Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 101; no. 17; pp. 6798 - 6802 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
27.04.2004
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1 L105 A, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. |
---|---|
AbstractList | Bioluminescence resonance energy transfer (BRET) between
Renilla
luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the
Arabidopsis
Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity
in vivo
. One specific mutant protein, COP1
L105A
, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1 L105 A, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real- time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear- exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1 super(L105A), showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1L105A, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. [PUBLICATION ABSTRACT] Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo . One specific mutant protein, COP1 L105A , showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. dimerization photomorphogenesis nuclear export Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1(L105A), showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. |
Author | Lyssenko, N.N Arnim, A.G. von Xu, X Kim, B.H Subramanian, C Johnson, C.H |
AuthorAffiliation | Department of Botany, University of Tennessee, Knoxville, TN 37996-1100; and ‡ Department of Biological Sciences, Vanderbilt University, Box 1634B, Nashville, TN 37235-1634 |
AuthorAffiliation_xml | – name: Department of Botany, University of Tennessee, Knoxville, TN 37996-1100; and ‡ Department of Biological Sciences, Vanderbilt University, Box 1634B, Nashville, TN 37235-1634 |
Author_xml | – sequence: 1 fullname: Subramanian, C – sequence: 2 fullname: Kim, B.H – sequence: 3 fullname: Lyssenko, N.N – sequence: 4 fullname: Xu, X – sequence: 5 fullname: Johnson, C.H – sequence: 6 fullname: Arnim, A.G. von |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15084749$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vFCEYxompsdvq2YtR4sF46LYvAwODiYdm47-kSU20Z8LMwpQNC1uYMd3P4ReWcTdd9eAFSPg9T573fU7QUYjBIPScwDkBQS82QedzoCAkZwTIIzQjIMmcMwlHaAZQiXnDKnaMTnJeAYCsG3iCjkkNDRNMztDPy6Rbt4yb7DJOZpNMzjHhaLF3_e2As-uD9i70Z3hx_ZWc4d9YP3o9mCVutziMnTc6YXPf-TG7GN7h9Tjooby0x7oc28m6kK2Lfly7YHJnQmeKTS7M9DLBpH6Lh6RDtiY9RY-t9tk829-n6Objh--Lz_Or609fFpdX866WbJgzwnhbcUk5gKmbrrMVE5LoZUVNA5xwIa2tpWhk29qqEcBl2ZHVraUNMbyjp-j9zncztmuzLKlKAq82ya112qqonfr7J7hb1ccfigEjVV30b_b6FO9Gkwe1dmU273UwccyKlFaAs6qAr_8BV3FMZTVZVUCoYKyWBbrYQV2KOSdjH4IQUFPZaipbHcouipd_5j_w-3YL8HYPTMqDHSnRVFlPo-zo_WDuh4K--j9aiBc7YpWHmB4QSkVFOD0YWB2V7pPL6ubbNB2U7EQIoL8A_YfVRA |
CitedBy_id | crossref_primary_10_1104_pp_113_230383 crossref_primary_10_1089_dna_2022_0664 crossref_primary_10_1111_pce_14946 crossref_primary_10_1146_annurev_arplant_57_032905_105239 crossref_primary_10_1016_j_tplants_2005_11_005 crossref_primary_10_1038_srep11274 crossref_primary_10_1105_tpc_105_040097 crossref_primary_10_1146_annurev_arplant_080620_024221 crossref_primary_10_3390_ijms24032110 crossref_primary_10_1021_jp056909r crossref_primary_10_1111_tpj_14980 crossref_primary_10_1104_pp_111_186411 crossref_primary_10_1007_s13562_020_00623_3 crossref_primary_10_1093_jxb_erv101 crossref_primary_10_1016_j_copbio_2004_12_006 crossref_primary_10_1111_nph_17332 crossref_primary_10_3389_fpls_2021_662793 crossref_primary_10_1093_plphys_kiae110 crossref_primary_10_1104_pp_107_107227 crossref_primary_10_1073_pnas_0703734104 crossref_primary_10_1016_j_molp_2020_02_003 crossref_primary_10_1074_jbc_M801011200 crossref_primary_10_1093_mp_ssm002 crossref_primary_10_1080_07060660609507266 crossref_primary_10_1126_sciadv_abp8412 crossref_primary_10_1111_j_1365_313X_2006_02742_x crossref_primary_10_1111_j_1365_313X_2009_03809_x crossref_primary_10_1038_sj_onc_1210892 crossref_primary_10_1111_j_1365_313X_2007_03332_x crossref_primary_10_1093_mp_ssr052 crossref_primary_10_1016_j_pbi_2006_05_006 crossref_primary_10_1016_j_plaphy_2018_08_015 crossref_primary_10_1002_0471142301_ns0523s34 crossref_primary_10_1111_tpj_14074 crossref_primary_10_1016_j_pbi_2008_06_012 crossref_primary_10_3389_fpls_2023_1228961 crossref_primary_10_1105_tpc_112_107086 crossref_primary_10_1105_tpc_109_070458 crossref_primary_10_1016_j_tplants_2015_06_010 crossref_primary_10_1105_tpc_114_125591 crossref_primary_10_1371_journal_pgen_1004025 crossref_primary_10_1111_j_1365_3040_2005_01489_x crossref_primary_10_1016_j_jphotobiol_2017_05_021 crossref_primary_10_3389_fpls_2016_01182 crossref_primary_10_1016_j_bbrc_2018_11_032 crossref_primary_10_1093_mp_sss010 crossref_primary_10_1111_pce_14130 crossref_primary_10_1186_1742_4690_10_84 crossref_primary_10_1016_j_plaphy_2015_03_006 crossref_primary_10_15252_embj_201899708 crossref_primary_10_1111_j_1365_313X_2006_02851_x crossref_primary_10_1038_s41467_017_02476_2 crossref_primary_10_1016_j_tplants_2006_01_006 crossref_primary_10_1038_s41467_019_12110_y crossref_primary_10_3390_ijms222011116 crossref_primary_10_1016_j_jphotobiol_2014_03_026 crossref_primary_10_1038_nprot_2006_52 crossref_primary_10_1073_pnas_1607074113 crossref_primary_10_1562_2005_07_08_IR_607 crossref_primary_10_3389_fpls_2021_732947 crossref_primary_10_1038_ncomms8245 crossref_primary_10_1074_jbc_M112_369371 crossref_primary_10_3390_ijms221910772 crossref_primary_10_1007_s00709_005_0122_6 crossref_primary_10_1016_j_molp_2014_11_025 crossref_primary_10_1093_jxb_ern200 crossref_primary_10_1016_j_pbi_2018_04_018 crossref_primary_10_1093_jxb_erp305 crossref_primary_10_1016_j_semcdb_2019_03_007 crossref_primary_10_1007_s13238_013_3036_7 crossref_primary_10_1073_pnas_0701987104 crossref_primary_10_1111_pce_12880 crossref_primary_10_1016_j_tcb_2005_09_007 crossref_primary_10_1111_j_1467_7652_2006_00183_x crossref_primary_10_1002_pld3_144 crossref_primary_10_1016_j_molp_2014_11_021 crossref_primary_10_3389_fpls_2024_1259720 crossref_primary_10_1074_jbc_M700982200 |
Cites_doi | 10.1074/jbc.M108138200 10.1101/gad.969702 10.1038/35013076 10.1016/S0074-7696(02)20006-6 10.1074/jbc.274.38.27231 10.1093/emboj/17.19.5577 10.1006/abio.1997.2428 10.1101/gad.1122903 10.1046/j.1365-313x.1998.00290.x 10.1073/pnas.96.1.151 10.1073/pnas.97.7.3684 10.1093/emboj/18.6.1660 10.1016/0092-8674(92)90555-Q 10.1093/emboj/cdg105 10.1074/jbc.M212681200 10.1016/j.lfs.2003.09.005 10.1074/jbc.M203990200 10.1126/science.1063630 10.1073/pnas.190318397 10.1074/jbc.M103140200 10.1016/0092-8674(94)90034-5 10.1101/gad.1055803 10.1104/pp.124.3.979 10.1186/1471-2121-3-30 10.1046/j.1365-313X.2002.01298.x 10.1105/tpc.11.3.349 |
ContentType | Journal Article |
Copyright | Copyright 1993/2004 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Apr 27, 2004 Copyright © 2004, The National Academy of Sciences 2004 |
Copyright_xml | – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Apr 27, 2004 – notice: Copyright © 2004, The National Academy of Sciences 2004 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.0307964101 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | CrossRef Genetics Abstracts Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Botany |
EISSN | 1091-6490 |
EndPage | 6802 |
ExternalDocumentID | 782577651 10_1073_pnas_0307964101 15084749 101_17_6798 3372163 US201301071770 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM65467 – fundername: NIGMS NIH HHS grantid: R01 GM065467 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ADACV AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ GJ KM OHM PQEST X XHC CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c594t-4146b2693600e58ccf24791ad23e8061679ff59789bbf287069410fabf381e6c3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:49:39 EDT 2024 Thu Oct 24 22:57:04 EDT 2024 Tue Nov 19 05:49:22 EST 2024 Fri Dec 06 01:30:25 EST 2024 Sat Sep 28 08:39:30 EDT 2024 Wed Nov 11 00:29:18 EST 2020 Thu May 30 08:50:28 EDT 2019 Tue Dec 10 23:06:22 EST 2024 Wed Dec 27 19:28:28 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-4146b2693600e58ccf24791ad23e8061679ff59789bbf287069410fabf381e6c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Abbreviations: COP1, Constitutive photomorphogenesis 1; CLS, cytoplasmic localization signal; CC, coiled coil; BRET, bioluminescence resonance energy transfer; RLUC, Renilla luciferase; YFP, yellow fluorescent protein. Present address: Huck Institute for Life Sciences and Department of Biochemistry and Molecular Biology, Pennsylvania State University, 513 Wartik Laboratory, University Park, PA 16802. Data deposition: The sequences reported in this paper have been deposited in the GenBank database [accession nos. AY189980 (35S:RLUC) and AY189981 (35S:YFP)]. This paper was submitted directly (Track II) to the PNAS office. Edited by J. Woodland Hastings, Harvard University, Cambridge, MA, and approved March 12, 2004 To whom correspondence should be addressed. E-mail: vonarnim@utk.edu. |
OpenAccessLink | https://europepmc.org/articles/pmc404125?pdf=render |
PMID | 15084749 |
PQID | 201374459 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | proquest_journals_201374459 pubmedcentral_primary_oai_pubmedcentral_nih_gov_404125 pnas_primary_101_17_6798_fulltext proquest_miscellaneous_17960642 jstor_primary_3372163 pubmed_primary_15084749 fao_agris_US201301071770 pnas_primary_101_17_6798 crossref_primary_10_1073_pnas_0307964101 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2004-04-27 |
PublicationDateYYYYMMDD | 2004-04-27 |
PublicationDate_xml | – month: 04 year: 2004 text: 2004-04-27 day: 27 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2004 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – sequence: 0 name: National Academy of Sciences – name: National Acad Sciences – name: National Academy of Sciences |
References | e_1_3_2_26_2 e_1_3_2_28_2 (e_1_3_2_27_2) 2002; 183 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_1_2 e_1_3_2_30_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 (e_1_3_2_21_2) 1994; 6 (e_1_3_2_8_2) 2003; 130 (e_1_3_2_4_2) 2003; 424 |
References_xml | – ident: e_1_3_2_28_2 doi: 10.1074/jbc.M108138200 – ident: e_1_3_2_3_2 doi: 10.1101/gad.969702 – ident: e_1_3_2_2_2 doi: 10.1038/35013076 – ident: e_1_3_2_30_2 doi: 10.1016/S0074-7696(02)20006-6 – ident: e_1_3_2_10_2 doi: 10.1074/jbc.274.38.27231 – ident: e_1_3_2_15_2 doi: 10.1093/emboj/17.19.5577 – ident: e_1_3_2_19_2 doi: 10.1006/abio.1997.2428 – volume: 424 start-page: 995 year: 2003 ident: e_1_3_2_4_2 publication-title: Nature – ident: e_1_3_2_5_2 doi: 10.1101/gad.1122903 – ident: e_1_3_2_14_2 doi: 10.1046/j.1365-313x.1998.00290.x – ident: e_1_3_2_16_2 doi: 10.1073/pnas.96.1.151 – ident: e_1_3_2_17_2 doi: 10.1073/pnas.97.7.3684 – volume: 183 start-page: 121 year: 2002 ident: e_1_3_2_27_2 publication-title: Methods Mol. Biol. – ident: e_1_3_2_25_2 doi: 10.1093/emboj/18.6.1660 – ident: e_1_3_2_20_2 doi: 10.1016/0092-8674(92)90555-Q – ident: e_1_3_2_22_2 doi: 10.1093/emboj/cdg105 – ident: e_1_3_2_6_2 doi: 10.1074/jbc.M212681200 – ident: e_1_3_2_18_2 doi: 10.1016/j.lfs.2003.09.005 – ident: e_1_3_2_24_2 doi: 10.1074/jbc.M203990200 – ident: e_1_3_2_12_2 doi: 10.1126/science.1063630 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.190318397 – ident: e_1_3_2_29_2 doi: 10.1074/jbc.M103140200 – volume: 6 start-page: 1391 year: 1994 ident: e_1_3_2_21_2 publication-title: Plant Cell – volume: 130 start-page: 969 year: 2003 ident: e_1_3_2_8_2 publication-title: Development (Cambridge, U.K.) – ident: e_1_3_2_13_2 doi: 10.1016/0092-8674(94)90034-5 – ident: e_1_3_2_11_2 doi: 10.1101/gad.1055803 – ident: e_1_3_2_1_2 doi: 10.1104/pp.124.3.979 – ident: e_1_3_2_26_2 doi: 10.1186/1471-2121-3-30 – ident: e_1_3_2_7_2 doi: 10.1046/j.1365-313X.2002.01298.x – ident: e_1_3_2_9_2 doi: 10.1105/tpc.11.3.349 |
SSID | ssj0009580 |
Score | 2.1533337 |
Snippet | Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on... Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on... Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real- time reporter... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6798 |
SubjectTerms | Alleles Amino Acid Sequence Analysis Arabidopsis - metabolism Arabidopsis - physiology Arabidopsis Proteins - chemistry Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis Proteins - physiology Arabidopsis thaliana Biological Sciences Bioluminescence Botany Cell Nucleus - metabolism Dimerization Energy Energy Transfer Epidermal cells Flowers & plants Fluorescence Genetic Complementation Test Hypocotyls Light Luminescent Measurements Molecular Sequence Data Mutant proteins Mutation Onions Plant cells Sequence Homology, Amino Acid Signal Transduction - physiology Transgenes |
Title | Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer |
URI | https://www.jstor.org/stable/3372163 http://www.pnas.org/content/101/17/6798.abstract https://www.ncbi.nlm.nih.gov/pubmed/15084749 https://www.proquest.com/docview/201374459 https://search.proquest.com/docview/17960642 https://pubmed.ncbi.nlm.nih.gov/PMC404125 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggCoWGlmIkDkXqPpI4ccINragqpIVKsFJvlu3YdKXdZJWHRH8Jf5cZx9ltEVy4RfIjj5mxZzLffCbkXZIpXiQIxeE2xDSjHCsNjlwB7rNOJIddC4uTF1_SqyX7fJPc-KKwxsMqS61Wk3K9mZSrW4et3G70dMCJTa8Xc4YkUcl0REaw-w4R-o5oN-vLTiJYfVnEBjofHk-3pWwmqNR5ykAT3Yk8M1idkUfz3qY0srIa0IlIeQqj_uZ-_omivLctXT4lT7w_ST_2z31IHpnyGTn0FtvQc08r_f45-QUaAf2kWhXVtlk1tO5BsFVNK0vXGKRTRHNILFC_oPOv1-EFdd3cafWmoOqOlkh_LGtqfup1hz_aPtBF1_ofilR6hhPsiexO3QZB9RofBaZBpx-vjCs3pK1zmU19RJaXn77Pr8b-WIaxTnLWgkBZqqI0j8FXMkmmtY0Yz0NZRLHJwD1IeW4txClZrpR1edQcPreVyoJ3YFIdvyAHZVWaY0LNzERaI-tgMmMqDZWdSQURG4tMbJWUATkf5CK2PfuGcFlzHguUi9hLMyDHIDchf8DaKJbfIszIhhis8llAjpwwd1PEMVIWxTDETbKfORQhF5iXCsjbfzUJ61E5ATkZlEJ4w28E3pfD6-QBebNrBYvFNIwsTdU1MA9GjSwKyMtegfZ38eoYkPSBau06IBf4wxYwEccJ3pvEq_8deEIeD5CkiJ-Sg7buzGvwtlp1hntdcuaM7DfSiyjA |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x8QAviMFgYcCMxMOQ1rVJnLjhDVVMBdYxiVXam2W79qjUJlXTSvCX8O9y5zjthuCFt0j-yMfd2Xe53_0M8DbrazHJCIojXExpRtXRBh25CbrPJlMCdy0qTh5d5MMx_3ydXYeisDrAKkujp6flbH5aTr97bOVibrotTqx7ORpwIonKujtwP0tFEbcx-oZqt98UniS4_vKEt4Q-Iu0uSlWfkloXOUdd9Gfy9HB9JibNW9vSjlNVi08k0lMc9TcH9E8c5a2N6ewxPAoeJfvQPPke3LPlE9gLNluz40As_e4p_EKdwH5KTyfVop7WbNnAYKslqxybUZjOCM-hqET9hA2-XsYnzHfz59XbCdM_WUkEyGrJ7A8zW9OvtvdstF6FX4pMBY4T6kn8Tus5weoNPQpOQ24_XVlfcMhW3mm2y30Yn328Ggw74WCGjskKvkKR8lwneZGit2SzvjEu4SgHNUlS20cHIReFcxip9Autnc-kFvi5ndIO_QObm_QZ7JZVaQ-A2Z5NjCHewazHdR5r11MaYzae2NRppSI4buUiFw3_hvR5c5FKkovcSjOCA5SbVDe4Osrxt4RysjGFq6IXwb4X5maKNCXSohSH-Em2M8cyFpIyUxG8-VeTdAGXE8FhqxQymH4t6b4CX6eI4GjTijZLiRhV2mpd4zwUN_IkgueNAm3vEtQxgvyOam06EBv43RY0Es8K3hjFi_8deAQPhlejc3n-6eLLITxsAUqJeAm7q-XavkLfa6Vfe1P7DY6NKy8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RUJcEIVCTYEuEociNXH8XJsbCkTlkRIJIvW22l3vlkiJHcWJBL-Ev8vM2k5aBBdulvbhx8zszni--RbgVZIpXiQExeE2oDSj7CmNjlyB7rNOJMddi4qTx5fpxTT-eJVc7UHW1cI40L5Ws345X_TL2XeHrVwutN_hxPzJeBgTSVTiLwvr78OdJEId6-L0Ld1u1hSfhLgGx2HckfrwyF-Wsu6TaudpjProzuUZ4BpNbJo3tqZ9K6sOo0jEpzjqb07on1jKG5vT6AHcb71K9rZ5-kPYM-VDOGzttmZnLbn060fwC_UC-0k1K6plPavZqoHCVitWWTanUJ0RpkNSmfo5G36ZBOfMdXNn1puCqZ-sJBJkuWLmh55v6HfbGzberNvfiky2PCfUkzieNguC1mt6FJyGXH-6Mq7okK2d42xWRzAdvf82vOi1hzP0dJLHaxRrnKowzSP0mEySaW3DmOeBLMLIZOgkpDy3FqOVLFfKumxqjp_bSmXRRzCpjh7DQVmV5hiYGZhQa-IeTAaxSgNlB1Jh3BaHJrJKSg_OOrmIZcPBIVzunEeC5CJ20vTgGOUm5DWukGL6NaS8bEAhKx94cOSEuZ0iioi4KMIhbpLdzIEIuKDslAcv_9UkbIvN8eCkUwrRmn8t6L4cXyf34HTbinZLyRhZmmpT4zwUO8ahB08aBdrdpVVHD9JbqrXtQIzgt1vQUBwzeGMYT_934Cncnbwbic8fLj-dwL0OoxTyZ3CwXm3Mc3S_1uqFs7Tf1EksQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arabidopsis+repressor+of+light+signaling%2C+COP1%2C+is+regulated+by+nuclear+exclusion%3A+Mutational+analysis+by+bioluminescence+resonance+energy+transfer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Subramanian%2C+Chitra&rft.au=Kim%2C+Byung-Hoon&rft.au=Lyssenko%2C+Nicholas+N.&rft.au=Xu%2C+Xiaodong&rft.date=2004-04-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=101&rft.issue=17&rft.spage=6798&rft.epage=6802&rft_id=info:doi/10.1073%2Fpnas.0307964101&rft_id=info%3Apmid%2F15084749&rft.externalDBID=PMC404125 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F17.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F17.cover.gif |