Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia)
Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum...
Saved in:
Published in | BMC genomics Vol. 16; no. 1; p. 774 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
13.10.2015
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait.
Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ).
A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases.
Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. |
---|---|
AbstractList | Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available (https://github.com/rgacesa/HHCompare). A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Methods Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available (https://github.com/rgacesa/HHCompare). Results A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Conclusions Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Methods Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( Results A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Conclusions Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. Keywords: Coral, Nematocyst, Venom, Proteome, Evolution, Hidden Markov model (HMM) Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait. Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ). A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases. Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait.BACKGROUNDGene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic, transcriptomic and proteomic evidence now challenges this role to be at best equivocal to other processess . Cnidaria are arguably the most ancient phylum of the extant metazoa that are venomous and such provide a definitive ancestral anchor to examine the evolution of this trait.Here we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ).METHODSHere we compare predicted toxins from the translated genome of the coral Acropora digitifera to putative toxins revealed by proteomic analysis of soluble proteins discharged from nematocysts, to determine the extent to which gene duplications contribute to venom innovation in this reef-building coral species. A new bioinformatics tool called HHCompare was developed to detect potential gene duplications in the genomic data, which is made freely available ( https://github.com/rgacesa/HHCompare ).A total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases.RESULTSA total of 55 potential toxin encoding genes could be predicted from the A. digitifera genome, of which 36 (65 %) had likely arisen by gene duplication as evinced using the HHCompare tool and verified using two standard phylogeny methods. Surprisingly, only 22 % (12/55) of the potential toxin repertoire could be detected following rigorous proteomic analysis, for which only half (6/12) of the toxin proteome could be accounted for as peptides encoded by the gene duplicates. Biological activities of these toxins are dominatedby putative phospholipases and toxic peptidases.Gene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration.CONCLUSIONSGene expansions in A. digitifera venom are the most extensive yet described in any venomous animal, and gene duplication plays a significant role leading to toxin diversification in this coral species. Since such low numbers of toxins were detected in the proteome, it is unlikely that the venom is evolving rapidly by prey-driven positive natural selection. Rather we contend that the venom has a defensive role deterring predation or harm from interspecific competition and overgrowth by fouling organisms. Factors influencing translation of toxin encoding genes perhaps warrants more profound experimental consideration. |
ArticleNumber | 774 |
Audience | Academic |
Author | Long, Paul F. Weston, Andrew J. Chung, Ray Jaimes-Becerra, Adrian Hranueli, Daslav Ward, Malcolm Starcevic, Antonio Gacesa, Ranko Dunn, Simon R. Marques, Antonio C. Morandini, André C. |
Author_xml | – sequence: 1 givenname: Ranko surname: Gacesa fullname: Gacesa, Ranko – sequence: 2 givenname: Ray surname: Chung fullname: Chung, Ray – sequence: 3 givenname: Simon R. surname: Dunn fullname: Dunn, Simon R. – sequence: 4 givenname: Andrew J. surname: Weston fullname: Weston, Andrew J. – sequence: 5 givenname: Adrian surname: Jaimes-Becerra fullname: Jaimes-Becerra, Adrian – sequence: 6 givenname: Antonio C. surname: Marques fullname: Marques, Antonio C. – sequence: 7 givenname: André C. surname: Morandini fullname: Morandini, André C. – sequence: 8 givenname: Daslav surname: Hranueli fullname: Hranueli, Daslav – sequence: 9 givenname: Antonio surname: Starcevic fullname: Starcevic, Antonio – sequence: 10 givenname: Malcolm surname: Ward fullname: Ward, Malcolm – sequence: 11 givenname: Paul F. surname: Long fullname: Long, Paul F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26464356$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9qFDEUxgep2D_6AN5IwJv2YmqSzSSzXhSWRWuhIFi9DtnMyfaUmWRNMqXrA_mcZt1au0UkFzlMft-ZnHzfYbXng4eqes3oKWOtfJcYb6WoKWtqNlWyFs-qAyYUqzmTYu9RvV8dpnRDKVMtb15U-1wKKSaNPKh-noMH0o2rHq3JGHwiJgKBuww-4S0Q4ztig88RF2MGknDp0RXW535NciD5Gsp2h5asYsgQBiDBEQ-DycGuU04EU-hNho64GAYyszGsQjSkwyVmdFDK47nHzkQ078nM5-vwI5TqyvblzGb0aE5eVs-d6RO8ut-Pqm8fP3ydf6ovP59fzGeXtW2mItdCcNs610lqaSuUmjIrmWkWlFLXMUcpKCmcmyjDuOPdouGCdsKqtlMToLCYHFVn276rcTFAZ6EMbnq9ijiYuNbBoN498Xitl-FWC0kFVbQ0OL5vEMP3EVLWAyYLfW88hDFppjgXvDjGC_r2CXoTxujLeIVS03bSTGX7l1qaHjR6F8p_7aapnjWCTaRgTBXq9B9UWR0MWOwDh-X7juBkR7CxuJi-NGNK-uLqyy775vGjPLzGnxQVgG2B4m1KEdwDwqjeJFVvk6rL3HqTVC2KRj3RWMy_E1hujv1_lL8A6WXugQ |
CitedBy_id | crossref_primary_10_1093_icb_icw113 crossref_primary_10_1186_s12864_020_06952_w crossref_primary_10_1186_s12864_020_6566_4 crossref_primary_10_3390_md18080413 crossref_primary_10_1016_j_isci_2019_02_001 crossref_primary_10_3390_toxins16020075 crossref_primary_10_1016_j_jprot_2023_104984 crossref_primary_10_1016_j_toxicon_2023_107556 crossref_primary_10_1016_j_toxicon_2019_09_007 crossref_primary_10_7717_peerj_11208 crossref_primary_10_1016_j_toxicon_2016_04_048 crossref_primary_10_1007_s00204_022_03311_4 crossref_primary_10_1016_j_gde_2016_05_024 crossref_primary_10_7717_peerj_cs_90 crossref_primary_10_1016_j_toxicon_2017_07_012 crossref_primary_10_1186_s12864_016_2944_3 crossref_primary_10_3390_toxins10120488 crossref_primary_10_1128_MCB_00104_20 crossref_primary_10_1534_genetics_117_202655 crossref_primary_10_3390_toxins8040102 crossref_primary_10_1016_j_semcdb_2017_07_026 crossref_primary_10_1093_molbev_msz181 crossref_primary_10_3390_biology11010091 crossref_primary_10_3390_toxins14030206 crossref_primary_10_1038_s41598_017_18355_1 crossref_primary_10_1016_j_toxicon_2021_03_005 crossref_primary_10_1093_gbe_evw155 crossref_primary_10_1086_705113 crossref_primary_10_3390_toxins8120368 crossref_primary_10_1007_s00338_021_02072_3 crossref_primary_10_3389_fevo_2019_00320 crossref_primary_10_3389_fsufs_2021_814188 crossref_primary_10_1186_s40409_016_0087_2 crossref_primary_10_3389_fevo_2019_00085 crossref_primary_10_1093_gbe_evab081 |
Cites_doi | 10.1007/BF00298083 10.1093/molbev/msu335 10.1016/j.cca.2004.12.002 10.1038/nature08830 10.1242/jeb.02627 10.1007/978-94-007-6650-1_6-1 10.1186/1471-2156-12-94 10.1016/j.toxicon.2013.05.002 10.3390/md10081812 10.1093/molbev/msu337 10.1093/molbev/msr091 10.1093/molbev/msu294 10.1186/s12864-015-1568-3 10.1073/pnas.1314702110 10.1146/annurev.genom.9.081307.164356 10.1093/nar/gkj020 10.1002/ece3.452 10.1093/genetics/123.3.585 10.1093/nar/gkl217 10.1016/j.cub.2013.05.062 10.1159/000092424 10.1038/nature10249 10.1074/mcp.M111.015487 10.1074/mcp.M112.021469 10.1016/0041-0101(95)00085-Z 10.1093/molbev/msr180 10.1016/j.toxicon.2005.11.013 10.1016/j.toxicon.2004.07.028 10.1016/j.toxicon.2012.04.331 10.1016/j.toxicon.2009.06.031 10.1016/S0022-2836(05)80360-2 10.1093/molbev/msn274 10.1016/j.tree.2012.10.020 10.1111/pala.12116 10.1093/gbe/evu166 10.1016/j.toxicon.2014.04.004 10.1016/j.toxicon.2012.05.020 10.1160/TH04-11-0707 10.1126/science.1123701 10.1093/genetics/151.4.1531 10.1371/journal.pcbi.1000262 10.1580/1080-6032(2000)011[0233:IACFJE]2.3.CO;2 10.1016/S0378-1119(00)00490-X 10.1073/pnas.96.12.6820 10.1126/science.290.5494.1151 10.1038/ncomms2065 10.1073/pnas.94.15.7799 10.1186/1471-2148-9-146 10.1002/cbic.201300305 10.1016/S0378-1119(00)00571-0 10.1093/molbev/mst197 10.1007/s00239-003-2461-2 10.1101/gr.3228405 10.1093/molbev/mss068 10.1111/j.1538-7836.2006.01969.x 10.1074/jbc.M111.328203 10.1016/j.toxicon.2012.03.010 10.1186/1471-2164-14-509 10.1111/j.1744-7410.2004.tb00139.x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 BioMed Central Ltd. Copyright BioMed Central 2015 Gacesa et al. 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Copyright BioMed Central 2015 – notice: Gacesa et al. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1186/s12864-015-1976-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
ExternalDocumentID | PMC4604070 4017079701 A541364117 26464356 10_1186_s12864_015_1976_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ AIXEN C24 CGR CUY CVF ECM EIF NPM PMFND 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c594t-442c8ffd60c0847791c61a5b000fd1f00e764ff37a12f2db5240d4c78d73e0eb3 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Thu Aug 21 18:18:28 EDT 2025 Tue Aug 05 10:50:18 EDT 2025 Fri Jul 25 10:31:28 EDT 2025 Tue Jun 17 22:06:12 EDT 2025 Tue Jun 10 21:01:57 EDT 2025 Fri Jun 27 05:58:40 EDT 2025 Thu Jan 02 22:20:04 EST 2025 Thu Apr 24 22:53:47 EDT 2025 Tue Jul 01 02:22:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-442c8ffd60c0847791c61a5b000fd1f00e764ff37a12f2db5240d4c78d73e0eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1779835968?pq-origsite=%requestingapplication% |
PMID | 26464356 |
PQID | 1779835968 |
PQPubID | 44682 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4604070 proquest_miscellaneous_1722420152 proquest_journals_1779835968 gale_infotracmisc_A541364117 gale_infotracacademiconefile_A541364117 gale_incontextgauss_ISR_A541364117 pubmed_primary_26464356 crossref_primary_10_1186_s12864_015_1976_4 crossref_citationtrail_10_1186_s12864_015_1976_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-13 |
PublicationDateYYYYMMDD | 2015-10-13 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2015 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | C Shinzato (1976_CR36) 2011; 476 BG Fry (1976_CR1) 2009; 10 PA Hutchings (1976_CR55) 1986; 4 JL Carballo (1976_CR57) 2013; 3 T Turk (1976_CR6) 2009; 54 AJ Weston (1976_CR8) 2013; 71 AC Morandini (1976_CR3) 2014 JM Gutiérrez (1976_CR12) 1995; 33 MA Reza (1976_CR16) 2006; 4 B Frazão (1976_CR51) 2012; 10 M Nei (1976_CR9) 1997; 94 R Doley (1976_CR27) 2009; 9 L Sanz (1976_CR32) 2012; 60 D Chang (1976_CR26) 2012; 29 T Ogawa (1976_CR15) 2005; 45 K Tamura (1976_CR62) 2013; 30 TF Duda Jr (1976_CR19) 1999; 96 ES Wong (1976_CR29) 2012; 29 NR Casewell (1976_CR11) 2011; 28 A Force (1976_CR49) 1999; 151 H Iten Van (1976_CR39) 2013; 58 PJ Fenner (1976_CR5) 2000; 11 E Shoguchi (1976_CR60) 2013; 23 L Muscatine (1976_CR53) 1990 SF Altschul (1976_CR46) 1990; 215 GJ Binford (1976_CR48) 2009; 26 C Zhijian (1976_CR18) 2006; 47 BG Fry (1976_CR21) 2005; 15 JC Sullivan (1976_CR34) 2006; 34 AJ Weston (1976_CR7) 2012; 11 A Biegert (1976_CR47) 2006; 34 AM Altenhoff (1976_CR61) 2009; 5 IL Junqueira-de-Azevedo (1976_CR24) 2015; 32 E Glasser (1976_CR58) 2014; 91 E Siigur (1976_CR30) 2001; 263 F Tajima (1976_CR63) 1989; 123 AC Marques (1976_CR2) 2004; 123 M Jouiaei (1976_CR50) 2015 F Jungo (1976_CR59) 2012; 60 J Reyes-Velasco (1976_CR20) 2014; 32 P Temple-Smith (1976_CR44) 1973 GD Stanley Jr (1976_CR54) 2006; 312 NR Casewell (1976_CR45) 2013; 28 FF Radwan (1976_CR52) 2004; 139 WC Dunlap (1976_CR38) 2013; 14 A Zundelevich (1976_CR56) 2007; 210 RM Kini (1976_CR13) 2005; 34 BG Fry (1976_CR17) 2003; 57 D Kordiš (1976_CR10) 2000; 261 AM Moura-da-Silva (1976_CR31) 2011; 12 JS Oliveira (1976_CR43) 2012; 60 AD Hargreaves (1976_CR25) 2014; 6 JA Chapman (1976_CR35) 2010; 464 A Starcevic (1976_CR40) 2013; 14 FJ Vonk (1976_CR22) 2013; 110 S Dutertre (1976_CR33) 2013; 12 T Rachamim (1976_CR41) 2015; 32 M Lynch (1976_CR28) 2000; 290 H Iten Van (1976_CR4) 2014; 4 NR Casewell (1976_CR23) 2012; 3 TN Minh Le (1976_CR14) 2005; 93 PG Balasubramanian (1976_CR37) 2012; 287 DL Brinkman (1976_CR42) 2015; 16 19640225 - Annu Rev Genomics Hum Genet. 2009;10:483-511 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 23219381 - Trends Ecol Evol. 2013 Apr;28(4):219-29 24768765 - Toxicon. 2014 Dec;91:103-13 21785439 - Nature. 2011 Aug 18;476(7360):320-3 10359796 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6820-3 23015776 - Mar Drugs. 2012 Aug;10(8):1812-51 19148271 - PLoS Comput Biol. 2009 Jan;5(1):e1000262 17170152 - J Exp Biol. 2007 Jan;210(Pt 1):91-6 22351649 - Mol Cell Proteomics. 2012 Jun;11(6):M111.015487 23821453 - Chembiochem. 2013 Aug 19;14(12):1407-9 16707928 - Pathophysiol Haemost Thromb. 2005;34(4-5):200-4 2513255 - Genetics. 1989 Nov;123(3):585-95 11199527 - Wilderness Environ Med. 2000 Winter;11(4):233-40 12962311 - J Mol Evol. 2003 Jul;57(1):110-29 16706981 - J Thromb Haemost. 2006 Jun;4(6):1346-53 16690848 - Science. 2006 May 12;312(5775):857-8 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9 22543188 - Toxicon. 2012 Sep 15;60(4):455-69 19042943 - Mol Biol Evol. 2009 Mar;26(3):547-66 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 19563684 - BMC Evol Biol. 2009;9:146 16387337 - Toxicon. 2006 Mar;47(3):348-55 22990862 - Nat Commun. 2012;3:1066 23152539 - Mol Cell Proteomics. 2013 Feb;12(2):312-29 25757852 - Mol Biol Evol. 2015 Jun;32(6):1598-610 23610632 - Ecol Evol. 2013 Apr;3(4):872-86 25338510 - Mol Biol Evol. 2015 Jan;32(1):173-83 16845021 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W335-9 15741511 - Genome Res. 2005 Mar;15(3):403-20 19576920 - Toxicon. 2009 Dec 15;54(8):1031-7 25518955 - Mol Biol Evol. 2015 Mar;32(3):740-53 25502939 - Mol Biol Evol. 2015 Mar;32(3):754-66 15683837 - Comp Biochem Physiol C Toxicol Pharmacol. 2004 Dec;139(4):267-72 11223258 - Gene. 2001 Jan 24;263(1-2):199-203 24297900 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20651-6 22683676 - Toxicon. 2012 Sep 15;60(4):539-50 23850284 - Curr Biol. 2013 Aug 5;23(15):1399-408 21816864 - Mol Biol Evol. 2012 Jan;29(1):167-77 20228792 - Nature. 2010 Mar 25;464(7288):592-6 26014501 - BMC Genomics. 2015;16:407 22465017 - Toxicon. 2012 Sep 15;60(4):551-7 15735790 - Thromb Haemost. 2005 Mar;93(3):420-9 16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9 23688393 - Toxicon. 2013 Sep;71:11-7 22044657 - BMC Genet. 2011;12:94 11164036 - Gene. 2000 Dec 30;261(1):43-52 10101175 - Genetics. 1999 Apr;151(4):1531-45 25079342 - Genome Biol Evol. 2014 Aug;6(8):2088-95 22337864 - Mol Biol Evol. 2012 Aug;29(8):2019-29 23889801 - BMC Genomics. 2013;14:509 8744981 - Toxicon. 1995 Nov;33(11):1405-24 21478373 - Mol Biol Evol. 2011 Sep;28(9):2637-49 22291027 - J Biol Chem. 2012 Mar 23;287(13):9672-81 15581677 - Toxicon. 2005 Jan;45(1):1-14 11073452 - Science. 2000 Nov 10;290(5494):1151-5 |
References_xml | – volume: 4 start-page: 239 year: 1986 ident: 1976_CR55 publication-title: Coral Reefs doi: 10.1007/BF00298083 – volume: 32 start-page: 740 year: 2015 ident: 1976_CR41 publication-title: Mol Biol Evol doi: 10.1093/molbev/msu335 – volume: 139 start-page: 267 year: 2004 ident: 1976_CR52 publication-title: Comp Biochem Physiol C Toxicol Pharmacol doi: 10.1016/j.cca.2004.12.002 – volume: 464 start-page: 592 year: 2010 ident: 1976_CR35 publication-title: Nature doi: 10.1038/nature08830 – volume: 210 start-page: 91 year: 2007 ident: 1976_CR56 publication-title: J Exp Biol doi: 10.1242/jeb.02627 – start-page: 1 volume-title: Tonixology – marine and freshwater toxins year: 2014 ident: 1976_CR3 doi: 10.1007/978-94-007-6650-1_6-1 – volume: 12 start-page: 94 year: 2011 ident: 1976_CR31 publication-title: BMC Genet doi: 10.1186/1471-2156-12-94 – volume: 71 start-page: 11 year: 2013 ident: 1976_CR8 publication-title: Toxicon doi: 10.1016/j.toxicon.2013.05.002 – volume: 58 start-page: 111 year: 2013 ident: 1976_CR39 publication-title: Acta Palaeontol Pol – volume: 10 start-page: 1812 year: 2012 ident: 1976_CR51 publication-title: Mar Drugs doi: 10.3390/md10081812 – volume: 32 start-page: 754 year: 2015 ident: 1976_CR24 publication-title: Mol Biol Evol doi: 10.1093/molbev/msu337 – volume: 28 start-page: 2637 year: 2011 ident: 1976_CR11 publication-title: Mol Biol Evol doi: 10.1093/molbev/msr091 – volume: 32 start-page: 173 year: 2014 ident: 1976_CR20 publication-title: Mol Biol Evol doi: 10.1093/molbev/msu294 – volume: 16 start-page: 407 year: 2015 ident: 1976_CR42 publication-title: BMC Genomics doi: 10.1186/s12864-015-1568-3 – volume: 110 start-page: 20651 year: 2013 ident: 1976_CR22 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1314702110 – volume: 10 start-page: 483 year: 2009 ident: 1976_CR1 publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev.genom.9.081307.164356 – volume: 34 start-page: D495 year: 2006 ident: 1976_CR34 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkj020 – volume: 3 start-page: 872 year: 2013 ident: 1976_CR57 publication-title: Ecol Evol doi: 10.1002/ece3.452 – volume: 123 start-page: 585 year: 1989 ident: 1976_CR63 publication-title: Genetics doi: 10.1093/genetics/123.3.585 – volume: 34 start-page: W335 issue: Web Server issu year: 2006 ident: 1976_CR47 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl217 – volume: 23 start-page: 1399 year: 2013 ident: 1976_CR60 publication-title: Curr Biol doi: 10.1016/j.cub.2013.05.062 – volume: 34 start-page: 200 year: 2005 ident: 1976_CR13 publication-title: Pathophysiol Haemost Thromb doi: 10.1159/000092424 – volume: 476 start-page: 320 year: 2011 ident: 1976_CR36 publication-title: Nature doi: 10.1038/nature10249 – start-page: 75 volume-title: Ecosystems of the World: Coral Reefs year: 1990 ident: 1976_CR53 – volume: 11 start-page: M111.015487 year: 2012 ident: 1976_CR7 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M111.015487 – volume: 12 start-page: 312 year: 2013 ident: 1976_CR33 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M112.021469 – volume: 33 start-page: 1405 year: 1995 ident: 1976_CR12 publication-title: Toxicon doi: 10.1016/0041-0101(95)00085-Z – volume: 29 start-page: 167 year: 2012 ident: 1976_CR29 publication-title: Mol Biol Evol doi: 10.1093/molbev/msr180 – volume: 47 start-page: 348 year: 2006 ident: 1976_CR18 publication-title: Toxicon doi: 10.1016/j.toxicon.2005.11.013 – volume: 45 start-page: 1 year: 2005 ident: 1976_CR15 publication-title: Toxicon doi: 10.1016/j.toxicon.2004.07.028 – volume: 60 start-page: 455 year: 2012 ident: 1976_CR32 publication-title: Toxicon doi: 10.1016/j.toxicon.2012.04.331 – volume: 54 start-page: 1031 year: 2009 ident: 1976_CR6 publication-title: Toxicon doi: 10.1016/j.toxicon.2009.06.031 – volume: 215 start-page: 403 year: 1990 ident: 1976_CR46 publication-title: J Mol Biol doi: 10.1016/S0022-2836(05)80360-2 – volume: 26 start-page: 547 year: 2009 ident: 1976_CR48 publication-title: Mol Biol Evol doi: 10.1093/molbev/msn274 – volume: 28 start-page: 219 year: 2013 ident: 1976_CR45 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2012.10.020 – volume: 4 start-page: 677 year: 2014 ident: 1976_CR4 publication-title: Palaeontol doi: 10.1111/pala.12116 – volume: 6 start-page: 2088 year: 2014 ident: 1976_CR25 publication-title: Genome Biol Evol doi: 10.1093/gbe/evu166 – volume: 91 start-page: 103 year: 2014 ident: 1976_CR58 publication-title: Toxicon doi: 10.1016/j.toxicon.2014.04.004 – volume: 60 start-page: 539 year: 2012 ident: 1976_CR43 publication-title: Toxicon doi: 10.1016/j.toxicon.2012.05.020 – volume: 93 start-page: 420 year: 2005 ident: 1976_CR14 publication-title: Thromb Haemost doi: 10.1160/TH04-11-0707 – volume: 312 start-page: 857 year: 2006 ident: 1976_CR54 publication-title: Science doi: 10.1126/science.1123701 – volume: 151 start-page: 1531 year: 1999 ident: 1976_CR49 publication-title: Genetics doi: 10.1093/genetics/151.4.1531 – volume: 5 year: 2009 ident: 1976_CR61 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000262 – volume: 11 start-page: 233 year: 2000 ident: 1976_CR5 publication-title: Wild Environ Med doi: 10.1580/1080-6032(2000)011[0233:IACFJE]2.3.CO;2 – volume: 261 start-page: 43 year: 2000 ident: 1976_CR10 publication-title: Gene doi: 10.1016/S0378-1119(00)00490-X – volume: 96 start-page: 6820 year: 1999 ident: 1976_CR19 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.12.6820 – volume: 290 start-page: 1151 year: 2000 ident: 1976_CR28 publication-title: Science doi: 10.1126/science.290.5494.1151 – volume-title: Seasonal breeding biology of the platypus, Ornithorhynchus anatinus with special reference to the male year: 1973 ident: 1976_CR44 – volume: 3 start-page: 1066 year: 2012 ident: 1976_CR23 publication-title: Nat Commun doi: 10.1038/ncomms2065 – volume: 94 start-page: 7799 year: 1997 ident: 1976_CR9 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.15.7799 – volume: 9 start-page: 146 year: 2009 ident: 1976_CR27 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-9-146 – year: 2015 ident: 1976_CR50 publication-title: Mol Biol Evol – volume: 14 start-page: 1407 year: 2013 ident: 1976_CR40 publication-title: ChemBioChem doi: 10.1002/cbic.201300305 – volume: 263 start-page: 199 year: 2001 ident: 1976_CR30 publication-title: Gene doi: 10.1016/S0378-1119(00)00571-0 – volume: 30 start-page: 2725 year: 2013 ident: 1976_CR62 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – volume: 57 start-page: 110 year: 2003 ident: 1976_CR17 publication-title: J Mol Evol doi: 10.1007/s00239-003-2461-2 – volume: 15 start-page: 403 year: 2005 ident: 1976_CR21 publication-title: Genome Res doi: 10.1101/gr.3228405 – volume: 29 start-page: 2019 year: 2012 ident: 1976_CR26 publication-title: Mol Biol Evol doi: 10.1093/molbev/mss068 – volume: 4 start-page: 1346 year: 2006 ident: 1976_CR16 publication-title: J Thromb Haemost doi: 10.1111/j.1538-7836.2006.01969.x – volume: 287 start-page: 9672 year: 2012 ident: 1976_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.M111.328203 – volume: 60 start-page: 551 year: 2012 ident: 1976_CR59 publication-title: Toxicon doi: 10.1016/j.toxicon.2012.03.010 – volume: 14 start-page: 509 year: 2013 ident: 1976_CR38 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-509 – volume: 123 start-page: 23 year: 2004 ident: 1976_CR2 publication-title: Invert Biol doi: 10.1111/j.1744-7410.2004.tb00139.x – reference: 16845021 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W335-9 – reference: 23850284 - Curr Biol. 2013 Aug 5;23(15):1399-408 – reference: 22044657 - BMC Genet. 2011;12:94 – reference: 26014501 - BMC Genomics. 2015;16:407 – reference: 25338510 - Mol Biol Evol. 2015 Jan;32(1):173-83 – reference: 19042943 - Mol Biol Evol. 2009 Mar;26(3):547-66 – reference: 23219381 - Trends Ecol Evol. 2013 Apr;28(4):219-29 – reference: 22990862 - Nat Commun. 2012;3:1066 – reference: 24132122 - Mol Biol Evol. 2013 Dec;30(12):2725-9 – reference: 25757852 - Mol Biol Evol. 2015 Jun;32(6):1598-610 – reference: 19576920 - Toxicon. 2009 Dec 15;54(8):1031-7 – reference: 24768765 - Toxicon. 2014 Dec;91:103-13 – reference: 10359796 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6820-3 – reference: 2513255 - Genetics. 1989 Nov;123(3):585-95 – reference: 21478373 - Mol Biol Evol. 2011 Sep;28(9):2637-49 – reference: 16387337 - Toxicon. 2006 Mar;47(3):348-55 – reference: 25518955 - Mol Biol Evol. 2015 Mar;32(3):740-53 – reference: 24297900 - Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20651-6 – reference: 23152539 - Mol Cell Proteomics. 2013 Feb;12(2):312-29 – reference: 11164036 - Gene. 2000 Dec 30;261(1):43-52 – reference: 21816864 - Mol Biol Evol. 2012 Jan;29(1):167-77 – reference: 22465017 - Toxicon. 2012 Sep 15;60(4):551-7 – reference: 16707928 - Pathophysiol Haemost Thromb. 2005;34(4-5):200-4 – reference: 25502939 - Mol Biol Evol. 2015 Mar;32(3):754-66 – reference: 16706981 - J Thromb Haemost. 2006 Jun;4(6):1346-53 – reference: 25079342 - Genome Biol Evol. 2014 Aug;6(8):2088-95 – reference: 16690848 - Science. 2006 May 12;312(5775):857-8 – reference: 16381919 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D495-9 – reference: 15741511 - Genome Res. 2005 Mar;15(3):403-20 – reference: 23821453 - Chembiochem. 2013 Aug 19;14(12):1407-9 – reference: 11199527 - Wilderness Environ Med. 2000 Winter;11(4):233-40 – reference: 21785439 - Nature. 2011 Aug 18;476(7360):320-3 – reference: 9223266 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7799-806 – reference: 11073452 - Science. 2000 Nov 10;290(5494):1151-5 – reference: 11223258 - Gene. 2001 Jan 24;263(1-2):199-203 – reference: 23015776 - Mar Drugs. 2012 Aug;10(8):1812-51 – reference: 15581677 - Toxicon. 2005 Jan;45(1):1-14 – reference: 19148271 - PLoS Comput Biol. 2009 Jan;5(1):e1000262 – reference: 23688393 - Toxicon. 2013 Sep;71:11-7 – reference: 19640225 - Annu Rev Genomics Hum Genet. 2009;10:483-511 – reference: 10101175 - Genetics. 1999 Apr;151(4):1531-45 – reference: 22337864 - Mol Biol Evol. 2012 Aug;29(8):2019-29 – reference: 12962311 - J Mol Evol. 2003 Jul;57(1):110-29 – reference: 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 – reference: 22543188 - Toxicon. 2012 Sep 15;60(4):455-69 – reference: 20228792 - Nature. 2010 Mar 25;464(7288):592-6 – reference: 23889801 - BMC Genomics. 2013;14:509 – reference: 23610632 - Ecol Evol. 2013 Apr;3(4):872-86 – reference: 22683676 - Toxicon. 2012 Sep 15;60(4):539-50 – reference: 8744981 - Toxicon. 1995 Nov;33(11):1405-24 – reference: 17170152 - J Exp Biol. 2007 Jan;210(Pt 1):91-6 – reference: 15683837 - Comp Biochem Physiol C Toxicol Pharmacol. 2004 Dec;139(4):267-72 – reference: 22291027 - J Biol Chem. 2012 Mar 23;287(13):9672-81 – reference: 19563684 - BMC Evol Biol. 2009;9:146 – reference: 15735790 - Thromb Haemost. 2005 Mar;93(3):420-9 – reference: 22351649 - Mol Cell Proteomics. 2012 Jun;11(6):M111.015487 |
SSID | ssj0017825 |
Score | 2.345808 |
Snippet | Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic,... Background Gene duplication followed by adaptive selection is a well-accepted process leading to toxin diversification in venoms. However, emergent genomic,... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 774 |
SubjectTerms | Amino Acid Sequence Analysis Animal behavior Animals Anthozoa - genetics Anthozoa - pathogenicity Bioinformatics Cnidarian Venoms - genetics Cnidarian Venoms - toxicity Evolution Evolution, Molecular Gene Duplication Genetic aspects Genetic translation Genome Nematocyst - metabolism Peptides Phylogeny Proteome - genetics Proteome - toxicity Selection, Genetic Snakes Toxins |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gIIOQeEhW46wfCRe0qqgKEhwolfZmOX6USCUpTVZi-UH8Tma82W3DoadE8kRxMuOZz_b4G0JecQgKtfCC-VgoJmSIzMYiMOFqV3tRO-7x7PCXr-rwWHxeyMW44NaPaZUbn5gcte8crpHvca0rQAuVKj-c_WJYNQp3V8cSGtfJDaQuQ6vWi-2Ei0P0k-NOJi_VXg--WGHOhWQcojATk1j0v0e-FJKm6ZKX4s_BHXJ7BI50vtb0XXIttPfIzXUpydV98hf5o6lfXmxHU3seaFrjxgx1altPU146FrgKFPM2MEsIfuzpig4dBSAIl9-No4m6ofsZaBdpi5SunVv1Q08bMFNApp7ikRQ6x9pfYD_UNyfNgAkylr7ZbxsPk2_7niZSgj8d3B1Bd9NRrLaxbx-Q44OP3_cP2ViDgTlZiYEJUbgyRq9yl0Mg0xV3iluJ2CF6HvM8aCVinGnLi1j4WgJC8MLp0utZyGGm_pDstF0bHhPqrLOqEmUVnRJyJq3OnZopDYAKnEpuM5JvtGHcSFCOdTJOTZqolMqsFWhAgQYVaERG3m0fOVuzc1wl_BJVbJD1osW0mhO77Hvz6eibmUuI5UpwrjPyehSKHbwc-5xOKcAnIFHWRHJ3IgnD0k2bN5ZkRrfQmwsjzsiLbTM-ialubeiWKAOoCmCZLDLyaG14228D9AoIUqqM6IlJbgWQLHza0jY_Emm4UOCudf7k6m49JbeKND5yxme7ZGc4X4ZngLqG-nkaWv8AKD4vMA priority: 102 providerName: ProQuest |
Title | Gene duplications are extensive and contribute significantly to the toxic proteome of nematocysts isolated from Acropora digitifera (Cnidaria: Anthozoa: Scleractinia) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26464356 https://www.proquest.com/docview/1779835968 https://www.proquest.com/docview/1722420152 https://pubmed.ncbi.nlm.nih.gov/PMC4604070 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LixQxEA77QPAivrd1HaIIghDt9OTRcxAZZZdV2EVWB-YWuvNYB8Zune6BnbN_3KpMz-y2LOKpD6l-VapSX5LKV4S85BAUSuEEcyFTTEgfWBEyz4QtbelEabnDs8OnZ-pkIj5P5XSHbMpbdQpsbpzaYT2pyWL-5vLX6j04_Lvo8Ll628AYqzCXQjIO0ZWJXbIPgUljQYNTcbWpAMFQxsNGmrMMpgndJueNj-iFqb8H62vRqp9JeS00Hd8ldzpMScdrI7hHdnx1n9xaV5lcPSC_kVqauuXVTjUtFp7G5W9MXqdF5WhMWcfaV55iSgcmEIHO5yva1hQwIlwuZ5ZGVof6h6d1oBWyvdZ21bQNnYEFA2h1FE-r0DGWBQPTom52MWsxd6Z4SCbHR98-nrCu9gKzciRaJkRm8xCcSm0KAUyPuFW8kIgZguMhTb1WIoShLngWMldKQAZOWJ07PfQpzNAfkb2qrvwBobawhRqJfBSsEnIoC51aNVQagBQMJmmRkHSjamM7YnKsjzE3cYKSK7PuHQO9Y7B3jEjI6-0tP9esHP8SfoH9Z5DtosJ0moti2TTm09dzM5YQw5XgXCfkVScUang5fnM8nQC_gARZPcnDniS4o-03b8zEbKzZcFAgQN2RyhPyfNuMd2KKW-XrJcoAmgI4JrOEPF5b1fbfALUCcpQqIbpnb1sBJAnvt1Sz75EsXCgYpnX65H-U8JTczqILpIwPD8leu1j6Z4C52nJAdvVUD8j-h6OzL-eDuHIxiN71B-ZTLNk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXxBtDgQWBoEhWvc4-bCSEokKV0MeBtlJuZr2PYqnYpXYE4Qdx5Dcy4zhpzaG3nmJpx85aMzvfN97ZGUJeMgCFnFseWh_LkAvnQ-1jF3KTm9zy3DCLZ4d39-TokH-eiMkK-bs4C4NplQuf2DpqWxn8Rr7BlEqBLaQy-XDyI8SuUbi7umihMTeLbTf7CSFb_X78EfT7Ko63Ph1sjsKuq0BoRMqbkPPYJN5bGZkIXLNKmZFMC0RDb5mPIqck936gNIt9bHMBmGe5UYlVAxdB7AnPvUKuAvBGGOypyTLAY4C2ots5ZYncqMH3S8zxECED1A95D_v-R4BzENhPzzyHd1u3yM2OqNLh3LJukxVX3iHX5q0rZ3fJH6xXTe30bPub6lNH22_qmBFPdWlpmwePDbUcxTwRzEoCRR7PaFNRIJ7w86swtC0VUX13tPK0xBKylZnVTU0LWBbAhC3FIzB0iL3GwF6pLY6KBhNyNH2zWRYWgn39jrZFEH5XcLUP022PfpWFXr9HDi9FO_fJalmV7iGhRhstU56k3kguBkKryMiBVEDgwIlFOiDRQhuZ6QqiY1-O46wNjBKZzRWYgQIzVGDGA_J2ecvJvBrIRcIvUMUZVtkoMY3nSE_rOhvvf8mGAriD5IypgLzuhHwFf45zbk9FwCtgYa6e5FpPEtyA6Q8vLCnr3FCdnS2agDxfDuOdmFpXumqKMsDigAaKOCAP5oa3fDdgy8BYhQyI6pnkUgCLk_dHyuJbW6ScS4AHFT26eFrPyPXRwe5OtjPe235MbsTtWolCNlgjq83p1D0BxtfkT9tlRsnXy17X_wCPvGu1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+duplications+are+extensive+and+contribute+significantly+to+the+toxic+proteome+of+nematocysts+isolated+from+Acropora+digitifera&rft.jtitle=BMC+genomics&rft.au=Gacesa%2C+Ranko&rft.au=Chung%2C+Ray&rft.au=Dunn%2C+Simon+R&rft.au=Weston%2C+Andrew+J&rft.date=2015-10-13&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=16&rft_id=info:doi/10.1186%2Fs12864-015-1976-4&rft.externalDBID=ISR&rft.externalDocID=A541364117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |