Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling

Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to da...

Full description

Saved in:
Bibliographic Details
Published inNature neuroscience Vol. 22; no. 7; pp. 1075 - 1088
Main Authors Gunner, Georgia, Cheadle, Lucas, Johnson, Kasey M., Ayata, Pinar, Badimon, Ana, Mondo, Erica, Nagy, M. Aurel, Liu, Liwang, Bemiller, Shane M., Kim, Ki-Wook, Lira, Sergio A., Lamb, Bruce T., Tapper, Andrew R., Ransohoff, Richard M., Greenberg, Michael E., Schaefer, Anne, Schafer, Dorothy P.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.07.2019
Nature Publishing Group
Subjects
14
38
64
96
RNA
Online AccessGet full text

Cover

Loading…
Abstract Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1 −/− and Cx3cl1 −/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia are resident immune cells of the CNS. Here the authors show that neurons communicate to microglia via activity-dependent fractalkine and ADAM10 signaling to induce removal of synapses in the brain after sensory loss.
AbstractList Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remains a key open question. Here, whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. We show that this synapse elimination is dependent on the microglial fractalkine receptor, CX3CR1, but not complement receptor 3, signaling. Further, mice deficient in the CX3CR1 ligand (CX3CL1) also have profound defects in synapse elimination. Single-cell RNAseq then revealed that Cx3cl1 is cortical neuron-derived and Adam10 , a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and microglia following whisker lesioning. Finally, inhibition of Adam10 phenocopies Cx3cr1 −/− and Cx3cl1 −/− synapse elimination defects. Together, these results identify novel neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1 −/− and Cx3cl1 −/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia are resident immune cells of the CNS. Here the authors show that neurons communicate to microglia via activity-dependent fractalkine and ADAM10 signaling to induce removal of synapses in the brain after sensory loss.
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1.sup.-/- and Cx3cl1.sup.-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1 and Cx3cl1 synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1−/− and Cx3cl1−/− synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1.sup.-/- and Cx3cl1.sup.-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain. Microglia are resident immune cells of the CNS. Here the authors show that neurons communicate to microglia via activity-dependent fractalkine and ADAM10 signaling to induce removal of synapses in the brain after sensory loss.
Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly neuron-derived molecules, that drive these microglial functions at synapses remain a key open question. Here we show that whisker lesioning, known to dampen cortical activity, induces microglia-mediated synapse elimination. This synapse elimination is dependent on signaling by CX3CR1, the receptor for microglial fractalkine (also known as CXCL1), but not complement receptor 3. Furthermore, mice deficient in CX3CL1 have profound defects in synapse elimination. Single-cell RNA sequencing revealed that Cx3cl1 is derived from cortical neurons, and ADAM10, a metalloprotease that cleaves CX3CL1 into a secreted form, is upregulated specifically in layer IV neurons and in microglia following whisker lesioning. Finally, inhibition of ADAM10 phenocopies Cx3cr1-/- and Cx3cl1-/- synapse elimination defects. Together, these results identify neuron-to-microglia signaling necessary for cortical synaptic remodeling and reveal that context-dependent immune mechanisms are utilized to remodel synapses in the mammalian brain.
Audience Academic
Author Schafer, Dorothy P.
Cheadle, Lucas
Badimon, Ana
Bemiller, Shane M.
Lamb, Bruce T.
Nagy, M. Aurel
Kim, Ki-Wook
Lira, Sergio A.
Tapper, Andrew R.
Schaefer, Anne
Gunner, Georgia
Liu, Liwang
Mondo, Erica
Ransohoff, Richard M.
Johnson, Kasey M.
Ayata, Pinar
Greenberg, Michael E.
AuthorAffiliation 1 Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
3 Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
4 Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
5 Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA
2 Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
6 Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
7 Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
8 Third Rock Ventures, Boston, MA 02116, USA
AuthorAffiliation_xml – name: 6 Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
– name: 7 Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
– name: 5 Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, 46202, USA
– name: 2 Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
– name: 1 Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
– name: 8 Third Rock Ventures, Boston, MA 02116, USA
– name: 3 Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
– name: 4 Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Author_xml – sequence: 1
  givenname: Georgia
  orcidid: 0000-0002-6734-9632
  surname: Gunner
  fullname: Gunner, Georgia
  organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School
– sequence: 2
  givenname: Lucas
  surname: Cheadle
  fullname: Cheadle, Lucas
  organization: Department of Neurobiology, Harvard Medical School
– sequence: 3
  givenname: Kasey M.
  surname: Johnson
  fullname: Johnson, Kasey M.
  organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School
– sequence: 4
  givenname: Pinar
  orcidid: 0000-0001-7621-832X
  surname: Ayata
  fullname: Ayata, Pinar
  organization: Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai
– sequence: 5
  givenname: Ana
  surname: Badimon
  fullname: Badimon, Ana
  organization: Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
– sequence: 6
  givenname: Erica
  surname: Mondo
  fullname: Mondo, Erica
  organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School
– sequence: 7
  givenname: M. Aurel
  surname: Nagy
  fullname: Nagy, M. Aurel
  organization: Department of Neurobiology, Harvard Medical School
– sequence: 8
  givenname: Liwang
  orcidid: 0000-0003-4689-1964
  surname: Liu
  fullname: Liu, Liwang
  organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School
– sequence: 9
  givenname: Shane M.
  surname: Bemiller
  fullname: Bemiller, Shane M.
  organization: Stark Neurosciences Research Institute, Indiana University
– sequence: 10
  givenname: Ki-Wook
  surname: Kim
  fullname: Kim, Ki-Wook
  organization: Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine
– sequence: 11
  givenname: Sergio A.
  surname: Lira
  fullname: Lira, Sergio A.
  organization: Precision Immunology Institute, Icahn School of Medicine at Mount Sinai
– sequence: 12
  givenname: Bruce T.
  orcidid: 0000-0001-8507-2561
  surname: Lamb
  fullname: Lamb, Bruce T.
  organization: Stark Neurosciences Research Institute, Indiana University
– sequence: 13
  givenname: Andrew R.
  orcidid: 0000-0002-8358-6937
  surname: Tapper
  fullname: Tapper, Andrew R.
  organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School
– sequence: 14
  givenname: Richard M.
  orcidid: 0000-0003-0175-6910
  surname: Ransohoff
  fullname: Ransohoff, Richard M.
  organization: Third Rock Ventures
– sequence: 15
  givenname: Michael E.
  orcidid: 0000-0003-1380-2160
  surname: Greenberg
  fullname: Greenberg, Michael E.
  organization: Department of Neurobiology, Harvard Medical School
– sequence: 16
  givenname: Anne
  orcidid: 0000-0002-1051-3710
  surname: Schaefer
  fullname: Schaefer, Anne
  organization: Fishberg Department of Neuroscience, Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai
– sequence: 17
  givenname: Dorothy P.
  orcidid: 0000-0003-2201-6276
  surname: Schafer
  fullname: Schafer, Dorothy P.
  email: Dorothy.schafer@umassmed.edu
  organization: Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31209379$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxgkeJHbMcbpFF5VSpCorBElpNcBxfHmcZJRf49dzotZSpAluzI_s6Jfe49zPbiECHLnlJyTAmvXqWSCs0LQnVBSpyWB9kBFaUsqGJyD7-JVoVkQu5nhyldEEKUqPSjbJ9TRjRX-iD7dg4xDeOSB0h-iD52uY_t3EDKe9-MQxe8DXlaol0nyCH43kc7IZlfeZuv3qw-UpLb2OZutM1kww8fIU--izag1-PsobMhwZOb9Sj7-u7tl5MPxdmn96cnq7OiEbqcikoCd7Li1LVCgmhVDdLWrcWV1NaCrnnrnNIt5Y5xDUpJrpxsCVNC1LziR9nrre96rntoG4jTaINZj76342IG683uSfTfTTdcGSm0xOTQ4MWNwThczpAm0_vUQAg2wjAnw1jJKqa05og-v4deDPOI772mJOOk5PKO6mwA46Mb8L_NxtSshCZScyZLpI7_QuFoAdPHYjuP-zuClzsCZCb4OXV2Tsmcnn_eZZ_9GcrvNG6Lj4DaAljnlEZwpvHTdXHxFj4YSsymzcy2zQy2mdm0mVlQSe8pb83_p2FbTUI2djDe5fZv0S-fsORv
CitedBy_id crossref_primary_10_1007_s00281_024_01017_6
crossref_primary_10_1016_j_mcn_2022_103791
crossref_primary_10_1016_j_conb_2024_102877
crossref_primary_10_3389_fcell_2021_661486
crossref_primary_10_3390_cells11213421
crossref_primary_10_4103_1673_5374_389630
crossref_primary_10_3389_fncel_2023_1189348
crossref_primary_10_1002_glia_23790
crossref_primary_10_1016_j_bbi_2024_07_007
crossref_primary_10_3390_brainsci11101299
crossref_primary_10_1016_j_neuron_2020_08_002
crossref_primary_10_1016_j_bbr_2025_115435
crossref_primary_10_1152_jn_00348_2020
crossref_primary_10_1186_s12974_020_01923_0
crossref_primary_10_1038_s41593_022_01222_2
crossref_primary_10_1038_s41467_021_25960_2
crossref_primary_10_1016_j_celrep_2023_112383
crossref_primary_10_1016_j_immuni_2023_01_028
crossref_primary_10_1016_j_brainresbull_2021_06_005
crossref_primary_10_1126_sciadv_adf5672
crossref_primary_10_3389_fopht_2023_1310226
crossref_primary_10_1523_ENEURO_0197_22_2023
crossref_primary_10_1016_j_bbi_2021_08_210
crossref_primary_10_3389_fncel_2022_826483
crossref_primary_10_1016_j_neures_2020_11_005
crossref_primary_10_1007_s00429_021_02321_9
crossref_primary_10_1111_ejn_15009
crossref_primary_10_3389_fcell_2021_693342
crossref_primary_10_3233_JAD_221042
crossref_primary_10_1002_glia_23780
crossref_primary_10_1186_s12974_024_03073_z
crossref_primary_10_1016_j_conb_2021_09_003
crossref_primary_10_1002_glia_24114
crossref_primary_10_1093_bfgp_elad011
crossref_primary_10_1371_journal_pone_0252118
crossref_primary_10_1038_s41380_022_01703_7
crossref_primary_10_1038_s41573_023_00823_1
crossref_primary_10_3390_ijms21186906
crossref_primary_10_1073_pnas_2106294118
crossref_primary_10_1073_pnas_2207817119
crossref_primary_10_1038_s41593_020_00756_7
crossref_primary_10_2174_1568026620666200221172619
crossref_primary_10_1126_sciadv_abk1131
crossref_primary_10_4103_1673_5374_322423
crossref_primary_10_1038_s41386_022_01451_w
crossref_primary_10_3389_fncel_2020_00163
crossref_primary_10_1016_j_ecoenv_2024_117620
crossref_primary_10_1016_j_neuron_2020_11_007
crossref_primary_10_1016_j_conb_2023_102732
crossref_primary_10_1038_s41398_020_01189_3
crossref_primary_10_1007_s11571_024_10185_y
crossref_primary_10_15252_embr_202051696
crossref_primary_10_1002_glia_24101
crossref_primary_10_1002_glia_24343
crossref_primary_10_1016_j_conb_2023_102692
crossref_primary_10_1016_j_conb_2022_102607
crossref_primary_10_1016_j_immuni_2023_04_011
crossref_primary_10_1083_jcb_202312043
crossref_primary_10_1097_MAO_0000000000003884
crossref_primary_10_1002_stem_3374
crossref_primary_10_1523_JNEUROSCI_1922_21_2022
crossref_primary_10_3390_ijms24098026
crossref_primary_10_3389_fncel_2021_770453
crossref_primary_10_1016_j_bbih_2021_100301
crossref_primary_10_1038_s41392_021_00748_4
crossref_primary_10_1186_s40478_021_01213_7
crossref_primary_10_3390_cells13020177
crossref_primary_10_1016_j_immuni_2024_05_005
crossref_primary_10_1038_s41593_024_01818_w
crossref_primary_10_1073_pnas_2303392120
crossref_primary_10_1111_febs_16190
crossref_primary_10_1155_2023_4637073
crossref_primary_10_1038_s41467_023_41502_4
crossref_primary_10_3390_cells11121943
crossref_primary_10_1002_glia_24053
crossref_primary_10_1016_j_cell_2024_02_020
crossref_primary_10_1038_s41587_020_0605_1
crossref_primary_10_1038_s41593_024_01833_x
crossref_primary_10_1111_cns_14674
crossref_primary_10_1002_glia_24574
crossref_primary_10_3389_fnins_2022_840266
crossref_primary_10_3390_ijms22041868
crossref_primary_10_1016_j_ynstr_2025_100714
crossref_primary_10_1007_s11427_021_2223_4
crossref_primary_10_1038_s41593_020_0672_0
crossref_primary_10_1186_s12916_022_02705_6
crossref_primary_10_3389_fgene_2020_574543
crossref_primary_10_1111_jnc_15327
crossref_primary_10_3390_cells13121000
crossref_primary_10_1254_fpj_23004
crossref_primary_10_1016_j_celrep_2022_111369
crossref_primary_10_1111_jnc_15689
crossref_primary_10_1016_j_bbih_2024_100911
crossref_primary_10_3389_fnagi_2020_00110
crossref_primary_10_3390_ijms22010118
crossref_primary_10_1101_cshperspect_a041347
crossref_primary_10_3389_fimmu_2021_629979
crossref_primary_10_3389_fimmu_2020_01416
crossref_primary_10_3389_fimmu_2021_644294
crossref_primary_10_1002_dneu_22777
crossref_primary_10_1016_j_jri_2024_104392
crossref_primary_10_3389_fimmu_2022_1088124
crossref_primary_10_3389_fcell_2025_1540052
crossref_primary_10_3389_fnins_2022_1072667
crossref_primary_10_1016_j_bcp_2019_08_016
crossref_primary_10_1038_s41593_020_0654_2
crossref_primary_10_1016_j_conb_2022_102674
crossref_primary_10_1523_JNEUROSCI_1354_23_2023
crossref_primary_10_1002_glia_24323
crossref_primary_10_1073_pnas_2115539118
crossref_primary_10_1186_s13064_019_0137_x
crossref_primary_10_1186_s12974_020_01828_y
crossref_primary_10_1016_j_coi_2020_01_003
crossref_primary_10_1007_s12264_020_00477_8
crossref_primary_10_1002_glia_24281
crossref_primary_10_1016_j_it_2024_03_009
crossref_primary_10_1242_dev_189019
crossref_primary_10_15252_embj_2020105380
crossref_primary_10_7554_eLife_50531
crossref_primary_10_1016_j_reth_2024_04_002
crossref_primary_10_1523_JNEUROSCI_2851_18_2019
crossref_primary_10_1093_procel_pwad020
crossref_primary_10_1371_journal_pone_0279736
crossref_primary_10_1016_j_canlet_2024_216674
crossref_primary_10_3389_fncel_2022_953534
crossref_primary_10_1038_s41423_021_00751_3
crossref_primary_10_1016_j_immuni_2021_09_014
crossref_primary_10_1016_j_immuni_2022_10_018
crossref_primary_10_3389_fncel_2020_627987
crossref_primary_10_1083_jcb_202208061
crossref_primary_10_1242_dev_201633
crossref_primary_10_1016_j_bbii_2023_100030
crossref_primary_10_1016_j_immuni_2019_12_004
crossref_primary_10_1186_s12974_021_02168_1
crossref_primary_10_7554_eLife_76707
crossref_primary_10_1002_wsbm_1545
crossref_primary_10_1016_j_tins_2021_04_001
crossref_primary_10_3389_fcell_2021_661462
crossref_primary_10_1016_j_lfs_2022_120564
crossref_primary_10_3390_jpm11050371
crossref_primary_10_1016_j_semcdb_2022_07_011
crossref_primary_10_1084_jem_20212476
crossref_primary_10_1038_s41467_021_22054_x
crossref_primary_10_1038_s41583_021_00507_y
crossref_primary_10_1016_j_dcit_2024_100029
crossref_primary_10_1523_JNEUROSCI_1660_20_2020
crossref_primary_10_1016_j_celrep_2021_108823
crossref_primary_10_1016_j_bbi_2021_07_025
crossref_primary_10_1016_j_pharmthera_2021_107989
crossref_primary_10_3390_biom14091087
crossref_primary_10_1016_j_jtemb_2023_127380
crossref_primary_10_3390_biom12111722
crossref_primary_10_4103_1673_5374_385854
crossref_primary_10_1159_000541379
crossref_primary_10_1111_acer_14694
crossref_primary_10_1016_j_neuron_2021_06_012
crossref_primary_10_1038_s41596_024_01048_1
crossref_primary_10_1186_s12974_021_02309_6
crossref_primary_10_3389_fncel_2023_1247335
crossref_primary_10_1093_jleuko_qiae098
crossref_primary_10_3390_ijms24021428
crossref_primary_10_1016_j_jare_2024_01_006
crossref_primary_10_1186_s12974_023_02973_w
crossref_primary_10_1002_glia_23961
crossref_primary_10_1186_s12974_023_02901_y
crossref_primary_10_1016_j_stemcr_2021_06_011
crossref_primary_10_1002_glia_23842
crossref_primary_10_1016_j_neubiorev_2021_09_023
crossref_primary_10_53053_JTQA7225
crossref_primary_10_1111_nyas_15105
crossref_primary_10_1016_j_conb_2020_11_013
crossref_primary_10_1016_j_brainresbull_2023_110664
crossref_primary_10_3389_fnmol_2021_749737
crossref_primary_10_1002_glia_24134
crossref_primary_10_1111_ejn_15225
crossref_primary_10_3389_fcell_2024_1418100
crossref_primary_10_3389_fimmu_2021_703527
crossref_primary_10_1080_15622975_2020_1755451
crossref_primary_10_1016_j_neuropharm_2021_108941
crossref_primary_10_1038_s41598_021_01131_7
crossref_primary_10_1038_s41467_023_42809_y
crossref_primary_10_3389_fpsyt_2021_734837
crossref_primary_10_1016_j_celrep_2022_111209
crossref_primary_10_1016_j_jphs_2020_12_007
crossref_primary_10_1038_s41386_020_00861_y
crossref_primary_10_1038_s41598_021_85625_4
crossref_primary_10_1002_jgm_3319
crossref_primary_10_3389_fncel_2023_1139357
crossref_primary_10_1038_s44319_024_00130_9
Cites_doi 10.1523/ENEURO.0209-16.2016
10.1038/nature18283
10.1126/science.179.4071.395
10.1111/j.1460-9568.2012.08075.x
10.1016/j.cell.2015.04.044
10.1016/0006-8993(70)90079-X
10.1126/science.aal3589
10.1016/S0014-5793(98)00583-3
10.1016/j.cell.2019.02.014
10.1523/JNEUROSCI.12-05-01826.1992
10.1186/gb-2009-10-3-r25
10.1523/JNEUROSCI.1167-12.2012
10.1186/s12987-016-0038-x
10.1016/j.bpsc.2016.09.002
10.1038/nbt.2859
10.1111/nyas.12805
10.1371/journal.pbio.1000527
10.1016/j.neuron.2012.03.026
10.1038/nprot.2016.154
10.1182/blood-2011-04-348946
10.1016/S0306-4522(02)00025-8
10.1016/j.neuron.2009.10.015
10.1176/appi.ajp.2012.12010056
10.1038/s41467-018-03566-5
10.1016/j.neuron.2012.03.022
10.1046/j.1460-9568.1998.00222.x
10.1002/cne.10518
10.1016/j.expneurol.2017.01.008
10.1038/s41593-017-0029-5
10.1038/nature24014
10.1002/glia.23192
10.1371/journal.pone.0101879
10.1128/MCB.20.11.4106-4114.2000
10.1126/science.290.5499.2155
10.1016/j.cell.2007.10.036
10.1038/nature20587
10.1038/nmeth.3833
10.1182/blood-2002-12-3775
10.1523/JNEUROSCI.2679-16.2017
10.1126/science.1202529
10.1080/15548627.2017.1379633
10.1126/science.aad8373
10.1038/ncomms10905
10.1016/j.semcdb.2008.09.005
10.1016/j.conb.2015.12.004
10.1002/cne.22483
10.1016/j.cell.2016.04.001
10.1038/s41598-016-0013-4
10.1016/j.neuroscience.2018.07.034
10.1016/j.it.2015.08.008
10.1093/nar/30.1.207
10.1016/j.neuron.2012.10.003
10.1098/rsob.160091
10.1038/nn.3641
10.1179/016164103101201193
10.1038/nbt.3192
10.1016/S0166-2236(00)01958-5
10.3389/fncel.2013.00026
10.1038/nn.3554
10.1186/s12974-019-1397-4
10.1002/glia.22929
10.1038/s41588-019-0358-2
10.1201/9781420039849
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
COPYRIGHT 2019 Nature Publishing Group
Copyright Nature Publishing Group Jul 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: COPYRIGHT 2019 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QG
7QP
7QR
7TK
7TM
7U7
7U9
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1038/s41593-019-0419-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central (subscription)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Central Basic
Toxicology Abstracts
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE

ProQuest One Psychology

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Medicine
EISSN 1546-1726
EndPage 1088
ExternalDocumentID PMC6596419
A590693264
31209379
10_1038_s41593_019_0419_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI095213
– fundername: NIDA NIH HHS
  grantid: P01 DA047233
– fundername: NIDDK NIH HHS
  grantid: R01 DK110352
– fundername: NIA NIH HHS
  grantid: T32 AG049688
– fundername: NIMH NIH HHS
  grantid: R21 MH115353
– fundername: NIMH NIH HHS
  grantid: R01 MH118329
– fundername: NCI NIH HHS
  grantid: R01 CA161373
– fundername: NIMH NIH HHS
  grantid: R01 MH113743
– fundername: NIGMS NIH HHS
  grantid: T32 GM007753
– fundername: NIMH NIH HHS
  grantid: R00 MH102351
GroupedDBID ---
-DZ
.55
.GJ
0R~
123
29M
2FS
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
85S
88E
8AO
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
IPY
ISR
ITC
M1P
M2M
M7P
MVM
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
XJT
YNT
YQT
ZGI
~8M
AAYXX
ABFSG
ACSTC
AETEA
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ADXHL
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QP
7QR
7TK
7TM
7U7
7U9
7XB
8FD
8FE
8FH
8FK
C1K
FR3
H94
K9.
LK8
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c594t-86e3f6831fd56e5d7be6abda7be0baae9b3dff79d13f239e77637f6d02755b383
IEDL.DBID 7X7
ISSN 1097-6256
1546-1726
IngestDate Thu Aug 21 18:18:38 EDT 2025
Fri Jul 11 00:43:48 EDT 2025
Fri Jul 25 09:04:04 EDT 2025
Tue Jun 17 21:06:47 EDT 2025
Tue Jun 10 20:42:24 EDT 2025
Fri Jun 27 04:52:06 EDT 2025
Mon Jul 21 05:41:03 EDT 2025
Tue Jul 01 03:21:47 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Fri Feb 21 02:39:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-86e3f6831fd56e5d7be6abda7be0baae9b3dff79d13f239e77637f6d02755b383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors contributed equally
G.G. and D.P.S. designed the study, performed most experiments, analyzed most data, and wrote the manuscript, K.M.J. assisted in the design of initial experiments and performed experiments to identify initial synapse remodeling and engulfment phenotypes, L.C., M.A.N., and M.E.G. performed single-cell sequencing experiments. E.M. performed in situ hybridization experiments, P.A., A.B., and A.S. performed bulk RNAseq experiments of whole barrel cortex, L.L. and A.R.T. performed electrophysiology experiments. K.-W.K., S.M.B. and B.T.L. performed experiments related to Cx3cl1−/− mice, S.A.L. provided Cx3cl1−/− mice, R.M.R. provided critical input into study design and feedback on writing of the manuscript.
Author Contributions
ORCID 0000-0002-8358-6937
0000-0001-7621-832X
0000-0003-4689-1964
0000-0003-0175-6910
0000-0003-2201-6276
0000-0002-1051-3710
0000-0002-6734-9632
0000-0003-1380-2160
0000-0001-8507-2561
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6596419
PMID 31209379
PQID 2246230436
PQPubID 44706
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6596419
proquest_miscellaneous_2242827993
proquest_journals_2246230436
gale_infotracmisc_A590693264
gale_infotracacademiconefile_A590693264
gale_incontextgauss_ISR_A590693264
pubmed_primary_31209379
crossref_citationtrail_10_1038_s41593_019_0419_y
crossref_primary_10_1038_s41593_019_0419_y
springer_journals_10_1038_s41593_019_0419_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature neuroscience
PublicationTitleAbbrev Nat Neurosci
PublicationTitleAlternate Nat Neurosci
PublicationYear 2019
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Vasek (CR5) 2016; 534
Tremblay, Lowery, Majewska (CR25) 2010; 8
Zilionis (CR60) 2017; 12
Droguett (CR55) 2014; 9
Venkatesh (CR35) 2017; 549
Vainchtein (CR40) 2018; 359
Hrvatin (CR30) 2018; 21
Oberlaender, Ramirez, Bruno (CR20) 2012; 74
Erzurumlu, Kind (CR22) 2001; 24
Pruessmeyer, Ludwig (CR45) 2009; 20
Schecter (CR11) 2017; 37
Kunkle (CR47) 2019; 51
Schafer (CR2) 2012; 74
Suzuki (CR32) 2012; 76
Funk, Klein (CR58) 2019; 16
Stevens (CR4) 2007; 131
Schafer, Lehrman, Heller, Stevens (CR59) 2014; 88
Van der Loos, Woolsey (CR17) 1973; 179
Nishiyori (CR10) 1998; 429
Glazewski, McKenna, Jacquin, Fox (CR19) 1998; 10
Lui (CR6) 2016; 165
Woodward, Giraldo-Chica, Rogers, Cascio (CR41) 2017; 2
CR46
Yang (CR51) 2017; 13
Woodward, Karbasforoushan, Heckers (CR42) 2012; 169
Manabe (CR52) 2003; 25
Erzurumlu, Gaspar (CR24) 2012; 35
Hickman (CR36) 2013; 16
Jung (CR9) 2000; 20
Eyo (CR37) 2017; 3
Hoshiko, Arnoux, Avignone, Yamamoto, Audinat (CR14) 2012; 32
Satija, Farrell, Gennert, Schier, Regev (CR62) 2015; 33
Martorell (CR49) 2019; 177
Iaccarino (CR48) 2016; 540
Viganò (CR56) 2016; 64
Lauro, Catalano, Trettel, Limatola (CR44) 2015; 1351
Woolsey, Van der Loos (CR16) 1970; 17
Kim (CR28) 2011; 118
Langmead, Trapnell, Pop, Salzberg (CR61) 2009; 10
Lowery, Tremblay, Hopkins, Majewska (CR12) 2017; 65
Wimmer, Broser, Kuner, Bruno (CR21) 2010; 518
Trapnell (CR63) 2014; 32
Sipe (CR26) 2016; 7
Shackleton, Crawford, Bachmeier (CR34) 2016; 13
Edgar, Domrachev, Lash (CR64) 2002; 30
Sadaka, Weinfeld, Lev, White (CR23) 2003; 457
Hao (CR54) 2017; 291
Madoux (CR33) 2016; 6
Wolf, Yona, Kim, Jung (CR8) 2013; 7
Weinhard (CR27) 2018; 9
Chozinski (CR50) 2016; 13
Fox (CR18) 1992; 12
Klein (CR29) 2015; 161
Huh (CR39) 2000; 290
Datwani (CR38) 2009; 64
Kluge (CR57) 2018; 393
Wu, Dissing-Olesen, MacVicar, Stevens (CR1) 2015; 36
Hong, Dissing-Olesen, Stevens (CR3) 2016; 36
Hundhausen (CR31) 2003; 102
Paolicelli (CR13) 2011; 333
Chen, Cohen, Hallett (CR43) 2002; 111
Gey (CR53) 2016; 6
Zhan (CR15) 2014; 17
Hong (CR7) 2016; 352
AJ Martorell (419_CR49) 2019; 177
RC Paolicelli (419_CR13) 2011; 333
RW Schecter (419_CR11) 2017; 37
ND Woodward (419_CR41) 2017; 2
R Edgar (419_CR64) 2002; 30
S Hong (419_CR7) 2016; 352
C Trapnell (419_CR63) 2014; 32
B Shackleton (419_CR34) 2016; 13
RL Lowery (419_CR12) 2017; 65
M Hoshiko (419_CR14) 2012; 32
ID Vainchtein (419_CR40) 2018; 359
S Hrvatin (419_CR30) 2018; 21
TA Woolsey (419_CR16) 1970; 17
B Langmead (419_CR61) 2009; 10
Y Zhan (419_CR15) 2014; 17
R Chen (419_CR43) 2002; 111
DP Schafer (419_CR59) 2014; 88
F Madoux (419_CR33) 2016; 6
HS Venkatesh (419_CR35) 2017; 549
H Van der Loos (419_CR17) 1973; 179
K Fox (419_CR18) 1992; 12
M Gey (419_CR53) 2016; 6
DP Schafer (419_CR2) 2012; 74
C Hundhausen (419_CR31) 2003; 102
Y Wu (419_CR1) 2015; 36
A Nishiyori (419_CR10) 1998; 429
Y Sadaka (419_CR23) 2003; 457
L Weinhard (419_CR27) 2018; 9
J Pruessmeyer (419_CR45) 2009; 20
A Droguett (419_CR55) 2014; 9
RS Erzurumlu (419_CR24) 2012; 35
A Datwani (419_CR38) 2009; 64
TJ Chozinski (419_CR50) 2016; 13
F Viganò (419_CR56) 2016; 64
AM Klein (419_CR29) 2015; 161
KW Kim (419_CR28) 2011; 118
KE Funk (419_CR58) 2019; 16
SE Hickman (419_CR36) 2013; 16
B Stevens (419_CR4) 2007; 131
Y Manabe (419_CR52) 2003; 25
S Hong (419_CR3) 2016; 36
MJ Vasek (419_CR5) 2016; 534
419_CR46
ND Woodward (419_CR42) 2012; 169
R Satija (419_CR62) 2015; 33
K Suzuki (419_CR32) 2012; 76
S Glazewski (419_CR19) 1998; 10
BW Kunkle (419_CR47) 2019; 51
HF Iaccarino (419_CR48) 2016; 540
S Jung (419_CR9) 2000; 20
F Hao (419_CR54) 2017; 291
C Lauro (419_CR44) 2015; 1351
VC Wimmer (419_CR21) 2010; 518
UB Eyo (419_CR37) 2017; 3
MG Kluge (419_CR57) 2018; 393
H Lui (419_CR6) 2016; 165
GO Sipe (419_CR26) 2016; 7
R Zilionis (419_CR60) 2017; 12
RS Erzurumlu (419_CR22) 2001; 24
M Oberlaender (419_CR20) 2012; 74
C Yang (419_CR51) 2017; 13
ME Tremblay (419_CR25) 2010; 8
Y Wolf (419_CR8) 2013; 7
GS Huh (419_CR39) 2000; 290
References_xml – volume: 3
  start-page: ENEURO.0209-16.2016
  year: 2017
  ident: CR37
  article-title: Regulation of physical microglia–neuron interactions by fractalkine signaling after status epilepticus
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0209-16.2016
– volume: 534
  start-page: 538
  year: 2016
  end-page: 543
  ident: CR5
  article-title: A complement–microglial axis drives synapse loss during virus-induced memory impairment
  publication-title: Nature
  doi: 10.1038/nature18283
– volume: 179
  start-page: 395
  year: 1973
  end-page: 398
  ident: CR17
  article-title: Somatosensory cortex: structural alterations following early injury to sense organs
  publication-title: Science
  doi: 10.1126/science.179.4071.395
– volume: 35
  start-page: 1540
  year: 2012
  end-page: 1553
  ident: CR24
  article-title: Development and critical period plasticity of the barrel cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2012.08075.x
– volume: 161
  start-page: 1187
  year: 2015
  end-page: 1201
  ident: CR29
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 17
  start-page: 205
  year: 1970
  end-page: 242
  ident: CR16
  article-title: The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(70)90079-X
– volume: 359
  start-page: 1269
  year: 2018
  end-page: 1273
  ident: CR40
  article-title: Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development
  publication-title: Science
  doi: 10.1126/science.aal3589
– volume: 429
  start-page: 167
  year: 1998
  end-page: 172
  ident: CR10
  article-title: Localization of and mRNAs in rat brain: does fractalkine play a role in signaling from neuron to microglia?
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)00583-3
– volume: 177
  start-page: 256
  year: 2019
  end-page: 271.e222
  ident: CR49
  article-title: Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.014
– volume: 12
  start-page: 1826
  year: 1992
  end-page: 1838
  ident: CR18
  article-title: A critical period for experience-dependent synaptic plasticity in rat barrel cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-05-01826.1992
– volume: 10
  year: 2009
  ident: CR61
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 32
  start-page: 15106
  year: 2012
  end-page: 15111
  ident: CR14
  article-title: Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1167-12.2012
– volume: 13
  year: 2016
  ident: CR34
  article-title: Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding
  publication-title: Fluids Barriers CNS
  doi: 10.1186/s12987-016-0038-x
– volume: 2
  start-page: 76
  year: 2017
  end-page: 84
  ident: CR41
  article-title: Thalamocortical dysconnectivity in autism spectrum disorder: an analysis of the Autism Brain Imaging Data Exchange
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
  doi: 10.1016/j.bpsc.2016.09.002
– ident: CR46
– volume: 32
  start-page: 381
  year: 2014
  end-page: 386
  ident: CR63
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 1351
  start-page: 141
  year: 2015
  end-page: 148
  ident: CR44
  article-title: Fractalkine in the nervous system: neuroprotective or neurotoxic molecule?
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/nyas.12805
– volume: 8
  start-page: e1000527
  year: 2010
  ident: CR25
  article-title: Microglial interactions with synapses are modulated by visual experience
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000527
– volume: 74
  start-page: 691
  year: 2012
  end-page: 705
  ident: CR2
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.026
– volume: 12
  start-page: 44
  year: 2017
  end-page: 73
  ident: CR60
  article-title: Single-cell barcoding and sequencing using droplet microfluidics
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.154
– volume: 118
  start-page: e156
  year: 2011
  end-page: e167
  ident: CR28
  article-title: In vivo structure/function and expression analysis of the CX3C chemokine fractalkine
  publication-title: Blood
  doi: 10.1182/blood-2011-04-348946
– volume: 111
  start-page: 761
  year: 2002
  end-page: 773
  ident: CR43
  article-title: Nervous system reorganization following injury
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00025-8
– volume: 64
  start-page: 463
  year: 2009
  end-page: 470
  ident: CR38
  article-title: Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.10.015
– volume: 169
  start-page: 1092
  year: 2012
  end-page: 1099
  ident: CR42
  article-title: Thalamocortical dysconnectivity in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2012.12010056
– volume: 9
  year: 2018
  ident: CR27
  article-title: Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03566-5
– volume: 74
  start-page: 648
  year: 2012
  end-page: 655
  ident: CR20
  article-title: Sensory experience restructures thalamocortical axons during adulthood
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.022
– volume: 10
  start-page: 2107
  year: 1998
  end-page: 2116
  ident: CR19
  article-title: Experience-dependent depression of vibrissae responses in adolescent rat barrel cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.1998.00222.x
– volume: 457
  start-page: 75
  year: 2003
  end-page: 86
  ident: CR23
  article-title: Changes in mouse barrel synapses consequent to sensory deprivation from birth
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10518
– volume: 291
  start-page: 120
  year: 2017
  end-page: 133
  ident: CR54
  article-title: Long-term protective effects of AAV9-mesencephalic astrocyte-derived neurotrophic factor gene transfer in parkinsonian rats
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2017.01.008
– volume: 21
  start-page: 120
  year: 2018
  end-page: 129
  ident: CR30
  article-title: Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0029-5
– volume: 549
  start-page: 533
  year: 2017
  end-page: 537
  ident: CR35
  article-title: Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma
  publication-title: Nature
  doi: 10.1038/nature24014
– volume: 65
  start-page: 1744
  year: 2017
  end-page: 1761
  ident: CR12
  article-title: The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system
  publication-title: Glia
  doi: 10.1002/glia.23192
– volume: 9
  start-page: e101879
  year: 2014
  ident: CR55
  article-title: Tubular overexpression of gremlin induces renal damage susceptibility in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101879
– volume: 20
  start-page: 4106
  year: 2000
  end-page: 4114
  ident: CR9
  article-title: Analysis of fractalkine receptor CX3CR1 function by targeted deletion and reporter gene insertion
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.11.4106-4114.2000
– volume: 290
  start-page: 2155
  year: 2000
  end-page: 2159
  ident: CR39
  article-title: Functional requirement for class I MHC in CNS development and plasticity
  publication-title: Science
  doi: 10.1126/science.290.5499.2155
– volume: 131
  start-page: 1164
  year: 2007
  end-page: 1178
  ident: CR4
  article-title: The classical complement cascade mediates CNS synapse elimination
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.036
– volume: 540
  start-page: 230
  year: 2016
  end-page: 235
  ident: CR48
  article-title: Gamma frequency entrainment attenuates amyloid load and modifies microglia
  publication-title: Nature
  doi: 10.1038/nature20587
– volume: 13
  start-page: 485
  year: 2016
  ident: CR50
  article-title: Expansion microscopy with conventional antibodies and fluorescent proteins
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3833
– volume: 102
  start-page: 1186
  year: 2003
  end-page: 1195
  ident: CR31
  article-title: The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion
  publication-title: Blood
  doi: 10.1182/blood-2002-12-3775
– volume: 37
  start-page: 10541
  year: 2017
  end-page: 10553
  ident: CR11
  article-title: Experience-dependent synaptic plasticity in V1 occurs without microglial CX3CR1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2679-16.2017
– volume: 333
  start-page: 1456
  year: 2011
  end-page: 1458
  ident: CR13
  article-title: Synaptic pruning by microglia is necessary for normal brain development
  publication-title: Science
  doi: 10.1126/science.1202529
– volume: 13
  start-page: 2028
  year: 2017
  end-page: 2040
  ident: CR51
  article-title: NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1379633
– volume: 352
  start-page: 712
  year: 2016
  end-page: 716
  ident: CR7
  article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models
  publication-title: Science
  doi: 10.1126/science.aad8373
– volume: 7
  year: 2016
  ident: CR26
  article-title: Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10905
– volume: 20
  start-page: 164
  year: 2009
  end-page: 174
  ident: CR45
  article-title: The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2008.09.005
– volume: 36
  start-page: 128
  year: 2016
  end-page: 134
  ident: CR3
  article-title: New insights on the role of microglia in synaptic pruning in health and disease
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.12.004
– volume: 518
  start-page: 4629
  year: 2010
  end-page: 4648
  ident: CR21
  article-title: Experience-induced plasticity of thalamocortical axons in both juveniles and adults
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.22483
– volume: 165
  start-page: 921
  year: 2016
  end-page: 935
  ident: CR6
  article-title: Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.001
– volume: 6
  year: 2016
  ident: CR33
  article-title: Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0013-4
– volume: 393
  start-page: 185
  year: 2018
  end-page: 195
  ident: CR57
  article-title: Age-dependent disturbances of neuronal and glial protein expression profiles in areas of secondary neurodegeneration post-stroke
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.07.034
– volume: 36
  start-page: 605
  year: 2015
  end-page: 613
  ident: CR1
  article-title: Microglia: dynamic mediators of synapse development and plasticity
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.08.008
– volume: 30
  start-page: 207
  year: 2002
  end-page: 210
  ident: CR64
  article-title: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 76
  start-page: 410
  year: 2012
  end-page: 422
  ident: CR32
  article-title: Activity-dependent proteolytic cleavage of neuroligin-1
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.003
– volume: 6
  start-page: 160091
  year: 2016
  ident: CR53
  article-title: mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury
  publication-title: Open Biol.
  doi: 10.1098/rsob.160091
– volume: 17
  start-page: 400
  year: 2014
  end-page: 406
  ident: CR15
  article-title: Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3641
– volume: 25
  start-page: 195
  year: 2003
  end-page: 200
  ident: CR52
  article-title: Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis
  publication-title: Neurol. Res.
  doi: 10.1179/016164103101201193
– volume: 33
  start-page: 495
  year: 2015
  end-page: 502
  ident: CR62
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 24
  start-page: 589
  year: 2001
  end-page: 595
  ident: CR22
  article-title: Neural activity: sculptor of ‘barrels’ in the neocortex
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01958-5
– volume: 7
  start-page: 26
  year: 2013
  ident: CR8
  article-title: Microglia, seen from the CX3CR1 angle
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00026
– volume: 16
  start-page: 1896
  year: 2013
  end-page: 1905
  ident: CR36
  article-title: The microglial sensome revealed by direct RNA sequencing
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3554
– volume: 88
  start-page: e51482
  year: 2014
  ident: CR59
  article-title: An engulfment assay: a protocol to assess interactions between CNS phagocytes and neurons
  publication-title: J. Vis. Exp.
– volume: 16
  year: 2019
  ident: CR58
  article-title: CSF1R antagonism limits local restimulation of antiviral CD8+ T cells during viral encephalitis
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-019-1397-4
– volume: 64
  start-page: 287
  year: 2016
  end-page: 299
  ident: CR56
  article-title: GPR17 expressing NG2-glia: oligodendrocyte progenitors serving as a reserve pool after injury
  publication-title: Glia
  doi: 10.1002/glia.22929
– volume: 51
  start-page: 414
  year: 2019
  end-page: 430
  ident: CR47
  article-title: Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0358-2
– volume: 51
  start-page: 414
  year: 2019
  ident: 419_CR47
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0358-2
– volume: 161
  start-page: 1187
  year: 2015
  ident: 419_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 102
  start-page: 1186
  year: 2003
  ident: 419_CR31
  publication-title: Blood
  doi: 10.1182/blood-2002-12-3775
– volume: 35
  start-page: 1540
  year: 2012
  ident: 419_CR24
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2012.08075.x
– volume: 457
  start-page: 75
  year: 2003
  ident: 419_CR23
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10518
– volume: 3
  start-page: ENEURO.0209-16.
  year: 2017
  ident: 419_CR37
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0209-16.2016
– volume: 7
  start-page: 26
  year: 2013
  ident: 419_CR8
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2013.00026
– volume: 9
  year: 2018
  ident: 419_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03566-5
– volume: 88
  start-page: e51482
  year: 2014
  ident: 419_CR59
  publication-title: J. Vis. Exp.
– volume: 534
  start-page: 538
  year: 2016
  ident: 419_CR5
  publication-title: Nature
  doi: 10.1038/nature18283
– volume: 9
  start-page: e101879
  year: 2014
  ident: 419_CR55
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101879
– volume: 74
  start-page: 691
  year: 2012
  ident: 419_CR2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.026
– volume: 37
  start-page: 10541
  year: 2017
  ident: 419_CR11
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2679-16.2017
– volume: 65
  start-page: 1744
  year: 2017
  ident: 419_CR12
  publication-title: Glia
  doi: 10.1002/glia.23192
– volume: 16
  year: 2019
  ident: 419_CR58
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-019-1397-4
– volume: 20
  start-page: 164
  year: 2009
  ident: 419_CR45
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2008.09.005
– volume: 36
  start-page: 128
  year: 2016
  ident: 419_CR3
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2015.12.004
– volume: 10
  year: 2009
  ident: 419_CR61
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 17
  start-page: 400
  year: 2014
  ident: 419_CR15
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3641
– volume: 10
  start-page: 2107
  year: 1998
  ident: 419_CR19
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.1998.00222.x
– volume: 20
  start-page: 4106
  year: 2000
  ident: 419_CR9
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.11.4106-4114.2000
– volume: 169
  start-page: 1092
  year: 2012
  ident: 419_CR42
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2012.12010056
– volume: 429
  start-page: 167
  year: 1998
  ident: 419_CR10
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)00583-3
– volume: 291
  start-page: 120
  year: 2017
  ident: 419_CR54
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2017.01.008
– ident: 419_CR46
  doi: 10.1201/9781420039849
– volume: 290
  start-page: 2155
  year: 2000
  ident: 419_CR39
  publication-title: Science
  doi: 10.1126/science.290.5499.2155
– volume: 177
  start-page: 256
  year: 2019
  ident: 419_CR49
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.014
– volume: 30
  start-page: 207
  year: 2002
  ident: 419_CR64
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 32
  start-page: 15106
  year: 2012
  ident: 419_CR14
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1167-12.2012
– volume: 352
  start-page: 712
  year: 2016
  ident: 419_CR7
  publication-title: Science
  doi: 10.1126/science.aad8373
– volume: 179
  start-page: 395
  year: 1973
  ident: 419_CR17
  publication-title: Science
  doi: 10.1126/science.179.4071.395
– volume: 17
  start-page: 205
  year: 1970
  ident: 419_CR16
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(70)90079-X
– volume: 13
  start-page: 2028
  year: 2017
  ident: 419_CR51
  publication-title: Autophagy
  doi: 10.1080/15548627.2017.1379633
– volume: 16
  start-page: 1896
  year: 2013
  ident: 419_CR36
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3554
– volume: 2
  start-page: 76
  year: 2017
  ident: 419_CR41
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
  doi: 10.1016/j.bpsc.2016.09.002
– volume: 13
  year: 2016
  ident: 419_CR34
  publication-title: Fluids Barriers CNS
  doi: 10.1186/s12987-016-0038-x
– volume: 393
  start-page: 185
  year: 2018
  ident: 419_CR57
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.07.034
– volume: 33
  start-page: 495
  year: 2015
  ident: 419_CR62
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 518
  start-page: 4629
  year: 2010
  ident: 419_CR21
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.22483
– volume: 549
  start-page: 533
  year: 2017
  ident: 419_CR35
  publication-title: Nature
  doi: 10.1038/nature24014
– volume: 36
  start-page: 605
  year: 2015
  ident: 419_CR1
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.08.008
– volume: 8
  start-page: e1000527
  year: 2010
  ident: 419_CR25
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000527
– volume: 1351
  start-page: 141
  year: 2015
  ident: 419_CR44
  publication-title: Ann. NY Acad. Sci.
  doi: 10.1111/nyas.12805
– volume: 13
  start-page: 485
  year: 2016
  ident: 419_CR50
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3833
– volume: 540
  start-page: 230
  year: 2016
  ident: 419_CR48
  publication-title: Nature
  doi: 10.1038/nature20587
– volume: 21
  start-page: 120
  year: 2018
  ident: 419_CR30
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0029-5
– volume: 7
  year: 2016
  ident: 419_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10905
– volume: 32
  start-page: 381
  year: 2014
  ident: 419_CR63
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2859
– volume: 131
  start-page: 1164
  year: 2007
  ident: 419_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.036
– volume: 74
  start-page: 648
  year: 2012
  ident: 419_CR20
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.022
– volume: 165
  start-page: 921
  year: 2016
  ident: 419_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.001
– volume: 359
  start-page: 1269
  year: 2018
  ident: 419_CR40
  publication-title: Science
  doi: 10.1126/science.aal3589
– volume: 76
  start-page: 410
  year: 2012
  ident: 419_CR32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.10.003
– volume: 111
  start-page: 761
  year: 2002
  ident: 419_CR43
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00025-8
– volume: 64
  start-page: 287
  year: 2016
  ident: 419_CR56
  publication-title: Glia
  doi: 10.1002/glia.22929
– volume: 6
  year: 2016
  ident: 419_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0013-4
– volume: 64
  start-page: 463
  year: 2009
  ident: 419_CR38
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.10.015
– volume: 12
  start-page: 1826
  year: 1992
  ident: 419_CR18
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.12-05-01826.1992
– volume: 6
  start-page: 160091
  year: 2016
  ident: 419_CR53
  publication-title: Open Biol.
  doi: 10.1098/rsob.160091
– volume: 333
  start-page: 1456
  year: 2011
  ident: 419_CR13
  publication-title: Science
  doi: 10.1126/science.1202529
– volume: 24
  start-page: 589
  year: 2001
  ident: 419_CR22
  publication-title: Trends Neurosci.
  doi: 10.1016/S0166-2236(00)01958-5
– volume: 118
  start-page: e156
  year: 2011
  ident: 419_CR28
  publication-title: Blood
  doi: 10.1182/blood-2011-04-348946
– volume: 25
  start-page: 195
  year: 2003
  ident: 419_CR52
  publication-title: Neurol. Res.
  doi: 10.1179/016164103101201193
– volume: 12
  start-page: 44
  year: 2017
  ident: 419_CR60
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.154
SSID ssj0007589
Score 2.6467476
Snippet Microglia rapidly respond to changes in neural activity and inflammation to regulate synaptic connectivity. The extracellular signals, particularly...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1075
SubjectTerms 14
14/19
38
38/91
631/378
631/378/2596
631/378/340
631/378/3920
631/378/87
64
64/110
64/60
96
ADAM10 Protein - antagonists & inhibitors
ADAM10 Protein - genetics
ADAM10 Protein - physiology
Alzheimer's disease
Amyloid Precursor Protein Secretases - antagonists & inhibitors
Amyloid Precursor Protein Secretases - genetics
Amyloid Precursor Protein Secretases - physiology
Analysis
Animal Genetics and Genomics
Animals
Apoptosis
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain
Brain research
Cell Count
Chemokine CX3CL1 - physiology
Complement receptor 3
Control
CX3C Chemokine Receptor 1 - deficiency
CX3C Chemokine Receptor 1 - genetics
CX3C Chemokine Receptor 1 - physiology
CX3CR1 protein
Defects
Female
Fractalkine
Gene Expression Regulation
Gene sequencing
Ligands
Male
Medicine
Membrane Proteins - antagonists & inhibitors
Membrane Proteins - genetics
Membrane Proteins - physiology
Metalloproteinase
Mice
Mice, Inbred C57BL
Mice, Knockout
Microfluidic Analytical Techniques
Microglia
Microglia - physiology
Neural networks
Neural transmission
Neurobiology
Neurons
Neurosciences
Physiological aspects
Ribonucleic acid
RNA
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
Sensorimotor Cortex - metabolism
Sensorimotor Cortex - pathology
Sensorimotor Cortex - physiopathology
Signal Transduction - physiology
Signaling
Single-Cell Analysis
Synapse elimination
Synapses
Touch - physiology
Transcriptome
Vibrissae
Vibrissae - injuries
Vibrissae - physiology
Title Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling
URI https://link.springer.com/article/10.1038/s41593-019-0419-y
https://www.ncbi.nlm.nih.gov/pubmed/31209379
https://www.proquest.com/docview/2246230436
https://www.proquest.com/docview/2242827993
https://pubmed.ncbi.nlm.nih.gov/PMC6596419
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiFeEGx8ZIzJIAQSKFpTJ07yhFJYNZBWoY1JfUGWHdtjIku7pUXqf8-dm3akEntJHnz5sO9s3_l-dwfwNte57XNbUjSODuMk0mGO19BZ03NR5gtVEtpiJI7P42_jZNweuDUtrHK1JvqF2kxKOiM_pMRndIDJxafpdUhVo8i72pbQuA_blLqMIF3peG1w4W7oS-CRkzVEPV-svJo8O2xw4yLkGoXwxHhZdPalzdX5n-1pEzq54T_129LwMTxq9UlWLAXgCdyz9Q7sFjXa0lcL9o55hKc_Ot-BByetI30Xfp6h-Tq5WbDKNssTWYbGObK5YVcE0buoUC5Zs6jVtLHMVr72F_GQ_blUrPhSnEQ9pmrDHEVZqeo3vpURFkRRePtTOB8e_fh8HLaVFsIyyeNZmAnLnch45EwibGJSbYXSRuG9p5WyuebGuTQ3EXd9ntsUV6XUCUM-z0SjkfsMtupJbV8Ai2yWkW9RG57GOnGaJ7q0WWwyrtBa6gfQW42zLNs05FQNo5LeHc4zuWSNRNZIYo1cBPBh_ch0mYPjLuI3xDxJuS1qAs9cqHnTyK9np7JAwROkr8YBvG-J3AQ_Xqo2FgG7QOmwOpT7HUqcfGW3eSUjsp38jbwV1QBer5vpSQK01XYy9zRo7KaoHQbwfClS675ximfmaR5A2hG2NQGlBO-21Je_fGpwkeQChyGAjyuxvP2t_w7Z3t2deAkP-36eEEZ5H7ZmN3P7CjWxmT7w0-0AtovhYDDC--Bo9P30L7BUMmA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRaCXhB0HIYCiyIQyqyGnt9PiAUaKuENhHqIfUFLbvedYlInVAnIP8U38iMjxRHom99sR92fOzOsTM7F8CrWMXG5SahbBxle76j7Bivdmp0J3WislElRVsMg96J9_nUP12BP00uDIVVNjKxFNR6ktAZ-TYVPqMDTB58mP60qWsUeVebFhoVWeyb4jeabPn7_g7i97Xr7u0ef-rZdVcBO_Fjb2ZHgeFpEHEn1X5gfB0qE0ilJd47SkoTK67TNIy1w1OXxyZEDgzTQJN_z1do0OF7b8Aa_kgHBcHax93hl8OF7EftOy79q3Foo2URNH5UHm3nuFVSrBwlDXl4KVo74fJ-8M-GuBysueSxLTfCvbtwp9ZgWbciuXuwYrJ12OhmaL2fF-wNK2NKy8P6dbg5qF33G_D1CA3myUXBxiavzoDZKNNIWDk7p6DAszFyAsuLTE5zw8y47DZGVMN-jSTr7nQHTofJTLOU8rrk-Ae-lVH0iaSE-vtwci1YeACr2SQzj4A5JorIm6k0Dz3lp4r7KjGRpyMu0T5zLeg06yySuvA59d8Yi9IBzyNRoUYgagShRhQWbC0emVZVP64CfknIE1RNI6NwnTM5z3PRPzoUXST1gDRkz4K3NVA6wY8nss5-wClQAa4W5GYLEtk9aQ83NCJqcZOLS-aw4MVimJ6kELrMTOYlDJrXIeqjFjysSGoxN04Z1DyMLQhbxLYAoCLk7ZFs9L0sRh74cYDLYMG7hiwvf-u_S_b46kk8h1u948GBOOgP95_AbbfkGYqQ3oTV2cXcPEU9cKae1czH4Nt18_tfOmZvEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCZeEGx8BAYYxIcEitrE-XxAqKJUK2MTYkzqy2Ts2B4VWVqWFpR_jb-OOyfpSCX2tpf0IZc09t35fL7f3RHyPJWp9pnOMBtHukHoSTeFq2u06hsvsY0qEW1xGO0dBx8n4WSD_GlzYRBW2a6JdqFWswzPyHtY-AwPMFnUMw0s4vNw9G7-08UOUhhpbdtp1CKyr6vf4L6Vb8dD4PUL3x99-Pp-z206DLhZmAYLN4k0M1HCPKPCSIcqljoSUgn47UshdCqZMiZOlceMz1IdgzbGJlIY6wslOHfw3mvkesxCD3UsnqycPbDEtv0eBnhd8DGiNqLKkl4JRhNRc5g-FMCl6tjEdcvwj2lch22uxW6tSRzdIjebvSwd1MJ3m2zoYpvsDArw488q-pJadKk9tt8mWwdNEH-HnByB6zw7r2iuy_o0mE4LBSJW0jOEB57moBO0rAoxLzXVue07hvJDf00FHQwHB16fikJRgxleIv8Bb6WIQxGYWn-HHF8JD-6SzWJW6PuEejpJMK4pFYsDGRrJQpnpJFAJE-Cp-Q7pt_PMs6YEOnbiyLkNxbOE16zhwBqOrOGVQ16vHpnX9T8uI36GzONYV6NACT0Vy7Lk46MvfABCH-FeOXDIq4bIzODPM9HkQcAQsBRXh3K3QwmKn3VvtzLCm4Wn5Bdq4pCnq9v4JILpCj1bWhpwtGPYmTrkXi1Sq7ExzKVmceqQuCNsKwIsR969U0y_27LkUZhGMA0OedOK5cVn_XfKHlw-iCdkC7Scfxof7j8kN3yrMgiV3iWbi_OlfgQbwoV8bDWPkm9Xrep_ATbCceM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensory+lesioning+induces+microglial+synapse+elimination+via+ADAM10+and+fractalkine+signaling&rft.jtitle=Nature+neuroscience&rft.au=Gunner%2C+Georgia&rft.au=Cheadle%2C+Lucas&rft.au=Johnson%2C+Kasey+M&rft.au=Ayata%2C+Pinar&rft.date=2019-07-01&rft.eissn=1546-1726&rft.volume=22&rft.issue=7&rft.spage=1075&rft_id=info:doi/10.1038%2Fs41593-019-0419-y&rft_id=info%3Apmid%2F31209379&rft.externalDocID=31209379
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon