Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework

Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices...

Full description

Saved in:
Bibliographic Details
Published inIEEE computer graphics and applications Vol. 1; pp. 35 - 44
Main Authors Wu, Qiong, He, Kaiwen, Chen, Xu
Format Journal Article Magazine Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2644-1268
1558-1756
2644-1268
1558-1756
DOI10.1109/OJCS.2020.2993259

Cover

Loading…
Abstract Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper, we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications.
AbstractList Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper, we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications.
Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications.Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently, federated learning is proposed to train a globally shared model by exploiting a massive amount of user-generated data samples on IoT devices while preventing data leakage. However, the device, statistical and model heterogeneities inherent in the complex IoT environments pose great challenges to traditional federated learning, making it unsuitable to be directly deployed. In this paper we advocate a personalized federated learning framework in a cloud-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, we investigate emerging personalized federated learning methods which are able to mitigate the negative effects caused by heterogeneities in different aspects. With the power of edge computing, the requirements for fast-processing capacity and low latency in intelligent IoT applications can also be achieved. We finally provide a case study of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications.
Author He, Kaiwen
Wu, Qiong
Chen, Xu
Author_xml – sequence: 1
  givenname: Qiong
  orcidid: 0000-0002-2156-4433
  surname: Wu
  fullname: Wu, Qiong
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Kaiwen
  orcidid: 0000-0003-3665-6178
  surname: He
  fullname: He, Kaiwen
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Xu
  orcidid: 0000-0001-9943-6020
  surname: Chen
  fullname: Chen, Xu
  email: chenxu35@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32396074$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v00AQxS1UREvpB0BIyBIXLg6zf2zvcgtRC0GRikS5shqvx9EGx5vu2kLw6dk0IUI9cNrR6vfejN57np0NfqAse8lgxhjod7efF19nHDjMuNaCl_pJdsErKQvGK3X2z3yeXcW4AQBeMsZE-Sw7F1zoCmp5kX3_QiH6AXv3m9r8hloKOKZpRRgGN6zzzod8OYzU925Nw5gv_V0-3-16Z3F0fojv83m-6P3UFtftmvIPGPc-Abf004cfL7KnHfaRro7vZfbt5vpu8alY3X5cLuarwpZajkXJOtkwrCSUHbUoQNVKdw0DYBqqUkGjsbK1tpZZW1tQ1Ki6a6kjZKWsrbjMlgff1uPG7ILbYvhlPDrz8OHD2mAYne3JgEBlpQCSspNYS2St5UqjLKG2nFHyenvw2gV_P1EczdZFmwLAgfwUDZfAVMpbqIS-eYRu_BRSmokqBU9xg6wT9fpITc2W2tN5f1tIADsANvgYA3UnhIHZl232ZZt92eZYdtLUjzTWjQ-VjAFd_1_lq4PSEdFpkwYNoqrEH-pptAM
CODEN IOJCB2
CitedBy_id crossref_primary_10_1109_JIOT_2020_3039359
crossref_primary_10_1016_j_cmpb_2022_107305
crossref_primary_10_1109_ACCESS_2024_3357514
crossref_primary_10_1016_j_neunet_2023_04_007
crossref_primary_10_1109_OJCOMS_2024_3496872
crossref_primary_10_1109_ACCESS_2023_3235389
crossref_primary_10_1109_TMLCN_2023_3302811
crossref_primary_10_1109_TII_2021_3091774
crossref_primary_10_1109_TNSE_2022_3144699
crossref_primary_10_1007_s10878_022_00939_x
crossref_primary_10_1109_LCOMM_2024_3427847
crossref_primary_10_3390_s21010167
crossref_primary_10_1109_MCE_2020_3048926
crossref_primary_10_1002_dac_5185
crossref_primary_10_1016_j_pmcj_2022_101714
crossref_primary_10_3390_app14062345
crossref_primary_10_1109_JIOT_2024_3376552
crossref_primary_10_1109_OJCOMS_2020_3037517
crossref_primary_10_1145_3639825
crossref_primary_10_3390_s23229016
crossref_primary_10_1109_ACCESS_2020_3007002
crossref_primary_10_1109_TITS_2023_3308370
crossref_primary_10_1080_00051144_2023_2194097
crossref_primary_10_1109_OJCS_2023_3332351
crossref_primary_10_3390_jsan14010009
crossref_primary_10_32604_cmc_2023_037129
crossref_primary_10_3390_math11071647
crossref_primary_10_1109_TMI_2023_3263072
crossref_primary_10_1007_s00521_024_10136_y
crossref_primary_10_1109_ACCESS_2022_3229124
crossref_primary_10_3390_app112311191
crossref_primary_10_3390_math12060901
crossref_primary_10_1016_j_future_2025_107724
crossref_primary_10_1016_j_oceaneng_2024_117668
crossref_primary_10_1109_TETCI_2023_3251404
crossref_primary_10_32604_iasc_2022_023763
crossref_primary_10_1109_TGCN_2022_3186898
crossref_primary_10_1109_COMST_2021_3075439
crossref_primary_10_3390_s23136006
crossref_primary_10_1109_OJCOMS_2024_3506214
crossref_primary_10_1016_j_comcom_2022_01_006
crossref_primary_10_1109_JIOT_2022_3203233
crossref_primary_10_1109_LSP_2024_3434467
crossref_primary_10_1088_1742_6596_2044_1_012198
crossref_primary_10_3390_electronics13214306
crossref_primary_10_1007_s11280_022_01119_x
crossref_primary_10_1109_ACCESS_2020_3013541
crossref_primary_10_1109_JIOT_2024_3353793
crossref_primary_10_1109_TNSM_2023_3263831
crossref_primary_10_1109_JIOT_2024_3399074
crossref_primary_10_1007_s40747_022_00894_4
crossref_primary_10_1109_TMC_2024_3416216
crossref_primary_10_1002_cpe_8042
crossref_primary_10_1109_JSEN_2022_3210773
crossref_primary_10_1371_journal_pone_0290337
crossref_primary_10_3390_fi16030095
crossref_primary_10_1109_COMST_2023_3244674
crossref_primary_10_1109_TPWRS_2024_3393017
crossref_primary_10_32604_cmc_2024_058926
crossref_primary_10_1109_ACCESS_2024_3422211
crossref_primary_10_1109_JIOT_2024_3369607
crossref_primary_10_1016_j_dcan_2024_08_002
crossref_primary_10_3390_app13095821
crossref_primary_10_1016_j_adhoc_2023_103257
crossref_primary_10_1109_JBHI_2022_3185673
crossref_primary_10_1016_j_comcom_2024_107964
crossref_primary_10_1109_JIOT_2023_3262582
crossref_primary_10_3390_fi14090246
crossref_primary_10_1080_08874417_2023_2298223
crossref_primary_10_1007_s10586_022_03659_3
crossref_primary_10_1109_JIOT_2023_3299736
crossref_primary_10_1109_JSAC_2022_3143259
crossref_primary_10_1109_JIOT_2024_3454064
crossref_primary_10_3390_s22072424
crossref_primary_10_1016_j_dcan_2022_10_015
crossref_primary_10_1109_TCSS_2022_3213507
crossref_primary_10_3390_electronics12010136
crossref_primary_10_1109_ACCESS_2021_3101871
crossref_primary_10_1109_JIOT_2022_3233024
crossref_primary_10_1049_2024_5873909
crossref_primary_10_1109_ACCESS_2022_3183237
crossref_primary_10_1016_j_ins_2024_120201
crossref_primary_10_32604_jai_2024_049912
crossref_primary_10_1109_TDSC_2022_3168556
crossref_primary_10_32604_cmc_2024_054484
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1145_3624478
crossref_primary_10_1109_ACCESS_2020_3037357
crossref_primary_10_1109_TDSC_2024_3472869
crossref_primary_10_1016_j_sysarc_2022_102418
crossref_primary_10_1109_ACCESS_2021_3118642
crossref_primary_10_1117_1_JEI_31_3_033030
crossref_primary_10_3390_a17020052
crossref_primary_10_1016_j_comcom_2023_04_023
crossref_primary_10_1016_j_knosys_2021_107338
crossref_primary_10_1109_ACCESS_2020_3037474
crossref_primary_10_3390_s23010321
crossref_primary_10_1109_ACCESS_2023_3312579
crossref_primary_10_1016_j_ipm_2022_103061
crossref_primary_10_3390_electronics11040670
crossref_primary_10_1016_j_comnet_2023_109712
crossref_primary_10_1109_TKDE_2024_3390238
crossref_primary_10_1109_ACCESS_2021_3056919
crossref_primary_10_1016_j_pmcj_2023_101804
crossref_primary_10_1109_TNSRE_2022_3161272
crossref_primary_10_1016_j_knosys_2022_110072
crossref_primary_10_1145_3625558
crossref_primary_10_1109_TETCI_2022_3146871
crossref_primary_10_1002_widm_1443
crossref_primary_10_1109_JIOT_2020_3026589
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_1109_TMC_2021_3136611
crossref_primary_10_1109_TMC_2022_3223944
crossref_primary_10_1109_TVT_2023_3332898
crossref_primary_10_1007_s00607_024_01405_8
crossref_primary_10_3390_math12203194
crossref_primary_10_1109_TII_2021_3128164
crossref_primary_10_2478_bipie_2022_0019
crossref_primary_10_1109_TWC_2023_3260141
crossref_primary_10_1007_s00521_024_09703_0
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_1016_j_hcc_2024_100242
crossref_primary_10_1016_j_eswa_2024_125336
crossref_primary_10_1109_OJCOMS_2024_3513832
crossref_primary_10_1002_cpe_6357
crossref_primary_10_1109_LWC_2020_3016822
crossref_primary_10_3390_math12162587
crossref_primary_10_1109_MNET_001_2200212
crossref_primary_10_1109_ACCESS_2023_3337426
crossref_primary_10_1145_3697836
crossref_primary_10_3390_jsan9040059
crossref_primary_10_1016_j_dcan_2023_05_006
crossref_primary_10_1109_TAI_2024_3443787
crossref_primary_10_1109_TNNLS_2023_3282242
crossref_primary_10_1109_TITS_2023_3263271
crossref_primary_10_1007_s10586_024_04788_7
crossref_primary_10_1109_TIFS_2023_3249568
crossref_primary_10_3233_JHS_222042
crossref_primary_10_1109_TKDE_2023_3312511
crossref_primary_10_1007_s40747_023_01110_7
crossref_primary_10_1007_s10489_023_04753_8
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_1109_ACCESS_2023_3342861
crossref_primary_10_1016_j_engappai_2024_109464
crossref_primary_10_1109_TC_2024_3355777
crossref_primary_10_1145_3640341
crossref_primary_10_1007_s00779_022_01688_8
crossref_primary_10_1109_ACCESS_2023_3335245
crossref_primary_10_1109_TNNLS_2022_3160699
crossref_primary_10_1109_TMC_2023_3290925
crossref_primary_10_1016_j_iswa_2023_200303
crossref_primary_10_3390_en14123654
crossref_primary_10_1016_j_compeleceng_2025_110259
crossref_primary_10_3390_app13074251
crossref_primary_10_1109_TPDS_2024_3360438
crossref_primary_10_1109_JIOT_2023_3312348
crossref_primary_10_1109_OJCOMS_2023_3265425
crossref_primary_10_1007_s42979_024_03235_z
crossref_primary_10_1109_JIOT_2021_3053055
crossref_primary_10_1109_JIOT_2022_3194726
crossref_primary_10_1007_s10586_021_03399_w
crossref_primary_10_1016_j_jnca_2024_103840
crossref_primary_10_1007_s10723_025_09796_4
crossref_primary_10_1109_JIOT_2022_3233599
crossref_primary_10_1109_TII_2022_3195896
crossref_primary_10_1016_j_dt_2022_12_007
crossref_primary_10_1109_TII_2023_3252599
crossref_primary_10_1109_TVT_2022_3205778
crossref_primary_10_1016_j_knosys_2022_109553
crossref_primary_10_1109_TPAMI_2025_3527137
crossref_primary_10_1016_j_future_2022_08_004
crossref_primary_10_1109_ACCESS_2021_3111118
crossref_primary_10_1109_TMC_2024_3403754
crossref_primary_10_1038_s41598_025_89612_x
crossref_primary_10_1109_TII_2021_3064351
crossref_primary_10_1109_JIOT_2020_3007662
crossref_primary_10_1145_3609503
crossref_primary_10_1109_JIOT_2023_3262664
crossref_primary_10_1016_j_knosys_2023_110396
crossref_primary_10_1109_TCC_2021_3078795
crossref_primary_10_1109_ACCESS_2023_3261266
Cites_doi 10.1109/JIOT.2017.2683200
10.1145/2968219.2971429
10.1109/MIS.2020.2988604
10.1155/2016/2308183
10.1145/3381006
10.1109/JPROC.2019.2918951
10.1109/TKDE.2009.191
10.1145/3298981
10.1109/TWC.2019.2946140
10.5220/0005792401430151
10.1109/MSP.2020.2975749
10.1109/JSEN.2014.2357035
10.1016/j.comnet.2010.05.010
10.1109/PIMRC.2019.8904164
ContentType Journal Article
Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOA
DOI 10.1109/OJCS.2020.2993259
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 2644-1268
1558-1756
EndPage 44
ExternalDocumentID oai_doaj_org_article_03a8c430e44f4a74a1dc289a4507c21e
32396074
10_1109_OJCS_2020_2993259
9090366
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Program for Guangdong Introducing Innovative and Enterpreneurial
  grantid: 2017ZT07X355
– fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 61972432
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2017YFB1001703
  funderid: 10.13039/501100012166
– fundername: Pearl River Talent Recruitment Program
  grantid: 2017GC010465
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IEDLZ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
---
-DZ
-~X
29I
4.4
5GY
6IK
85S
AASAJ
AAWTH
ABQJQ
ACGFO
ACIWK
ACNCT
AENEX
AFOGA
AKJIK
ASUFR
ATWAV
AZLTO
CS3
D0L
DU5
EJD
F5P
HZ~
IFIPE
IPLJI
LAI
M43
NPM
O9-
P2P
RIC
RNS
TN5
YZZ
Z5M
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
AARMG
AGQYO
AHBIQ
AKQYR
ID FETCH-LOGICAL-c594t-51f4b1a6405feda308789fb1001906580b9a6c79cc1cc7c08eb87fdefea1547c3
IEDL.DBID RIE
ISSN 2644-1268
1558-1756
IngestDate Wed Aug 27 01:27:47 EDT 2025
Fri Jul 11 14:27:57 EDT 2025
Sun Jun 29 16:34:37 EDT 2025
Wed Feb 19 02:09:40 EST 2025
Thu Apr 24 23:08:16 EDT 2025
Tue Jul 01 04:06:49 EDT 2025
Wed Aug 27 02:41:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-51f4b1a6405feda308789fb1001906580b9a6c79cc1cc7c08eb87fdefea1547c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3665-6178
0000-0001-9943-6020
0000-0002-2156-4433
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9090366
PMID 32396074
PQID 2532111047
PQPubID 5075782
PageCount 10
ParticipantIDs proquest_miscellaneous_2401825938
crossref_primary_10_1109_OJCS_2020_2993259
proquest_journals_2532111047
crossref_citationtrail_10_1109_OJCS_2020_2993259
pubmed_primary_32396074
doaj_primary_oai_doaj_org_article_03a8c430e44f4a74a1dc289a4507c21e
ieee_primary_9090366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE computer graphics and applications
PublicationTitleAbbrev OJCS
PublicationTitleAlternate IEEE Comput Graph Appl
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref14
li (ref23) 2019
ref2
ref1
ref17
mcmahan (ref9) 2017
ref16
ref18
zhao (ref12) 2018
arivazhagan (ref19) 2019
jiang (ref21) 2019
vanhaesebrouck (ref5) 2017
xu (ref11) 2019
ref26
ref25
kairouz (ref10) 2019
jeong (ref24) 2018
ref28
bellet (ref6) 2018
ref27
finn (ref20) 0; 70
corinzia (ref22) 2019
ref29
voigt (ref3) 2017
ref7
luo (ref15) 2020
ref4
smith (ref8) 0
References_xml – year: 2019
  ident: ref10
  article-title: Advances and open problems in federated learning
  publication-title: CoRR
– ident: ref7
  doi: 10.1109/JIOT.2017.2683200
– year: 2019
  ident: ref21
  article-title: Improving federated learning personalization via model agnostic meta learning
  publication-title: CoRR
– year: 2018
  ident: ref12
  article-title: Federated learning with non-iid data
  publication-title: CoRR
– ident: ref27
  doi: 10.1145/2968219.2971429
– year: 2019
  ident: ref11
  article-title: Federated learning for healthcare informatics
  publication-title: CoRR
– year: 2019
  ident: ref23
  article-title: Fedmd: Heterogenous federated learning via model distillation
  publication-title: CoRR
– ident: ref17
  doi: 10.1109/MIS.2020.2988604
– year: 2019
  ident: ref22
  article-title: Variational federated multi-task learning
  publication-title: CoRR
– ident: ref28
  doi: 10.1155/2016/2308183
– start-page: 1273
  year: 2017
  ident: ref9
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref18
  doi: 10.1145/3381006
– start-page: 509
  year: 2017
  ident: ref5
  article-title: Decentralized collaborative learning of personalized models over networks
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref2
  doi: 10.1109/JPROC.2019.2918951
– ident: ref16
  doi: 10.1109/TKDE.2009.191
– ident: ref4
  doi: 10.1145/3298981
– ident: ref14
  doi: 10.1109/TWC.2019.2946140
– ident: ref26
  doi: 10.5220/0005792401430151
– ident: ref13
  doi: 10.1109/MSP.2020.2975749
– year: 2020
  ident: ref15
  article-title: Hfel: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning
  publication-title: CoRR
– ident: ref29
  doi: 10.1109/JSEN.2014.2357035
– volume: 70
  start-page: 1126
  year: 0
  ident: ref20
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref1
  doi: 10.1016/j.comnet.2010.05.010
– year: 2018
  ident: ref24
  article-title: Communication-efficient on-device machine learning:Federated distillation and augmentation under non-iid private data
  publication-title: CoRR
– ident: ref25
  doi: 10.1109/PIMRC.2019.8904164
– year: 2017
  ident: ref3
  article-title: The eu general data protection regulation (gdpr)
  publication-title: A Practical Guide
– start-page: 4424
  year: 0
  ident: ref8
  article-title: Federated multi-task learning
  publication-title: Proc Advances Neural Inform Process Syst
– year: 2019
  ident: ref19
  article-title: Federated learning with personalization layers
  publication-title: CoRR
– start-page: 473
  year: 2018
  ident: ref6
  article-title: Personalized and private peer-to-peer machine learning
  publication-title: Proc Int Conf Artif Intell Statist
SSID ssj0002511135
ssj0005510
Score 2.5809767
Snippet Internet of Things (IoT) have widely penetrated in different aspects of modern life and many intelligent IoT services and applications are emerging. Recently,...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Adaptation models
Cloud computing
Computational modeling
Customization
Data models
Edge computing
Electronic devices
Federated learning
Heterogeneity
Human activity recognition
Internet of Things
Learning systems
Moving object recognition
Network latency
Performance evaluation
personalization
Servers
Statistical methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1VnLjQwkKb8iEjcaqUksROHHNbVqwWJNpKBYlTLccfXNAuKrsXfj0ziRPtBbhwTWzLmhl73rOtNwAnyBi8stKnXJUmFcLxtCmETKUzykjpStHKNV3_qma34uquvFsr9UVvwjp54M5wpxk3tcUOXoggjBQmdxZJghEIZGyRe9p9MeetkSnagwk457yM15h5pk5_X03-Ih0ssp-4AfOCtEnXElGr1x8LrLyONducM_0CWxEssnE3yW345Oc78LkvxMDiuhzBvz89pH72jk1JHwIhpGNRPPWeITJll4P45pJdLm7YeO3q-oyN2eRhsXLphbv37BxTG47Tv9vahdvpxc1klsbCCaktlVimZR5Ek5sKwVjwzpDoX61CQ3JLiiBH1ihTWamsza2VNqt9U8vgfPAGEZW0fA825ou5_wYMGyJiCA1XIheFCzXyM18WRoSmQtf4BLLeitpGVXEqbvGgW3aRKU2G12R4HQ2fwI-hy2MnqfFW43NyzdCQ1LDbDxgjOsaIfi9GEhiRY4dBFB1OVVUCB72jdVy5T7ooOXJiErBI4Hj4jWuOLlLM3C9W2AZJKTJrxesEvnYBMozNC46kUIrvHzHxfdgkY3RHPgewsfy_8ocIgpbNURvvLwKd_pA
  priority: 102
  providerName: Directory of Open Access Journals
Title Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework
URI https://ieeexplore.ieee.org/document/9090366
https://www.ncbi.nlm.nih.gov/pubmed/32396074
https://www.proquest.com/docview/2532111047
https://www.proquest.com/docview/2401825938
https://doaj.org/article/03a8c430e44f4a74a1dc289a4507c21e
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PXGhQPkItJWROCGyTWInjrltV7tqKy0g0Uo9ETn2pIdWGwTJpQd-O2PHiaqKVlyiKJk4jsYTvze2nwE-EGNAZSTGXOU6FsLyuM6EjKXVSktpc-HlmtZfipMLcXaZX27Bp2ktDCL6yWc4c6d-LN-2pnepsiPlkgpFsQ3bRNyGtVpTPsVB5ZTnYeAyTdTR17PFdyKAWTKjXy7PnBrpna7HK_SHLVUeRpe-l1ntwnqs3zC55HrWd_XM3N6TbvzfD3gGTwPcZPOhfTyHLdy8gN1xKwcWInsPfnwbQfktWrZyChMEQi0L8qtXjLAtO53kOzt22p6z-Z3B789szhY3bW_jpb1CdkydI5Uzzvx6CRer5fniJA5bL8QmV6KL87QRdaoLgnMNWu1kA0vV1E6wSTnQktRKF0YqY1JjpElKrEvZWGxQEyaThr-CnU27wTfAyJAwR1NzJVKR2aYkhod5pkVTFwnXGEEyeqUyQZfcbY9xU3l-kqjKObJyjqyCIyP4OD3ycxDleMz42Ll6MnR62v4CeaYK4VlRRUpDzRKFaISWQqfWEBXVguCyyVKq5J7z5lRIcGQE-2PDqULs_66ynBOrdhIYEbyfblPUuqEYvcG2JxuitcTNFS8jeD00uKlsnnGilVK8_fc738ET93lDGmgfdrpfPR4QMOrqQ59QoOP6z_LQR8dftkUKsQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALBQolUMBInBDZJrETx9y2q652S7cgsZV6wnLsSQ9UuwiSS38948SJKgSIW5RMHFszE7_nj2eAt8QYUFmJMVe5iYVwPK4yIWPpjDJSulx0ck2r82JxIU4v88sdeD_uhUHEbvEZTvxlN5fvtrb1Q2VHyg8qFMUduEv9vlD9bq1xRMWD5ZTnYeoyTdTRp9PZF6KAWTKhny7PvB7prc6n0-gPh6r8HV92_cx8D1ZDDfvlJd8mbVNN7M1v4o3_24SH8CAATjbtI-QR7ODmMewNhzmwkNv78PXzAMtv0LG515ggGOpYEGC9YoRu2XIU8GzYcrtm01vT3x_YlM2ut62LT9wVsmPqHqmcYe3XE7iYn6xnizgcvhDbXIkmztNaVKkpCNDV6IwXDixVXXnJJuVhS1IpU1iprE2tlTYpsSpl7bBGQ6hMWv4UdjfbDT4DRoaEOuqKK5GKzNUlcTzMMyPqqki4wQiSwSvaBmVyf0DGte4YSqK0d6T2jtTBkRG8G1_53sty_Mv42Lt6NPSK2t0N8owOCaqpIqWlwEQhamGkMKmzREaNIMBss5Qque-9ORYSHBnB4RA4OmT_T53lnHi1F8GI4M34mPLWT8aYDW5bsiFiS-xc8TKCgz7gxrJ5xolYSvH8z998DfcW69WZPluef3wB931T-0GhQ9htfrT4kmBSU73qsuMXRUAL2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Federated+Learning+for+Intelligent+IoT+Applications%3A+A+Cloud-Edge+Based+Framework&rft.jtitle=IEEE+open+journal+of+the+Computer+Society&rft.au=Wu%2C+Qiong&rft.au=He%2C+Kaiwen&rft.au=Chen%2C+Xu&rft.date=2020-01-01&rft.issn=2644-1268&rft.eissn=2644-1268&rft.volume=1&rft.spage=35&rft.epage=44&rft_id=info:doi/10.1109%2FOJCS.2020.2993259&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJCS_2020_2993259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1268&client=summon