-title: Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction publication-title: Nat. Commun. doi: 10.1038/s41467-018-03566-5 – volume: 74 start-page: 648 year: 2012 end-page: 655 ident: CR20 article-title: Sensory experience restructures thalamocortical axons during adulthood publication-title: Neuron doi: 10.1016/j.neuron.2012.03.022 – volume: 10 start-page: 2107 year: 1998 end-page: 2116 ident: CR19 article-title: Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1998.00222.x – volume: 457 start-page: 75 year: 2003 end-page: 86 ident: CR23 article-title: Changes in mouse barrel synapses consequent to sensory deprivation from birth publication-title: J. Comp. Neurol. doi: 10.1002/cne.10518 – volume: 291 start-page: 120 year: 2017 end-page: 133 ident: CR54 article-title: Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in parkinsonian rats publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2017.01.008 – volume: 21 start-page: 120 year: 2018 end-page: 129 ident: CR30 article-title: Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0029-5 – volume: 549 start-page: 533 year: 2017 end-page: 537 ident: CR35 article-title: Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma publication-title: Nature doi: 10.1038/nature24014 – volume: 65 start-page: 1744 year: 2017 end-page: 1761 ident: CR12 article-title: The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system publication-title: Glia doi: 10.1002/glia.23192 – volume: 9 start-page: e101879 year: 2014 ident: CR55 article-title: Tubular overexpression of gremlin induces renal damage susceptibility in mice publication-title: PLoS One doi: 10.1371/journal.pone.0101879 – volume: 20 start-page: 4106 year: 2000 end-page: 4114 ident: CR9 article-title: Analysis of fractalkine receptor CX3CR1 function by targeted deletion and reporter gene insertion publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.11.4106-4114.2000 – volume: 290 start-page: 2155 year: 2000 end-page: 2159 ident: CR39 article-title: Functional requirement for class I MHC in CNS development and plasticity publication-title: Science doi: 10.1126/science.290.5499.2155 – volume: 131 start-page: 1164 year: 2007 end-page: 1178 ident: CR4 article-title: The classical complement cascade mediates CNS synapse elimination publication-title: Cell doi: 10.1016/j.cell.2007.10.036 – volume: 540 start-page: 230 year: 2016 end-page: 235 ident: CR48 article-title: Gamma frequency entrainment attenuates amyloid load and modifies microglia publication-title: Nature doi: 10.1038/nature20587 – volume: 13 start-page: 485 year: 2016 ident: CR50 article-title: Expansion microscopy with conventional antibodies and fluorescent proteins publication-title: Nat. Methods doi: 10.1038/nmeth.3833 – volume: 102 start-page: 1186 year: 2003 end-page: 1195 ident: CR31 article-title: The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion publication-title: Blood doi: 10.1182/blood-2002-12-3775 – volume: 37 start-page: 10541 year: 2017 end-page: 10553 ident: CR11 article-title: Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2679-16.2017 – volume: 333 start-page: 1456 year: 2011 end-page: 1458 ident: CR13 article-title: Synaptic pruning by microglia is necessary for normal brain development publication-title: Science doi: 10.1126/science.1202529 – volume: 13 start-page: 2028 year: 2017 end-page: 2040 ident: CR51 article-title: NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models publication-title: Autophagy doi: 10.1080/15548627.2017.1379633 – volume: 352 start-page: 712 year: 2016 end-page: 716 ident: CR7 article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models publication-title: Science doi: 10.1126/science.aad8373 – volume: 7 year: 2016 ident: CR26 article-title: Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex publication-title: Nat. Commun. doi: 10.1038/ncomms10905 – volume: 20 start-page: 164 year: 2009 end-page: 174 ident: CR45 article-title: The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.09.005 – volume: 36 start-page: 128 year: 2016 end-page: 134 ident: CR3 article-title: New insights on the role of microglia in synaptic pruning in health and disease publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.12.004 – volume: 518 start-page: 4629 year: 2010 end-page: 4648 ident: CR21 article-title: Experience-induced plasticity of thalamocortical axons in both juveniles and adults publication-title: J. Comp. Neurol. doi: 10.1002/cne.22483 – volume: 165 start-page: 921 year: 2016 end-page: 935 ident: CR6 article-title: Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation publication-title: Cell doi: 10.1016/j.cell.2016.04.001 – volume: 6 year: 2016 ident: CR33 article-title: Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate publication-title: Sci. Rep. doi: 10.1038/s41598-016-0013-4 – volume: 393 start-page: 185 year: 2018 end-page: 195 ident: CR57 article-title: Age-dependent disturbances of neuronal and glial protein expression profiles in areas of secondary neurodegeneration post-stroke publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.07.034 – volume: 36 start-page: 605 year: 2015 end-page: 613 ident: CR1 article-title: Microglia: dynamic mediators of synapse development and plasticity publication-title: Trends Immunol. doi: 10.1016/j.it.2015.08.008 – volume: 30 start-page: 207 year: 2002 end-page: 210 ident: CR64 article-title: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.207 – volume: 76 start-page: 410 year: 2012 end-page: 422 ident: CR32 article-title: Activity-dependent proteolytic cleavage of neuroligin-1 publication-title: Neuron doi: 10.1016/j.neuron.2012.10.003 – volume: 6 start-page: 160091 year: 2016 ident: CR53 article-title: mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury publication-title: Open Biol. doi: 10.1098/rsob.160091 – volume: 17 start-page: 400 year: 2014 end-page: 406 ident: CR15 article-title: Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.3641 – volume: 25 start-page: 195 year: 2003 end-page: 200 ident: CR52 article-title: Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis publication-title: Neurol. Res. doi: 10.1179/016164103101201193 – volume: 33 start-page: 495 year: 2015 end-page: 502 ident: CR62 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 24 start-page: 589 year: 2001 end-page: 595 ident: CR22 article-title: Neural activity: sculptor of ‘barrels’ in the neocortex publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)01958-5 – volume: 7 start-page: 26 year: 2013 ident: CR8 article-title: Microglia, seen from the CX3CR1 angle publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2013.00026 – volume: 16 start-page: 1896 year: 2013 end-page: 1905 ident: CR36 article-title: The microglial sensome revealed by direct RNA sequencing publication-title: Nat. Neurosci. doi: 10.1038/nn.3554 – volume: 88 start-page: e51482 year: 2014 ident: CR59 article-title: An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons publication-title: J. Vis. Exp. – volume: 16 year: 2019 ident: CR58 article-title: CSF1R antagonism limits local restimulation of antiviral CD8+ T cells during viral encephalitis publication-title: J. Neuroinflamm. doi: 10.1186/s12974-019-1397-4 – volume: 64 start-page: 287 year: 2016 end-page: 299 ident: CR56 article-title: GPR17 expressing NG2-glia: oligodendrocyte progenitors serving as a reserve pool after injury publication-title: Glia doi: 10.1002/glia.22929 – volume: 51 start-page: 414 year: 2019 end-page: 430 ident: CR47 article-title: Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing publication-title: Nat. Genet. doi: 10.1038/s41588-019-0358-2 – volume: 51 start-page: 414 year: 2019 ident: 419_CR47 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0358-2 – volume: 161 start-page: 1187 year: 2015 ident: 419_CR29 publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 102 start-page: 1186 year: 2003 ident: 419_CR31 publication-title: Blood doi: 10.1182/blood-2002-12-3775 – volume: 35 start-page: 1540 year: 2012 ident: 419_CR24 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2012.08075.x – volume: 457 start-page: 75 year: 2003 ident: 419_CR23 publication-title: J. Comp. Neurol. doi: 10.1002/cne.10518 – volume: 3 start-page: ENEURO.0209-16. year: 2017 ident: 419_CR37 publication-title: eNeuro doi: 10.1523/ENEURO.0209-16.2016 – volume: 7 start-page: 26 year: 2013 ident: 419_CR8 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2013.00026 – volume: 9 year: 2018 ident: 419_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03566-5 – volume: 88 start-page: e51482 year: 2014 ident: 419_CR59 publication-title: J. Vis. Exp. – volume: 534 start-page: 538 year: 2016 ident: 419_CR5 publication-title: Nature doi: 10.1038/nature18283 – volume: 9 start-page: e101879 year: 2014 ident: 419_CR55 publication-title: PLoS One doi: 10.1371/journal.pone.0101879 – volume: 74 start-page: 691 year: 2012 ident: 419_CR2 publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 37 start-page: 10541 year: 2017 ident: 419_CR11 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2679-16.2017 – volume: 65 start-page: 1744 year: 2017 ident: 419_CR12 publication-title: Glia doi: 10.1002/glia.23192 – volume: 16 year: 2019 ident: 419_CR58 publication-title: J. Neuroinflamm. doi: 10.1186/s12974-019-1397-4 – volume: 20 start-page: 164 year: 2009 ident: 419_CR45 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.09.005 – volume: 36 start-page: 128 year: 2016 ident: 419_CR3 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2015.12.004 – volume: 10 year: 2009 ident: 419_CR61 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 17 start-page: 400 year: 2014 ident: 419_CR15 publication-title: Nat. Neurosci. doi: 10.1038/nn.3641 – volume: 10 start-page: 2107 year: 1998 ident: 419_CR19 publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1998.00222.x – volume: 20 start-page: 4106 year: 2000 ident: 419_CR9 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.11.4106-4114.2000 – volume: 169 start-page: 1092 year: 2012 ident: 419_CR42 publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2012.12010056 – volume: 429 start-page: 167 year: 1998 ident: 419_CR10 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)00583-3 – volume: 291 start-page: 120 year: 2017 ident: 419_CR54 publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2017.01.008 – ident: 419_CR46 doi: 10.1201/9781420039849 – volume: 290 start-page: 2155 year: 2000 ident: 419_CR39 publication-title: Science doi: 10.1126/science.290.5499.2155 – volume: 177 start-page: 256 year: 2019 ident: 419_CR49 publication-title: Cell doi: 10.1016/j.cell.2019.02.014 – volume: 30 start-page: 207 year: 2002 ident: 419_CR64 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.207 – volume: 32 start-page: 15106 year: 2012 ident: 419_CR14 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1167-12.2012 – volume: 352 start-page: 712 year: 2016 ident: 419_CR7 publication-title: Science doi: 10.1126/science.aad8373 – volume: 179 start-page: 395 year: 1973 ident: 419_CR17 publication-title: Science doi: 10.1126/science.179.4071.395 – volume: 17 start-page: 205 year: 1970 ident: 419_CR16 publication-title: Brain Res. doi: 10.1016/0006-8993(70)90079-X – volume: 13 start-page: 2028 year: 2017 ident: 419_CR51 publication-title: Autophagy doi: 10.1080/15548627.2017.1379633 – volume: 16 start-page: 1896 year: 2013 ident: 419_CR36 publication-title: Nat. Neurosci. doi: 10.1038/nn.3554 – volume: 2 start-page: 76 year: 2017 ident: 419_CR41 publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging doi: 10.1016/j.bpsc.2016.09.002 – volume: 13 year: 2016 ident: 419_CR34 publication-title: Fluids Barriers CNS doi: 10.1186/s12987-016-0038-x – volume: 393 start-page: 185 year: 2018 ident: 419_CR57 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.07.034 – volume: 33 start-page: 495 year: 2015 ident: 419_CR62 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 518 start-page: 4629 year: 2010 ident: 419_CR21 publication-title: J. Comp. Neurol. doi: 10.1002/cne.22483 – volume: 549 start-page: 533 year: 2017 ident: 419_CR35 publication-title: Nature doi: 10.1038/nature24014 – volume: 36 start-page: 605 year: 2015 ident: 419_CR1 publication-title: Trends Immunol. doi: 10.1016/j.it.2015.08.008 – volume: 8 start-page: e1000527 year: 2010 ident: 419_CR25 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000527 – volume: 1351 start-page: 141 year: 2015 ident: 419_CR44 publication-title: Ann. NY Acad. Sci. doi: 10.1111/nyas.12805 – volume: 13 start-page: 485 year: 2016 ident: 419_CR50 publication-title: Nat. Methods doi: 10.1038/nmeth.3833 – volume: 540 start-page: 230 year: 2016 ident: 419_CR48 publication-title: Nature doi: 10.1038/nature20587 – volume: 21 start-page: 120 year: 2018 ident: 419_CR30 publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0029-5 – volume: 7 year: 2016 ident: 419_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms10905 – volume: 32 start-page: 381 year: 2014 ident: 419_CR63 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 131 start-page: 1164 year: 2007 ident: 419_CR4 publication-title: Cell doi: 10.1016/j.cell.2007.10.036 – volume: 74 start-page: 648 year: 2012 ident: 419_CR20 publication-title: Neuron doi: 10.1016/j.neuron.2012.03.022 – volume: 165 start-page: 921 year: 2016 ident: 419_CR6 publication-title: Cell doi: 10.1016/j.cell.2016.04.001 – volume: 359 start-page: 1269 year: 2018 ident: 419_CR40 publication-title: Science doi: 10.1126/science.aal3589 – volume: 76 start-page: 410 year: 2012 ident: 419_CR32 publication-title: Neuron doi: 10.1016/j.neuron.2012.10.003 – volume: 111 start-page: 761 year: 2002 ident: 419_CR43 publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00025-8 – volume: 64 start-page: 287 year: 2016 ident: 419_CR56 publication-title: Glia doi: 10.1002/glia.22929 – volume: 6 year: 2016 ident: 419_CR33 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0013-4 – volume: 64 start-page: 463 year: 2009 ident: 419_CR38 publication-title: Neuron doi: 10.1016/j.neuron.2009.10.015 – volume: 12 start-page: 1826 year: 1992 ident: 419_CR18 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.12-05-01826.1992 – volume: 6 start-page: 160091 year: 2016 ident: 419_CR53 publication-title: Open Biol. doi: 10.1098/rsob.160091 – volume: 333 start-page: 1456 year: 2011 ident: 419_CR13 publication-title: Science doi: 10.1126/science.1202529 – volume: 24 start-page: 589 year: 2001 ident: 419_CR22 publication-title: Trends Neurosci. doi: 10.1016/S0166-2236(00)01958-5 – volume: 118 start-page: e156 year: 2011 ident: 419_CR28 publication-title: Blood doi: 10.1182/blood-2011-04-348946 – volume: 25 start-page: 195 year: 2003 ident: 419_CR52 publication-title: Neurol. Res. doi: 10.1179/016164103101201193 – volume: 12 start-page: 44 year: 2017 ident: 419_CR60 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.154 |
SSID | ssj0007589 |
Score | 2.6467476 |
Snippet | Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1075 |
SubjectTerms | 14 14/19 38 38/91 631/378 631/378/2596 631/378/340 631/378/3920 631/378/87 64 64/110 64/60 96 ADAM10 Protein - antagonists & inhibitors ADAM10 Protein - genetics ADAM10 Protein - physiology Alzheimer's disease Amyloid Precursor Protein Secretases - antagonists & inhibitors Amyloid Precursor Protein Secretases - genetics Amyloid Precursor Protein Secretases - physiology Analysis Animal Genetics and Genomics Animals Apoptosis Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain Brain research Cell Count Chemokine CX3CL1 - physiology Complement receptor 3 Control CX3C Chemokine Receptor 1 - deficiency CX3C Chemokine Receptor 1 - genetics CX3C Chemokine Receptor 1 - physiology CX3CR1 protein Defects Female Fractalkine Gene Expression Regulation Gene sequencing Ligands Male Medicine Membrane Proteins - antagonists & inhibitors Membrane Proteins - genetics Membrane Proteins - physiology Metalloproteinase Mice Mice, Inbred C57BL Mice, Knockout Microfluidic Analytical Techniques Microglia Microglia - physiology Neural networks Neural transmission Neurobiology Neurons Neurosciences Physiological aspects Ribonucleic acid RNA RNA, Messenger - biosynthesis RNA, Messenger - genetics Sensorimotor Cortex - metabolism Sensorimotor Cortex - pathology Sensorimotor Cortex - physiopathology Signal Transduction - physiology Signaling Single-Cell Analysis Synapse elimination Synapses Touch - physiology Transcriptome Vibrissae Vibrissae - injuries Vibrissae - physiology |
Title | Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling |
URI | https://link.springer.com/article/10.1038/s41593-019-0419-y https://www.ncbi.nlm.nih.gov/pubmed/31209379 https://www.proquest.com/docview/2246230436 https://www.proquest.com/docview/2242827993 https://pubmed.ncbi.nlm.nih.gov/PMC6596419 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiFeEGx8ZIzJIAQSKFpTJ07yhFJYNZBWoY1JfUGWHdtjIku7pUXqf8-dm3akEntJHnz5sO9s3_l-dwfwNte57XNbUjSODuMk0mGO19BZ03NR5gtVEtpiJI7P42_jZNweuDUtrHK1JvqF2kxKOiM_pMRndIDJxafpdUhVo8i72pbQuA_blLqMIF3peG1w4W7oS-CRkzVEPV-svJo8O2xw4yLkGoXwxHhZdPalzdX5n-1pEzq54T_129LwMTxq9UlWLAXgCdyz9Q7sFjXa0lcL9o55hKc_Ot-BByetI30Xfp6h-Tq5WbDKNssTWYbGObK5YVcE0buoUC5Zs6jVtLHMVr72F_GQ_blUrPhSnEQ9pmrDHEVZqeo3vpURFkRRePtTOB8e_fh8HLaVFsIyyeNZmAnLnch45EwibGJSbYXSRuG9p5WyuebGuTQ3EXd9ntsUV6XUCUM-z0SjkfsMtupJbV8Ai2yWkW9RG57GOnGaJ7q0WWwyrtBa6gfQW42zLNs05FQNo5LeHc4zuWSNRNZIYo1cBPBh_ch0mYPjLuI3xDxJuS1qAs9cqHnTyK9np7JAwROkr8YBvG-J3AQ_Xqo2FgG7QOmwOpT7HUqcfGW3eSUjsp38jbwV1QBer5vpSQK01XYy9zRo7KaoHQbwfClS675ximfmaR5A2hG2NQGlBO-21Je_fGpwkeQChyGAjyuxvP2t_w7Z3t2deAkP-36eEEZ5H7ZmN3P7CjWxmT7w0-0AtovhYDDC--Bo9P30L7BUMmA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRaCXhB0HIYCiyIQyqyGnt9PiAUaKuENhHqIfUFLbvedYlInVAnIP8U38iMjxRHom99sR92fOzOsTM7F8CrWMXG5SahbBxle76j7Bivdmp0J3WislElRVsMg96J9_nUP12BP00uDIVVNjKxFNR6ktAZ-TYVPqMDTB58mP60qWsUeVebFhoVWeyb4jeabPn7_g7i97Xr7u0ef-rZdVcBO_Fjb2ZHgeFpEHEn1X5gfB0qE0ilJd47SkoTK67TNIy1w1OXxyZEDgzTQJN_z1do0OF7b8Aa_kgHBcHax93hl8OF7EftOy79q3Foo2URNH5UHm3nuFVSrBwlDXl4KVo74fJ-8M-GuBysueSxLTfCvbtwp9ZgWbciuXuwYrJ12OhmaL2fF-wNK2NKy8P6dbg5qF33G_D1CA3myUXBxiavzoDZKNNIWDk7p6DAszFyAsuLTE5zw8y47DZGVMN-jSTr7nQHTofJTLOU8rrk-Ae-lVH0iaSE-vtwci1YeACr2SQzj4A5JorIm6k0Dz3lp4r7KjGRpyMu0T5zLeg06yySuvA59d8Yi9IBzyNRoUYgagShRhQWbC0emVZVP64CfknIE1RNI6NwnTM5z3PRPzoUXST1gDRkz4K3NVA6wY8nss5-wClQAa4W5GYLEtk9aQ83NCJqcZOLS-aw4MVimJ6kELrMTOYlDJrXIeqjFjysSGoxN04Z1DyMLQhbxLYAoCLk7ZFs9L0sRh74cYDLYMG7hiwvf-u_S_b46kk8h1u948GBOOgP95_AbbfkGYqQ3oTV2cXcPEU9cKae1czH4Nt18_tfOmZvEw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEGx8BAYYxIcEitrE-XxAqKJUK2MTYkzqy2Ts2B4VWVqWFpR_jb-OOyfpSCX2tpf0IZc09t35fL7f3RHyPJWp9pnOMBtHukHoSTeFq2u06hsvsY0qEW1xGO0dBx8n4WSD_GlzYRBW2a6JdqFWswzPyHtY-AwPMFnUMw0s4vNw9G7-08UOUhhpbdtp1CKyr6vf4L6Vb8dD4PUL3x99-Pp-z206DLhZmAYLN4k0M1HCPKPCSIcqljoSUgn47UshdCqZMiZOlceMz1IdgzbGJlIY6wslOHfw3mvkesxCD3UsnqycPbDEtv0eBnhd8DGiNqLKkl4JRhNRc5g-FMCl6tjEdcvwj2lch22uxW6tSRzdIjebvSwd1MJ3m2zoYpvsDArw488q-pJadKk9tt8mWwdNEH-HnByB6zw7r2iuy_o0mE4LBSJW0jOEB57moBO0rAoxLzXVue07hvJDf00FHQwHB16fikJRgxleIv8Bb6WIQxGYWn-HHF8JD-6SzWJW6PuEejpJMK4pFYsDGRrJQpnpJFAJE-Cp-Q7pt_PMs6YEOnbiyLkNxbOE16zhwBqOrOGVQ16vHpnX9T8uI36GzONYV6NACT0Vy7Lk46MvfABCH-FeOXDIq4bIzODPM9HkQcAQsBRXh3K3QwmKn3VvtzLCm4Wn5Bdq4pCnq9v4JILpCj1bWhpwtGPYmTrkXi1Sq7ExzKVmceqQuCNsKwIsR969U0y_27LkUZhGMA0OedOK5cVn_XfKHlw-iCdkC7Scfxof7j8kN3yrMgiV3iWbi_OlfgQbwoV8bDWPkm9Xrep_ATbCceM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+lesioning+induces+microglial+synapse+elimination+via+ADAM10+and+fractalkine+signaling&rft.jtitle=Nature+neuroscience&rft.au=Gunner%2C+Georgia&rft.au=Cheadle%2C+Lucas&rft.au=Johnson%2C+Kasey+M&rft.au=Ayata%2C+Pinar&rft.date=2019-07-01&rft.eissn=1546-1726&rft.volume=22&rft.issue=7&rft.spage=1075&rft_id=info:doi/10.1038%2Fs41593-019-0419-y&rft_id=info%3Apmid%2F31209379&rft.externalDocID=31209379 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon |