Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia)

Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 16; no. 1; p. 774
Main Authors Gacesa, Ranko, Chung, Ray, Dunn, Simon R., Weston, Andrew J., Jaimes-Becerra, Adrian, Marques, Antonio C., Morandini, André C., Hranueli, Daslav, Starcevic, Antonio, Ward, Malcolm, Long, Paul F.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 13.10.2015
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ). A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.
AbstractList Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available (https://github.com/rgacesa/HHCompare). A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.
Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Methods Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available (https://github.com/rgacesa/HHCompare). Results A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Conclusions Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.
Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Methods Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( Results A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Conclusions Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. Keywords: Coral, Nematocyst, Venom, Proteome, Evolution, Hidden Markov model (HMM)
Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ). A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.
Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait.BACKGROUNDGene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait.Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ).METHODSHere we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ).A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases.RESULTSA total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases.Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.CONCLUSIONSGene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.
ArticleNumber 774
Audience Academic
Author Long, Paul F.
Weston, Andrew J.
Chung, Ray
Jaimes-Becerra, Adrian
Hranueli, Daslav
Ward, Malcolm
Starcevic, Antonio
Gacesa, Ranko
Dunn, Simon R.
Marques, Antonio C.
Morandini, André C.
Author_xml – sequence: 1
  givenname: Ranko
  surname: Gacesa
  fullname: Gacesa, Ranko
– sequence: 2
  givenname: Ray
  surname: Chung
  fullname: Chung, Ray
– sequence: 3
  givenname: Simon R.
  surname: Dunn
  fullname: Dunn, Simon R.
– sequence: 4
  givenname: Andrew J.
  surname: Weston
  fullname: Weston, Andrew J.
– sequence: 5
  givenname: Adrian
  surname: Jaimes-Becerra
  fullname: Jaimes-Becerra, Adrian
– sequence: 6
  givenname: Antonio C.
  surname: Marques
  fullname: Marques, Antonio C.
– sequence: 7
  givenname: André C.
  surname: Morandini
  fullname: Morandini, André C.
– sequence: 8
  givenname: Daslav
  surname: Hranueli
  fullname: Hranueli, Daslav
– sequence: 9
  givenname: Antonio
  surname: Starcevic
  fullname: Starcevic, Antonio
– sequence: 10
  givenname: Malcolm
  surname: Ward
  fullname: Ward, Malcolm
– sequence: 11
  givenname: Paul F.
  surname: Long
  fullname: Long, Paul F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26464356$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9qFDEUxgep2D_6AN5IwJv2YmqSzSSzXhSWRWuhIFi9DtnMyfaUmWRNMqXrA_mcZt1au0UkFzlMft-ZnHzfYbXng4eqes3oKWOtfJcYb6WoKWtqNlWyFs-qAyYUqzmTYu9RvV8dpnRDKVMtb15U-1wKKSaNPKh-noMH0o2rHq3JGHwiJgKBuww-4S0Q4ztig88RF2MGknDp0RXW535NciD5Gsp2h5asYsgQBiDBEQ-DycGuU04EU-hNho64GAYyszGsQjSkwyVmdFDK47nHzkQ078nM5-vwI5TqyvblzGb0aE5eVs-d6RO8ut-Pqm8fP3ydf6ovP59fzGeXtW2mItdCcNs610lqaSuUmjIrmWkWlFLXMUcpKCmcmyjDuOPdouGCdsKqtlMToLCYHFVn276rcTFAZ6EMbnq9ijiYuNbBoN498Xitl-FWC0kFVbQ0OL5vEMP3EVLWAyYLfW88hDFppjgXvDjGC_r2CXoTxujLeIVS03bSTGX7l1qaHjR6F8p_7aapnjWCTaRgTBXq9B9UWR0MWOwDh-X7juBkR7CxuJi-NGNK-uLqyy775vGjPLzGnxQVgG2B4m1KEdwDwqjeJFVvk6rL3HqTVC2KRj3RWMy_E1hujv1_lL8A6WXugQ
CitedBy_id crossref_primary_10_1093_icb_icw113
crossref_primary_10_1186_s12864_020_06952_w
crossref_primary_10_1186_s12864_020_6566_4
crossref_primary_10_3390_md18080413
crossref_primary_10_1016_j_isci_2019_02_001
crossref_primary_10_3390_toxins16020075
crossref_primary_10_1016_j_jprot_2023_104984
crossref_primary_10_1016_j_toxicon_2023_107556
crossref_primary_10_1016_j_toxicon_2019_09_007
crossref_primary_10_7717_peerj_11208
crossref_primary_10_1016_j_toxicon_2016_04_048
crossref_primary_10_1007_s00204_022_03311_4
crossref_primary_10_1016_j_gde_2016_05_024
crossref_primary_10_7717_peerj_cs_90
crossref_primary_10_1016_j_toxicon_2017_07_012
crossref_primary_10_1186_s12864_016_2944_3
crossref_primary_10_3390_toxins10120488
crossref_primary_10_1128_MCB_00104_20
crossref_primary_10_1534_genetics_117_202655
crossref_primary_10_3390_toxins8040102
crossref_primary_10_1016_j_semcdb_2017_07_026
crossref_primary_10_1093_molbev_msz181
crossref_primary_10_3390_biology11010091
crossref_primary_10_3390_toxins14030206
crossref_primary_10_1038_s41598_017_18355_1
crossref_primary_10_1016_j_toxicon_2021_03_005
crossref_primary_10_1093_gbe_evw155
crossref_primary_10_1086_705113
crossref_primary_10_3390_toxins8120368
crossref_primary_10_1007_s00338_021_02072_3
crossref_primary_10_3389_fevo_2019_00320
crossref_primary_10_3389_fsufs_2021_814188
crossref_primary_10_1186_s40409_016_0087_2
crossref_primary_10_3389_fevo_2019_00085
crossref_primary_10_1093_gbe_evab081
Cites_doi 10.1007/BF00298083
10.1093/molbev/msu335
10.1016/j.cca.2004.12.002
10.1038/nature08830
10.1242/jeb.02627
10.1007/978-94-007-6650-1_6-1
10.1186/1471-2156-12-94
10.1016/j.toxicon.2013.05.002
10.3390/md10081812
10.1093/molbev/msu337
10.1093/molbev/msr091
10.1093/molbev/msu294
10.1186/s12864-015-1568-3
10.1073/pnas.1314702110
10.1146/annurev.genom.9.081307.164356
10.1093/nar/gkj020
10.1002/ece3.452
10.1093/genetics/123.3.585
10.1093/nar/gkl217
10.1016/j.cub.2013.05.062
10.1159/000092424
10.1038/nature10249
10.1074/mcp.M111.015487
10.1074/mcp.M112.021469
10.1016/0041-0101(95)00085-Z
10.1093/molbev/msr180
10.1016/j.toxicon.2005.11.013
10.1016/j.toxicon.2004.07.028
10.1016/j.toxicon.2012.04.331
10.1016/j.toxicon.2009.06.031
10.1016/S0022-2836(05)80360-2
10.1093/molbev/msn274
10.1016/j.tree.2012.10.020
10.1111/pala.12116
10.1093/gbe/evu166
10.1016/j.toxicon.2014.04.004
10.1016/j.toxicon.2012.05.020
10.1160/TH04-11-0707
10.1126/science.1123701
10.1093/genetics/151.4.1531
10.1371/journal.pcbi.1000262
10.1580/1080-6032(2000)011[0233:IACFJE]2.3.CO;2
10.1016/S0378-1119(00)00490-X
10.1073/pnas.96.12.6820
10.1126/science.290.5494.1151
10.1038/ncomms2065
10.1073/pnas.94.15.7799
10.1186/1471-2148-9-146
10.1002/cbic.201300305
10.1016/S0378-1119(00)00571-0
10.1093/molbev/mst197
10.1007/s00239-003-2461-2
10.1101/gr.3228405
10.1093/molbev/mss068
10.1111/j.1538-7836.2006.01969.x
10.1074/jbc.M111.328203
10.1016/j.toxicon.2012.03.010
10.1186/1471-2164-14-509
10.1111/j.1744-7410.2004.tb00139.x
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Copyright BioMed Central 2015
Gacesa et al. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Copyright BioMed Central 2015
– notice: Gacesa et al. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1186/s12864-015-1976-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
ExternalDocumentID PMC4604070
4017079701
A541364117
26464356
10_1186_s12864_015_1976_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
AIXEN
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c594t-442c8ffd60c0847791c61a5b000fd1f00e764ff37a12f2db5240d4c78d73e0eb3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Thu Aug 21 18:18:28 EDT 2025
Tue Aug 05 10:50:18 EDT 2025
Fri Jul 25 10:31:28 EDT 2025
Tue Jun 17 22:06:12 EDT 2025
Tue Jun 10 21:01:57 EDT 2025
Fri Jun 27 05:58:40 EDT 2025
Thu Jan 02 22:20:04 EST 2025
Thu Apr 24 22:53:47 EDT 2025
Tue Jul 01 02:22:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-442c8ffd60c0847791c61a5b000fd1f00e764ff37a12f2db5240d4c78d73e0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1779835968?pq-origsite=%requestingapplication%
PMID 26464356
PQID 1779835968
PQPubID 44682
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4604070
proquest_miscellaneous_1722420152
proquest_journals_1779835968
gale_infotracmisc_A541364117
gale_infotracacademiconefile_A541364117
gale_incontextgauss_ISR_A541364117
pubmed_primary_26464356
crossref_primary_10_1186_s12864_015_1976_4
crossref_citationtrail_10_1186_s12864_015_1976_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-13
PublicationDateYYYYMMDD 2015-10-13
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-13
  day: 13
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References C Shinzato (1976_CR36) 2011; 476
BG Fry (1976_CR1) 2009; 10
PA Hutchings (1976_CR55) 1986; 4
JL Carballo (1976_CR57) 2013; 3
T Turk (1976_CR6) 2009; 54
AJ Weston (1976_CR8) 2013; 71
AC Morandini (1976_CR3) 2014
JM Gutiérrez (1976_CR12) 1995; 33
MA Reza (1976_CR16) 2006; 4
B Frazão (1976_CR51) 2012; 10
M Nei (1976_CR9) 1997; 94
R Doley (1976_CR27) 2009; 9
L Sanz (1976_CR32) 2012; 60
D Chang (1976_CR26) 2012; 29
T Ogawa (1976_CR15) 2005; 45
K Tamura (1976_CR62) 2013; 30
TF Duda Jr (1976_CR19) 1999; 96
ES Wong (1976_CR29) 2012; 29
NR Casewell (1976_CR11) 2011; 28
A Force (1976_CR49) 1999; 151
H Iten Van (1976_CR39) 2013; 58
PJ Fenner (1976_CR5) 2000; 11
E Shoguchi (1976_CR60) 2013; 23
L Muscatine (1976_CR53) 1990
SF Altschul (1976_CR46) 1990; 215
GJ Binford (1976_CR48) 2009; 26
C Zhijian (1976_CR18) 2006; 47
BG Fry (1976_CR21) 2005; 15
JC Sullivan (1976_CR34) 2006; 34
AJ Weston (1976_CR7) 2012; 11
A Biegert (1976_CR47) 2006; 34
AM Altenhoff (1976_CR61) 2009; 5
IL Junqueira-de-Azevedo (1976_CR24) 2015; 32
E Glasser (1976_CR58) 2014; 91
E Siigur (1976_CR30) 2001; 263
F Tajima (1976_CR63) 1989; 123
AC Marques (1976_CR2) 2004; 123
M Jouiaei (1976_CR50) 2015
F Jungo (1976_CR59) 2012; 60
J Reyes-Velasco (1976_CR20) 2014; 32
P Temple-Smith (1976_CR44) 1973
GD Stanley Jr (1976_CR54) 2006; 312
NR Casewell (1976_CR45) 2013; 28
FF Radwan (1976_CR52) 2004; 139
WC Dunlap (1976_CR38) 2013; 14
A Zundelevich (1976_CR56) 2007; 210
RM Kini (1976_CR13) 2005; 34
BG Fry (1976_CR17) 2003; 57
D Kordiš (1976_CR10) 2000; 261
AM Moura-da-Silva (1976_CR31) 2011; 12
JS Oliveira (1976_CR43) 2012; 60
AD Hargreaves (1976_CR25) 2014; 6
JA Chapman (1976_CR35) 2010; 464
A Starcevic (1976_CR40) 2013; 14
FJ Vonk (1976_CR22) 2013; 110
S Dutertre (1976_CR33) 2013; 12
T Rachamim (1976_CR41) 2015; 32
M Lynch (1976_CR28) 2000; 290
H Iten Van (1976_CR4) 2014; 4
NR Casewell (1976_CR23) 2012; 3
TN Minh Le (1976_CR14) 2005; 93
PG Balasubramanian (1976_CR37) 2012; 287
DL Brinkman (1976_CR42) 2015; 16
19640225 - Annu Rev Genomics Hum Genet. 2009;10:483-511
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
23219381 - Trends Ecol Evol. 2013 Apr;28(4):219-29
24768765 - Toxicon. 2014 Dec;91:103-13
21785439 - Nature. 2011 Aug 18;476(7360):320-3
10359796 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6820-3
23015776 - Mar Drugs. 2012 Aug;10(8):1812-51
19148271 - PLoS Comput Biol. 2009 Jan;5(1):e1000262
17170152 - J Exp Biol. 2007 Jan;210(Pt 1):91-6
22351649 - Mol Cell Proteomics. 2012 Jun;11(6):M111.015487
23821453 - Chembiochem. 2013 Aug 19;14(12):1407-9
16707928 - Pathophysiol Haemost Thromb. 2005;34(4-5):200-4
2513255 - Genetics. 1989 Nov;123(3):585-95
11199527 - Wilderness Environ Med. 2000 Winter;11(4):233-40
12962311 - J Mol Evol. 2003 Jul;57(1):110-29
16706981 - J Thromb Haemost. 2006 Jun;4(6):1346-53
16690848 - Science. 2006 May 12;312(5775):857-8
24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9
22543188 - Toxicon. 2012 Sep 15;60(4):455-69
19042943 - Mol Biol Evol. 2009 Mar;26(3):547-66
9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806
19563684 - BMC Evol Biol. 2009;9:146
16387337 - Toxicon. 2006 Mar;47(3):348-55
22990862 - Nat Commun. 2012;3:1066
23152539 - Mol Cell Proteomics. 2013 Feb;12(2):312-29
25757852 - Mol Biol Evol. 2015 Jun;32(6):1598-610
23610632 - Ecol Evol. 2013 Apr;3(4):872-86
25338510 - Mol Biol Evol. 2015 Jan;32(1):173-83
16845021 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W335-9
15741511 - Genome Res. 2005 Mar;15(3):403-20
19576920 - Toxicon. 2009 Dec 15;54(8):1031-7
25518955 - Mol Biol Evol. 2015 Mar;32(3):740-53
25502939 - Mol Biol Evol. 2015 Mar;32(3):754-66
15683837 - Comp Biochem Physiol C Toxicol Pharmacol. 2004 Dec;139(4):267-72
11223258 - Gene. 2001 Jan 24;263(1-2):199-203
24297900 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20651-6
22683676 - Toxicon. 2012 Sep 15;60(4):539-50
23850284 - Curr Biol. 2013 Aug 5;23(15):1399-408
21816864 - Mol Biol Evol. 2012 Jan;29(1):167-77
20228792 - Nature. 2010 Mar 25;464(7288):592-6
26014501 - BMC Genomics. 2015;16:407
22465017 - Toxicon. 2012 Sep 15;60(4):551-7
15735790 - Thromb Haemost. 2005 Mar;93(3):420-9
16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9
23688393 - Toxicon. 2013 Sep;71:11-7
22044657 - BMC Genet. 2011;12:94
11164036 - Gene. 2000 Dec 30;261(1):43-52
10101175 - Genetics. 1999 Apr;151(4):1531-45
25079342 - Genome Biol Evol. 2014 Aug;6(8):2088-95
22337864 - Mol Biol Evol. 2012 Aug;29(8):2019-29
23889801 - BMC Genomics. 2013;14:509
8744981 - Toxicon. 1995 Nov;33(11):1405-24
21478373 - Mol Biol Evol. 2011 Sep;28(9):2637-49
22291027 - J Biol Chem. 2012 Mar 23;287(13):9672-81
15581677 - Toxicon. 2005 Jan;45(1):1-14
11073452 - Science. 2000 Nov 10;290(5494):1151-5
References_xml – volume: 4
  start-page: 239
  year: 1986
  ident: 1976_CR55
  publication-title: Coral Reefs
  doi: 10.1007/BF00298083
– volume: 32
  start-page: 740
  year: 2015
  ident: 1976_CR41
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu335
– volume: 139
  start-page: 267
  year: 2004
  ident: 1976_CR52
  publication-title: Comp Biochem Physiol C Toxicol Pharmacol
  doi: 10.1016/j.cca.2004.12.002
– volume: 464
  start-page: 592
  year: 2010
  ident: 1976_CR35
  publication-title: Nature
  doi: 10.1038/nature08830
– volume: 210
  start-page: 91
  year: 2007
  ident: 1976_CR56
  publication-title: J Exp Biol
  doi: 10.1242/jeb.02627
– start-page: 1
  volume-title: Tonixology – marine and freshwater toxins
  year: 2014
  ident: 1976_CR3
  doi: 10.1007/978-94-007-6650-1_6-1
– volume: 12
  start-page: 94
  year: 2011
  ident: 1976_CR31
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-12-94
– volume: 71
  start-page: 11
  year: 2013
  ident: 1976_CR8
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2013.05.002
– volume: 58
  start-page: 111
  year: 2013
  ident: 1976_CR39
  publication-title: Acta Palaeontol Pol
– volume: 10
  start-page: 1812
  year: 2012
  ident: 1976_CR51
  publication-title: Mar Drugs
  doi: 10.3390/md10081812
– volume: 32
  start-page: 754
  year: 2015
  ident: 1976_CR24
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu337
– volume: 28
  start-page: 2637
  year: 2011
  ident: 1976_CR11
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr091
– volume: 32
  start-page: 173
  year: 2014
  ident: 1976_CR20
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu294
– volume: 16
  start-page: 407
  year: 2015
  ident: 1976_CR42
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1568-3
– volume: 110
  start-page: 20651
  year: 2013
  ident: 1976_CR22
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1314702110
– volume: 10
  start-page: 483
  year: 2009
  ident: 1976_CR1
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev.genom.9.081307.164356
– volume: 34
  start-page: D495
  year: 2006
  ident: 1976_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkj020
– volume: 3
  start-page: 872
  year: 2013
  ident: 1976_CR57
  publication-title: Ecol Evol
  doi: 10.1002/ece3.452
– volume: 123
  start-page: 585
  year: 1989
  ident: 1976_CR63
  publication-title: Genetics
  doi: 10.1093/genetics/123.3.585
– volume: 34
  start-page: W335
  issue: Web Server issu
  year: 2006
  ident: 1976_CR47
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl217
– volume: 23
  start-page: 1399
  year: 2013
  ident: 1976_CR60
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2013.05.062
– volume: 34
  start-page: 200
  year: 2005
  ident: 1976_CR13
  publication-title: Pathophysiol Haemost Thromb
  doi: 10.1159/000092424
– volume: 476
  start-page: 320
  year: 2011
  ident: 1976_CR36
  publication-title: Nature
  doi: 10.1038/nature10249
– start-page: 75
  volume-title: Ecosystems of the World: Coral Reefs
  year: 1990
  ident: 1976_CR53
– volume: 11
  start-page: M111.015487
  year: 2012
  ident: 1976_CR7
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M111.015487
– volume: 12
  start-page: 312
  year: 2013
  ident: 1976_CR33
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M112.021469
– volume: 33
  start-page: 1405
  year: 1995
  ident: 1976_CR12
  publication-title: Toxicon
  doi: 10.1016/0041-0101(95)00085-Z
– volume: 29
  start-page: 167
  year: 2012
  ident: 1976_CR29
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr180
– volume: 47
  start-page: 348
  year: 2006
  ident: 1976_CR18
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2005.11.013
– volume: 45
  start-page: 1
  year: 2005
  ident: 1976_CR15
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2004.07.028
– volume: 60
  start-page: 455
  year: 2012
  ident: 1976_CR32
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2012.04.331
– volume: 54
  start-page: 1031
  year: 2009
  ident: 1976_CR6
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2009.06.031
– volume: 215
  start-page: 403
  year: 1990
  ident: 1976_CR46
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 26
  start-page: 547
  year: 2009
  ident: 1976_CR48
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn274
– volume: 28
  start-page: 219
  year: 2013
  ident: 1976_CR45
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2012.10.020
– volume: 4
  start-page: 677
  year: 2014
  ident: 1976_CR4
  publication-title: Palaeontol
  doi: 10.1111/pala.12116
– volume: 6
  start-page: 2088
  year: 2014
  ident: 1976_CR25
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evu166
– volume: 91
  start-page: 103
  year: 2014
  ident: 1976_CR58
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2014.04.004
– volume: 60
  start-page: 539
  year: 2012
  ident: 1976_CR43
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2012.05.020
– volume: 93
  start-page: 420
  year: 2005
  ident: 1976_CR14
  publication-title: Thromb Haemost
  doi: 10.1160/TH04-11-0707
– volume: 312
  start-page: 857
  year: 2006
  ident: 1976_CR54
  publication-title: Science
  doi: 10.1126/science.1123701
– volume: 151
  start-page: 1531
  year: 1999
  ident: 1976_CR49
  publication-title: Genetics
  doi: 10.1093/genetics/151.4.1531
– volume: 5
  year: 2009
  ident: 1976_CR61
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000262
– volume: 11
  start-page: 233
  year: 2000
  ident: 1976_CR5
  publication-title: Wild Environ Med
  doi: 10.1580/1080-6032(2000)011[0233:IACFJE]2.3.CO;2
– volume: 261
  start-page: 43
  year: 2000
  ident: 1976_CR10
  publication-title: Gene
  doi: 10.1016/S0378-1119(00)00490-X
– volume: 96
  start-page: 6820
  year: 1999
  ident: 1976_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.12.6820
– volume: 290
  start-page: 1151
  year: 2000
  ident: 1976_CR28
  publication-title: Science
  doi: 10.1126/science.290.5494.1151
– volume-title: Seasonal breeding biology of the platypus, Ornithorhynchus anatinus with special reference to the male
  year: 1973
  ident: 1976_CR44
– volume: 3
  start-page: 1066
  year: 2012
  ident: 1976_CR23
  publication-title: Nat Commun
  doi: 10.1038/ncomms2065
– volume: 94
  start-page: 7799
  year: 1997
  ident: 1976_CR9
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.15.7799
– volume: 9
  start-page: 146
  year: 2009
  ident: 1976_CR27
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-9-146
– year: 2015
  ident: 1976_CR50
  publication-title: Mol Biol Evol
– volume: 14
  start-page: 1407
  year: 2013
  ident: 1976_CR40
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201300305
– volume: 263
  start-page: 199
  year: 2001
  ident: 1976_CR30
  publication-title: Gene
  doi: 10.1016/S0378-1119(00)00571-0
– volume: 30
  start-page: 2725
  year: 2013
  ident: 1976_CR62
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst197
– volume: 57
  start-page: 110
  year: 2003
  ident: 1976_CR17
  publication-title: J Mol Evol
  doi: 10.1007/s00239-003-2461-2
– volume: 15
  start-page: 403
  year: 2005
  ident: 1976_CR21
  publication-title: Genome Res
  doi: 10.1101/gr.3228405
– volume: 29
  start-page: 2019
  year: 2012
  ident: 1976_CR26
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss068
– volume: 4
  start-page: 1346
  year: 2006
  ident: 1976_CR16
  publication-title: J Thromb Haemost
  doi: 10.1111/j.1538-7836.2006.01969.x
– volume: 287
  start-page: 9672
  year: 2012
  ident: 1976_CR37
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.328203
– volume: 60
  start-page: 551
  year: 2012
  ident: 1976_CR59
  publication-title: Toxicon
  doi: 10.1016/j.toxicon.2012.03.010
– volume: 14
  start-page: 509
  year: 2013
  ident: 1976_CR38
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-509
– volume: 123
  start-page: 23
  year: 2004
  ident: 1976_CR2
  publication-title: Invert Biol
  doi: 10.1111/j.1744-7410.2004.tb00139.x
– reference: 16845021 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W335-9
– reference: 23850284 - Curr Biol. 2013 Aug 5;23(15):1399-408
– reference: 22044657 - BMC Genet. 2011;12:94
– reference: 26014501 - BMC Genomics. 2015;16:407
– reference: 25338510 - Mol Biol Evol. 2015 Jan;32(1):173-83
– reference: 19042943 - Mol Biol Evol. 2009 Mar;26(3):547-66
– reference: 23219381 - Trends Ecol Evol. 2013 Apr;28(4):219-29
– reference: 22990862 - Nat Commun. 2012;3:1066
– reference: 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9
– reference: 25757852 - Mol Biol Evol. 2015 Jun;32(6):1598-610
– reference: 19576920 - Toxicon. 2009 Dec 15;54(8):1031-7
– reference: 24768765 - Toxicon. 2014 Dec;91:103-13
– reference: 10359796 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6820-3
– reference: 2513255 - Genetics. 1989 Nov;123(3):585-95
– reference: 21478373 - Mol Biol Evol. 2011 Sep;28(9):2637-49
– reference: 16387337 - Toxicon. 2006 Mar;47(3):348-55
– reference: 25518955 - Mol Biol Evol. 2015 Mar;32(3):740-53
– reference: 24297900 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20651-6
– reference: 23152539 - Mol Cell Proteomics. 2013 Feb;12(2):312-29
– reference: 11164036 - Gene. 2000 Dec 30;261(1):43-52
– reference: 21816864 - Mol Biol Evol. 2012 Jan;29(1):167-77
– reference: 22465017 - Toxicon. 2012 Sep 15;60(4):551-7
– reference: 16707928 - Pathophysiol Haemost Thromb. 2005;34(4-5):200-4
– reference: 25502939 - Mol Biol Evol. 2015 Mar;32(3):754-66
– reference: 16706981 - J Thromb Haemost. 2006 Jun;4(6):1346-53
– reference: 25079342 - Genome Biol Evol. 2014 Aug;6(8):2088-95
– reference: 16690848 - Science. 2006 May 12;312(5775):857-8
– reference: 16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9
– reference: 15741511 - Genome Res. 2005 Mar;15(3):403-20
– reference: 23821453 - Chembiochem. 2013 Aug 19;14(12):1407-9
– reference: 11199527 - Wilderness Environ Med. 2000 Winter;11(4):233-40
– reference: 21785439 - Nature. 2011 Aug 18;476(7360):320-3
– reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806
– reference: 11073452 - Science. 2000 Nov 10;290(5494):1151-5
– reference: 11223258 - Gene. 2001 Jan 24;263(1-2):199-203
– reference: 23015776 - Mar Drugs. 2012 Aug;10(8):1812-51
– reference: 15581677 - Toxicon. 2005 Jan;45(1):1-14
– reference: 19148271 - PLoS Comput Biol. 2009 Jan;5(1):e1000262
– reference: 23688393 - Toxicon. 2013 Sep;71:11-7
– reference: 19640225 - Annu Rev Genomics Hum Genet. 2009;10:483-511
– reference: 10101175 - Genetics. 1999 Apr;151(4):1531-45
– reference: 22337864 - Mol Biol Evol. 2012 Aug;29(8):2019-29
– reference: 12962311 - J Mol Evol. 2003 Jul;57(1):110-29
– reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
– reference: 22543188 - Toxicon. 2012 Sep 15;60(4):455-69
– reference: 20228792 - Nature. 2010 Mar 25;464(7288):592-6
– reference: 23889801 - BMC Genomics. 2013;14:509
– reference: 23610632 - Ecol Evol. 2013 Apr;3(4):872-86
– reference: 22683676 - Toxicon. 2012 Sep 15;60(4):539-50
– reference: 8744981 - Toxicon. 1995 Nov;33(11):1405-24
– reference: 17170152 - J Exp Biol. 2007 Jan;210(Pt 1):91-6
– reference: 15683837 - Comp Biochem Physiol C Toxicol Pharmacol. 2004 Dec;139(4):267-72
– reference: 22291027 - J Biol Chem. 2012 Mar 23;287(13):9672-81
– reference: 19563684 - BMC Evol Biol. 2009;9:146
– reference: 15735790 - Thromb Haemost. 2005 Mar;93(3):420-9
– reference: 22351649 - Mol Cell Proteomics. 2012 Jun;11(6):M111.015487
SSID ssj0017825
Score 2.345808
Snippet Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic,...
Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic,...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 774
SubjectTerms Amino Acid Sequence
Analysis
Animal behavior
Animals
Anthozoa - genetics
Anthozoa - pathogenicity
Bioinformatics
Cnidarian Venoms - genetics
Cnidarian Venoms - toxicity
Evolution
Evolution, Molecular
Gene Duplication
Genetic aspects
Genetic translation
Genome
Nematocyst - metabolism
Peptides
Phylogeny
Proteome - genetics
Proteome - toxicity
Selection, Genetic
Snakes
Toxins
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIOQeEhW46wfCRe0qqgKEhwolfZmOX6USCUpTVZi-UH8Tma82W3DoadE8kRxMuOZz_b4G0JecQgKtfCC-VgoJmSIzMYiMOFqV3tRO-7x7PCXr-rwWHxeyMW44NaPaZUbn5gcte8crpHvca0rQAuVKj-c_WJYNQp3V8cSGtfJDaQuQ6vWi-2Ei0P0k-NOJi_VXg--WGHOhWQcojATk1j0v0e-FJKm6ZKX4s_BHXJ7BI50vtb0XXIttPfIzXUpydV98hf5o6lfXmxHU3seaFrjxgx1altPU146FrgKFPM2MEsIfuzpig4dBSAIl9-No4m6ofsZaBdpi5SunVv1Q08bMFNApp7ikRQ6x9pfYD_UNyfNgAkylr7ZbxsPk2_7niZSgj8d3B1Bd9NRrLaxbx-Q44OP3_cP2ViDgTlZiYEJUbgyRq9yl0Mg0xV3iluJ2CF6HvM8aCVinGnLi1j4WgJC8MLp0utZyGGm_pDstF0bHhPqrLOqEmUVnRJyJq3OnZopDYAKnEpuM5JvtGHcSFCOdTJOTZqolMqsFWhAgQYVaERG3m0fOVuzc1wl_BJVbJD1osW0mhO77Hvz6eibmUuI5UpwrjPyehSKHbwc-5xOKcAnIFHWRHJ3IgnD0k2bN5ZkRrfQmwsjzsiLbTM-ialubeiWKAOoCmCZLDLyaG14228D9AoIUqqM6IlJbgWQLHza0jY_Emm4UOCudf7k6m49JbeKND5yxme7ZGc4X4ZngLqG-nkaWv8AKD4vMA
  priority: 102
  providerName: ProQuest
Title Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia)
URI https://www.ncbi.nlm.nih.gov/pubmed/26464356
https://www.proquest.com/docview/1779835968
https://www.proquest.com/docview/1722420152
https://pubmed.ncbi.nlm.nih.gov/PMC4604070
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LixQxEA77QPAivrd1HaIIghDt9OTRcxAZZZdV2EVWB-YWuvNYB8Zune6BnbN_3KpMz-y2LOKpD6l-VapSX5LKV4S85BAUSuEEcyFTTEgfWBEyz4QtbelEabnDs8OnZ-pkIj5P5XSHbMpbdQpsbpzaYT2pyWL-5vLX6j04_Lvo8Ll628AYqzCXQjIO0ZWJXbIPgUljQYNTcbWpAMFQxsNGmrMMpgndJueNj-iFqb8H62vRqp9JeS00Hd8ldzpMScdrI7hHdnx1n9xaV5lcPSC_kVqauuXVTjUtFp7G5W9MXqdF5WhMWcfaV55iSgcmEIHO5yva1hQwIlwuZ5ZGVof6h6d1oBWyvdZ21bQNnYEFA2h1FE-r0DGWBQPTom52MWsxd6Z4SCbHR98-nrCu9gKzciRaJkRm8xCcSm0KAUyPuFW8kIgZguMhTb1WIoShLngWMldKQAZOWJ07PfQpzNAfkb2qrvwBobawhRqJfBSsEnIoC51aNVQagBQMJmmRkHSjamM7YnKsjzE3cYKSK7PuHQO9Y7B3jEjI6-0tP9esHP8SfoH9Z5DtosJ0moti2TTm09dzM5YQw5XgXCfkVScUang5fnM8nQC_gARZPcnDniS4o-03b8zEbKzZcFAgQN2RyhPyfNuMd2KKW-XrJcoAmgI4JrOEPF5b1fbfALUCcpQqIbpnb1sBJAnvt1Sz75EsXCgYpnX65H-U8JTczqILpIwPD8leu1j6Z4C52nJAdvVUD8j-h6OzL-eDuHIxiN71B-ZTLNk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXxBtDgQWBoEhWvc4-bCSEokKV0MeBtlJuZr2PYqnYpXYE4Qdx5Dcy4zhpzaG3nmJpx85aMzvfN97ZGUJeMgCFnFseWh_LkAvnQ-1jF3KTm9zy3DCLZ4d39-TokH-eiMkK-bs4C4NplQuf2DpqWxn8Rr7BlEqBLaQy-XDyI8SuUbi7umihMTeLbTf7CSFb_X78EfT7Ko63Ph1sjsKuq0BoRMqbkPPYJN5bGZkIXLNKmZFMC0RDb5mPIqck936gNIt9bHMBmGe5UYlVAxdB7AnPvUKuAvBGGOypyTLAY4C2ots5ZYncqMH3S8zxECED1A95D_v-R4BzENhPzzyHd1u3yM2OqNLh3LJukxVX3iHX5q0rZ3fJH6xXTe30bPub6lNH22_qmBFPdWlpmwePDbUcxTwRzEoCRR7PaFNRIJ7w86swtC0VUX13tPK0xBKylZnVTU0LWBbAhC3FIzB0iL3GwF6pLY6KBhNyNH2zWRYWgn39jrZFEH5XcLUP022PfpWFXr9HDi9FO_fJalmV7iGhRhstU56k3kguBkKryMiBVEDgwIlFOiDRQhuZ6QqiY1-O46wNjBKZzRWYgQIzVGDGA_J2ecvJvBrIRcIvUMUZVtkoMY3nSE_rOhvvf8mGAriD5IypgLzuhHwFf45zbk9FwCtgYa6e5FpPEtyA6Q8vLCnr3FCdnS2agDxfDuOdmFpXumqKMsDigAaKOCAP5oa3fDdgy8BYhQyI6pnkUgCLk_dHyuJbW6ScS4AHFT26eFrPyPXRwe5OtjPe235MbsTtWolCNlgjq83p1D0BxtfkT9tlRsnXy17X_wCPvGu1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+duplications+are+extensive+and+contribute+significantly+to+the+toxic+proteome+of+nematocysts+isolated+from+Acropora+digitifera&rft.jtitle=BMC+genomics&rft.au=Gacesa%2C+Ranko&rft.au=Chung%2C+Ray&rft.au=Dunn%2C+Simon+R&rft.au=Weston%2C+Andrew+J&rft.date=2015-10-13&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=16&rft_id=info:doi/10.1186%2Fs12864-015-1976-4&rft.externalDBID=ISR&rft.externalDocID=A541364117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon