Coherence analysis of muscle activity during quiet stance
Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination (“ankle strategy” and “hip strategy”) are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thou...
Saved in:
Published in | Experimental brain research Vol. 185; no. 2; pp. 215 - 226 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.02.2008
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination (“ankle strategy” and “hip strategy”) are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle–segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk–leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles. |
---|---|
AbstractList | Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ("ankle strategy" and "hip strategy") are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle-segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk-leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles. Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ("ankle strategy" and "hip strategy") are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle-segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk-leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles.Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ("ankle strategy" and "hip strategy") are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle-segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk-leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles. Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination (“ankle strategy” and “hip strategy”) are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle–segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk–leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles. Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ("ankle strategy" and "hip strategy") are controlled through multiple muscles activated in a distal-to-proximal or proximal-to-distal temporal pattern. In contrast, quiet stance is thought to be maintained primarily through the ankle musculature. Recently, spectral analysis of inter-segment body motion revealed the coexistence of both ankle and hip patterns of coordination during quiet stance, with the predominating pattern dependent on the frequency of body sway. Here we use frequency domain techniques to determine if these patterns are associated with the same muscular patterns as observed during perturbed stance. Six of the seven muscles measured showed a linear relationship to the sway of at least one body segment, all being leg muscles. Muscle-segment phases were consistent with that required to resist gravity at low frequencies, with increasing phase lag as frequency increased. Visual information had effects only at frequencies below 0.5 Hz, where the shift from in-phase to anti-phase trunk-leg co-phase was observed. These results indicate that co-existence of the ankle and hip pattern during quiet stance involves only leg musculature. Anti-phase movement of the trunk relative to the legs at higher frequencies arises from indirect biomechanical control from posterior leg muscles. [PUBLICATION ABSTRACT] |
Author | Jeka, John Saffer, Mark Kiemel, Tim |
Author_xml | – sequence: 1 givenname: Mark surname: Saffer fullname: Saffer, Mark organization: Department of Kinesiology, University of Maryland, Program in Neuroscience and Cognitive Science, University of Maryland – sequence: 2 givenname: Tim surname: Kiemel fullname: Kiemel, Tim organization: Department of Kinesiology, University of Maryland – sequence: 3 givenname: John surname: Jeka fullname: Jeka, John email: jjeka@umd.edu organization: Department of Kinesiology, University of Maryland, Program in Neuroscience and Cognitive Science, University of Maryland, BioEngineering Graduate Program, University of Maryland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20106816$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17955227$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1PHCEUhomx0fXjB_SmmTTRu2k5MMBw08RstJqY9KZeE2RAMbPDCozJ_nuZ7Lq2m9hecYDnfTmcc47Q_hAGi9BnwN8AY_E9YUwI1CWsARpW0z00g4aSssN8H80whqZuWpCH6Cilp2lLBT5AhyAkY4SIGZLz8GijHYyt9KD7VfKpCq5ajMn05chk_-LzqurG6IeH6nn0Nlcp68KfoE9O98mebtZjdHd1-Xt-Xd_--nkzv7itDZNNrgVj7F47SYzjwAjITmrWcU2w09y1tgWnKYCljFHCiGuE4Vxw01FhTIHpMfqx9l2O9wvbGTvkqHu1jH6h40oF7dXfN4N_VA_hRRFBgbGmGJxvDGJ4Hm3KauGTsX2vBxvGpAQmArcS_xckmDMKckrp6w74FMZYylcYYEA5l7RAX_7Me5vwW-0LcLYBdDK6d7FU1actR3BpYgu8cLDmTAwpReverbCa5kCt50BN4TQHanpc7GiMzzr7MJXI9_9UkrUyLaeW2_j-t49Fr-NYxQM |
CODEN | EXBRAP |
CitedBy_id | crossref_primary_10_1152_jn_00725_2016 crossref_primary_10_1016_j_jelekin_2017_04_003 crossref_primary_10_3389_fnhum_2016_00618 crossref_primary_10_1016_j_neulet_2008_11_027 crossref_primary_10_1007_s00221_014_4145_0 crossref_primary_10_1016_j_medengphy_2020_07_006 crossref_primary_10_3390_biomechanics4010004 crossref_primary_10_1038_s41598_020_64911_7 crossref_primary_10_3389_fncom_2022_956932 crossref_primary_10_1155_2018_4767624 crossref_primary_10_1111_sms_12998 crossref_primary_10_3389_fnins_2023_1145751 crossref_primary_10_1371_journal_pone_0297540 crossref_primary_10_1155_2015_891390 crossref_primary_10_3389_fnhum_2017_00548 crossref_primary_10_1016_j_humov_2019_102526 crossref_primary_10_1016_j_jelekin_2014_07_003 crossref_primary_10_1152_jn_00618_2015 crossref_primary_10_3390_ijerph120404340 crossref_primary_10_1371_journal_pone_0213870 crossref_primary_10_1186_s12938_020_00811_1 crossref_primary_10_1016_j_jbiomech_2009_08_014 crossref_primary_10_1152_jn_00162_2010 crossref_primary_10_1371_journal_pone_0123214 crossref_primary_10_1589_jpts_28_563 crossref_primary_10_3390_s23218881 crossref_primary_10_1016_j_neuroscience_2022_01_012 crossref_primary_10_2139_ssrn_4191849 crossref_primary_10_1123_mc_2021_0084 crossref_primary_10_1016_j_ptsp_2021_04_006 crossref_primary_10_3390_app10113741 crossref_primary_10_1080_10255842_2015_1067306 crossref_primary_10_1152_jn_90474_2008 crossref_primary_10_1152_jn_01272_2007 crossref_primary_10_1016_j_gaitpost_2013_03_005 crossref_primary_10_1016_j_neuroscience_2022_11_010 crossref_primary_10_1080_00222895_2021_2013768 crossref_primary_10_1152_jn_01082_2012 crossref_primary_10_1080_00222895_2011_568991 crossref_primary_10_1016_j_clinph_2008_07_221 crossref_primary_10_1016_j_neuroscience_2009_04_005 crossref_primary_10_3390_s20185059 crossref_primary_10_1038_s41598_020_80420_z crossref_primary_10_1038_s41598_019_39197_z crossref_primary_10_1155_2019_9351689 crossref_primary_10_1016_j_humov_2017_04_002 crossref_primary_10_1080_23335432_2021_1985610 crossref_primary_10_1007_s00221_013_3627_9 crossref_primary_10_3390_ijerph18063007 crossref_primary_10_1016_j_clinph_2012_12_001 crossref_primary_10_3389_fbioe_2021_678006 crossref_primary_10_1016_j_jbmt_2013_11_018 crossref_primary_10_3390_bioengineering12010084 crossref_primary_10_1007_s00419_011_0559_3 crossref_primary_10_1016_j_gaitpost_2010_12_014 |
Cites_doi | 10.1007/s00221-002-1040-x 10.1037/0096-1523.25.5.1284 10.1152/jn.00730.2002 10.1016/S0966-6362(99)00032-6 10.2307/1130806 10.1109/10.362914 10.1007/BF02441916 10.1016/j.neulet.2004.11.071 10.1007/BF02454152 10.1016/j.gaitpost.2006.09.007 10.1016/S0167-9457(01)00024-0 10.1007/s00221-007-0865-8 10.1007/s00422-002-0333-2 10.1016/0021-9290(93)90083-Q 10.1007/PL00005698 10.1007/s00221-006-0848-1 10.1016/j.jelekin.2005.08.008 10.1111/j.1469-7793.1999.915ad.x 10.1152/jn.00983.2003 10.1007/s004220050527 10.1111/j.2517-6161.1995.tb02031.x 10.2190/VXN3-N3RT-54JB-X16X 10.1113/jphysiol.1952.sp004762 10.1002/9780470316641 10.1152/jn.1998.80.3.1211 10.1152/jn.1996.76.6.3994 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2007 2008 INIST-CNRS Springer-Verlag 2008 Springer-Verlag 2007 2007 |
Copyright_xml | – notice: Springer-Verlag 2007 – notice: 2008 INIST-CNRS – notice: Springer-Verlag 2008 – notice: Springer-Verlag 2007 2007 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 0-V 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 88J 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ K9. KB0 M0S M1P M2M M2R NAPCQ P64 PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1007/s00221-007-1145-3 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Psychology Database Social Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts Sociology & Social Sciences Collection ProQuest Central China Health Research Premium Collection Health & Medical Research Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Sociology & Social Sciences Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Social Sciences ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest Medical Library ProQuest Psychology Journals ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Neurosciences Abstracts ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1432-1106 |
EndPage | 226 |
ExternalDocumentID | PMC2731554 1435669831 17955227 20106816 10_1007_s00221_007_1145_3 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS035070 – fundername: NINDS NIH HHS grantid: 2R01NS35070 – fundername: NINDS NIH HHS grantid: R01 NS046065 – fundername: NINDS NIH HHS grantid: 1R01NS046065 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -XW -Y2 -~C -~X .55 .86 .GJ .VR 0-V 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 FA8 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IHW IJ- IKXTQ INH INR IPY ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M2M M2R M4Y MA- N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P19 P2P PF- PKN PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7W Z7X Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ IQODW PJZUB PPXIY PRQQA CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7XB 8FD 8FK FR3 K9. P64 PKEHL POGQB PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c594t-7555baf92cf615219d9a5d6a20fa6f8e81fa311e3553252f47c6676cd37cc9d93 |
IEDL.DBID | U2A |
ISSN | 0014-4819 1432-1106 |
IngestDate | Thu Aug 21 14:04:35 EDT 2025 Mon Jul 21 11:20:08 EDT 2025 Fri Jul 11 11:46:09 EDT 2025 Sat Aug 23 13:39:43 EDT 2025 Mon Jul 21 05:44:37 EDT 2025 Mon Jul 21 09:13:29 EDT 2025 Thu Apr 24 23:00:03 EDT 2025 Tue Jul 01 03:27:38 EDT 2025 Fri Feb 21 02:37:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Human Inverted pendulum Muscle Postural control EMG Coordination Electrophysiology Lower limb Muscle EMG· Human Hip Posture Ankle Coherence Body movement Strategy Electromyography Body segment Gravity |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-7555baf92cf615219d9a5d6a20fa6f8e81fa311e3553252f47c6676cd37cc9d93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1007/s00221-007-1145-3 |
PMID | 17955227 |
PQID | 215136693 |
PQPubID | 47176 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2731554 proquest_miscellaneous_70270890 proquest_miscellaneous_20653199 proquest_journals_215136693 pubmed_primary_17955227 pascalfrancis_primary_20106816 crossref_primary_10_1007_s00221_007_1145_3 crossref_citationtrail_10_1007_s00221_007_1145_3 springer_journals_10_1007_s00221_007_1145_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-01 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Berlin – name: Germany – name: Heidelberg |
PublicationTitle | Experimental brain research |
PublicationTitleAbbrev | Exp Brain Res |
PublicationTitleAlternate | Exp Brain Res |
PublicationYear | 2008 |
Publisher | Springer-Verlag Springer Springer Nature B.V |
Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
References | Zhang, Kiemel, Jeka (CR29) 2007; 26 Mezzarane, Kohn (CR19) 2007; 180 Creath, Kiemel, Horak, Peterka, Jeka (CR5) 2005; 377 Newell, Slobounov, Slobounova, Molenaar (CR21) 1997; 113 Winter, Patla, Prince, Ishad, Gielo-Perczak (CR26) 1998; 880 Fitzpatrick, Burke, Gandevia (CR6) 1996; 76 Van der Kooij, Jacobs, Koopman, Grootenboer (CR25) 1999; 80 Ashmead, McCarty (CR1) 1991; 62 Woollacott, Shumway-Cook, Nashner (CR27) 1986; 23 Bardy, Marin, Stoffregen, Bootsma (CR2) 1999; 25 Nashner, Towe, Laschei (CR20) 1981 Benjamini, Hochberg (CR3) 1995; 57 Fujiwara, Toyama, Kiyota, Maeda (CR7) 2006; 16 Lacour, Barthelemy, Borel, Magnan, Xerri, Chays, Quakine (CR17) 1997; 115 Runge, Shupert, Horak, Zajac (CR22) 1999; 10 Scholz, Schoner, Hsu, Jeka, Horak, Martin (CR24) 2007; 180 Jeka, Kiemel, Creath, Horak, Peterka (CR13) 2004; 92 Kuo (CR16) 1995; 42 Seber (CR23) 1984 Joseph, Nightingale (CR14) 1952; 117 Gatev, Thomas, Kepple, Halett (CR8) 1999; 514 Chiari, Bertani, Cappello (CR4) 2000; 19 Gurfinkel, Ivanenko, Levik (CR10) 1994; 43 Kiemel, Oie, Jeka (CR15) 2002; 87 Hodges, Gurfinkle, Brumagne, Smith, Cordo (CR11) 2002; 144 Horak, Macpherson, Rowell, Shepherd (CR12) 1996 Masani, Popovic, Nakazawa, Kouzaki, Nozaki (CR18) 2003; 90 Zajac (CR28) 1993; 26 Genadry, Kearney, Hunter (CR9) 1988; 26 JP Scholz (1145_CR24) 2007; 180 P Gatev (1145_CR8) 1999; 514 Y Benjamini (1145_CR3) 1995; 57 WF Genadry (1145_CR9) 1988; 26 BG Bardy (1145_CR2) 1999; 25 KM Newell (1145_CR21) 1997; 113 JJ Jeka (1145_CR13) 2004; 92 T Kiemel (1145_CR15) 2002; 87 F Zajac (1145_CR28) 1993; 26 PW Hodges (1145_CR11) 2002; 144 CF Runge (1145_CR22) 1999; 10 R Fitzpatrick (1145_CR6) 1996; 76 DH Ashmead (1145_CR1) 1991; 62 MH Woollacott (1145_CR27) 1986; 23 H Kooij Van der (1145_CR25) 1999; 80 AD Kuo (1145_CR16) 1995; 42 R Creath (1145_CR5) 2005; 377 J Joseph (1145_CR14) 1952; 117 L Nashner (1145_CR20) 1981 R Mezzarane (1145_CR19) 2007; 180 L Chiari (1145_CR4) 2000; 19 FB Horak (1145_CR12) 1996 VS Gurfinkel (1145_CR10) 1994; 43 M Lacour (1145_CR17) 1997; 115 Y Zhang (1145_CR29) 2007; 26 K Masani (1145_CR18) 2003; 90 GAF Seber (1145_CR23) 1984 K Fujiwara (1145_CR7) 2006; 16 D Winter (1145_CR26) 1998; 880 |
References_xml | – volume: 43 start-page: 371 issue: 6 year: 1994 end-page: 377 ident: CR10 article-title: The contribution of foot deformation to the changes of muscular length and angle in the ankle joint during standing in man publication-title: Physiol Res – volume: 880 start-page: 1211 year: 1998 end-page: 1221 ident: CR26 article-title: Stiffness control of balance in quiet standing publication-title: J Neurophysiol – volume: 144 start-page: 293 year: 2002 end-page: 302 ident: CR11 article-title: Coexistence of stability and mobility in postural control: evidence from postural compensation for respiration publication-title: Exp Brain Res doi: 10.1007/s00221-002-1040-x – volume: 25 start-page: 1284 issue: 5 year: 1999 end-page: 1301 ident: CR2 article-title: Postural coordination modes considered as emergent phenomena publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.25.5.1284 – volume: 90 start-page: 3774 year: 2003 end-page: 3782 ident: CR18 article-title: Importance of body sway velocity information in controlling ankle extensor activities during quiet stance publication-title: J Neurophysiol doi: 10.1152/jn.00730.2002 – volume: 10 start-page: 161 year: 1999 end-page: 170 ident: CR22 article-title: Ankle and hip postural strategies defined by joint torques publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00032-6 – volume: 23 start-page: 97 issue: 2 year: 1986 end-page: 114 ident: CR27 article-title: Aging and posture control: changes in sensory organization and muscular coordination publication-title: Int J Aging Hum Dev – volume: 76 start-page: 3994 year: 1996 end-page: 4008 ident: CR6 article-title: Loop gain of reflexes controlling human standing measured with the use of postural and vestibular disturbances publication-title: J Neurophysiol – volume: 62 start-page: 1276 issue: 6 year: 1991 end-page: 1287 ident: CR1 article-title: Postural sway of human infants while standing in light and dark publication-title: Child Dev doi: 10.2307/1130806 – volume: 117 start-page: 484 year: 1952 end-page: 491 ident: CR14 article-title: Electromyography of muscles of posture: leg muscles in males publication-title: J Physiol – volume: 42 start-page: 87 year: 1995 end-page: 101 ident: CR16 article-title: An optimal control model for analyzing human postural balance publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.362914 – volume: 26 start-page: 489 issue: 5 year: 1988 end-page: 496 ident: CR9 article-title: Dynamic relationship between EMG and torque at the human ankle: variation with contraction level and modulation publication-title: Med Biol Eng Comput doi: 10.1007/BF02441916 – volume: 377 start-page: 75 issue: 2 year: 2005 end-page: 80 ident: CR5 article-title: A unified view of quiet and perturbed stance: simultaneous co-existing excitable modes publication-title: Neurosci Lett doi: 10.1016/j.neulet.2004.11.071 – volume: 113 start-page: 158 issue: 1 year: 1997 end-page: 164 ident: CR21 article-title: Stochastic processes in postural center-of-pressure profiles publication-title: Exp Brain Res doi: 10.1007/BF02454152 – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 ident: CR3 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B (Methodol) – start-page: 63 year: 1984 end-page: 68 ident: CR23 publication-title: Multivariate observations – volume: 26 start-page: 263 issue: 2 year: 2007 end-page: 271 ident: CR29 article-title: The influence of sensory information on two-component coordination during quiet stance publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.09.007 – volume: 19 start-page: 817 year: 2000 end-page: 842 ident: CR4 article-title: Classification of visual strategies in human postural control by stochastic parameters publication-title: Hum Mov Sci doi: 10.1016/S0167-9457(01)00024-0 – volume: 180 start-page: 377 issue: 2 year: 2007 end-page: 388 ident: CR19 article-title: Control of upright stance over inclined surfaces publication-title: Exp Brain Res doi: 10.1007/s00221-007-0865-8 – volume: 87 start-page: 262 year: 2002 end-page: 277 ident: CR15 article-title: Multisensory integration and the stochastic structure of postural sway publication-title: Biol Cybern doi: 10.1007/s00422-002-0333-2 – volume: 26 start-page: 109 year: 1993 end-page: 124 ident: CR28 article-title: Muscle coordination of movement: a perspective publication-title: J Biomech doi: 10.1016/0021-9290(93)90083-Q – start-page: 527 year: 1981 end-page: 265 ident: CR20 article-title: Analysis of stance posture in humans publication-title: Handbook of behavioral neurobiology – start-page: 255 year: 1996 end-page: 292 ident: CR12 article-title: Postural orientation and equilibrium publication-title: Handbook of physiology. Exercise: regulation and integration of multiple systems. Control of respiratory and cardiovascular systems, sect 12 – volume: 115 start-page: 300 year: 1997 end-page: 310 ident: CR17 article-title: Sensory strategies in human postural control before and after unilateral vestibular neurotomy publication-title: Exp Brain Res doi: 10.1007/PL00005698 – volume: 180 start-page: 163 issue: 1 year: 2007 end-page: 179 ident: CR24 article-title: Motor equivalent control of the center of mass in response to support surface perturbations publication-title: Exp Brain Res doi: 10.1007/s00221-006-0848-1 – volume: 16 start-page: 448 issue: 5 year: 2006 end-page: 457 ident: CR7 article-title: Postural muscle activity patterns during standing at rest and on an oscillating floor publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2005.08.008 – volume: 514 start-page: 915 year: 1999 end-page: 928 ident: CR8 article-title: Feedforward ankle strategy of balance during quiet stance in adults publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.915ad.x – volume: 92 start-page: 2368 year: 2004 end-page: 2379 ident: CR13 article-title: Controlling human upright posture: velocity information is more accurate than position or acceleration publication-title: J Neurphys doi: 10.1152/jn.00983.2003 – volume: 80 start-page: 299 year: 1999 end-page: 308 ident: CR25 article-title: A multisensory integration model of human stance control publication-title: Biol Cybern doi: 10.1007/s004220050527 – volume: 16 start-page: 448 issue: 5 year: 2006 ident: 1145_CR7 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2005.08.008 – volume: 180 start-page: 377 issue: 2 year: 2007 ident: 1145_CR19 publication-title: Exp Brain Res doi: 10.1007/s00221-007-0865-8 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 1145_CR3 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1995.tb02031.x – start-page: 527 volume-title: Handbook of behavioral neurobiology year: 1981 ident: 1145_CR20 – volume: 42 start-page: 87 year: 1995 ident: 1145_CR16 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.362914 – volume: 26 start-page: 109 year: 1993 ident: 1145_CR28 publication-title: J Biomech doi: 10.1016/0021-9290(93)90083-Q – volume: 26 start-page: 263 issue: 2 year: 2007 ident: 1145_CR29 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2006.09.007 – volume: 10 start-page: 161 year: 1999 ident: 1145_CR22 publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00032-6 – volume: 377 start-page: 75 issue: 2 year: 2005 ident: 1145_CR5 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2004.11.071 – volume: 25 start-page: 1284 issue: 5 year: 1999 ident: 1145_CR2 publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.25.5.1284 – volume: 43 start-page: 371 issue: 6 year: 1994 ident: 1145_CR10 publication-title: Physiol Res – volume: 87 start-page: 262 year: 2002 ident: 1145_CR15 publication-title: Biol Cybern doi: 10.1007/s00422-002-0333-2 – volume: 26 start-page: 489 issue: 5 year: 1988 ident: 1145_CR9 publication-title: Med Biol Eng Comput doi: 10.1007/BF02441916 – volume: 180 start-page: 163 issue: 1 year: 2007 ident: 1145_CR24 publication-title: Exp Brain Res doi: 10.1007/s00221-006-0848-1 – volume: 144 start-page: 293 year: 2002 ident: 1145_CR11 publication-title: Exp Brain Res doi: 10.1007/s00221-002-1040-x – volume: 23 start-page: 97 issue: 2 year: 1986 ident: 1145_CR27 publication-title: Int J Aging Hum Dev doi: 10.2190/VXN3-N3RT-54JB-X16X – volume: 117 start-page: 484 year: 1952 ident: 1145_CR14 publication-title: J Physiol doi: 10.1113/jphysiol.1952.sp004762 – start-page: 63 volume-title: Multivariate observations year: 1984 ident: 1145_CR23 doi: 10.1002/9780470316641 – volume: 113 start-page: 158 issue: 1 year: 1997 ident: 1145_CR21 publication-title: Exp Brain Res doi: 10.1007/BF02454152 – volume: 514 start-page: 915 year: 1999 ident: 1145_CR8 publication-title: J Physiol doi: 10.1111/j.1469-7793.1999.915ad.x – volume: 115 start-page: 300 year: 1997 ident: 1145_CR17 publication-title: Exp Brain Res doi: 10.1007/PL00005698 – start-page: 255 volume-title: Handbook of physiology. Exercise: regulation and integration of multiple systems. Control of respiratory and cardiovascular systems, sect 12 year: 1996 ident: 1145_CR12 – volume: 92 start-page: 2368 year: 2004 ident: 1145_CR13 publication-title: J Neurphys doi: 10.1152/jn.00983.2003 – volume: 62 start-page: 1276 issue: 6 year: 1991 ident: 1145_CR1 publication-title: Child Dev doi: 10.2307/1130806 – volume: 80 start-page: 299 year: 1999 ident: 1145_CR25 publication-title: Biol Cybern doi: 10.1007/s004220050527 – volume: 880 start-page: 1211 year: 1998 ident: 1145_CR26 publication-title: J Neurophysiol doi: 10.1152/jn.1998.80.3.1211 – volume: 19 start-page: 817 year: 2000 ident: 1145_CR4 publication-title: Hum Mov Sci doi: 10.1016/S0167-9457(01)00024-0 – volume: 76 start-page: 3994 year: 1996 ident: 1145_CR6 publication-title: J Neurophysiol doi: 10.1152/jn.1996.76.6.3994 – volume: 90 start-page: 3774 year: 2003 ident: 1145_CR18 publication-title: J Neurophysiol doi: 10.1152/jn.00730.2002 |
SSID | ssj0014370 |
Score | 2.1393316 |
Snippet | Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination (“ankle strategy” and “hip strategy”) are... Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ("ankle strategy" and "hip strategy") are... Studies of muscle activation during perturbed standing have demonstrated that the typical patterns of coordination ('ankle strategy' and 'hip strategy') are... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 215 |
SubjectTerms | Adult Biological and medical sciences Biomedical and Life Sciences Biomedicine Eye and associated structures. Visual pathways and centers. Vision Female Fundamental and applied biological sciences. Psychology Humans Male Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Movement - physiology Muscle, Skeletal - physiology Neurology Neurosciences Postural Balance - physiology Posture - physiology Psychomotor Performance - physiology Research Article Rest - physiology Vertebrates: nervous system and sense organs |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RekGqqgItTXnUh6qHVlbjOLbjE0KoCFWCE0h7i7yOrSJBdunuHvj3nXEeaFvgFimTKLHHnm88M98AfDGNkGiYIhcIrnkZdORVtJajJ6CDqPy0SjzdF5f6_Lr8NVGTPjdn0adVDnti2qibmacz8h9kmqTWVh7P7zk1jaLgat9B4xW8JuYyUmozGf0tRAKmq0ARJS_R8g1BzTxxiBYF-tHEkChKxeWaWXozdwscodi1tngKe_6fQvlPHDWZp7N38LbHleykU4Rt2AjtDuyetOhT3z2wryxleqYj9B3YGne9h12wVKCRSv6Y6wlK2Cyyu9UC38Oo7IG6S7CunJHdr27CkhGi9OE9XJ_9vDo9530_Be6VLZfcKKWmLtrCR01m2zbWqUa7Io9OxypUIjopREAIIgtVxNJ4yoD1jTTeo7D8AJvtrA0fgSk5FRF92AYVsYzoI1Y-NEJb9I4cbhMug3wYztr3ZOPU8-K2HmmS0wzUdEkzUMsMvo2PzDumjZeEj9bmaHyCgvu6EjqD_WHS6n5VLupRhzL4PN7F5UQxEteG2QpFiKtXWPu8hEFHPq9snsFepwKPX2usQjhrMjBryjEKEJX3-p325nei9EYQScAug--DGj1-9bOD8OnFf9yHrS63hVJvDmBz-WcVDhFALadHaZn8BX3aFgc priority: 102 providerName: ProQuest |
Title | Coherence analysis of muscle activity during quiet stance |
URI | https://link.springer.com/article/10.1007/s00221-007-1145-3 https://www.ncbi.nlm.nih.gov/pubmed/17955227 https://www.proquest.com/docview/215136693 https://www.proquest.com/docview/20653199 https://www.proquest.com/docview/70270890 https://pubmed.ncbi.nlm.nih.gov/PMC2731554 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxQxFH_Y9iKoaOvHWF1zEA9KYDOZJJPjKluLYhFxYT0N2UyCBTtbu7uH_vd9L_NRVlvB0wzMSwh5Sd7vN-8jAK9NLSQapsgFgmteBB15Ga3lyAR0EKVflKlO95cTfTwrPs3VvMvjXvXR7r1LMp3UQ7IbmRukvlTUUBSKyx3YU0jdKY5rlk8G10EhTZt3IgpeoL3rXZk3dbFljO6duxXOS2wvtLgJcf4dOPmH9zQZpaOH8KBDk2zSqv8R3AnNPhxMGmTSZ5fsDUvxnenH-T7cHc66ywOwlJaREv2Y68qSsGVkZ5sV9sMo2YHulGBtEiP7vTkNa0Y40ofHMDuafv9wzLtbFLhXtlhzo5RauGhzHzUZa1tbp2rt8nF0OpahFNFJIQICD5mrPBbGU9yrr6XxHoXlE9htlk14BkzJhYjIXGtcfkVEZlj6UAttkRM5PBxcBuN-OivflRinmy5-VUNx5KSBil5JA5XM4O3Q5Lytr_Ev4dGWjoYW5NLXpdAZHPZKq7q9uKoI1EitLTZ_NXzFTUSeEdeE5QZFqEKvsPZ2CYP0fVzacQZP2yVwPVpjFYJYk4HZWhyDABXw3v7SnP5MhbwROhKcy-Bdv4yuR33rJDz_L-lDuJ8TzScwInKe5y9gd32xCS8RSq0XI9gxczOCvcnHH5-n-Hw_Pfn6bZQ21BXYRhe7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcqASQtDyCIXWB-AAsojjxI4PCFVAtaWPUyvtLXgdW1Si2S27K7Q_iv_IjLNJtUB7622lTKKsZzwzXzzzDcArXQuJgSlwgck1z70KvAzGcEQCyovSjcrI0318ogZn-ddhMVyD310vDJVVdj4xOup67Ogb-XsKTVIpIz9OLjkNjaLD1W6CRmsVh37xCxHb9MPBZ1Tv6yzb_3L6acCXQwW4K0w-47ooipENJnNBUewytbFFrWyWBqtC6UsRrBTCYxyWWZGFXDsqA3W11M6hsMTn3oG7GHdTwnp62OM7zDx02_Eicp5jpO0OUdPIWZpliNuJkVHkBZcrYfD-xE5RI6EdpfG_XPffks2_zm1jONx_CA-WeSzbaw3vEaz5ZhO29hrE8BcL9obFytL4yX4TNnovu9gCQw0hscWQ2SUhChsHdjGf4nMYtVnQNAvWtk-yy_m5nzHKYJ1_DGe3stRPYL0ZN_4ZsEKOREDMXKPh5wExael8LZRBNGbRLdkE0m45K7ckN6cZGz-qnpY5aqCin6SBSibwtr9l0jJ73CS8s6Kj_g4qJlClUAlsd0qrll5gWvU2m8BufxW3L53J2MaP5yhC3MDCmOsldJrptDRpAk9bE7h6W20KTJ91AnrFOHoBog5fvdKcf48U4pi0UiKZwLvOjK7e-tpFeH7jf9yFe4PT46Pq6ODkcBs22roaKvt5Aeuzn3P_EpO32WgnbhkG3257j_4BkIFSeA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFaQgoq0fsdrug_qgLM3uJrvZB5Fqe7RWjyIW-pbmNrtYsHdX7w65P83_zpl8lVPbt74dZBJyO9-Zmd8AvDSlUOiYAhcYXPPE68CzYC3HTEB7kblhVuF0fxnog5Pk02l6ugK_21kYaqtsbWJlqMuxo2_kO-SalNZW7YSmK-J4r_9-cslpgRQVWtttGrWEHPnFL8zepu8O95DVr6Ts73_7eMCbBQPcpTaZcZOm6bAIVrqgyY_Z0hZpqQsZh0KHzGciFEoIjz5ZyVSGxDhqCXWlMs4hscLn3oFVQ0lRD1Y_7A-Ov3YljESZev5FJDxBv9uWVOMKwVRKzOIJn1EkKVdLTvHepJgif0K9WON_ke-_DZx_VXEr59h_APebqJbt1mL4EFb8aB02dkeY0V8s2GtW9ZlWH_DXYa2zuYsNsDQeUg0csqKBR2HjwC7mU3wOo6EL2m3B6mFKdjk_9zNG8azzj-DkVg77MfRG45F_CixVQxEwgy5RDZKAGWrmfCm0xdysQCNVRBC3x5m7BuqcNm78yDuQ5ooDOf0kDuQqgjfdLZMa5-Mm4q0lHnV3UGuBzoSOYLNlWt7YhGneSXAE291VVGaq0BQjP54jCSEFC2uvpzCxNHFm4wie1CJw9bbGphhMmwjMknB0BAQkvnxldP69AhTHEJbCygjetmJ09dbXHsKzG__jNtxF_cw_Hw6ONmGtbrKRXMrn0Jv9nPsXGMnNhluNzjA4u201_QNZbFgW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coherence+analysis+of+muscle+activity+during+quiet+stance&rft.jtitle=Experimental+brain+research&rft.au=Saffer%2C+Mark&rft.au=Kiemel%2C+Tim&rft.au=Jeka%2C+John&rft.date=2008-02-01&rft.pub=Springer-Verlag&rft.issn=0014-4819&rft.eissn=1432-1106&rft.volume=185&rft.issue=2&rft.spage=215&rft.epage=226&rft_id=info:doi/10.1007%2Fs00221-007-1145-3&rft.externalDocID=10_1007_s00221_007_1145_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4819&client=summon |