Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells

We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to partic...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 43; no. 12; pp. 2314 - 2318
Main Authors Rehman, Jalees, Li, Jingling, Parvathaneni, Lakshmi, Karlsson, Gudjon, Panchal, Vipul R., Temm, Constance J., Mahenthiran, Jo, March, Keith L.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 16.06.2004
Elsevier Science
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0735-1097
1558-3597
DOI10.1016/j.jacc.2004.02.049

Cover

Loading…
Abstract We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 ± 27 cells/ml to 236 ± 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 ± 2,048 cells/ml of peripheral blood to 20,759 ± 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.
AbstractList We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 +/- 27 cells/ml to 236 +/- 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 +/- 2,048 cells/ml of peripheral blood to 20,759 +/- 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.
Objectives We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Background Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Methods Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Results Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 ± 27 cells/ml to 236 ± 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 ± 2,048 cells/ml of peripheral blood to 20,759 ± 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Conclusions Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.
We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 ± 27 cells/ml to 236 ± 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 ± 2,048 cells/ml of peripheral blood to 20,759 ± 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.
Objectives We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects. Background Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs. Methods Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined. Results Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 plus or minus 27 cells/ml to 236 plus or minus 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 plus or minus 2,048 cells/ml of peripheral blood to 20,759 plus or minus 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors. Conclusions Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.
We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects.OBJECTIVESWe investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating angiogenic cells (CACs) in human subjects.Endothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs.BACKGROUNDEndothelial progenitor cells and CACs can be isolated from peripheral blood and have been shown to participate in vascular repair and angiogenesis. We hypothesized that exercise may acutely increase either circulating EPCs or CACs.Volunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined.METHODSVolunteer subjects (n = 22) underwent exhaustive dynamic exercise. Blood was drawn before and after exercise, and circulating EPC numbers as well as plasma levels of angiogenic growth factors were assessed. The CACs were obtained by culturing mononuclear cells and the secretion of multiple angiogenic growth factors by CACs was determined.Circulating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 +/- 27 cells/ml to 236 +/- 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 +/- 2,048 cells/ml of peripheral blood to 20,759 +/- 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors.RESULTSCirculating EPCs (AC133+/VE-Cadherin+ cells) increased nearly four-fold in peripheral blood from 66 +/- 27 cells/ml to 236 +/- 34 cells/ml (p < 0.05). The number of isolated CACs increased 2.5-fold from 8,754 +/- 2,048 cells/ml of peripheral blood to 20,759 +/- 4,676 cells/ml (p < 0.005). Cultured angiogenic cells isolated before and after exercise showed similar secretion patterns of angiogenic growth factors.Our study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.CONCLUSIONSOur study demonstrates that exercise can acutely increase EPCs and CACs. Given the ability of these cell populations to promote angiogenesis and vascular regeneration, the exercise-induced cell mobilization may serve as a physiologic repair or compensation mechanism.
Author Karlsson, Gudjon
March, Keith L.
Panchal, Vipul R.
Parvathaneni, Lakshmi
Rehman, Jalees
Mahenthiran, Jo
Temm, Constance J.
Li, Jingling
Author_xml – sequence: 1
  givenname: Jalees
  surname: Rehman
  fullname: Rehman, Jalees
  email: kmarch@iupui.edu, jrehman@iupui.edu
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
– sequence: 2
  givenname: Jingling
  surname: Li
  fullname: Li, Jingling
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
– sequence: 3
  givenname: Lakshmi
  surname: Parvathaneni
  fullname: Parvathaneni, Lakshmi
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
– sequence: 4
  givenname: Gudjon
  surname: Karlsson
  fullname: Karlsson, Gudjon
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
– sequence: 5
  givenname: Vipul R.
  surname: Panchal
  fullname: Panchal, Vipul R.
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
– sequence: 6
  givenname: Constance J.
  surname: Temm
  fullname: Temm, Constance J.
  organization: Indiana Center for Vascular Biology and Medicine, Indianapolis, Indiana USA
– sequence: 7
  givenname: Jo
  surname: Mahenthiran
  fullname: Mahenthiran, Jo
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
– sequence: 8
  givenname: Keith L.
  surname: March
  fullname: March, Keith L.
  organization: Krannert Institute of Cardiology, Indianapolis, Indiana USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15898131$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15193699$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9vFCEYh4mpsdvqF_BgJjF6mykMAwzGi2nqn6SJFz0ThnnZsrKwwkzjfnsZdzVmD-2Jy_O8wPv7XaCzEAMg9JLghmDCrzbNRhvTtBh3DW4b3MknaEUY62vKpDhDKywoqwmW4hxd5LzBGPOeyGfonDAiKZdyheabX5CMy1BpM0_g95ULJoHOkCvjkpm9nlxYVxDGON2Bd9pXuxTXENwUU2XA-1zpMFbbGKLZT1BfbbVJcXen11CPkNw9jAVYuz-OORjP0VOrfYYXx_MSff948-36c3379dOX6w-3tWGym-qOC6KZFX0HAg9E0I5zbSXTUnS2HUdrB23xQJm1nAKmLR-FpAPHbfFb29NL9PYwtzz55wx5UluXlxfoAHHOSrSYdLjlj4JE9EL0cpn4-gTcxDmF8glFGOakk4zQQr06UvOwhVHtktvqtFd_916AN0dAZ6O9TTqUEP7jyl2EksL1B66sNOcEVhk3lURimJJ2XhGsliqojVqqoJYqKNyqUoWitifqv-kPSe8PEpRU7h0klY2DYGB0Ccykxuge1t-d6Ma7krr2P2D_mPwbKXng4g
CODEN JACCDI
CitedBy_id crossref_primary_10_1007_s00421_022_05128_6
crossref_primary_10_1152_ajpregu_00338_2005
crossref_primary_10_1016_j_jacc_2009_09_031
crossref_primary_10_1097_01_HCR_0000265031_10145_50
crossref_primary_10_1371_journal_pone_0096024
crossref_primary_10_3390_jcm8020210
crossref_primary_10_1038_sj_mp_4002138
crossref_primary_10_1042_CS20050212
crossref_primary_10_1016_j_ijcard_2010_07_007
crossref_primary_10_4061_2011_972807
crossref_primary_10_1155_2018_9847015
crossref_primary_10_1161_ATVBAHA_109_191668
crossref_primary_10_3109_14653249_2010_491611
crossref_primary_10_1152_japplphysiol_00287_2015
crossref_primary_10_1164_rccm_201001_0126OC
crossref_primary_10_2353_ajpath_2008_070705
crossref_primary_10_1093_bja_aeu135
crossref_primary_10_1016_j_amjmed_2011_01_015
crossref_primary_10_1016_j_pharmthera_2010_10_002
crossref_primary_10_2310_6670_2006_00057
crossref_primary_10_1038_sj_jhh_1002171
crossref_primary_10_1097_HJR_0b013e32833ba654
crossref_primary_10_1016_j_ghir_2013_07_004
crossref_primary_10_1007_s00421_009_1144_0
crossref_primary_10_1152_ajpheart_01393_2007
crossref_primary_10_1177_1358863X07083177
crossref_primary_10_1007_s12012_025_09967_5
crossref_primary_10_1111_j_1743_6109_2010_01783_x
crossref_primary_10_3390_nu11071571
crossref_primary_10_7717_peerj_6675
crossref_primary_10_1016_j_atherosclerosis_2006_05_033
crossref_primary_10_1186_s13287_019_1274_1
crossref_primary_10_1161_CIRCRESAHA_112_267286
crossref_primary_10_1371_journal_pone_0091355
crossref_primary_10_1152_japplphysiol_00562_2005
crossref_primary_10_1016_j_hlc_2016_06_1210
crossref_primary_10_1089_ars_2008_2118
crossref_primary_10_1002_bies_20372
crossref_primary_10_7600_jpfsm_2_237
crossref_primary_10_1016_j_bcmd_2009_01_003
crossref_primary_10_1016_j_preteyeres_2016_10_002
crossref_primary_10_1097_HJR_0b013e32832d3c76
crossref_primary_10_1152_ajpheart_00888_2005
crossref_primary_10_1152_japplphysiol_00338_2011
crossref_primary_10_1177_2041731417698852
crossref_primary_10_1097_FJC_0b013e3182471d14
crossref_primary_10_3389_fendo_2022_894093
crossref_primary_10_1161_ATVBAHA_120_312862
crossref_primary_10_1249_FIT_0b013e3181844fee
crossref_primary_10_1007_s12015_011_9234_x
crossref_primary_10_1177_0271678X17714655
crossref_primary_10_1152_japplphysiol_01344_2009
crossref_primary_10_1111_j_1463_1326_2007_00754_x
crossref_primary_10_31083_j_rcm2312396
crossref_primary_10_1007_s00421_011_1843_1
crossref_primary_10_1093_gerona_glt067
crossref_primary_10_1113_JP274750
crossref_primary_10_1016_j_cjca_2022_02_017
crossref_primary_10_1016_j_ijcard_2008_10_042
crossref_primary_10_1016_j_mvr_2009_12_009
crossref_primary_10_1038_s41598_017_18156_6
crossref_primary_10_1161_ATVBAHA_108_174573
crossref_primary_10_1002_cyto_a_20669
crossref_primary_10_1016_j_heliyon_2022_e10705
crossref_primary_10_1155_2017_3750829
crossref_primary_10_1177_0885066609332701
crossref_primary_10_1089_ars_2008_2092
crossref_primary_10_2337_db15_0517
crossref_primary_10_1016_j_ijcard_2012_04_106
crossref_primary_10_1161_CIRCULATIONAHA_120_046872
crossref_primary_10_1155_2016_3583956
crossref_primary_10_1183_09031936_06_00120604
crossref_primary_10_1002_jcp_25097
crossref_primary_10_1002_mabi_201600196
crossref_primary_10_7759_cureus_30322
crossref_primary_10_1007_s40140_013_0024_7
crossref_primary_10_3389_fphys_2021_772894
crossref_primary_10_1007_s00421_016_3407_x
crossref_primary_10_1097_JCP_0b013e3181eeb7f7
crossref_primary_10_1080_10623320500476617
crossref_primary_10_1093_eurheartj_ehp078
crossref_primary_10_1016_j_amjcard_2008_05_020
crossref_primary_10_1056_NEJMoa043814
crossref_primary_10_1016_S0001_4079_19_32548_8
crossref_primary_10_1253_circj_CJ_13_0976
crossref_primary_10_1111_j_1447_0756_2007_00555_x
crossref_primary_10_1155_2012_210852
crossref_primary_10_1248_yakushi_127_841
crossref_primary_10_2174_1874192401004010089
crossref_primary_10_1097_01_hjr_0000174823_87269_2e
crossref_primary_10_1016_j_arr_2008_11_002
crossref_primary_10_1253_jjcsc_17_2_231
crossref_primary_10_1016_j_amjcard_2023_06_008
crossref_primary_10_1016_j_jacc_2005_08_013
crossref_primary_10_1177_1358863x06072213
crossref_primary_10_1590_S1677_54492005000400011
crossref_primary_10_1161_CIRCRESAHA_111_243386
crossref_primary_10_14814_phy2_12566
crossref_primary_10_1016_j_jacc_2007_04_074
crossref_primary_10_1093_cvr_cvm109
crossref_primary_10_1111_j_1474_9726_2006_00242_x
crossref_primary_10_4049_jimmunol_1001782
crossref_primary_10_1249_MSS_0000000000001029
crossref_primary_10_1016_j_freeradbiomed_2007_01_025
crossref_primary_10_1093_milmed_usz247
crossref_primary_10_1111_j_1748_1716_2007_01723_x
crossref_primary_10_1152_japplphysiol_00956_2016
crossref_primary_10_1016_j_atherosclerosis_2006_06_021
crossref_primary_10_4093_dmj_2019_0175
crossref_primary_10_1159_000113216
crossref_primary_10_1007_s00392_012_0517_2
crossref_primary_10_1016_j_jshs_2013_12_005
crossref_primary_10_1152_japplphysiol_01254_2013
crossref_primary_10_1007_s10741_012_9324_0
crossref_primary_10_1586_14779072_6_5_687
crossref_primary_10_1196_annals_1383_008
crossref_primary_10_1016_j_arthro_2018_06_043
crossref_primary_10_1152_ajpheart_00347_2009
crossref_primary_10_1016_j_thromres_2015_11_012
crossref_primary_10_1249_MSS_0b013e3182a142da
crossref_primary_10_1097_01_hjr_0000221862_34662_31
crossref_primary_10_14814_phy2_70255
crossref_primary_10_1093_eurheartj_ehq058
crossref_primary_10_1097_00003677_200504000_00002
crossref_primary_10_1111_j_1365_2141_2006_06344_x
crossref_primary_10_1186_s12933_015_0235_y
crossref_primary_10_1016_j_transci_2013_06_007
crossref_primary_10_1161_JAHA_117_007504
crossref_primary_10_1016_j_tcm_2005_02_002
crossref_primary_10_1136_bjsm_2007_043208
crossref_primary_10_1016_j_jvs_2007_02_068
crossref_primary_10_1586_erm_09_80
crossref_primary_10_1159_000489745
crossref_primary_10_1586_erc_10_7
crossref_primary_10_1007_s00580_023_03498_7
crossref_primary_10_1152_japplphysiol_00884_2009
crossref_primary_10_1016_j_pathophys_2008_02_002
crossref_primary_10_1097_JES_0b013e31820a595e
crossref_primary_10_1007_s00125_009_1401_0
crossref_primary_10_1089_scd_2005_14_292
crossref_primary_10_1093_gerona_glv180
crossref_primary_10_1016_j_trsl_2010_06_008
crossref_primary_10_1016_j_rmed_2007_12_030
crossref_primary_10_1016_j_transproceed_2010_04_047
crossref_primary_10_1152_physiol_00019_2013
crossref_primary_10_1161_CIRCULATIONAHA_104_503433
crossref_primary_10_2165_00007256_200838120_00005
crossref_primary_10_1097_SAP_0b013e31823b69fc
crossref_primary_10_1111_j_2040_1124_2012_00230_x
crossref_primary_10_1016_j_fertnstert_2008_10_062
crossref_primary_10_1111_sms_12320
crossref_primary_10_1113_EP085771
crossref_primary_10_1177_1559827609338145
crossref_primary_10_1371_journal_pone_0017263
crossref_primary_10_1002_advs_202103697
crossref_primary_10_1097_PRS_0000000000000917
crossref_primary_10_1152_ajpheart_01104_2009
crossref_primary_10_12968_hmed_2005_66_4_18438
crossref_primary_10_1016_j_scr_2014_02_005
crossref_primary_10_3389_fcvm_2018_00127
crossref_primary_10_1016_j_genm_2009_09_005
crossref_primary_10_1016_j_tcb_2019_01_006
crossref_primary_10_1517_14712598_6_5_427
crossref_primary_10_1080_13645700801969816
crossref_primary_10_1089_ars_2008_2121
crossref_primary_10_1093_ndt_gfn103
crossref_primary_10_1002_ajh_20904
crossref_primary_10_1016_j_cardfail_2009_05_011
crossref_primary_10_1016_j_jvs_2006_08_026
crossref_primary_10_1177_1358863X15600255
crossref_primary_10_1097_HCR_0b013e3181ebf2db
crossref_primary_10_1136_bjsm_2007_035188
crossref_primary_10_1002_bab_10
crossref_primary_10_1186_s13287_020_02071_1
crossref_primary_10_1002_hipo_20545
crossref_primary_10_2337_db09_0185
crossref_primary_10_1002_ajh_21424
crossref_primary_10_1016_j_atherosclerosis_2011_03_018
crossref_primary_10_1016_j_arcmed_2005_09_017
crossref_primary_10_1016_j_atherosclerosis_2005_01_006
crossref_primary_10_3390_life11080783
crossref_primary_10_1089_ars_2010_3734
crossref_primary_10_1161_CIRCRESAHA_121_318266
crossref_primary_10_1203_pdr_0b013e3180332d36
crossref_primary_10_1080_09593985_2018_1474511
crossref_primary_10_1016_j_exphem_2007_10_003
crossref_primary_10_3390_hearts6010002
crossref_primary_10_1016_j_jacc_2006_09_050
crossref_primary_10_1111_j_1463_1326_2010_01210_x
crossref_primary_10_1159_000347061
crossref_primary_10_1016_j_ddstr_2007_10_007
crossref_primary_10_1016_j_jacc_2005_02_030
crossref_primary_10_1097_01_HCR_0000265032_04307_34
crossref_primary_10_1152_ajpheart_00921_2009
crossref_primary_10_3390_cimb45030125
crossref_primary_10_1253_circj_CJ_08_0952
crossref_primary_10_1016_j_ijcard_2012_10_047
crossref_primary_10_1371_journal_pone_0089927
crossref_primary_10_1007_s00296_019_04483_6
crossref_primary_10_1016_j_advms_2014_10_004
crossref_primary_10_1253_circj_72_897
crossref_primary_10_1159_000470829
crossref_primary_10_2217_bmm_11_92
crossref_primary_10_1253_circj_CJ_09_0917
crossref_primary_10_1016_j_mehy_2012_11_019
crossref_primary_10_1536_ihj_18_592
crossref_primary_10_1152_japplphysiol_01210_2007
crossref_primary_10_1007_s11596_016_1553_3
crossref_primary_10_1038_sj_leu_2404676
crossref_primary_10_1186_1479_5876_8_34
crossref_primary_10_1177_147323000903700229
Cites_doi 10.1161/hc2401.092816
10.1161/01.CIR.0000082924.75945.48
10.1161/01.CIR.0000058702.69484.A0
10.1073/pnas.97.7.3422
10.1161/01.RES.88.2.167
10.1016/S0735-1097(96)00393-2
10.1161/01.CIR.0000074241.91121.70
10.1249/00005768-199410000-00011
10.1161/hh1301.093953
10.1172/JCI8774
10.1007/978-1-4757-3401-0_4
10.1056/NEJM200002173420702
10.1172/JCI114460
10.1126/science.275.5302.964
10.1182/blood.V95.3.952.003k27_952_958
10.1182/blood.V95.10.3106
ContentType Journal Article
Copyright 2004 American College of Cardiology Foundation
2004 INIST-CNRS
Copyright Elsevier Limited Jun 16, 2004
Copyright_xml – notice: 2004 American College of Cardiology Foundation
– notice: 2004 INIST-CNRS
– notice: Copyright Elsevier Limited Jun 16, 2004
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
7TS
7X8
DOI 10.1016/j.jacc.2004.02.049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE
AIDS and Cancer Research Abstracts

Physical Education Index

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
EndPage 2318
ExternalDocumentID 3242499171
15193699
15898131
10_1016_j_jacc_2004_02_049
S073510970400676X
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations United States--US
California
GeographicLocations_xml – name: United States--US
– name: California
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
18M
1B1
1~.
1~5
29L
2WC
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABOCM
ABWVN
ABXDB
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEFWE
AEKER
AENEX
AEUPX
AEXQZ
AFFNX
AFPUW
AFRAH
AFTJW
AGCQF
AGHFR
AGYEJ
AHMBA
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GX1
H13
HVGLF
HZ~
IHE
IXB
J1W
J5H
K-O
KQ8
L7B
MO0
N4W
N9A
O-L
O9-
OAUVE
OK1
OZT
P-9
P2P
PC.
PQQKQ
PROAC
Q38
QTD
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
X7M
YYM
YYP
YZZ
ZGI
3V.
6I.
7RV
AACTN
AAFTH
AAIAV
AAKUH
AAYOK
ABJNI
ABVKL
AHPSJ
AJOXV
AMFUW
BENPR
BPHCQ
EFLBG
LCYCR
NAHTW
NCXOZ
T5K
ZA5
.1-
.FO
1CY
1P~
AABVL
AALRI
AAQQT
AAQXK
AAYWO
AAYXX
ABMZM
AEVXI
AFCTW
AFETI
AFRHN
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
FGOYB
GBLVA
HX~
OA.
OL~
P-8
R2-
RIG
SEW
XPP
Z5R
ZXP
IQODW
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
7TS
7X8
ID FETCH-LOGICAL-c594t-4671a5f784e70b173466af95a974f2ddffbaf0b35ff63e0326d793b602c592f83
IEDL.DBID IXB
ISSN 0735-1097
IngestDate Fri Jul 11 16:08:07 EDT 2025
Tue Aug 05 11:32:27 EDT 2025
Sat Jul 26 03:04:58 EDT 2025
Wed Feb 19 01:41:44 EST 2025
Mon Jul 21 09:17:28 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Tue Jul 01 03:46:13 EDT 2025
Fri Feb 23 02:31:51 EST 2024
Tue Aug 26 17:00:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords MNC
CAC
GM-CSF
LDL
HGF
VEGF
EPC
G-CSF
Physical exercise
Endothelial cell
Monocyte
Exercise tolerance test
Increase
Circulatory system
Cardiology
Phlebology
Progenitor cell
Macrophage
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-4671a5f784e70b173466af95a974f2ddffbaf0b35ff63e0326d793b602c592f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S073510970400676X
PMID 15193699
PQID 1506149513
PQPubID 2031078
PageCount 5
ParticipantIDs proquest_miscellaneous_72014026
proquest_miscellaneous_17877898
proquest_journals_1506149513
pubmed_primary_15193699
pascalfrancis_primary_15898131
crossref_citationtrail_10_1016_j_jacc_2004_02_049
crossref_primary_10_1016_j_jacc_2004_02_049
elsevier_sciencedirect_doi_10_1016_j_jacc_2004_02_049
elsevier_clinicalkey_doi_10_1016_j_jacc_2004_02_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-06-16
PublicationDateYYYYMMDD 2004-06-16
PublicationDate_xml – month: 06
  year: 2004
  text: 2004-06-16
  day: 16
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2004
Publisher Elsevier Inc
Elsevier Science
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science
– name: Elsevier Limited
References Gehling, Ergun, Schumacher (BIB12) 2000; 95
Barrett, Longhurst, Sneath, Watson (BIB13) 1978; 6
Peichev, Naiyer, Pereira (BIB3) 2000; 95
Rauscher, Goldschmidt-Clermont, Davis (BIB6) 2003; 108
Maisel, Knowlton, Fowler (BIB10) 1990; 85
Patterson (BIB4) 2003; 107
Gill, Dias, Hattori (BIB5) 2001; 88
Hambrecht, Wolf, Gielen (BIB17) 2000; 342
Wagner (BIB15) 2001; 502
Niebauer, Cooke (BIB16) 1996; 28
Kalka, Masuda, Takahashi (BIB7) 2000; 97
Rafii (BIB2) 2000; 105
Asahara, Murohara, Sullivan (BIB1) 1997; 275
Tomanek (BIB14) 1994; 26
Vasa, Fichtlscherer, Adler (BIB9) 2001; 103
Vasa, Fichtlscherer, Aicher (BIB11) 2001; 89
Rehman, Li, Orschell, March (BIB8) 2003; 107
Vasa (10.1016/j.jacc.2004.02.049_BIB9) 2001; 103
Rauscher (10.1016/j.jacc.2004.02.049_BIB6) 2003; 108
Rehman (10.1016/j.jacc.2004.02.049_BIB8) 2003; 107
Wagner (10.1016/j.jacc.2004.02.049_BIB15) 2001; 502
Niebauer (10.1016/j.jacc.2004.02.049_BIB16) 1996; 28
Asahara (10.1016/j.jacc.2004.02.049_BIB1) 1997; 275
Gill (10.1016/j.jacc.2004.02.049_BIB5) 2001; 88
Rafii (10.1016/j.jacc.2004.02.049_BIB2) 2000; 105
Patterson (10.1016/j.jacc.2004.02.049_BIB4) 2003; 107
Maisel (10.1016/j.jacc.2004.02.049_BIB10) 1990; 85
Tomanek (10.1016/j.jacc.2004.02.049_BIB14) 1994; 26
Hambrecht (10.1016/j.jacc.2004.02.049_BIB17) 2000; 342
Peichev (10.1016/j.jacc.2004.02.049_BIB3) 2000; 95
Gehling (10.1016/j.jacc.2004.02.049_BIB12) 2000; 95
Vasa (10.1016/j.jacc.2004.02.049_BIB11) 2001; 89
Barrett (10.1016/j.jacc.2004.02.049_BIB13) 1978; 6
Kalka (10.1016/j.jacc.2004.02.049_BIB7) 2000; 97
References_xml – volume: 95
  start-page: 952
  year: 2000
  end-page: 958
  ident: BIB3
  article-title: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors
  publication-title: Blood
– volume: 89
  start-page: E1
  year: 2001
  end-page: 7
  ident: BIB11
  article-title: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease
  publication-title: Circ Res
– volume: 502
  start-page: 21
  year: 2001
  end-page: 38
  ident: BIB15
  article-title: Skeletal muscle angiogenesis. A possible role for hypoxia
  publication-title: Adv Exp Med Biol
– volume: 28
  start-page: 1652
  year: 1996
  end-page: 1660
  ident: BIB16
  article-title: Cardiovascular effects of exercise
  publication-title: J Am Coll Cardiol
– volume: 95
  start-page: 3106
  year: 2000
  end-page: 3112
  ident: BIB12
  article-title: In vitro differentiation of endothelial cells from AC133-positive progenitor cells
  publication-title: Blood
– volume: 275
  start-page: 964
  year: 1997
  end-page: 967
  ident: BIB1
  article-title: Isolation of putative progenitor endothelial cells for angiogenesis
  publication-title: Science
– volume: 85
  start-page: 462
  year: 1990
  end-page: 467
  ident: BIB10
  article-title: Adrenergic control of circulating lymphocyte subpopulations. Effects of congestive heart failure, dynamic exercise, and terbutaline treatment
  publication-title: J Clin Invest
– volume: 6
  start-page: 590
  year: 1978
  end-page: 594
  ident: BIB13
  article-title: Mobilization of CFU-C by exercise and ACTH induced stress in man
  publication-title: Exp Hematol
– volume: 342
  start-page: 454
  year: 2000
  end-page: 460
  ident: BIB17
  article-title: Effect of exercise on coronary endothelial function in patients with coronary artery disease
  publication-title: N Engl J Med
– volume: 103
  start-page: 2885
  year: 2001
  end-page: 2890
  ident: BIB9
  article-title: Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease
  publication-title: Circulation
– volume: 105
  start-page: 17
  year: 2000
  end-page: 19
  ident: BIB2
  article-title: Circulating endothelial precursors
  publication-title: J Clin Invest
– volume: 97
  start-page: 3422
  year: 2000
  end-page: 3427
  ident: BIB7
  article-title: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization
  publication-title: Proc Natl Acad Sci U S A
– volume: 108
  start-page: 457
  year: 2003
  end-page: 463
  ident: BIB6
  article-title: Aging, progenitor cell exhaustion, and atherosclerosis
  publication-title: Circulation
– volume: 26
  start-page: 1245
  year: 1994
  end-page: 1251
  ident: BIB14
  article-title: Exercise-induced coronary angiogenesis
  publication-title: Med Sci Sports Exerc
– volume: 88
  start-page: 167
  year: 2001
  end-page: 174
  ident: BIB5
  article-title: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells
  publication-title: Circ Res
– volume: 107
  start-page: 1164
  year: 2003
  end-page: 1169
  ident: BIB8
  article-title: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors
  publication-title: Circulation
– volume: 107
  start-page: 2995
  year: 2003
  end-page: 2997
  ident: BIB4
  article-title: The Ponzo effect
  publication-title: Circulation
– volume: 103
  start-page: 2885
  year: 2001
  ident: 10.1016/j.jacc.2004.02.049_BIB9
  article-title: Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease
  publication-title: Circulation
  doi: 10.1161/hc2401.092816
– volume: 108
  start-page: 457
  year: 2003
  ident: 10.1016/j.jacc.2004.02.049_BIB6
  article-title: Aging, progenitor cell exhaustion, and atherosclerosis
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000082924.75945.48
– volume: 107
  start-page: 1164
  year: 2003
  ident: 10.1016/j.jacc.2004.02.049_BIB8
  article-title: Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000058702.69484.A0
– volume: 97
  start-page: 3422
  year: 2000
  ident: 10.1016/j.jacc.2004.02.049_BIB7
  article-title: Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.7.3422
– volume: 88
  start-page: 167
  year: 2001
  ident: 10.1016/j.jacc.2004.02.049_BIB5
  article-title: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells
  publication-title: Circ Res
  doi: 10.1161/01.RES.88.2.167
– volume: 28
  start-page: 1652
  year: 1996
  ident: 10.1016/j.jacc.2004.02.049_BIB16
  article-title: Cardiovascular effects of exercise
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(96)00393-2
– volume: 107
  start-page: 2995
  year: 2003
  ident: 10.1016/j.jacc.2004.02.049_BIB4
  article-title: The Ponzo effect
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000074241.91121.70
– volume: 26
  start-page: 1245
  year: 1994
  ident: 10.1016/j.jacc.2004.02.049_BIB14
  article-title: Exercise-induced coronary angiogenesis
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/00005768-199410000-00011
– volume: 89
  start-page: E1
  year: 2001
  ident: 10.1016/j.jacc.2004.02.049_BIB11
  article-title: Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease
  publication-title: Circ Res
  doi: 10.1161/hh1301.093953
– volume: 105
  start-page: 17
  year: 2000
  ident: 10.1016/j.jacc.2004.02.049_BIB2
  article-title: Circulating endothelial precursors
  publication-title: J Clin Invest
  doi: 10.1172/JCI8774
– volume: 502
  start-page: 21
  year: 2001
  ident: 10.1016/j.jacc.2004.02.049_BIB15
  article-title: Skeletal muscle angiogenesis. A possible role for hypoxia
  publication-title: Adv Exp Med Biol
  doi: 10.1007/978-1-4757-3401-0_4
– volume: 342
  start-page: 454
  year: 2000
  ident: 10.1016/j.jacc.2004.02.049_BIB17
  article-title: Effect of exercise on coronary endothelial function in patients with coronary artery disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200002173420702
– volume: 85
  start-page: 462
  year: 1990
  ident: 10.1016/j.jacc.2004.02.049_BIB10
  article-title: Adrenergic control of circulating lymphocyte subpopulations. Effects of congestive heart failure, dynamic exercise, and terbutaline treatment
  publication-title: J Clin Invest
  doi: 10.1172/JCI114460
– volume: 6
  start-page: 590
  year: 1978
  ident: 10.1016/j.jacc.2004.02.049_BIB13
  article-title: Mobilization of CFU-C by exercise and ACTH induced stress in man
  publication-title: Exp Hematol
– volume: 275
  start-page: 964
  year: 1997
  ident: 10.1016/j.jacc.2004.02.049_BIB1
  article-title: Isolation of putative progenitor endothelial cells for angiogenesis
  publication-title: Science
  doi: 10.1126/science.275.5302.964
– volume: 95
  start-page: 952
  year: 2000
  ident: 10.1016/j.jacc.2004.02.049_BIB3
  article-title: Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors
  publication-title: Blood
  doi: 10.1182/blood.V95.3.952.003k27_952_958
– volume: 95
  start-page: 3106
  year: 2000
  ident: 10.1016/j.jacc.2004.02.049_BIB12
  article-title: In vitro differentiation of endothelial cells from AC133-positive progenitor cells
  publication-title: Blood
  doi: 10.1182/blood.V95.10.3106
SSID ssj0006819
Score 2.290185
Snippet We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and cultured/circulating...
Objectives We investigated whether a single episode of exercise could acutely increase the numbers of endothelial progenitor cells (EPCs) and...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2314
SubjectTerms Adult
Angiogenesis
Biological and medical sciences
Biomarkers - blood
Bone marrow
Cardiology
Cardiology. Vascular system
Cardiovascular disease
Collateral Circulation - physiology
Coronary vessels
Endothelium
Endothelium, Vascular - cytology
Exercise - physiology
Female
Granulocyte Colony-Stimulating Factor - metabolism
Granulocyte-Macrophage Colony-Stimulating Factor - metabolism
Heart
Heart rate
Hematopoietic Stem Cells - metabolism
Hepatocyte Growth Factor - metabolism
Humans
Leukocytes, Mononuclear - metabolism
Macrophages - metabolism
Male
Medical sciences
Middle Aged
Myocytes, Cardiac - metabolism
Neovascularization, Physiologic
Patients
Plasma
Statistical analysis
Studies
Time Factors
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
Title Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells
URI https://www.clinicalkey.com/#!/content/1-s2.0-S073510970400676X
https://dx.doi.org/10.1016/j.jacc.2004.02.049
https://www.ncbi.nlm.nih.gov/pubmed/15193699
https://www.proquest.com/docview/1506149513
https://www.proquest.com/docview/17877898
https://www.proquest.com/docview/72014026
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKDwgJId6klMUHbshsEsdOcoSqVYVULlBpb5bjR0m1ZFebLFIv_e3MOM5CJVokrtmZ3axn_HkmmZmPkHc6FY2WhWNG-5wVkGCw2hrLNB5Xuam4DewNZ1_k6XnxeSEWe-Ro6oXBssqI_SOmB7SOV-ZxNefrtp1_BecU-P4U3VCWcgE4zIsqNPEtPu3QWFaB3AOFGUrHxpmxxutSmzDGsAhzO3Ge5t8Pp4dr3cOS-ZHr4vZgNBxKJ4_JoxhN0o_jDT8he657Su6fxfflz8j2ODIqUW22g1te0bbDMLF3PTXtxgTuru6Cus5iJ9YSnJFixZbDjb6h-FS_p7qzFJx1Za4Gx-Y_NJJ-fQcYYha896ezIHDRBh0zajwn5yfH345OWSRaYEbUxcAALDMtfFkVrkybrOSFlNrXQkOy4XNrvW-0TxsuvJfcpRDxWdjWjUxz0M99xV-Q_W7VuVeEaiE85GTS6NxDJMY1xIdwAcyvbSOES0g2rbAycQo5kmEs1VRudqnQKkiPWag0V2CVhLzf6azHGRx3SvPJcGrqLgU8VHBE3Kkldlo3_O-ferMbvvH7BkVVVxnPEnI4OYuK8NArHOuIqWnGE_J29zFsbLSS7txqCzIApSV8x-0SZY7pcS4T8nJ0wj9-PEOixvrgP__Va_JgrFCSLJOHZH_YbN0bCL6GZkbufbjOZmGP_QK1Xy8X
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkQAJId4ESusDN2RtEsdOcoSq1Ra6vdBKe7McP0qqJbvaZJH675lJnIVKtEhck5k8PJ_HM8l4PkI-6FhUWmaOGe1TlkGCwUprLNO4XKWm4LZnb5idyelF9mUu5jvkcNwLg2WVwfcPPr331uHIJIzmZFXXk28AToH_TxGGMpfze-Q-RAMSoX0y_7x1x7Lo2T1QmqF42DkzFHldadP3Mcz6xp3YUPPvq9PjlW5hzPxAdnF7NNqvSsdPyZMQTtJPwxM_IzuueU4ezMIP8xdkcxQolag2m84trmndYJzYupaaem168q7mkrrG4lasBaCRYsmWw5m-pvhZv6W6sRTQujTXnWOTHxpZv76DH2IW4PvTWRC4rHsdM2i8JBfHR-eHUxaYFpgRZdYx8JaJFj4vMpfHVZLzTErtS6Eh2_Cptd5X2scVF95L7mII-SzM60rGKeinvuCvyG6zbNwbQrUQHpIyaXTqIRTjGgJEOAD217YSwkUkGUdYmdCGHNkwFmqsN7tSaBXkx8xUnCqwSkQ-bnVWQxOOO6X5aDg1bi8Fh6hgjbhTS2y1bgDwn3r7N7Dx-wFFURYJTyKyN4JFBf_QKuzriLlpwiNysD0NMxutpBu33IAM-NIcrnG7RJ5ifpzKiLweQPjHzRNkaizf_udbHZCH0_PZqTo9Ofv6jjwaypUkS-Qe2e3WG_ceIrGu2u9n2i_eTzFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exercise+acutely+increases+circulating+endothelial+progenitor+cells+and+monocyte-%2Fmacrophage-derived+angiogenic+cells&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Rehman%2C+Jalees&rft.au=Li%2C+Jingling&rft.au=Parvathaneni%2C+Lakshmi&rft.au=Karlsson%2C+Gudjon&rft.date=2004-06-16&rft.pub=Elsevier+Inc&rft.issn=0735-1097&rft.volume=43&rft.issue=12&rft.spage=2314&rft.epage=2318&rft_id=info:doi/10.1016%2Fj.jacc.2004.02.049&rft.externalDocID=S073510970400676X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1097&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1097&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1097&client=summon