Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells
We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to partic...
Saved in:
Published in | Journal of the American College of Cardiology Vol. 43; no. 12; pp. 2314 - 2318 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
16.06.2004
Elsevier Science Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0735-1097 1558-3597 |
DOI | 10.1016/j.jacc.2004.02.049 |
Cover
Loading…
Abstract | We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects.
Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs.
Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined.
Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 ± 27 cells/ml to 236 ± 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 ± 2,048 cells/ml of peripheral blood to 20,759 ± 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors.
Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism. |
---|---|
AbstractList | We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects.
Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs.
Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined.
Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 +/- 27 cells/ml to 236 +/- 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 +/- 2,048 cells/ml of peripheral blood to 20,759 +/- 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors.
Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism. Objectives We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Background Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Methods Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Results Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 ± 27 cells/ml to 236 ± 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 ± 2,048 cells/ml of peripheral blood to 20,759 ± 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Conclusions Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism. We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 ± 27 cells/ml to 236 ± 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 ± 2,048 cells/ml of peripheral blood to 20,759 ± 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism. Objectives We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Background Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Methods Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Results Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 plus or minus 27 cells/ml to 236 plus or minus 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 plus or minus 2,048 cells/ml of peripheral blood to 20,759 plus or minus 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Conclusions Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism. We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects.OBJECTIVESWe investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects.Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs.BACKGROUNDEndothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs.Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined.METHODSVolunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined.Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 +/- 27 cells/ml to 236 +/- 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 +/- 2,048 cells/ml of peripheral blood to 20,759 +/- 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors.RESULTSCirculating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 +/- 27 cells/ml to 236 +/- 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 +/- 2,048 cells/ml of peripheral blood to 20,759 +/- 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors.Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.CONCLUSIONSOur study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism. |
Author | Karlsson, Gudjon March, Keith L. Panchal, Vipul R. Parvathaneni, Lakshmi Rehman, Jalees Mahenthiran, Jo Temm, Constance J. Li, Jingling |
Author_xml | – sequence: 1 givenname: Jalees surname: Rehman fullname: Rehman, Jalees email: kmarch@iupui.edu, jrehman@iupui.edu organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA – sequence: 2 givenname: Jingling surname: Li fullname: Li, Jingling organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA – sequence: 3 givenname: Lakshmi surname: Parvathaneni fullname: Parvathaneni, Lakshmi organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA – sequence: 4 givenname: Gudjon surname: Karlsson fullname: Karlsson, Gudjon organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA – sequence: 5 givenname: Vipul R. surname: Panchal fullname: Panchal, Vipul R. organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA – sequence: 6 givenname: Constance J. surname: Temm fullname: Temm, Constance J. organization: Indiana Center for Vascular Biology and Medicine, Indianapolis, Indiana USA – sequence: 7 givenname: Jo surname: Mahenthiran fullname: Mahenthiran, Jo organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA – sequence: 8 givenname: Keith L. surname: March fullname: March, Keith L. organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15898131$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15193699$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9vFCEYh4mpsdvqF_BgJjF6mykMAwzGi2nqn6SJFz0ThnnZsrKwwkzjfnsZdzVmD-2Jy_O8wPv7XaCzEAMg9JLghmDCrzbNRhvTtBh3DW4b3MknaEUY62vKpDhDKywoqwmW4hxd5LzBGPOeyGfonDAiKZdyheabX5CMy1BpM0_g95ULJoHOkCvjkpm9nlxYVxDGON2Bd9pXuxTXENwUU2XA-1zpMFbbGKLZT1BfbbVJcXen11CPkNw9jAVYuz-OORjP0VOrfYYXx_MSff948-36c3379dOX6w-3tWGym-qOC6KZFX0HAg9E0I5zbSXTUnS2HUdrB23xQJm1nAKmLR-FpAPHbfFb29NL9PYwtzz55wx5UluXlxfoAHHOSrSYdLjlj4JE9EL0cpn4-gTcxDmF8glFGOakk4zQQr06UvOwhVHtktvqtFd_916AN0dAZ6O9TTqUEP7jyl2EksL1B66sNOcEVhk3lURimJJ2XhGsliqojVqqoJYqKNyqUoWitifqv-kPSe8PEpRU7h0klY2DYGB0Ccykxuge1t-d6Ma7krr2P2D_mPwbKXng4g |
CODEN | JACCDI |
CitedBy_id | crossref_primary_10_1007_s00421_022_05128_6 crossref_primary_10_1152_ajpregu_00338_2005 crossref_primary_10_1016_j_jacc_2009_09_031 crossref_primary_10_1097_01_HCR_0000265031_10145_50 crossref_primary_10_1371_journal_pone_0096024 crossref_primary_10_3390_jcm8020210 crossref_primary_10_1038_sj_mp_4002138 crossref_primary_10_1042_CS20050212 crossref_primary_10_1016_j_ijcard_2010_07_007 crossref_primary_10_4061_2011_972807 crossref_primary_10_1155_2018_9847015 crossref_primary_10_1161_ATVBAHA_109_191668 crossref_primary_10_3109_14653249_2010_491611 crossref_primary_10_1152_japplphysiol_00287_2015 crossref_primary_10_1164_rccm_201001_0126OC crossref_primary_10_2353_ajpath_2008_070705 crossref_primary_10_1093_bja_aeu135 crossref_primary_10_1016_j_amjmed_2011_01_015 crossref_primary_10_1016_j_pharmthera_2010_10_002 crossref_primary_10_2310_6670_2006_00057 crossref_primary_10_1038_sj_jhh_1002171 crossref_primary_10_1097_HJR_0b013e32833ba654 crossref_primary_10_1016_j_ghir_2013_07_004 crossref_primary_10_1007_s00421_009_1144_0 crossref_primary_10_1152_ajpheart_01393_2007 crossref_primary_10_1177_1358863X07083177 crossref_primary_10_1007_s12012_025_09967_5 crossref_primary_10_1111_j_1743_6109_2010_01783_x crossref_primary_10_3390_nu11071571 crossref_primary_10_7717_peerj_6675 crossref_primary_10_1016_j_atherosclerosis_2006_05_033 crossref_primary_10_1186_s13287_019_1274_1 crossref_primary_10_1161_CIRCRESAHA_112_267286 crossref_primary_10_1371_journal_pone_0091355 crossref_primary_10_1152_japplphysiol_00562_2005 crossref_primary_10_1016_j_hlc_2016_06_1210 crossref_primary_10_1089_ars_2008_2118 crossref_primary_10_1002_bies_20372 crossref_primary_10_7600_jpfsm_2_237 crossref_primary_10_1016_j_bcmd_2009_01_003 crossref_primary_10_1016_j_preteyeres_2016_10_002 crossref_primary_10_1097_HJR_0b013e32832d3c76 crossref_primary_10_1152_ajpheart_00888_2005 crossref_primary_10_1152_japplphysiol_00338_2011 crossref_primary_10_1177_2041731417698852 crossref_primary_10_1097_FJC_0b013e3182471d14 crossref_primary_10_3389_fendo_2022_894093 crossref_primary_10_1161_ATVBAHA_120_312862 crossref_primary_10_1249_FIT_0b013e3181844fee crossref_primary_10_1007_s12015_011_9234_x crossref_primary_10_1177_0271678X17714655 crossref_primary_10_1152_japplphysiol_01344_2009 crossref_primary_10_1111_j_1463_1326_2007_00754_x crossref_primary_10_31083_j_rcm2312396 crossref_primary_10_1007_s00421_011_1843_1 crossref_primary_10_1093_gerona_glt067 crossref_primary_10_1113_JP274750 crossref_primary_10_1016_j_cjca_2022_02_017 crossref_primary_10_1016_j_ijcard_2008_10_042 crossref_primary_10_1016_j_mvr_2009_12_009 crossref_primary_10_1038_s41598_017_18156_6 crossref_primary_10_1161_ATVBAHA_108_174573 crossref_primary_10_1002_cyto_a_20669 crossref_primary_10_1016_j_heliyon_2022_e10705 crossref_primary_10_1155_2017_3750829 crossref_primary_10_1177_0885066609332701 crossref_primary_10_1089_ars_2008_2092 crossref_primary_10_2337_db15_0517 crossref_primary_10_1016_j_ijcard_2012_04_106 crossref_primary_10_1161_CIRCULATIONAHA_120_046872 crossref_primary_10_1155_2016_3583956 crossref_primary_10_1183_09031936_06_00120604 crossref_primary_10_1002_jcp_25097 crossref_primary_10_1002_mabi_201600196 crossref_primary_10_7759_cureus_30322 crossref_primary_10_1007_s40140_013_0024_7 crossref_primary_10_3389_fphys_2021_772894 crossref_primary_10_1007_s00421_016_3407_x crossref_primary_10_1097_JCP_0b013e3181eeb7f7 crossref_primary_10_1080_10623320500476617 crossref_primary_10_1093_eurheartj_ehp078 crossref_primary_10_1016_j_amjcard_2008_05_020 crossref_primary_10_1056_NEJMoa043814 crossref_primary_10_1016_S0001_4079_19_32548_8 crossref_primary_10_1253_circj_CJ_13_0976 crossref_primary_10_1111_j_1447_0756_2007_00555_x crossref_primary_10_1155_2012_210852 crossref_primary_10_1248_yakushi_127_841 crossref_primary_10_2174_1874192401004010089 crossref_primary_10_1097_01_hjr_0000174823_87269_2e crossref_primary_10_1016_j_arr_2008_11_002 crossref_primary_10_1253_jjcsc_17_2_231 crossref_primary_10_1016_j_amjcard_2023_06_008 crossref_primary_10_1016_j_jacc_2005_08_013 crossref_primary_10_1177_1358863x06072213 crossref_primary_10_1590_S1677_54492005000400011 crossref_primary_10_1161_CIRCRESAHA_111_243386 crossref_primary_10_14814_phy2_12566 crossref_primary_10_1016_j_jacc_2007_04_074 crossref_primary_10_1093_cvr_cvm109 crossref_primary_10_1111_j_1474_9726_2006_00242_x crossref_primary_10_4049_jimmunol_1001782 crossref_primary_10_1249_MSS_0000000000001029 crossref_primary_10_1016_j_freeradbiomed_2007_01_025 crossref_primary_10_1093_milmed_usz247 crossref_primary_10_1111_j_1748_1716_2007_01723_x crossref_primary_10_1152_japplphysiol_00956_2016 crossref_primary_10_1016_j_atherosclerosis_2006_06_021 crossref_primary_10_4093_dmj_2019_0175 crossref_primary_10_1159_000113216 crossref_primary_10_1007_s00392_012_0517_2 crossref_primary_10_1016_j_jshs_2013_12_005 crossref_primary_10_1152_japplphysiol_01254_2013 crossref_primary_10_1007_s10741_012_9324_0 crossref_primary_10_1586_14779072_6_5_687 crossref_primary_10_1196_annals_1383_008 crossref_primary_10_1016_j_arthro_2018_06_043 crossref_primary_10_1152_ajpheart_00347_2009 crossref_primary_10_1016_j_thromres_2015_11_012 crossref_primary_10_1249_MSS_0b013e3182a142da crossref_primary_10_1097_01_hjr_0000221862_34662_31 crossref_primary_10_14814_phy2_70255 crossref_primary_10_1093_eurheartj_ehq058 crossref_primary_10_1097_00003677_200504000_00002 crossref_primary_10_1111_j_1365_2141_2006_06344_x crossref_primary_10_1186_s12933_015_0235_y crossref_primary_10_1016_j_transci_2013_06_007 crossref_primary_10_1161_JAHA_117_007504 crossref_primary_10_1016_j_tcm_2005_02_002 crossref_primary_10_1136_bjsm_2007_043208 crossref_primary_10_1016_j_jvs_2007_02_068 crossref_primary_10_1586_erm_09_80 crossref_primary_10_1159_000489745 crossref_primary_10_1586_erc_10_7 crossref_primary_10_1007_s00580_023_03498_7 crossref_primary_10_1152_japplphysiol_00884_2009 crossref_primary_10_1016_j_pathophys_2008_02_002 crossref_primary_10_1097_JES_0b013e31820a595e crossref_primary_10_1007_s00125_009_1401_0 crossref_primary_10_1089_scd_2005_14_292 crossref_primary_10_1093_gerona_glv180 crossref_primary_10_1016_j_trsl_2010_06_008 crossref_primary_10_1016_j_rmed_2007_12_030 crossref_primary_10_1016_j_transproceed_2010_04_047 crossref_primary_10_1152_physiol_00019_2013 crossref_primary_10_1161_CIRCULATIONAHA_104_503433 crossref_primary_10_2165_00007256_200838120_00005 crossref_primary_10_1097_SAP_0b013e31823b69fc crossref_primary_10_1111_j_2040_1124_2012_00230_x crossref_primary_10_1016_j_fertnstert_2008_10_062 crossref_primary_10_1111_sms_12320 crossref_primary_10_1113_EP085771 crossref_primary_10_1177_1559827609338145 crossref_primary_10_1371_journal_pone_0017263 crossref_primary_10_1002_advs_202103697 crossref_primary_10_1097_PRS_0000000000000917 crossref_primary_10_1152_ajpheart_01104_2009 crossref_primary_10_12968_hmed_2005_66_4_18438 crossref_primary_10_1016_j_scr_2014_02_005 crossref_primary_10_3389_fcvm_2018_00127 crossref_primary_10_1016_j_genm_2009_09_005 crossref_primary_10_1016_j_tcb_2019_01_006 crossref_primary_10_1517_14712598_6_5_427 crossref_primary_10_1080_13645700801969816 crossref_primary_10_1089_ars_2008_2121 crossref_primary_10_1093_ndt_gfn103 crossref_primary_10_1002_ajh_20904 crossref_primary_10_1016_j_cardfail_2009_05_011 crossref_primary_10_1016_j_jvs_2006_08_026 crossref_primary_10_1177_1358863X15600255 crossref_primary_10_1097_HCR_0b013e3181ebf2db crossref_primary_10_1136_bjsm_2007_035188 crossref_primary_10_1002_bab_10 crossref_primary_10_1186_s13287_020_02071_1 crossref_primary_10_1002_hipo_20545 crossref_primary_10_2337_db09_0185 crossref_primary_10_1002_ajh_21424 crossref_primary_10_1016_j_atherosclerosis_2011_03_018 crossref_primary_10_1016_j_arcmed_2005_09_017 crossref_primary_10_1016_j_atherosclerosis_2005_01_006 crossref_primary_10_3390_life11080783 crossref_primary_10_1089_ars_2010_3734 crossref_primary_10_1161_CIRCRESAHA_121_318266 crossref_primary_10_1203_pdr_0b013e3180332d36 crossref_primary_10_1080_09593985_2018_1474511 crossref_primary_10_1016_j_exphem_2007_10_003 crossref_primary_10_3390_hearts6010002 crossref_primary_10_1016_j_jacc_2006_09_050 crossref_primary_10_1111_j_1463_1326_2010_01210_x crossref_primary_10_1159_000347061 crossref_primary_10_1016_j_ddstr_2007_10_007 crossref_primary_10_1016_j_jacc_2005_02_030 crossref_primary_10_1097_01_HCR_0000265032_04307_34 crossref_primary_10_1152_ajpheart_00921_2009 crossref_primary_10_3390_cimb45030125 crossref_primary_10_1253_circj_CJ_08_0952 crossref_primary_10_1016_j_ijcard_2012_10_047 crossref_primary_10_1371_journal_pone_0089927 crossref_primary_10_1007_s00296_019_04483_6 crossref_primary_10_1016_j_advms_2014_10_004 crossref_primary_10_1253_circj_72_897 crossref_primary_10_1159_000470829 crossref_primary_10_2217_bmm_11_92 crossref_primary_10_1253_circj_CJ_09_0917 crossref_primary_10_1016_j_mehy_2012_11_019 crossref_primary_10_1536_ihj_18_592 crossref_primary_10_1152_japplphysiol_01210_2007 crossref_primary_10_1007_s11596_016_1553_3 crossref_primary_10_1038_sj_leu_2404676 crossref_primary_10_1186_1479_5876_8_34 crossref_primary_10_1177_147323000903700229 |
Cites_doi | 10.1161/hc2401.092816 10.1161/01.CIR.0000082924.75945.48 10.1161/01.CIR.0000058702.69484.A0 10.1073/pnas.97.7.3422 10.1161/01.RES.88.2.167 10.1016/S0735-1097(96)00393-2 10.1161/01.CIR.0000074241.91121.70 10.1249/00005768-199410000-00011 10.1161/hh1301.093953 10.1172/JCI8774 10.1007/978-1-4757-3401-0_4 10.1056/NEJM200002173420702 10.1172/JCI114460 10.1126/science.275.5302.964 10.1182/blood.V95.3.952.003k27_952_958 10.1182/blood.V95.10.3106 |
ContentType | Journal Article |
Copyright | 2004 American College of Cardiology Foundation 2004 INIST-CNRS Copyright Elsevier Limited Jun 16, 2004 |
Copyright_xml | – notice: 2004 American College of Cardiology Foundation – notice: 2004 INIST-CNRS – notice: Copyright Elsevier Limited Jun 16, 2004 |
DBID | 6I. AAFTH AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ 7TS 7X8 |
DOI | 10.1016/j.jacc.2004.02.049 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Physical Education Index MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts Physical Education Index MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-3597 |
EndPage | 2318 |
ExternalDocumentID | 3242499171 15193699 15898131 10_1016_j_jacc_2004_02_049 S073510970400676X |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 18M 1B1 1~. 1~5 29L 2WC 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABLJU ABMAC ABOCM ABWVN ABXDB ACGFO ACGFS ACIUM ACJTP ACPRK ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEFWE AEKER AENEX AEUPX AEXQZ AFFNX AFPUW AFRAH AFTJW AGCQF AGHFR AGYEJ AHMBA AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BLXMC CS3 DIK DU5 E3Z EBS EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU G-Q GX1 H13 HVGLF HZ~ IHE IXB J1W J5H K-O KQ8 L7B MO0 N4W N9A O-L O9- OAUVE OK1 OZT P-9 P2P PC. PQQKQ PROAC Q38 QTD ROL RPZ SCC SDF SDG SDP SES SSZ TR2 UNMZH UV1 W8F WH7 WOQ WOW X7M YYM YYP YZZ ZGI 3V. 6I. 7RV AACTN AAFTH AAIAV AAKUH AAYOK ABJNI ABVKL AHPSJ AJOXV AMFUW BENPR BPHCQ EFLBG LCYCR NAHTW NCXOZ T5K ZA5 .1- .FO 1CY 1P~ AABVL AALRI AAQQT AAQXK AAYWO AAYXX ABMZM AEVXI AFCTW AFETI AFRHN AGQPQ ASPBG AVWKF AZFZN CITATION FGOYB GBLVA HX~ OA. OL~ P-8 R2- RIG SEW XPP Z5R ZXP IQODW 0SF CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ 7TS 7X8 |
ID | FETCH-LOGICAL-c594t-4671a5f784e70b173466af95a974f2ddffbaf0b35ff63e0326d793b602c592f83 |
IEDL.DBID | IXB |
ISSN | 0735-1097 |
IngestDate | Fri Jul 11 16:08:07 EDT 2025 Tue Aug 05 11:32:27 EDT 2025 Sat Jul 26 03:04:58 EDT 2025 Wed Feb 19 01:41:44 EST 2025 Mon Jul 21 09:17:28 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Tue Jul 01 03:46:13 EDT 2025 Fri Feb 23 02:31:51 EST 2024 Tue Aug 26 17:00:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | MNC CAC GM-CSF LDL HGF VEGF EPC G-CSF Physical exercise Endothelial cell Monocyte Exercise tolerance test Increase Circulatory system Cardiology Phlebology Progenitor cell Macrophage |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-4671a5f784e70b173466af95a974f2ddffbaf0b35ff63e0326d793b602c592f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S073510970400676X |
PMID | 15193699 |
PQID | 1506149513 |
PQPubID | 2031078 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_72014026 proquest_miscellaneous_17877898 proquest_journals_1506149513 pubmed_primary_15193699 pascalfrancis_primary_15898131 crossref_citationtrail_10_1016_j_jacc_2004_02_049 crossref_primary_10_1016_j_jacc_2004_02_049 elsevier_sciencedirect_doi_10_1016_j_jacc_2004_02_049 elsevier_clinicalkey_doi_10_1016_j_jacc_2004_02_049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-06-16 |
PublicationDateYYYYMMDD | 2004-06-16 |
PublicationDate_xml | – month: 06 year: 2004 text: 2004-06-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | Journal of the American College of Cardiology |
PublicationTitleAlternate | J Am Coll Cardiol |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier Science Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Science – name: Elsevier Limited |
References | Gehling, Ergun, Schumacher (BIB12) 2000; 95 Barrett, Longhurst, Sneath, Watson (BIB13) 1978; 6 Peichev, Naiyer, Pereira (BIB3) 2000; 95 Rauscher, Goldschmidt-Clermont, Davis (BIB6) 2003; 108 Maisel, Knowlton, Fowler (BIB10) 1990; 85 Patterson (BIB4) 2003; 107 Gill, Dias, Hattori (BIB5) 2001; 88 Hambrecht, Wolf, Gielen (BIB17) 2000; 342 Wagner (BIB15) 2001; 502 Niebauer, Cooke (BIB16) 1996; 28 Kalka, Masuda, Takahashi (BIB7) 2000; 97 Rafii (BIB2) 2000; 105 Asahara, Murohara, Sullivan (BIB1) 1997; 275 Tomanek (BIB14) 1994; 26 Vasa, Fichtlscherer, Adler (BIB9) 2001; 103 Vasa, Fichtlscherer, Aicher (BIB11) 2001; 89 Rehman, Li, Orschell, March (BIB8) 2003; 107 Vasa (10.1016/j.jacc.2004.02.049_BIB9) 2001; 103 Rauscher (10.1016/j.jacc.2004.02.049_BIB6) 2003; 108 Rehman (10.1016/j.jacc.2004.02.049_BIB8) 2003; 107 Wagner (10.1016/j.jacc.2004.02.049_BIB15) 2001; 502 Niebauer (10.1016/j.jacc.2004.02.049_BIB16) 1996; 28 Asahara (10.1016/j.jacc.2004.02.049_BIB1) 1997; 275 Gill (10.1016/j.jacc.2004.02.049_BIB5) 2001; 88 Rafii (10.1016/j.jacc.2004.02.049_BIB2) 2000; 105 Patterson (10.1016/j.jacc.2004.02.049_BIB4) 2003; 107 Maisel (10.1016/j.jacc.2004.02.049_BIB10) 1990; 85 Tomanek (10.1016/j.jacc.2004.02.049_BIB14) 1994; 26 Hambrecht (10.1016/j.jacc.2004.02.049_BIB17) 2000; 342 Peichev (10.1016/j.jacc.2004.02.049_BIB3) 2000; 95 Gehling (10.1016/j.jacc.2004.02.049_BIB12) 2000; 95 Vasa (10.1016/j.jacc.2004.02.049_BIB11) 2001; 89 Barrett (10.1016/j.jacc.2004.02.049_BIB13) 1978; 6 Kalka (10.1016/j.jacc.2004.02.049_BIB7) 2000; 97 |
References_xml | – volume: 95 start-page: 952 year: 2000 end-page: 958 ident: BIB3 article-title: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors publication-title: Blood – volume: 89 start-page: E1 year: 2001 end-page: 7 ident: BIB11 article-title: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease publication-title: Circ Res – volume: 502 start-page: 21 year: 2001 end-page: 38 ident: BIB15 article-title: Skeletal muscle angiogenesis. A possible role for hypoxia publication-title: Adv Exp Med Biol – volume: 28 start-page: 1652 year: 1996 end-page: 1660 ident: BIB16 article-title: Cardiovascular effects of exercise publication-title: J Am Coll Cardiol – volume: 95 start-page: 3106 year: 2000 end-page: 3112 ident: BIB12 article-title: In vitro differentiation of endothelial cells from AC133-positive progenitor cells publication-title: Blood – volume: 275 start-page: 964 year: 1997 end-page: 967 ident: BIB1 article-title: Isolation of putative progenitor endothelial cells for angiogenesis publication-title: Science – volume: 85 start-page: 462 year: 1990 end-page: 467 ident: BIB10 article-title: Adrenergic control of circulating lymphocyte subpopulations. Effects of congestive heart failure, dynamic exercise, and terbutaline treatment publication-title: J Clin Invest – volume: 6 start-page: 590 year: 1978 end-page: 594 ident: BIB13 article-title: Mobilization of CFU-C by exercise and ACTH induced stress in man publication-title: Exp Hematol – volume: 342 start-page: 454 year: 2000 end-page: 460 ident: BIB17 article-title: Effect of exercise on coronary endothelial function in patients with coronary artery disease publication-title: N Engl J Med – volume: 103 start-page: 2885 year: 2001 end-page: 2890 ident: BIB9 article-title: Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease publication-title: Circulation – volume: 105 start-page: 17 year: 2000 end-page: 19 ident: BIB2 article-title: Circulating endothelial precursors publication-title: J Clin Invest – volume: 97 start-page: 3422 year: 2000 end-page: 3427 ident: BIB7 article-title: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization publication-title: Proc Natl Acad Sci U S A – volume: 108 start-page: 457 year: 2003 end-page: 463 ident: BIB6 article-title: Aging, progenitor cell exhaustion, and atherosclerosis publication-title: Circulation – volume: 26 start-page: 1245 year: 1994 end-page: 1251 ident: BIB14 article-title: Exercise-induced coronary angiogenesis publication-title: Med Sci Sports Exerc – volume: 88 start-page: 167 year: 2001 end-page: 174 ident: BIB5 article-title: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells publication-title: Circ Res – volume: 107 start-page: 1164 year: 2003 end-page: 1169 ident: BIB8 article-title: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors publication-title: Circulation – volume: 107 start-page: 2995 year: 2003 end-page: 2997 ident: BIB4 article-title: The Ponzo effect publication-title: Circulation – volume: 103 start-page: 2885 year: 2001 ident: 10.1016/j.jacc.2004.02.049_BIB9 article-title: Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease publication-title: Circulation doi: 10.1161/hc2401.092816 – volume: 108 start-page: 457 year: 2003 ident: 10.1016/j.jacc.2004.02.049_BIB6 article-title: Aging, progenitor cell exhaustion, and atherosclerosis publication-title: Circulation doi: 10.1161/01.CIR.0000082924.75945.48 – volume: 107 start-page: 1164 year: 2003 ident: 10.1016/j.jacc.2004.02.049_BIB8 article-title: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors publication-title: Circulation doi: 10.1161/01.CIR.0000058702.69484.A0 – volume: 97 start-page: 3422 year: 2000 ident: 10.1016/j.jacc.2004.02.049_BIB7 article-title: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.7.3422 – volume: 88 start-page: 167 year: 2001 ident: 10.1016/j.jacc.2004.02.049_BIB5 article-title: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells publication-title: Circ Res doi: 10.1161/01.RES.88.2.167 – volume: 28 start-page: 1652 year: 1996 ident: 10.1016/j.jacc.2004.02.049_BIB16 article-title: Cardiovascular effects of exercise publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(96)00393-2 – volume: 107 start-page: 2995 year: 2003 ident: 10.1016/j.jacc.2004.02.049_BIB4 article-title: The Ponzo effect publication-title: Circulation doi: 10.1161/01.CIR.0000074241.91121.70 – volume: 26 start-page: 1245 year: 1994 ident: 10.1016/j.jacc.2004.02.049_BIB14 article-title: Exercise-induced coronary angiogenesis publication-title: Med Sci Sports Exerc doi: 10.1249/00005768-199410000-00011 – volume: 89 start-page: E1 year: 2001 ident: 10.1016/j.jacc.2004.02.049_BIB11 article-title: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease publication-title: Circ Res doi: 10.1161/hh1301.093953 – volume: 105 start-page: 17 year: 2000 ident: 10.1016/j.jacc.2004.02.049_BIB2 article-title: Circulating endothelial precursors publication-title: J Clin Invest doi: 10.1172/JCI8774 – volume: 502 start-page: 21 year: 2001 ident: 10.1016/j.jacc.2004.02.049_BIB15 article-title: Skeletal muscle angiogenesis. A possible role for hypoxia publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4757-3401-0_4 – volume: 342 start-page: 454 year: 2000 ident: 10.1016/j.jacc.2004.02.049_BIB17 article-title: Effect of exercise on coronary endothelial function in patients with coronary artery disease publication-title: N Engl J Med doi: 10.1056/NEJM200002173420702 – volume: 85 start-page: 462 year: 1990 ident: 10.1016/j.jacc.2004.02.049_BIB10 article-title: Adrenergic control of circulating lymphocyte subpopulations. Effects of congestive heart failure, dynamic exercise, and terbutaline treatment publication-title: J Clin Invest doi: 10.1172/JCI114460 – volume: 6 start-page: 590 year: 1978 ident: 10.1016/j.jacc.2004.02.049_BIB13 article-title: Mobilization of CFU-C by exercise and ACTH induced stress in man publication-title: Exp Hematol – volume: 275 start-page: 964 year: 1997 ident: 10.1016/j.jacc.2004.02.049_BIB1 article-title: Isolation of putative progenitor endothelial cells for angiogenesis publication-title: Science doi: 10.1126/science.275.5302.964 – volume: 95 start-page: 952 year: 2000 ident: 10.1016/j.jacc.2004.02.049_BIB3 article-title: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors publication-title: Blood doi: 10.1182/blood.V95.3.952.003k27_952_958 – volume: 95 start-page: 3106 year: 2000 ident: 10.1016/j.jacc.2004.02.049_BIB12 article-title: In vitro differentiation of endothelial cells from AC133-positive progenitor cells publication-title: Blood doi: 10.1182/blood.V95.10.3106 |
SSID | ssj0006819 |
Score | 2.290185 |
Snippet | We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating... Objectives We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2314 |
SubjectTerms | Adult Angiogenesis Biological and medical sciences Biomarkers - blood Bone marrow Cardiology Cardiology. Vascular system Cardiovascular disease Collateral Circulation - physiology Coronary vessels Endothelium Endothelium, Vascular - cytology Exercise - physiology Female Granulocyte Colony-Stimulating Factor - metabolism Granulocyte-Macrophage Colony-Stimulating Factor - metabolism Heart Heart rate Hematopoietic Stem Cells - metabolism Hepatocyte Growth Factor - metabolism Humans Leukocytes, Mononuclear - metabolism Macrophages - metabolism Male Medical sciences Middle Aged Myocytes, Cardiac - metabolism Neovascularization, Physiologic Patients Plasma Statistical analysis Studies Time Factors Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism |
Title | Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S073510970400676X https://dx.doi.org/10.1016/j.jacc.2004.02.049 https://www.ncbi.nlm.nih.gov/pubmed/15193699 https://www.proquest.com/docview/1506149513 https://www.proquest.com/docview/17877898 https://www.proquest.com/docview/72014026 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKDwgJId6klMUHbshsEsdOcoSqVYVULlBpb5bjR0m1ZFebLFIv_e3MOM5CJVokrtmZ3axn_HkmmZmPkHc6FY2WhWNG-5wVkGCw2hrLNB5Xuam4DewNZ1_k6XnxeSEWe-Ro6oXBssqI_SOmB7SOV-ZxNefrtp1_BecU-P4U3VCWcgE4zIsqNPEtPu3QWFaB3AOFGUrHxpmxxutSmzDGsAhzO3Ge5t8Pp4dr3cOS-ZHr4vZgNBxKJ4_JoxhN0o_jDT8he657Su6fxfflz8j2ODIqUW22g1te0bbDMLF3PTXtxgTuru6Cus5iJ9YSnJFixZbDjb6h-FS_p7qzFJx1Za4Gx-Y_NJJ-fQcYYha896ezIHDRBh0zajwn5yfH345OWSRaYEbUxcAALDMtfFkVrkybrOSFlNrXQkOy4XNrvW-0TxsuvJfcpRDxWdjWjUxz0M99xV-Q_W7VuVeEaiE85GTS6NxDJMY1xIdwAcyvbSOES0g2rbAycQo5kmEs1VRudqnQKkiPWag0V2CVhLzf6azHGRx3SvPJcGrqLgU8VHBE3Kkldlo3_O-ferMbvvH7BkVVVxnPEnI4OYuK8NArHOuIqWnGE_J29zFsbLSS7txqCzIApSV8x-0SZY7pcS4T8nJ0wj9-PEOixvrgP__Va_JgrFCSLJOHZH_YbN0bCL6GZkbufbjOZmGP_QK1Xy8X |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkQAJId4ESusDN2RtEsdOcoSq1Ra6vdBKe7McP0qqJbvaZJH675lJnIVKtEhck5k8PJ_HM8l4PkI-6FhUWmaOGe1TlkGCwUprLNO4XKWm4LZnb5idyelF9mUu5jvkcNwLg2WVwfcPPr331uHIJIzmZFXXk28AToH_TxGGMpfze-Q-RAMSoX0y_7x1x7Lo2T1QmqF42DkzFHldadP3Mcz6xp3YUPPvq9PjlW5hzPxAdnF7NNqvSsdPyZMQTtJPwxM_IzuueU4ezMIP8xdkcxQolag2m84trmndYJzYupaaem168q7mkrrG4lasBaCRYsmWw5m-pvhZv6W6sRTQujTXnWOTHxpZv76DH2IW4PvTWRC4rHsdM2i8JBfHR-eHUxaYFpgRZdYx8JaJFj4vMpfHVZLzTErtS6Eh2_Cptd5X2scVF95L7mII-SzM60rGKeinvuCvyG6zbNwbQrUQHpIyaXTqIRTjGgJEOAD217YSwkUkGUdYmdCGHNkwFmqsN7tSaBXkx8xUnCqwSkQ-bnVWQxOOO6X5aDg1bi8Fh6hgjbhTS2y1bgDwn3r7N7Dx-wFFURYJTyKyN4JFBf_QKuzriLlpwiNysD0NMxutpBu33IAM-NIcrnG7RJ5ifpzKiLweQPjHzRNkaizf_udbHZCH0_PZqTo9Ofv6jjwaypUkS-Qe2e3WG_ceIrGu2u9n2i_eTzFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exercise+acutely+increases+circulating+endothelial+progenitor+cells+and+monocyte-%2Fmacrophage-derived+angiogenic+cells&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Rehman%2C+Jalees&rft.au=Li%2C+Jingling&rft.au=Parvathaneni%2C+Lakshmi&rft.au=Karlsson%2C+Gudjon&rft.date=2004-06-16&rft.pub=Elsevier+Inc&rft.issn=0735-1097&rft.volume=43&rft.issue=12&rft.spage=2314&rft.epage=2318&rft_id=info:doi/10.1016%2Fj.jacc.2004.02.049&rft.externalDocID=S073510970400676X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1097&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1097&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1097&client=summon |