Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework
Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices...
Saved in:
Published in | IEEE computer graphics and applications Vol. 1; pp. 35 - 44 |
---|---|
Main Authors | , , |
Format | Journal Article Magazine Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2644-1268 1558-1756 2644-1268 1558-1756 |
DOI | 10.1109/OJCS.2020.2993259 |
Cover
Loading…
Abstract | Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper, we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications. |
---|---|
AbstractList | Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper, we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications. Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications.Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications. |
Author | He, Kaiwen Wu, Qiong Chen, Xu |
Author_xml | – sequence: 1 givenname: Qiong orcidid: 0000-0002-2156-4433 surname: Wu fullname: Wu, Qiong organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Kaiwen orcidid: 0000-0003-3665-6178 surname: He fullname: He, Kaiwen organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Xu orcidid: 0000-0001-9943-6020 surname: Chen fullname: Chen, Xu email: chenxu35@mail.sysu.edu.cn organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32396074$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v00AQxS1UREvpB0BIyBIXLg6zf2zvcgtRC0GRikS5shqvx9EGx5vu2kLw6dk0IUI9cNrR6vfejN57np0NfqAse8lgxhjod7efF19nHDjMuNaCl_pJdsErKQvGK3X2z3yeXcW4AQBeMsZE-Sw7F1zoCmp5kX3_QiH6AXv3m9r8hloKOKZpRRgGN6zzzod8OYzU925Nw5gv_V0-3-16Z3F0fojv83m-6P3UFtftmvIPGPc-Abf004cfL7KnHfaRro7vZfbt5vpu8alY3X5cLuarwpZajkXJOtkwrCSUHbUoQNVKdw0DYBqqUkGjsbK1tpZZW1tQ1Ki6a6kjZKWsrbjMlgff1uPG7ILbYvhlPDrz8OHD2mAYne3JgEBlpQCSspNYS2St5UqjLKG2nFHyenvw2gV_P1EczdZFmwLAgfwUDZfAVMpbqIS-eYRu_BRSmokqBU9xg6wT9fpITc2W2tN5f1tIADsANvgYA3UnhIHZl232ZZt92eZYdtLUjzTWjQ-VjAFd_1_lq4PSEdFpkwYNoqrEH-pptAM |
CODEN | IOJCB2 |
CitedBy_id | crossref_primary_10_1109_JIOT_2020_3039359 crossref_primary_10_1016_j_cmpb_2022_107305 crossref_primary_10_1109_ACCESS_2024_3357514 crossref_primary_10_1016_j_neunet_2023_04_007 crossref_primary_10_1109_OJCOMS_2024_3496872 crossref_primary_10_1109_ACCESS_2023_3235389 crossref_primary_10_1109_TMLCN_2023_3302811 crossref_primary_10_1109_TII_2021_3091774 crossref_primary_10_1109_TNSE_2022_3144699 crossref_primary_10_1007_s10878_022_00939_x crossref_primary_10_1109_LCOMM_2024_3427847 crossref_primary_10_3390_s21010167 crossref_primary_10_1109_MCE_2020_3048926 crossref_primary_10_1002_dac_5185 crossref_primary_10_1016_j_pmcj_2022_101714 crossref_primary_10_3390_app14062345 crossref_primary_10_1109_JIOT_2024_3376552 crossref_primary_10_1109_OJCOMS_2020_3037517 crossref_primary_10_1145_3639825 crossref_primary_10_3390_s23229016 crossref_primary_10_1109_ACCESS_2020_3007002 crossref_primary_10_1109_TITS_2023_3308370 crossref_primary_10_1080_00051144_2023_2194097 crossref_primary_10_1109_OJCS_2023_3332351 crossref_primary_10_3390_jsan14010009 crossref_primary_10_32604_cmc_2023_037129 crossref_primary_10_3390_math11071647 crossref_primary_10_1109_TMI_2023_3263072 crossref_primary_10_1007_s00521_024_10136_y crossref_primary_10_1109_ACCESS_2022_3229124 crossref_primary_10_3390_app112311191 crossref_primary_10_3390_math12060901 crossref_primary_10_1016_j_future_2025_107724 crossref_primary_10_1016_j_oceaneng_2024_117668 crossref_primary_10_1109_TETCI_2023_3251404 crossref_primary_10_32604_iasc_2022_023763 crossref_primary_10_1109_TGCN_2022_3186898 crossref_primary_10_1109_COMST_2021_3075439 crossref_primary_10_3390_s23136006 crossref_primary_10_1109_OJCOMS_2024_3506214 crossref_primary_10_1016_j_comcom_2022_01_006 crossref_primary_10_1109_JIOT_2022_3203233 crossref_primary_10_1109_LSP_2024_3434467 crossref_primary_10_1088_1742_6596_2044_1_012198 crossref_primary_10_3390_electronics13214306 crossref_primary_10_1007_s11280_022_01119_x crossref_primary_10_1109_ACCESS_2020_3013541 crossref_primary_10_1109_JIOT_2024_3353793 crossref_primary_10_1109_TNSM_2023_3263831 crossref_primary_10_1109_JIOT_2024_3399074 crossref_primary_10_1007_s40747_022_00894_4 crossref_primary_10_1109_TMC_2024_3416216 crossref_primary_10_1002_cpe_8042 crossref_primary_10_1109_JSEN_2022_3210773 crossref_primary_10_1371_journal_pone_0290337 crossref_primary_10_3390_fi16030095 crossref_primary_10_1109_COMST_2023_3244674 crossref_primary_10_1109_TPWRS_2024_3393017 crossref_primary_10_32604_cmc_2024_058926 crossref_primary_10_1109_ACCESS_2024_3422211 crossref_primary_10_1109_JIOT_2024_3369607 crossref_primary_10_1016_j_dcan_2024_08_002 crossref_primary_10_3390_app13095821 crossref_primary_10_1016_j_adhoc_2023_103257 crossref_primary_10_1109_JBHI_2022_3185673 crossref_primary_10_1016_j_comcom_2024_107964 crossref_primary_10_1109_JIOT_2023_3262582 crossref_primary_10_3390_fi14090246 crossref_primary_10_1080_08874417_2023_2298223 crossref_primary_10_1007_s10586_022_03659_3 crossref_primary_10_1109_JIOT_2023_3299736 crossref_primary_10_1109_JSAC_2022_3143259 crossref_primary_10_1109_JIOT_2024_3454064 crossref_primary_10_3390_s22072424 crossref_primary_10_1016_j_dcan_2022_10_015 crossref_primary_10_1109_TCSS_2022_3213507 crossref_primary_10_3390_electronics12010136 crossref_primary_10_1109_ACCESS_2021_3101871 crossref_primary_10_1109_JIOT_2022_3233024 crossref_primary_10_1049_2024_5873909 crossref_primary_10_1109_ACCESS_2022_3183237 crossref_primary_10_1016_j_ins_2024_120201 crossref_primary_10_32604_jai_2024_049912 crossref_primary_10_1109_TDSC_2022_3168556 crossref_primary_10_32604_cmc_2024_054484 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1145_3624478 crossref_primary_10_1109_ACCESS_2020_3037357 crossref_primary_10_1109_TDSC_2024_3472869 crossref_primary_10_1016_j_sysarc_2022_102418 crossref_primary_10_1109_ACCESS_2021_3118642 crossref_primary_10_1117_1_JEI_31_3_033030 crossref_primary_10_3390_a17020052 crossref_primary_10_1016_j_comcom_2023_04_023 crossref_primary_10_1016_j_knosys_2021_107338 crossref_primary_10_1109_ACCESS_2020_3037474 crossref_primary_10_3390_s23010321 crossref_primary_10_1109_ACCESS_2023_3312579 crossref_primary_10_1016_j_ipm_2022_103061 crossref_primary_10_3390_electronics11040670 crossref_primary_10_1016_j_comnet_2023_109712 crossref_primary_10_1109_TKDE_2024_3390238 crossref_primary_10_1109_ACCESS_2021_3056919 crossref_primary_10_1016_j_pmcj_2023_101804 crossref_primary_10_1109_TNSRE_2022_3161272 crossref_primary_10_1016_j_knosys_2022_110072 crossref_primary_10_1145_3625558 crossref_primary_10_1109_TETCI_2022_3146871 crossref_primary_10_1002_widm_1443 crossref_primary_10_1109_JIOT_2020_3026589 crossref_primary_10_1109_JPROC_2022_3153408 crossref_primary_10_1109_TMC_2021_3136611 crossref_primary_10_1109_TMC_2022_3223944 crossref_primary_10_1109_TVT_2023_3332898 crossref_primary_10_1007_s00607_024_01405_8 crossref_primary_10_3390_math12203194 crossref_primary_10_1109_TII_2021_3128164 crossref_primary_10_2478_bipie_2022_0019 crossref_primary_10_1109_TWC_2023_3260141 crossref_primary_10_1007_s00521_024_09703_0 crossref_primary_10_1109_COMST_2022_3218527 crossref_primary_10_1016_j_hcc_2024_100242 crossref_primary_10_1016_j_eswa_2024_125336 crossref_primary_10_1109_OJCOMS_2024_3513832 crossref_primary_10_1002_cpe_6357 crossref_primary_10_1109_LWC_2020_3016822 crossref_primary_10_3390_math12162587 crossref_primary_10_1109_MNET_001_2200212 crossref_primary_10_1109_ACCESS_2023_3337426 crossref_primary_10_1145_3697836 crossref_primary_10_3390_jsan9040059 crossref_primary_10_1016_j_dcan_2023_05_006 crossref_primary_10_1109_TAI_2024_3443787 crossref_primary_10_1109_TNNLS_2023_3282242 crossref_primary_10_1109_TITS_2023_3263271 crossref_primary_10_1007_s10586_024_04788_7 crossref_primary_10_1109_TIFS_2023_3249568 crossref_primary_10_3233_JHS_222042 crossref_primary_10_1109_TKDE_2023_3312511 crossref_primary_10_1007_s40747_023_01110_7 crossref_primary_10_1007_s10489_023_04753_8 crossref_primary_10_1109_COMST_2024_3399612 crossref_primary_10_1109_ACCESS_2023_3342861 crossref_primary_10_1016_j_engappai_2024_109464 crossref_primary_10_1109_TC_2024_3355777 crossref_primary_10_1145_3640341 crossref_primary_10_1007_s00779_022_01688_8 crossref_primary_10_1109_ACCESS_2023_3335245 crossref_primary_10_1109_TNNLS_2022_3160699 crossref_primary_10_1109_TMC_2023_3290925 crossref_primary_10_1016_j_iswa_2023_200303 crossref_primary_10_3390_en14123654 crossref_primary_10_1016_j_compeleceng_2025_110259 crossref_primary_10_3390_app13074251 crossref_primary_10_1109_TPDS_2024_3360438 crossref_primary_10_1109_JIOT_2023_3312348 crossref_primary_10_1109_OJCOMS_2023_3265425 crossref_primary_10_1007_s42979_024_03235_z crossref_primary_10_1109_JIOT_2021_3053055 crossref_primary_10_1109_JIOT_2022_3194726 crossref_primary_10_1007_s10586_021_03399_w crossref_primary_10_1016_j_jnca_2024_103840 crossref_primary_10_1007_s10723_025_09796_4 crossref_primary_10_1109_JIOT_2022_3233599 crossref_primary_10_1109_TII_2022_3195896 crossref_primary_10_1016_j_dt_2022_12_007 crossref_primary_10_1109_TII_2023_3252599 crossref_primary_10_1109_TVT_2022_3205778 crossref_primary_10_1016_j_knosys_2022_109553 crossref_primary_10_1109_TPAMI_2025_3527137 crossref_primary_10_1016_j_future_2022_08_004 crossref_primary_10_1109_ACCESS_2021_3111118 crossref_primary_10_1109_TMC_2024_3403754 crossref_primary_10_1038_s41598_025_89612_x crossref_primary_10_1109_TII_2021_3064351 crossref_primary_10_1109_JIOT_2020_3007662 crossref_primary_10_1145_3609503 crossref_primary_10_1109_JIOT_2023_3262664 crossref_primary_10_1016_j_knosys_2023_110396 crossref_primary_10_1109_TCC_2021_3078795 crossref_primary_10_1109_ACCESS_2023_3261266 |
Cites_doi | 10.1109/JIOT.2017.2683200 10.1145/2968219.2971429 10.1109/MIS.2020.2988604 10.1155/2016/2308183 10.1145/3381006 10.1109/JPROC.2019.2918951 10.1109/TKDE.2009.191 10.1145/3298981 10.1109/TWC.2019.2946140 10.5220/0005792401430151 10.1109/MSP.2020.2975749 10.1109/JSEN.2014.2357035 10.1016/j.comnet.2010.05.010 10.1109/PIMRC.2019.8904164 |
ContentType | Journal Article Magazine Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 DOA |
DOI | 10.1109/OJCS.2020.2993259 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Engineering |
EISSN | 2644-1268 1558-1756 |
EndPage | 44 |
ExternalDocumentID | oai_doaj_org_article_03a8c430e44f4a74a1dc289a4507c21e 32396074 10_1109_OJCS_2020_2993259 9090366 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Program for Guangdong Introducing Innovative and Enterpreneurial grantid: 2017ZT07X355 – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 61972432 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFB1001703 funderid: 10.13039/501100012166 – fundername: Pearl River Talent Recruitment Program grantid: 2017GC010465 |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IEDLZ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION --- -DZ -~X 29I 4.4 5GY 6IK 85S AASAJ AAWTH ABQJQ ACGFO ACIWK ACNCT AENEX AFOGA AKJIK ASUFR ATWAV AZLTO CS3 D0L DU5 EJD F5P HZ~ IFIPE IPLJI LAI M43 NPM O9- P2P RIC RNS TN5 YZZ Z5M 7SC 8FD JQ2 L7M L~C L~D 7X8 AARMG AGQYO AHBIQ AKQYR |
ID | FETCH-LOGICAL-c594t-51f4b1a6405feda308789fb1001906580b9a6c79cc1cc7c08eb87fdefea1547c3 |
IEDL.DBID | RIE |
ISSN | 2644-1268 1558-1756 |
IngestDate | Wed Aug 27 01:27:47 EDT 2025 Fri Jul 11 14:27:57 EDT 2025 Sun Jun 29 16:34:37 EDT 2025 Wed Feb 19 02:09:40 EST 2025 Thu Apr 24 23:08:16 EDT 2025 Tue Jul 01 04:06:49 EDT 2025 Wed Aug 27 02:41:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-51f4b1a6405feda308789fb1001906580b9a6c79cc1cc7c08eb87fdefea1547c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3665-6178 0000-0001-9943-6020 0000-0002-2156-4433 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9090366 |
PMID | 32396074 |
PQID | 2532111047 |
PQPubID | 5075782 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2401825938 crossref_primary_10_1109_OJCS_2020_2993259 proquest_journals_2532111047 crossref_citationtrail_10_1109_OJCS_2020_2993259 pubmed_primary_32396074 doaj_primary_oai_doaj_org_article_03a8c430e44f4a74a1dc289a4507c21e ieee_primary_9090366 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE computer graphics and applications |
PublicationTitleAbbrev | OJCS |
PublicationTitleAlternate | IEEE Comput Graph Appl |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref14 li (ref23) 2019 ref2 ref1 ref17 mcmahan (ref9) 2017 ref16 ref18 zhao (ref12) 2018 arivazhagan (ref19) 2019 jiang (ref21) 2019 vanhaesebrouck (ref5) 2017 xu (ref11) 2019 ref26 ref25 kairouz (ref10) 2019 jeong (ref24) 2018 ref28 bellet (ref6) 2018 ref27 finn (ref20) 0; 70 corinzia (ref22) 2019 ref29 voigt (ref3) 2017 ref7 luo (ref15) 2020 ref4 smith (ref8) 0 |
References_xml | – year: 2019 ident: ref10 article-title: Advances and open problems in federated learning publication-title: CoRR – ident: ref7 doi: 10.1109/JIOT.2017.2683200 – year: 2019 ident: ref21 article-title: Improving federated learning personalization via model agnostic meta learning publication-title: CoRR – year: 2018 ident: ref12 article-title: Federated learning with non-iid data publication-title: CoRR – ident: ref27 doi: 10.1145/2968219.2971429 – year: 2019 ident: ref11 article-title: Federated learning for healthcare informatics publication-title: CoRR – year: 2019 ident: ref23 article-title: Fedmd: Heterogenous federated learning via model distillation publication-title: CoRR – ident: ref17 doi: 10.1109/MIS.2020.2988604 – year: 2019 ident: ref22 article-title: Variational federated multi-task learning publication-title: CoRR – ident: ref28 doi: 10.1155/2016/2308183 – start-page: 1273 year: 2017 ident: ref9 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc Int Conf Artif Intell Statist – ident: ref18 doi: 10.1145/3381006 – start-page: 509 year: 2017 ident: ref5 article-title: Decentralized collaborative learning of personalized models over networks publication-title: Proc Int Conf Artif Intell Statist – ident: ref2 doi: 10.1109/JPROC.2019.2918951 – ident: ref16 doi: 10.1109/TKDE.2009.191 – ident: ref4 doi: 10.1145/3298981 – ident: ref14 doi: 10.1109/TWC.2019.2946140 – ident: ref26 doi: 10.5220/0005792401430151 – ident: ref13 doi: 10.1109/MSP.2020.2975749 – year: 2020 ident: ref15 article-title: Hfel: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning publication-title: CoRR – ident: ref29 doi: 10.1109/JSEN.2014.2357035 – volume: 70 start-page: 1126 year: 0 ident: ref20 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref1 doi: 10.1016/j.comnet.2010.05.010 – year: 2018 ident: ref24 article-title: Communication-efficient on-device machine learning:Federated distillation and augmentation under non-iid private data publication-title: CoRR – ident: ref25 doi: 10.1109/PIMRC.2019.8904164 – year: 2017 ident: ref3 article-title: The eu general data protection regulation (gdpr) publication-title: A Practical Guide – start-page: 4424 year: 0 ident: ref8 article-title: Federated multi-task learning publication-title: Proc Advances Neural Inform Process Syst – year: 2019 ident: ref19 article-title: Federated learning with personalization layers publication-title: CoRR – start-page: 473 year: 2018 ident: ref6 article-title: Personalized and private peer-to-peer machine learning publication-title: Proc Int Conf Artif Intell Statist |
SSID | ssj0002511135 ssj0005510 |
Score | 2.5809767 |
Snippet | Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently,... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 35 |
SubjectTerms | Adaptation models Cloud computing Computational modeling Customization Data models Edge computing Electronic devices Federated learning Heterogeneity Human activity recognition Internet of Things Learning systems Moving object recognition Network latency Performance evaluation personalization Servers Statistical methods |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnLjQwkKb8iEjcaqUksROHHNbVqwWJNpKBYlTLccfXNAuKrsXfj0ziRPtBbhwTWzLmhl73rOtNwAnyBi8stKnXJUmFcLxtCmETKUzykjpStHKNV3_qma34uquvFsr9UVvwjp54M5wpxk3tcUOXoggjBQmdxZJghEIZGyRe9p9MeetkSnagwk457yM15h5pk5_X03-Ih0ssp-4AfOCtEnXElGr1x8LrLyONducM_0CWxEssnE3yW345Oc78LkvxMDiuhzBvz89pH72jk1JHwIhpGNRPPWeITJll4P45pJdLm7YeO3q-oyN2eRhsXLphbv37BxTG47Tv9vahdvpxc1klsbCCaktlVimZR5Ek5sKwVjwzpDoX61CQ3JLiiBH1ihTWamsza2VNqt9U8vgfPAGEZW0fA825ou5_wYMGyJiCA1XIheFCzXyM18WRoSmQtf4BLLeitpGVXEqbvGgW3aRKU2G12R4HQ2fwI-hy2MnqfFW43NyzdCQ1LDbDxgjOsaIfi9GEhiRY4dBFB1OVVUCB72jdVy5T7ooOXJiErBI4Hj4jWuOLlLM3C9W2AZJKTJrxesEvnYBMozNC46kUIrvHzHxfdgkY3RHPgewsfy_8ocIgpbNURvvLwKd_pA priority: 102 providerName: Directory of Open Access Journals |
Title | Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework |
URI | https://ieeexplore.ieee.org/document/9090366 https://www.ncbi.nlm.nih.gov/pubmed/32396074 https://www.proquest.com/docview/2532111047 https://www.proquest.com/docview/2401825938 https://doaj.org/article/03a8c430e44f4a74a1dc289a4507c21e |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGhQPkItJWROCGyTWInjrltV7tqKy0g0Uo9ETn2pIdWGwTJpQd-O2PHiaqKVlyiKJk4jsYTvze2nwE-EGNAZSTGXOU6FsLyuM6EjKXVSktpc-HlmtZfipMLcXaZX27Bp2ktDCL6yWc4c6d-LN-2pnepsiPlkgpFsQ3bRNyGtVpTPsVB5ZTnYeAyTdTR17PFdyKAWTKjXy7PnBrpna7HK_SHLVUeRpe-l1ntwnqs3zC55HrWd_XM3N6TbvzfD3gGTwPcZPOhfTyHLdy8gN1xKwcWInsPfnwbQfktWrZyChMEQi0L8qtXjLAtO53kOzt22p6z-Z3B789szhY3bW_jpb1CdkydI5Uzzvx6CRer5fniJA5bL8QmV6KL87QRdaoLgnMNWu1kA0vV1E6wSTnQktRKF0YqY1JjpElKrEvZWGxQEyaThr-CnU27wTfAyJAwR1NzJVKR2aYkhod5pkVTFwnXGEEyeqUyQZfcbY9xU3l-kqjKObJyjqyCIyP4OD3ycxDleMz42Ll6MnR62v4CeaYK4VlRRUpDzRKFaISWQqfWEBXVguCyyVKq5J7z5lRIcGQE-2PDqULs_66ynBOrdhIYEbyfblPUuqEYvcG2JxuitcTNFS8jeD00uKlsnnGilVK8_fc738ET93lDGmgfdrpfPR4QMOrqQ59QoOP6z_LQR8dftkUKsQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALBQolUMBInBDZJrETx9y2q652S7cgsZV6wnLsSQ9UuwiSS38948SJKgSIW5RMHFszE7_nj2eAt8QYUFmJMVe5iYVwPK4yIWPpjDJSulx0ck2r82JxIU4v88sdeD_uhUHEbvEZTvxlN5fvtrb1Q2VHyg8qFMUduEv9vlD9bq1xRMWD5ZTnYeoyTdTRp9PZF6KAWTKhny7PvB7prc6n0-gPh6r8HV92_cx8D1ZDDfvlJd8mbVNN7M1v4o3_24SH8CAATjbtI-QR7ODmMewNhzmwkNv78PXzAMtv0LG515ggGOpYEGC9YoRu2XIU8GzYcrtm01vT3x_YlM2ut62LT9wVsmPqHqmcYe3XE7iYn6xnizgcvhDbXIkmztNaVKkpCNDV6IwXDixVXXnJJuVhS1IpU1iprE2tlTYpsSpl7bBGQ6hMWv4UdjfbDT4DRoaEOuqKK5GKzNUlcTzMMyPqqki4wQiSwSvaBmVyf0DGte4YSqK0d6T2jtTBkRG8G1_53sty_Mv42Lt6NPSK2t0N8owOCaqpIqWlwEQhamGkMKmzREaNIMBss5Qque-9ORYSHBnB4RA4OmT_T53lnHi1F8GI4M34mPLWT8aYDW5bsiFiS-xc8TKCgz7gxrJ5xolYSvH8z998DfcW69WZPluef3wB931T-0GhQ9htfrT4kmBSU73qsuMXRUAL2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Federated+Learning+for+Intelligent+IoT+Applications%3A+A+Cloud-Edge+Based+Framework&rft.jtitle=IEEE+open+journal+of+the+Computer+Society&rft.au=Wu%2C+Qiong&rft.au=He%2C+Kaiwen&rft.au=Chen%2C+Xu&rft.date=2020-01-01&rft.issn=2644-1268&rft.eissn=2644-1268&rft.volume=1&rft.spage=35&rft.epage=44&rft_id=info:doi/10.1109%2FOJCS.2020.2993259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJCS_2020_2993259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1268&client=summon |