TNER: a novel background error suppression method for mutation detection in circulating tumor DNA
Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced dur...
Saved in:
Published in | BMC bioinformatics Vol. 19; no. 1; pp. 387 - 7 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.10.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-018-2428-3 |
Cover
Loading…
Abstract | Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection.
To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small.
TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER . |
---|---|
AbstractList | Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER. Abstract Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER. Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection.BACKGROUNDUltra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection.To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small.RESULTSTo achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small.TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER .CONCLUSIONSTNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER . Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER . Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at Keywords: ctDNA, Next-generation sequencing, Variant calling, Error suppression, Single-nucleotide variant Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER. |
ArticleNumber | 387 |
Audience | Academic |
Author | Xie, Tao Deng, Shibing Bienkowska, Jadwiga Hardwick, James Lira, Maruja Rejto, Paul A. Huang, Donghui Wang, Kai Valdez, Crystal Kinong, Jennifer |
Author_xml | – sequence: 1 givenname: Shibing surname: Deng fullname: Deng, Shibing – sequence: 2 givenname: Maruja surname: Lira fullname: Lira, Maruja – sequence: 3 givenname: Donghui surname: Huang fullname: Huang, Donghui – sequence: 4 givenname: Kai surname: Wang fullname: Wang, Kai – sequence: 5 givenname: Crystal surname: Valdez fullname: Valdez, Crystal – sequence: 6 givenname: Jennifer surname: Kinong fullname: Kinong, Jennifer – sequence: 7 givenname: Paul A. surname: Rejto fullname: Rejto, Paul A. – sequence: 8 givenname: Jadwiga surname: Bienkowska fullname: Bienkowska, Jadwiga – sequence: 9 givenname: James surname: Hardwick fullname: Hardwick, James – sequence: 10 givenname: Tao orcidid: 0000-0001-7658-6587 surname: Xie fullname: Xie, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30342468$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAURiNURB_wA9igSGxgkeJnbLNAGpUCI1VFKmVt2Y6dekjsqZ1U8O_xdErpVAhlEev63GP76jus9kIMtqpeQnAMIW_fZYg4FQ2AvEEE8QY_qQ4gYbBBENC9B-v96jDnFQCQcUCfVfsYYIJIyw8qdXl-evG-VnWIN3aotTI_-hTn0NU2pZjqPK_XyebsY6hHO13FrnalPM6Tmja1zk7W3K58qI1PZh7KRujraR4L9_F88bx66tSQ7Yu7_1H1_dPp5cmX5uzr5-XJ4qwxVJCpwdgpJwzhrVOWQAehZtjizmpENaYaaQwcdhpYSlvGEGOCatpCxa2mWhB8VC233i6qlVwnP6r0S0bl5W0hpl6qNHkzWIkUEhp1QhDXEss7jk2HKNDKIY6Kubg-bF3rWY-2MzZMSQ070t2d4K9kH29kCwUVDBXBmztBitezzZMcfTZ2GFSwcc4SQcRayhhoC_r6EbqKcwplVIXCFOCWEPqX6lV5gA8ulnPNRioXlAqOBeW4UMf_oMrX2dGbEh7nS32n4e1OQ2Em-3Pq1ZyzXH672GVfPRzK_TT-hKkAcAuYFHNO1t0jEMhNYOU2sLIEVm4CKzdS9qjH-G20ys398J_O37or7Ok |
CitedBy_id | crossref_primary_10_2217_pgs_2019_0099 crossref_primary_10_1002_imt2_107 crossref_primary_10_3390_cancers15072051 crossref_primary_10_3390_cancers16132432 crossref_primary_10_1016_j_medj_2021_09_002 crossref_primary_10_1016_j_semcancer_2020_07_009 crossref_primary_10_1186_s12859_020_3412_2 |
Cites_doi | 10.1073/pnas.1105422108 10.1126/scitranslmed.3007094 10.1038/nm.3519 10.1186/s12859-016-0976-y 10.1159/000473882 10.2202/1544-6115.1027 10.1056/NEJMe1301249 10.1186/s13059-015-0699-9 10.1126/science.aaa6806 10.1056/NEJMoa1113205 10.1016/j.cell.2011.02.013 10.1093/nar/gkr344 10.1038/ng.3511 10.1186/s13059-017-1275-2 10.1186/s12864-016-2727-x 10.1038/s41523-017-0028-4 10.1186/s12859-016-1190-7 10.1038/nm.1789 10.1186/s13059-016-0893-4 10.1038/nm.3511 10.1158/1541-7786.MCR-16-0044 10.1038/nrclinonc.2013.110 10.1093/bioinformatics/btt750 10.1038/nature12477 10.1101/gr.129684.111 10.1371/journal.pgen.1006162 10.1080/19345747.2011.618213 10.1093/bioinformatics/btv275 10.1186/gb-2010-11-10-r106 10.1073/pnas.1500076112 10.1016/j.cell.2015.11.050 10.1038/nbt.3520 10.1080/14737159.2016.1184974 10.1073/pnas.1212246109 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12859-018-2428-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_2a29b2d994f64e8d83cd250baf282277 PMC6195972 A559839583 30342468 10_1186_s12859_018_2428_3 |
Genre | Journal Article |
GeographicLocations | New York United States--US |
GeographicLocations_xml | – name: New York – name: United States--US |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-33faf9c486fae41f11b73e3deb25b35b2b30f3fb0e5567727795b561a8eb5b943 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Thu Aug 21 18:24:15 EDT 2025 Mon Jul 21 09:52:10 EDT 2025 Fri Jul 25 10:35:41 EDT 2025 Tue Jun 17 21:44:53 EDT 2025 Tue Jun 10 20:31:27 EDT 2025 Fri Jun 27 04:37:48 EDT 2025 Thu Apr 03 07:06:00 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Tue Jul 01 03:38:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Next-generation sequencing Single-nucleotide variant Error suppression ctDNA Variant calling |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-33faf9c486fae41f11b73e3deb25b35b2b30f3fb0e5567727795b561a8eb5b943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7658-6587 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2428-3 |
PMID | 30342468 |
PQID | 2135036445 |
PQPubID | 44065 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a29b2d994f64e8d83cd250baf282277 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195972 proquest_miscellaneous_2127657706 proquest_journals_2135036445 gale_infotracmisc_A559839583 gale_infotracacademiconefile_A559839583 gale_incontextgauss_ISR_A559839583 pubmed_primary_30342468 crossref_primary_10_1186_s12859_018_2428_3 crossref_citationtrail_10_1186_s12859_018_2428_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-20 |
PublicationDateYYYYMMDD | 2018-10-20 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | Y He (2428_CR28) 2015; 31 M Colews (2428_CR25) 2013 E Crowley (2428_CR11) 2013; 10 S Kirsch (2428_CR16) 2012; 109 AM Newman (2428_CR17) 2016; 34 Z Yang (2428_CR23) 2015; 16 HR Underhill (2428_CR5) 2016; 12 K Nakamura (2428_CR15) 2011; 39 F Diehl (2428_CR2) 2008; 14 T Chen (2428_CR33) 2016; 17 C Bettegowda (2428_CR9) 2014; 6 P Jiang (2428_CR7) 2015; 112 M Gerstung (2428_CR27) 2014; 30 M Lippman (2428_CR10) 2013; 368 YH Chen (2428_CR13) 2017; 3 LB Alexandrov (2428_CR19) 2013; 500 M Gerlinger (2428_CR21) 2012; 366 DC Koboldt (2428_CR30) 2012; 22 GK Smyth (2428_CR34) 2004; 3 R Rosenthal (2428_CR20) 2016; 17 MW Snyder (2428_CR6) 2016; 164 MR Openshaw (2428_CR12) 2016; 16 AM Newman (2428_CR18) 2014; 20 V Aggarwala (2428_CR32) 2016; 48 Tiziana Venesio (2428_CR4) 2017; 85 M Schirmer (2428_CR36) 2016; 17 AR Thierry (2428_CR14) 2014; 20 IF do Valle (2428_CR31) 2016; 17 I Kinde (2428_CR3) 2011; 108 2428_CR24 S Anders (2428_CR35) 2010; 11 S Volik (2428_CR8) 2016; 14 I Martincorena (2428_CR29) 2015; 348 G Park (2428_CR22) 2017; 18 A Gelman (2428_CR26) 2012; 5 D Hanahan (2428_CR1) 2011; 144 21576222 - Nucleic Acids Res. 2011 Jul;39(13):e90 27018799 - Nat Biotechnol. 2016 May;34(5):547-555 26968756 - BMC Bioinformatics. 2016 Mar 11;17:125 23945592 - Nature. 2013 Aug 22;500(7463):415-21 27422709 - Mol Cancer Res. 2016 Oct;14(10):898-908 20979621 - Genome Biol. 2010;11(10):R106 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 27144417 - Expert Rev Mol Diagn. 2016 Jul;16(7):751-5 24705333 - Nat Med. 2014 May;20(5):548-54 26878723 - Nat Genet. 2016 Apr;48(4):349-55 28685160 - NPJ Breast Cancer. 2017 Jul 3;3:24 26169266 - Genome Biol. 2015 Jul 14;16:140 25646427 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1317-25 28185561 - BMC Bioinformatics. 2016 Nov 8;17(Suppl 12):341 21376230 - Cell. 2011 Mar 4;144(5):646-74 22397650 - N Engl J Med. 2012 Mar 8;366(10):883-892 23836314 - Nat Rev Clin Oncol. 2013 Aug;10(8):472-84 18670422 - Nat Med. 2008 Sep;14(9):985-90 26899170 - Genome Biol. 2016 Feb 22;17:31 28614831 - Pathobiology. 2018;85(1-2):146-154 27428049 - PLoS Genet. 2016 Jul 18;12(7):e1006162 25931517 - Bioinformatics. 2015 Sep 1;31(17):2785-93 24658074 - Nat Med. 2014 Apr;20(4):430-5 24443148 - Bioinformatics. 2014 May 1;30(9):1198-204 26771485 - Cell. 2016 Jan 14;164(1-2):57-68 22912407 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14289-90 28732520 - Genome Biol. 2017 Jul 21;18(1):136 22300766 - Genome Res. 2012 Mar;22(3):568-76 21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5 24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24 23484798 - N Engl J Med. 2013 Mar 28;368(13):1249-50 25999502 - Science. 2015 May 22;348(6237):880-6 27356755 - BMC Genomics. 2016 Jun 23;17 Suppl 2:394 |
References_xml | – volume: 108 start-page: 9530 issue: 23 year: 2011 ident: 2428_CR3 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1105422108 – volume: 6 start-page: 224ra224 issue: 224 year: 2014 ident: 2428_CR9 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3007094 – volume: 20 start-page: 548 issue: 5 year: 2014 ident: 2428_CR18 publication-title: Nat Med doi: 10.1038/nm.3519 – volume: 17 start-page: 125 year: 2016 ident: 2428_CR36 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-0976-y – volume: 85 start-page: 146 issue: 1-2 year: 2017 ident: 2428_CR4 publication-title: Pathobiology doi: 10.1159/000473882 – volume: 3 start-page: Article3 year: 2004 ident: 2428_CR34 publication-title: Stat Appl Genet Mol Biol doi: 10.2202/1544-6115.1027 – volume: 368 start-page: 1249 issue: 13 year: 2013 ident: 2428_CR10 publication-title: N Engl J Med doi: 10.1056/NEJMe1301249 – volume: 16 start-page: 140 year: 2015 ident: 2428_CR23 publication-title: Genome Biol doi: 10.1186/s13059-015-0699-9 – volume: 348 start-page: 880 issue: 6237 year: 2015 ident: 2428_CR29 publication-title: Science doi: 10.1126/science.aaa6806 – volume: 366 start-page: 883 issue: 10 year: 2012 ident: 2428_CR21 publication-title: N Engl J Med doi: 10.1056/NEJMoa1113205 – volume: 144 start-page: 646 issue: 5 year: 2011 ident: 2428_CR1 publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 39 start-page: e90 issue: 13 year: 2011 ident: 2428_CR15 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr344 – volume: 48 start-page: 349 issue: 4 year: 2016 ident: 2428_CR32 publication-title: Nat Genet doi: 10.1038/ng.3511 – volume: 18 start-page: 136 issue: 1 year: 2017 ident: 2428_CR22 publication-title: Genome Biol doi: 10.1186/s13059-017-1275-2 – volume: 17 start-page: 394 issue: Suppl 2 year: 2016 ident: 2428_CR33 publication-title: BMC genomics doi: 10.1186/s12864-016-2727-x – volume: 3 start-page: 24 year: 2017 ident: 2428_CR13 publication-title: NPJ Breast Cancer doi: 10.1038/s41523-017-0028-4 – volume: 17 start-page: 341 issue: Suppl 12 year: 2016 ident: 2428_CR31 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1190-7 – volume: 14 start-page: 985 issue: 9 year: 2008 ident: 2428_CR2 publication-title: Nat Med doi: 10.1038/nm.1789 – volume: 17 start-page: 31 year: 2016 ident: 2428_CR20 publication-title: Genome Biol doi: 10.1186/s13059-016-0893-4 – volume: 20 start-page: 430 issue: 4 year: 2014 ident: 2428_CR14 publication-title: Nat Med doi: 10.1038/nm.3511 – volume: 14 start-page: 898 issue: 10 year: 2016 ident: 2428_CR8 publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-16-0044 – volume: 10 start-page: 472 issue: 8 year: 2013 ident: 2428_CR11 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2013.110 – volume: 30 start-page: 1198 issue: 9 year: 2014 ident: 2428_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt750 – volume: 500 start-page: 415 issue: 7463 year: 2013 ident: 2428_CR19 publication-title: Nature doi: 10.1038/nature12477 – volume: 22 start-page: 568 issue: 3 year: 2012 ident: 2428_CR30 publication-title: Genome Res doi: 10.1101/gr.129684.111 – volume: 12 start-page: e1006162 issue: 7 year: 2016 ident: 2428_CR5 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006162 – volume-title: Applied Bayesian statistics with R and OpenBUGS examples year: 2013 ident: 2428_CR25 – volume: 5 start-page: 22 issue: 2 year: 2012 ident: 2428_CR26 publication-title: J Res Educ Effectiveness doi: 10.1080/19345747.2011.618213 – volume: 31 start-page: 2785 issue: 17 year: 2015 ident: 2428_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv275 – volume: 11 start-page: R106 issue: 10 year: 2010 ident: 2428_CR35 publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 112 start-page: E1317 issue: 11 year: 2015 ident: 2428_CR7 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1500076112 – volume: 164 start-page: 57 issue: 1–2 year: 2016 ident: 2428_CR6 publication-title: Cell doi: 10.1016/j.cell.2015.11.050 – volume: 34 start-page: 547 issue: 5 year: 2016 ident: 2428_CR17 publication-title: Nat Biotechnol doi: 10.1038/nbt.3520 – volume: 16 start-page: 751 issue: 7 year: 2016 ident: 2428_CR12 publication-title: Expert Rev Mol Diagn doi: 10.1080/14737159.2016.1184974 – volume: 109 start-page: 14289 issue: 36 year: 2012 ident: 2428_CR16 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1212246109 – ident: 2428_CR24 – reference: 26771485 - Cell. 2016 Jan 14;164(1-2):57-68 – reference: 22300766 - Genome Res. 2012 Mar;22(3):568-76 – reference: 22912407 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14289-90 – reference: 27018799 - Nat Biotechnol. 2016 May;34(5):547-555 – reference: 28732520 - Genome Biol. 2017 Jul 21;18(1):136 – reference: 28685160 - NPJ Breast Cancer. 2017 Jul 3;3:24 – reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74 – reference: 21576222 - Nucleic Acids Res. 2011 Jul;39(13):e90 – reference: 24705333 - Nat Med. 2014 May;20(5):548-54 – reference: 28185561 - BMC Bioinformatics. 2016 Nov 8;17(Suppl 12):341 – reference: 24443148 - Bioinformatics. 2014 May 1;30(9):1198-204 – reference: 24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24 – reference: 23484798 - N Engl J Med. 2013 Mar 28;368(13):1249-50 – reference: 25646427 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1317-25 – reference: 26169266 - Genome Biol. 2015 Jul 14;16:140 – reference: 27356755 - BMC Genomics. 2016 Jun 23;17 Suppl 2:394 – reference: 18670422 - Nat Med. 2008 Sep;14(9):985-90 – reference: 21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5 – reference: 24658074 - Nat Med. 2014 Apr;20(4):430-5 – reference: 28614831 - Pathobiology. 2018;85(1-2):146-154 – reference: 25931517 - Bioinformatics. 2015 Sep 1;31(17):2785-93 – reference: 26968756 - BMC Bioinformatics. 2016 Mar 11;17:125 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 27428049 - PLoS Genet. 2016 Jul 18;12(7):e1006162 – reference: 22397650 - N Engl J Med. 2012 Mar 8;366(10):883-892 – reference: 26899170 - Genome Biol. 2016 Feb 22;17:31 – reference: 25999502 - Science. 2015 May 22;348(6237):880-6 – reference: 23836314 - Nat Rev Clin Oncol. 2013 Aug;10(8):472-84 – reference: 27422709 - Mol Cancer Res. 2016 Oct;14(10):898-908 – reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 – reference: 26878723 - Nat Genet. 2016 Apr;48(4):349-55 – reference: 23945592 - Nature. 2013 Aug 22;500(7463):415-21 – reference: 27144417 - Expert Rev Mol Diagn. 2016 Jul;16(7):751-5 |
SSID | ssj0017805 |
Score | 2.3234792 |
Snippet | Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring... Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for... Abstract Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 387 |
SubjectTerms | Analysis Background noise Binomial distribution Bioinformatics Cancer Care and treatment Circulating Tumor DNA - genetics Computer Simulation ctDNA Deoxyribonucleic acid Development and progression DNA DNA Mutational Analysis - methods DNA sequencing Error detection Error suppression Evolution Gene mutation Genetic aspects Genomes High-Throughput Nucleotide Sequencing Humans Medical errors Methodology Mutation Mutation - genetics Neoplasms - genetics Next-generation sequencing Noise Noise reduction Normal Distribution ROC Curve Sample size Single-nucleotide variant Software State of the art Tumors Variant calling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifhutsoogCKFJ9tu3U1uq4D3UFvq27Gc9bDfl7iL0v-9OkjsuCPria3aWZGdmd2Yys79B6J0KQkWnSMk8VSUNypdKBFOSGDzJEZehDv53fJ_z4zP67Zyd77T6gpqwAR54YNxBYxplG68UjZwG6SVxPpttayIUQIr-Hnm2eZtgaswfAFL_mMOsJT9Y1YDTlsNmCSlQWZKJFerB-v88knds0rRecscAHT1A90fPEc-GL36I7oT0CN0deknePEbmdH548hEbnNrf4RJb437BjY3kcVgu2yVedddjzWvCQ9tonP1VfNUNuXjsw7qvykp4kbBbLF3f1ytd4HV3lem-zGdP0NnR4enn43Lsn1A6pui6JCSaqByVPJpA61jXVpBAfA6mmSXMNpZUkURbBcZ49rKFUMxmf8rIYJlVlDxFe6lN4TnClvs6MzwHK1xS2ThDK5NjW2p8IDHLoUDVhp_ajeDi0OPiUvdBhuR6EIHOItAgAk0K9GE75XpA1vgb8ScQ0pYQQLH7B1lV9Kgq-l-qUqC3IGINsBcJ6mouTLda6a8_TvQMcOqJYjK_6f1IFNu8AmfGawqZD4CUNaHcn1DmfemmwxtN0uO5sNJNTRhkfikr0JvtMMyEWrcU2g5oGsGZEBUv0LNB8bbrJoDYSLkskJio5IQx05G0-NmjhnOAERLNi__ByZfoXgObKdvwptpHe-tlF15l52xtX_f78BbOPTUr priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_1lCiCIJRrm48mvsiqt56C-3Dewb2FfK6Ld-3abgX_ezNtd70i3GszoW1mJjOTmfwGodfSlzJYSVLmqEyply6VpdcpCd6RGHFpauG849uCH5_Rr-fsfDxwa8eyyu2e2G_UrrZwRn5Y5IRBzoyy9-tfKXSNguzq2ELjJrqVR0sDEi7mn3dZBMDrHzOZueCHbQ5obTF4FpAIFSmZ2KIesv__jfmKZZpWTV4xQ_N76O7oP-LZwPD76IavHqDbQ0fJPw-RPl0cnbzDGlf1b3-BjbY_4d5G5bBvmrrBbbceK18rPDSPxtFrxZfdkJHHzm_62qwKrypsV43tu3tVS7zpLiPdp8XsETqbH51-PE7HLgqpZZJuUkKCDtJSwYP2NA95bkriiYshNTOEmcKQLJBgMs8Yj752WUpmolelhTfMSEoeo72qrvw-woa7PBQihixcUFFYTTMdI1yqnSchehoJyrbrqewIMQ6dLi5UH2oIrgYWqMgCBSxQJEFvd1PWA77GdcQfgEk7QoDG7h_UzVKNmqYKXUhTOClp4NQLJ4h10c8zOkDFbFkm6BWwWAH4RQXVNUvdta368v1EzQCtnkgm4pvejEShjn9g9XhZIa4D4GVNKA8mlFE77XR4K0lq3B1a9U-WE_RyNwwzoeKt8nUHNEXJWVlmPEFPBsHb_TcB3EbKRYLKiUhOFmY6Uq1-9NjhHMCEyuLp9Z_1DN0pQE2ijS6yA7S3aTr_PDpfG_Oi17C_zNUszQ priority: 102 providerName: ProQuest |
Title | TNER: a novel background error suppression method for mutation detection in circulating tumor DNA |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30342468 https://www.proquest.com/docview/2135036445 https://www.proquest.com/docview/2127657706 https://pubmed.ncbi.nlm.nih.gov/PMC6195972 https://doaj.org/article/2a29b2d994f64e8d83cd250baf282277 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2IdBeEN8ERmUQEhJSWBLbsY2EUAcdA2kVKqvUN8tO7FLRJSNtEfvv8SVpacTgJQ_xOZF9d7k73-V3CL2QlkuXSRKynMqQWpmHklsdEmdz4iMuTTM47zgbpqdj-nnCJjto3d6q3cDFtaEd9JMaV_PXv35cvfMK_7ZWeJEeLWJAYfNBsYAEpwjJLtr3holDJ4cz-iepAPD9bWLz2mkH6CYBRDwKuKtbVqoG8__7k71ls7r1lFsG6uQ2utV6lrjfiMIdtGOLu-hG02vy6h7S58PB6A3WuCh_2jk2OvsOf3QUObZVVVZ4sbpsa2IL3LSVxt6fxRerJlePc7usq7YKPCtwNquyuu9XMcXL1YWn-zDs30fjk8H5-9Ow7a8QZkzSZUiI005mVKROWxq7ODacWJL7YJsZwkxiSOSIM5FlLPVeOOeSGe9vaWENM5KSB2ivKAv7CGGT5rFLhA9mUkFFkmkaaR_7Up1b4rwPEqBovZ8qa8HHoQfGXNVBiEhVww3luaGAG4oE6NVmymWDvPE_4mNg0oYQQLPrG2U1Va0OqkQn0iS5lNSl1IpckCz3HqDRDmppOQ_Qc2CxAliMAupupnq1WKhPX0eqDzj2RDLh3_SyJXKlX0Gm298Y_D4AklaH8rBD6fU26w6vJUmtxV4lMWGQGaYsQM82wzATauEKW66AJuEp4zxKA_SwEbzNutfyGyDeEcnOxnRHitm3GlU8BZghnjz-5zOfoIMElMUb7iQ6RHvLamWfeo9saXpol0-4v4qTjz20fzwYfhn16tONXq2BvwFKGTQM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDeFAQaBkJCiJf6IbSSEBtvUsq0PY5P6ZmzHHhNbMtIWtH-KvxFfkpZFSHvba31JGt-d7y4-_34IvVZeqOAUTXjBVMK8KhIlvElo8AWNFZdhDr537I3z4SH7MuGTFfRncRYG2ioXa2KzUBeVg2_k6ySjHPbMGP949jMB1ijYXV1QaLRmsePPf8eSbfphtBn1-4aQ7a2Dz8OkYxVIHFdsllAaTFCOyTwYz7KQZVZQT4tYYnJLuSWWpoEGm3rO85h7CqG4jVmGkd5yqxiN972GrsfAm0ILoZgsC7wM-AG6ndNM5uvTDNDhYrEuYeNVJrQX-xqKgP8DwYVI2O_SvBD2tu-g212-ijdaA7uLVnx5D91oGSzP7yNzMN7af48NLqtf_gRb437AOZGywL6uqxpP52ddp22JW7JqHLNkfDpvOwBw4WdNL1iJj0vsjmvXsImVR3g2P41ym-ONB-jwSub3IVotq9I_RtjmRRaIjCVSLpkkzrDUxIqamcLTEDObAUoX86ldB2kOzBonuiltZK5bFeioAg0q0HSA3i0vOWvxPC4T_gRKWgoCFHfzQ1Uf6c6zNTFEWVIoxULOvCwkdUXMK60J0KErxAC9AhVrANsooZvnyMynUz36uq83AB2fKi7jk952QqGKb-BMdzgizgPgc_Uk13qScTVw_eGFJeluNZrqf74zQC-Xw3AldNiVvpqDDBE5FyLNB-hRa3jL96aAE8lyOUCiZ5K9iemPlMffG6zyHMCLBHly-d96gW4OD_Z29e5ovPMU3SLgMjE_IOkaWp3Vc_8sJn4z-7zxNoy-XbV7_wUM4Gng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TNER%3A+a+novel+background+error+suppression+method+for+mutation+detection+in+circulating+tumor+DNA&rft.jtitle=BMC+bioinformatics&rft.au=Deng%2C+Shibing&rft.au=Lira%2C+Maruja&rft.au=Huang%2C+Donghui&rft.au=Wang%2C+Kai&rft.date=2018-10-20&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=387&rft_id=info:doi/10.1186%2Fs12859-018-2428-3&rft_id=info%3Apmid%2F30342468&rft.externalDocID=30342468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |