Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer

Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 101; no. 17; pp. 6798 - 6802
Main Authors Subramanian, C, Kim, B.H, Lyssenko, N.N, Xu, X, Johnson, C.H, Arnim, A.G. von
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 27.04.2004
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1 L105 A, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction.
AbstractList Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo . One specific mutant protein, COP1 L105A , showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction.
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1 L105 A, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction.
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real- time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear- exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1 super(L105A), showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction.
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1L105A, showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. [PUBLICATION ABSTRACT]
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo . One specific mutant protein, COP1 L105A , showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction. dimerization photomorphogenesis nuclear export
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on protein-protein interactions in live plant cells by using the Arabidopsis Constitutive photomorphogenesis 1 (COP1) protein as a model system. COP1 is a repressor of light signal transduction that functions as part of a nuclear E3 ubiquitin ligase. COP1 possesses a leucine-rich nuclear-exclusion signal that resides in a domain implicated in COP1 dimerization. BRET was applied in conjunction with site-directed mutagenesis to explore the respective contributions of the nuclear-exclusion and dimerization motifs to the regulation of COP1 activity in vivo. One specific mutant protein, COP1(L105A), showed increased nuclear accumulation but retained the ability to dimerize, as monitored by BRET, whereas other mutations inhibited both nuclear exclusion and COP1 dimerization. Mutant rescue and overexpression experiments indicated that nuclear exclusion of COP1 protein is a rate-limiting step in light signal transduction.
Author Lyssenko, N.N
Arnim, A.G. von
Xu, X
Kim, B.H
Subramanian, C
Johnson, C.H
AuthorAffiliation Department of Botany, University of Tennessee, Knoxville, TN 37996-1100; and ‡ Department of Biological Sciences, Vanderbilt University, Box 1634B, Nashville, TN 37235-1634
AuthorAffiliation_xml – name: Department of Botany, University of Tennessee, Knoxville, TN 37996-1100; and ‡ Department of Biological Sciences, Vanderbilt University, Box 1634B, Nashville, TN 37235-1634
Author_xml – sequence: 1
  fullname: Subramanian, C
– sequence: 2
  fullname: Kim, B.H
– sequence: 3
  fullname: Lyssenko, N.N
– sequence: 4
  fullname: Xu, X
– sequence: 5
  fullname: Johnson, C.H
– sequence: 6
  fullname: Arnim, A.G. von
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15084749$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vFCEYxompsdvq2YtR4sF46LYvAwODiYdm47-kSU20Z8LMwpQNC1uYMd3P4ReWcTdd9eAFSPg9T573fU7QUYjBIPScwDkBQS82QedzoCAkZwTIIzQjIMmcMwlHaAZQiXnDKnaMTnJeAYCsG3iCjkkNDRNMztDPy6Rbt4yb7DJOZpNMzjHhaLF3_e2As-uD9i70Z3hx_ZWc4d9YP3o9mCVutziMnTc6YXPf-TG7GN7h9Tjooby0x7oc28m6kK2Lfly7YHJnQmeKTS7M9DLBpH6Lh6RDtiY9RY-t9tk829-n6Objh--Lz_Or609fFpdX866WbJgzwnhbcUk5gKmbrrMVE5LoZUVNA5xwIa2tpWhk29qqEcBl2ZHVraUNMbyjp-j9zncztmuzLKlKAq82ya112qqonfr7J7hb1ccfigEjVV30b_b6FO9Gkwe1dmU273UwccyKlFaAs6qAr_8BV3FMZTVZVUCoYKyWBbrYQV2KOSdjH4IQUFPZaipbHcouipd_5j_w-3YL8HYPTMqDHSnRVFlPo-zo_WDuh4K--j9aiBc7YpWHmB4QSkVFOD0YWB2V7pPL6ubbNB2U7EQIoL8A_YfVRA
CitedBy_id crossref_primary_10_1104_pp_113_230383
crossref_primary_10_1089_dna_2022_0664
crossref_primary_10_1111_pce_14946
crossref_primary_10_1146_annurev_arplant_57_032905_105239
crossref_primary_10_1016_j_tplants_2005_11_005
crossref_primary_10_1038_srep11274
crossref_primary_10_1105_tpc_105_040097
crossref_primary_10_1146_annurev_arplant_080620_024221
crossref_primary_10_3390_ijms24032110
crossref_primary_10_1021_jp056909r
crossref_primary_10_1111_tpj_14980
crossref_primary_10_1104_pp_111_186411
crossref_primary_10_1007_s13562_020_00623_3
crossref_primary_10_1093_jxb_erv101
crossref_primary_10_1016_j_copbio_2004_12_006
crossref_primary_10_1111_nph_17332
crossref_primary_10_3389_fpls_2021_662793
crossref_primary_10_1093_plphys_kiae110
crossref_primary_10_1104_pp_107_107227
crossref_primary_10_1073_pnas_0703734104
crossref_primary_10_1016_j_molp_2020_02_003
crossref_primary_10_1074_jbc_M801011200
crossref_primary_10_1093_mp_ssm002
crossref_primary_10_1080_07060660609507266
crossref_primary_10_1126_sciadv_abp8412
crossref_primary_10_1111_j_1365_313X_2006_02742_x
crossref_primary_10_1111_j_1365_313X_2009_03809_x
crossref_primary_10_1038_sj_onc_1210892
crossref_primary_10_1111_j_1365_313X_2007_03332_x
crossref_primary_10_1093_mp_ssr052
crossref_primary_10_1016_j_pbi_2006_05_006
crossref_primary_10_1016_j_plaphy_2018_08_015
crossref_primary_10_1002_0471142301_ns0523s34
crossref_primary_10_1111_tpj_14074
crossref_primary_10_1016_j_pbi_2008_06_012
crossref_primary_10_3389_fpls_2023_1228961
crossref_primary_10_1105_tpc_112_107086
crossref_primary_10_1105_tpc_109_070458
crossref_primary_10_1016_j_tplants_2015_06_010
crossref_primary_10_1105_tpc_114_125591
crossref_primary_10_1371_journal_pgen_1004025
crossref_primary_10_1111_j_1365_3040_2005_01489_x
crossref_primary_10_1016_j_jphotobiol_2017_05_021
crossref_primary_10_3389_fpls_2016_01182
crossref_primary_10_1016_j_bbrc_2018_11_032
crossref_primary_10_1093_mp_sss010
crossref_primary_10_1111_pce_14130
crossref_primary_10_1186_1742_4690_10_84
crossref_primary_10_1016_j_plaphy_2015_03_006
crossref_primary_10_15252_embj_201899708
crossref_primary_10_1111_j_1365_313X_2006_02851_x
crossref_primary_10_1038_s41467_017_02476_2
crossref_primary_10_1016_j_tplants_2006_01_006
crossref_primary_10_1038_s41467_019_12110_y
crossref_primary_10_3390_ijms222011116
crossref_primary_10_1016_j_jphotobiol_2014_03_026
crossref_primary_10_1038_nprot_2006_52
crossref_primary_10_1073_pnas_1607074113
crossref_primary_10_1562_2005_07_08_IR_607
crossref_primary_10_3389_fpls_2021_732947
crossref_primary_10_1038_ncomms8245
crossref_primary_10_1074_jbc_M112_369371
crossref_primary_10_3390_ijms221910772
crossref_primary_10_1007_s00709_005_0122_6
crossref_primary_10_1016_j_molp_2014_11_025
crossref_primary_10_1093_jxb_ern200
crossref_primary_10_1016_j_pbi_2018_04_018
crossref_primary_10_1093_jxb_erp305
crossref_primary_10_1016_j_semcdb_2019_03_007
crossref_primary_10_1007_s13238_013_3036_7
crossref_primary_10_1073_pnas_0701987104
crossref_primary_10_1111_pce_12880
crossref_primary_10_1016_j_tcb_2005_09_007
crossref_primary_10_1111_j_1467_7652_2006_00183_x
crossref_primary_10_1002_pld3_144
crossref_primary_10_1016_j_molp_2014_11_021
crossref_primary_10_3389_fpls_2024_1259720
crossref_primary_10_1074_jbc_M700982200
Cites_doi 10.1074/jbc.M108138200
10.1101/gad.969702
10.1038/35013076
10.1016/S0074-7696(02)20006-6
10.1074/jbc.274.38.27231
10.1093/emboj/17.19.5577
10.1006/abio.1997.2428
10.1101/gad.1122903
10.1046/j.1365-313x.1998.00290.x
10.1073/pnas.96.1.151
10.1073/pnas.97.7.3684
10.1093/emboj/18.6.1660
10.1016/0092-8674(92)90555-Q
10.1093/emboj/cdg105
10.1074/jbc.M212681200
10.1016/j.lfs.2003.09.005
10.1074/jbc.M203990200
10.1126/science.1063630
10.1073/pnas.190318397
10.1074/jbc.M103140200
10.1016/0092-8674(94)90034-5
10.1101/gad.1055803
10.1104/pp.124.3.979
10.1186/1471-2121-3-30
10.1046/j.1365-313X.2002.01298.x
10.1105/tpc.11.3.349
ContentType Journal Article
Copyright Copyright 1993/2004 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Apr 27, 2004
Copyright © 2004, The National Academy of Sciences 2004
Copyright_xml – notice: Copyright 1993/2004 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Apr 27, 2004
– notice: Copyright © 2004, The National Academy of Sciences 2004
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.0307964101
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList
CrossRef

Genetics Abstracts
Virology and AIDS Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Botany
EISSN 1091-6490
EndPage 6802
ExternalDocumentID 782577651
10_1073_pnas_0307964101
15084749
101_17_6798
3372163
US201301071770
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM65467
– fundername: NIGMS NIH HHS
  grantid: R01 GM065467
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ADACV
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
GJ
KM
OHM
PQEST
X
XHC
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c594t-4146b2693600e58ccf24791ad23e8061679ff59789bbf287069410fabf381e6c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:49:39 EDT 2024
Thu Oct 24 22:57:04 EDT 2024
Tue Nov 19 05:49:22 EST 2024
Fri Dec 06 01:30:25 EST 2024
Sat Sep 28 08:39:30 EDT 2024
Wed Nov 11 00:29:18 EST 2020
Thu May 30 08:50:28 EDT 2019
Tue Dec 10 23:06:22 EST 2024
Wed Dec 27 19:28:28 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-4146b2693600e58ccf24791ad23e8061679ff59789bbf287069410fabf381e6c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Abbreviations: COP1, Constitutive photomorphogenesis 1; CLS, cytoplasmic localization signal; CC, coiled coil; BRET, bioluminescence resonance energy transfer; RLUC, Renilla luciferase; YFP, yellow fluorescent protein.
Present address: Huck Institute for Life Sciences and Department of Biochemistry and Molecular Biology, Pennsylvania State University, 513 Wartik Laboratory, University Park, PA 16802.
Data deposition: The sequences reported in this paper have been deposited in the GenBank database [accession nos. AY189980 (35S:RLUC) and AY189981 (35S:YFP)].
This paper was submitted directly (Track II) to the PNAS office.
Edited by J. Woodland Hastings, Harvard University, Cambridge, MA, and approved March 12, 2004
To whom correspondence should be addressed. E-mail: vonarnim@utk.edu.
OpenAccessLink https://europepmc.org/articles/pmc404125?pdf=render
PMID 15084749
PQID 201374459
PQPubID 42026
PageCount 5
ParticipantIDs proquest_journals_201374459
pubmedcentral_primary_oai_pubmedcentral_nih_gov_404125
pnas_primary_101_17_6798_fulltext
proquest_miscellaneous_17960642
jstor_primary_3372163
pubmed_primary_15084749
fao_agris_US201301071770
pnas_primary_101_17_6798
crossref_primary_10_1073_pnas_0307964101
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2004-04-27
PublicationDateYYYYMMDD 2004-04-27
PublicationDate_xml – month: 04
  year: 2004
  text: 2004-04-27
  day: 27
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2004
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – sequence: 0
  name: National Academy of Sciences
– name: National Acad Sciences
– name: National Academy of Sciences
References e_1_3_2_26_2
e_1_3_2_28_2
(e_1_3_2_27_2) 2002; 183
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
(e_1_3_2_21_2) 1994; 6
(e_1_3_2_8_2) 2003; 130
(e_1_3_2_4_2) 2003; 424
References_xml – ident: e_1_3_2_28_2
  doi: 10.1074/jbc.M108138200
– ident: e_1_3_2_3_2
  doi: 10.1101/gad.969702
– ident: e_1_3_2_2_2
  doi: 10.1038/35013076
– ident: e_1_3_2_30_2
  doi: 10.1016/S0074-7696(02)20006-6
– ident: e_1_3_2_10_2
  doi: 10.1074/jbc.274.38.27231
– ident: e_1_3_2_15_2
  doi: 10.1093/emboj/17.19.5577
– ident: e_1_3_2_19_2
  doi: 10.1006/abio.1997.2428
– volume: 424
  start-page: 995
  year: 2003
  ident: e_1_3_2_4_2
  publication-title: Nature
– ident: e_1_3_2_5_2
  doi: 10.1101/gad.1122903
– ident: e_1_3_2_14_2
  doi: 10.1046/j.1365-313x.1998.00290.x
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.96.1.151
– ident: e_1_3_2_17_2
  doi: 10.1073/pnas.97.7.3684
– volume: 183
  start-page: 121
  year: 2002
  ident: e_1_3_2_27_2
  publication-title: Methods Mol. Biol.
– ident: e_1_3_2_25_2
  doi: 10.1093/emboj/18.6.1660
– ident: e_1_3_2_20_2
  doi: 10.1016/0092-8674(92)90555-Q
– ident: e_1_3_2_22_2
  doi: 10.1093/emboj/cdg105
– ident: e_1_3_2_6_2
  doi: 10.1074/jbc.M212681200
– ident: e_1_3_2_18_2
  doi: 10.1016/j.lfs.2003.09.005
– ident: e_1_3_2_24_2
  doi: 10.1074/jbc.M203990200
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1063630
– ident: e_1_3_2_23_2
  doi: 10.1073/pnas.190318397
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M103140200
– volume: 6
  start-page: 1391
  year: 1994
  ident: e_1_3_2_21_2
  publication-title: Plant Cell
– volume: 130
  start-page: 969
  year: 2003
  ident: e_1_3_2_8_2
  publication-title: Development (Cambridge, U.K.)
– ident: e_1_3_2_13_2
  doi: 10.1016/0092-8674(94)90034-5
– ident: e_1_3_2_11_2
  doi: 10.1101/gad.1055803
– ident: e_1_3_2_1_2
  doi: 10.1104/pp.124.3.979
– ident: e_1_3_2_26_2
  doi: 10.1186/1471-2121-3-30
– ident: e_1_3_2_7_2
  doi: 10.1046/j.1365-313X.2002.01298.x
– ident: e_1_3_2_9_2
  doi: 10.1105/tpc.11.3.349
SSID ssj0009580
Score 2.1533337
Snippet Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on...
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real-time reporter on...
Bioluminescence resonance energy transfer (BRET) between Renilla luciferase and yellow fluorescent protein has been adapted to serve as a real- time reporter...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6798
SubjectTerms Alleles
Amino Acid Sequence
Analysis
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Arabidopsis thaliana
Biological Sciences
Bioluminescence
Botany
Cell Nucleus - metabolism
Dimerization
Energy
Energy Transfer
Epidermal cells
Flowers & plants
Fluorescence
Genetic Complementation Test
Hypocotyls
Light
Luminescent Measurements
Molecular Sequence Data
Mutant proteins
Mutation
Onions
Plant cells
Sequence Homology, Amino Acid
Signal Transduction - physiology
Transgenes
Title Arabidopsis repressor of light signaling, COP1, is regulated by nuclear exclusion: mutational analysis by bioluminescence resonance energy transfer
URI https://www.jstor.org/stable/3372163
http://www.pnas.org/content/101/17/6798.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15084749
https://www.proquest.com/docview/201374459
https://search.proquest.com/docview/17960642
https://pubmed.ncbi.nlm.nih.gov/PMC404125
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggCoWGlmIkDkXqPpI4ccINragqpIVKsFJvlu3YdKXdZJWHRH8Jf5cZx9ltEVy4RfIjj5mxZzLffCbkXZIpXiQIxeE2xDSjHCsNjlwB7rNOJIddC4uTF1_SqyX7fJPc-KKwxsMqS61Wk3K9mZSrW4et3G70dMCJTa8Xc4YkUcl0REaw-w4R-o5oN-vLTiJYfVnEBjofHk-3pWwmqNR5ykAT3Yk8M1idkUfz3qY0srIa0IlIeQqj_uZ-_omivLctXT4lT7w_ST_2z31IHpnyGTn0FtvQc08r_f45-QUaAf2kWhXVtlk1tO5BsFVNK0vXGKRTRHNILFC_oPOv1-EFdd3cafWmoOqOlkh_LGtqfup1hz_aPtBF1_ofilR6hhPsiexO3QZB9RofBaZBpx-vjCs3pK1zmU19RJaXn77Pr8b-WIaxTnLWgkBZqqI0j8FXMkmmtY0Yz0NZRLHJwD1IeW4txClZrpR1edQcPreVyoJ3YFIdvyAHZVWaY0LNzERaI-tgMmMqDZWdSQURG4tMbJWUATkf5CK2PfuGcFlzHguUi9hLMyDHIDchf8DaKJbfIszIhhis8llAjpwwd1PEMVIWxTDETbKfORQhF5iXCsjbfzUJ61E5ATkZlEJ4w28E3pfD6-QBebNrBYvFNIwsTdU1MA9GjSwKyMtegfZ38eoYkPSBau06IBf4wxYwEccJ3pvEq_8deEIeD5CkiJ-Sg7buzGvwtlp1hntdcuaM7DfSiyjA
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x8QAviMFgYcCMxMOQ1rVJnLjhDVVMBdYxiVXam2W79qjUJlXTSvCX8O9y5zjthuCFt0j-yMfd2Xe53_0M8DbrazHJCIojXExpRtXRBh25CbrPJlMCdy0qTh5d5MMx_3ydXYeisDrAKkujp6flbH5aTr97bOVibrotTqx7ORpwIonKujtwP0tFEbcx-oZqt98UniS4_vKEt4Q-Iu0uSlWfkloXOUdd9Gfy9HB9JibNW9vSjlNVi08k0lMc9TcH9E8c5a2N6ewxPAoeJfvQPPke3LPlE9gLNluz40As_e4p_EKdwH5KTyfVop7WbNnAYKslqxybUZjOCM-hqET9hA2-XsYnzHfz59XbCdM_WUkEyGrJ7A8zW9OvtvdstF6FX4pMBY4T6kn8Tus5weoNPQpOQ24_XVlfcMhW3mm2y30Yn328Ggw74WCGjskKvkKR8lwneZGit2SzvjEu4SgHNUlS20cHIReFcxip9Autnc-kFvi5ndIO_QObm_QZ7JZVaQ-A2Z5NjCHewazHdR5r11MaYzae2NRppSI4buUiFw3_hvR5c5FKkovcSjOCA5SbVDe4Osrxt4RysjGFq6IXwb4X5maKNCXSohSH-Em2M8cyFpIyUxG8-VeTdAGXE8FhqxQymH4t6b4CX6eI4GjTijZLiRhV2mpd4zwUN_IkgueNAm3vEtQxgvyOam06EBv43RY0Es8K3hjFi_8deAQPhlejc3n-6eLLITxsAUqJeAm7q-XavkLfa6Vfe1P7DY6NKy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RUJcEIVCTYEuEociNXH8XJsbCkTlkRIJIvW22l3vlkiJHcWJBL-Ev8vM2k5aBBdulvbhx8zszni--RbgVZIpXiQExeE2oDSj7CmNjlyB7rNOJMddi4qTx5fpxTT-eJVc7UHW1cI40L5Ws345X_TL2XeHrVwutN_hxPzJeBgTSVTiLwvr78OdJEId6-L0Ld1u1hSfhLgGx2HckfrwyF-Wsu6TaudpjProzuUZ4BpNbJo3tqZ9K6sOo0jEpzjqb07on1jKG5vT6AHcb71K9rZ5-kPYM-VDOGzttmZnLbn060fwC_UC-0k1K6plPavZqoHCVitWWTanUJ0RpkNSmfo5G36ZBOfMdXNn1puCqZ-sJBJkuWLmh55v6HfbGzberNvfiky2PCfUkzieNguC1mt6FJyGXH-6Mq7okK2d42xWRzAdvf82vOi1hzP0dJLHaxRrnKowzSP0mEySaW3DmOeBLMLIZOgkpDy3FqOVLFfKumxqjp_bSmXRRzCpjh7DQVmV5hiYGZhQa-IeTAaxSgNlB1Jh3BaHJrJKSg_OOrmIZcPBIVzunEeC5CJ20vTgGOUm5DWukGL6NaS8bEAhKx94cOSEuZ0iioi4KMIhbpLdzIEIuKDslAcv_9UkbIvN8eCkUwrRmn8t6L4cXyf34HTbinZLyRhZmmpT4zwUO8ahB08aBdrdpVVHD9JbqrXtQIzgt1vQUBwzeGMYT_934Cncnbwbic8fLj-dwL0OoxTyZ3CwXm3Mc3S_1uqFs7Tf1EksQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arabidopsis+repressor+of+light+signaling%2C+COP1%2C+is+regulated+by+nuclear+exclusion%3A+Mutational+analysis+by+bioluminescence+resonance+energy+transfer&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Subramanian%2C+Chitra&rft.au=Kim%2C+Byung-Hoon&rft.au=Lyssenko%2C+Nicholas+N.&rft.au=Xu%2C+Xiaodong&rft.date=2004-04-27&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=101&rft.issue=17&rft.spage=6798&rft.epage=6802&rft_id=info:doi/10.1073%2Fpnas.0307964101&rft_id=info%3Apmid%2F15084749&rft.externalDBID=PMC404125
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F17.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F101%2F17.cover.gif