TNER: a novel background error suppression method for mutation detection in circulating tumor DNA

Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced dur...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. 1; pp. 387 - 7
Main Authors Deng, Shibing, Lira, Maruja, Huang, Donghui, Wang, Kai, Valdez, Crystal, Kinong, Jennifer, Rejto, Paul A., Bienkowska, Jadwiga, Hardwick, James, Xie, Tao
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.10.2018
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-018-2428-3

Cover

Loading…
Abstract Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER .
AbstractList Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER.
Abstract Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER.
Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection.BACKGROUNDUltra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection.To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small.RESULTSTo achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small.TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER .CONCLUSIONSTNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER .
Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER .
Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at Keywords: ctDNA, Next-generation sequencing, Variant calling, Error suppression, Single-nucleotide variant
Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER.
ArticleNumber 387
Audience Academic
Author Xie, Tao
Deng, Shibing
Bienkowska, Jadwiga
Hardwick, James
Lira, Maruja
Rejto, Paul A.
Huang, Donghui
Wang, Kai
Valdez, Crystal
Kinong, Jennifer
Author_xml – sequence: 1
  givenname: Shibing
  surname: Deng
  fullname: Deng, Shibing
– sequence: 2
  givenname: Maruja
  surname: Lira
  fullname: Lira, Maruja
– sequence: 3
  givenname: Donghui
  surname: Huang
  fullname: Huang, Donghui
– sequence: 4
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
– sequence: 5
  givenname: Crystal
  surname: Valdez
  fullname: Valdez, Crystal
– sequence: 6
  givenname: Jennifer
  surname: Kinong
  fullname: Kinong, Jennifer
– sequence: 7
  givenname: Paul A.
  surname: Rejto
  fullname: Rejto, Paul A.
– sequence: 8
  givenname: Jadwiga
  surname: Bienkowska
  fullname: Bienkowska, Jadwiga
– sequence: 9
  givenname: James
  surname: Hardwick
  fullname: Hardwick, James
– sequence: 10
  givenname: Tao
  orcidid: 0000-0001-7658-6587
  surname: Xie
  fullname: Xie, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30342468$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAURiNURB_wA9igSGxgkeJnbLNAGpUCI1VFKmVt2Y6dekjsqZ1U8O_xdErpVAhlEev63GP76jus9kIMtqpeQnAMIW_fZYg4FQ2AvEEE8QY_qQ4gYbBBENC9B-v96jDnFQCQcUCfVfsYYIJIyw8qdXl-evG-VnWIN3aotTI_-hTn0NU2pZjqPK_XyebsY6hHO13FrnalPM6Tmja1zk7W3K58qI1PZh7KRujraR4L9_F88bx66tSQ7Yu7_1H1_dPp5cmX5uzr5-XJ4qwxVJCpwdgpJwzhrVOWQAehZtjizmpENaYaaQwcdhpYSlvGEGOCatpCxa2mWhB8VC233i6qlVwnP6r0S0bl5W0hpl6qNHkzWIkUEhp1QhDXEss7jk2HKNDKIY6Kubg-bF3rWY-2MzZMSQ070t2d4K9kH29kCwUVDBXBmztBitezzZMcfTZ2GFSwcc4SQcRayhhoC_r6EbqKcwplVIXCFOCWEPqX6lV5gA8ulnPNRioXlAqOBeW4UMf_oMrX2dGbEh7nS32n4e1OQ2Em-3Pq1ZyzXH672GVfPRzK_TT-hKkAcAuYFHNO1t0jEMhNYOU2sLIEVm4CKzdS9qjH-G20ys398J_O37or7Ok
CitedBy_id crossref_primary_10_2217_pgs_2019_0099
crossref_primary_10_1002_imt2_107
crossref_primary_10_3390_cancers15072051
crossref_primary_10_3390_cancers16132432
crossref_primary_10_1016_j_medj_2021_09_002
crossref_primary_10_1016_j_semcancer_2020_07_009
crossref_primary_10_1186_s12859_020_3412_2
Cites_doi 10.1073/pnas.1105422108
10.1126/scitranslmed.3007094
10.1038/nm.3519
10.1186/s12859-016-0976-y
10.1159/000473882
10.2202/1544-6115.1027
10.1056/NEJMe1301249
10.1186/s13059-015-0699-9
10.1126/science.aaa6806
10.1056/NEJMoa1113205
10.1016/j.cell.2011.02.013
10.1093/nar/gkr344
10.1038/ng.3511
10.1186/s13059-017-1275-2
10.1186/s12864-016-2727-x
10.1038/s41523-017-0028-4
10.1186/s12859-016-1190-7
10.1038/nm.1789
10.1186/s13059-016-0893-4
10.1038/nm.3511
10.1158/1541-7786.MCR-16-0044
10.1038/nrclinonc.2013.110
10.1093/bioinformatics/btt750
10.1038/nature12477
10.1101/gr.129684.111
10.1371/journal.pgen.1006162
10.1080/19345747.2011.618213
10.1093/bioinformatics/btv275
10.1186/gb-2010-11-10-r106
10.1073/pnas.1500076112
10.1016/j.cell.2015.11.050
10.1038/nbt.3520
10.1080/14737159.2016.1184974
10.1073/pnas.1212246109
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-018-2428-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 7
ExternalDocumentID oai_doaj_org_article_2a29b2d994f64e8d83cd250baf282277
PMC6195972
A559839583
30342468
10_1186_s12859_018_2428_3
Genre Journal Article
GeographicLocations New York
United States--US
GeographicLocations_xml – name: New York
– name: United States--US
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c594t-33faf9c486fae41f11b73e3deb25b35b2b30f3fb0e5567727795b561a8eb5b943
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 18:24:15 EDT 2025
Mon Jul 21 09:52:10 EDT 2025
Fri Jul 25 10:35:41 EDT 2025
Tue Jun 17 21:44:53 EDT 2025
Tue Jun 10 20:31:27 EDT 2025
Fri Jun 27 04:37:48 EDT 2025
Thu Apr 03 07:06:00 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Tue Jul 01 03:38:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Next-generation sequencing
Single-nucleotide variant
Error suppression
ctDNA
Variant calling
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c594t-33faf9c486fae41f11b73e3deb25b35b2b30f3fb0e5567727795b561a8eb5b943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7658-6587
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-018-2428-3
PMID 30342468
PQID 2135036445
PQPubID 44065
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_2a29b2d994f64e8d83cd250baf282277
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6195972
proquest_miscellaneous_2127657706
proquest_journals_2135036445
gale_infotracmisc_A559839583
gale_infotracacademiconefile_A559839583
gale_incontextgauss_ISR_A559839583
pubmed_primary_30342468
crossref_primary_10_1186_s12859_018_2428_3
crossref_citationtrail_10_1186_s12859_018_2428_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-20
PublicationDateYYYYMMDD 2018-10-20
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-20
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References Y He (2428_CR28) 2015; 31
M Colews (2428_CR25) 2013
E Crowley (2428_CR11) 2013; 10
S Kirsch (2428_CR16) 2012; 109
AM Newman (2428_CR17) 2016; 34
Z Yang (2428_CR23) 2015; 16
HR Underhill (2428_CR5) 2016; 12
K Nakamura (2428_CR15) 2011; 39
F Diehl (2428_CR2) 2008; 14
T Chen (2428_CR33) 2016; 17
C Bettegowda (2428_CR9) 2014; 6
P Jiang (2428_CR7) 2015; 112
M Gerstung (2428_CR27) 2014; 30
M Lippman (2428_CR10) 2013; 368
YH Chen (2428_CR13) 2017; 3
LB Alexandrov (2428_CR19) 2013; 500
M Gerlinger (2428_CR21) 2012; 366
DC Koboldt (2428_CR30) 2012; 22
GK Smyth (2428_CR34) 2004; 3
R Rosenthal (2428_CR20) 2016; 17
MW Snyder (2428_CR6) 2016; 164
MR Openshaw (2428_CR12) 2016; 16
AM Newman (2428_CR18) 2014; 20
V Aggarwala (2428_CR32) 2016; 48
Tiziana Venesio (2428_CR4) 2017; 85
M Schirmer (2428_CR36) 2016; 17
AR Thierry (2428_CR14) 2014; 20
IF do Valle (2428_CR31) 2016; 17
I Kinde (2428_CR3) 2011; 108
2428_CR24
S Anders (2428_CR35) 2010; 11
S Volik (2428_CR8) 2016; 14
I Martincorena (2428_CR29) 2015; 348
G Park (2428_CR22) 2017; 18
A Gelman (2428_CR26) 2012; 5
D Hanahan (2428_CR1) 2011; 144
21576222 - Nucleic Acids Res. 2011 Jul;39(13):e90
27018799 - Nat Biotechnol. 2016 May;34(5):547-555
26968756 - BMC Bioinformatics. 2016 Mar 11;17:125
23945592 - Nature. 2013 Aug 22;500(7463):415-21
27422709 - Mol Cancer Res. 2016 Oct;14(10):898-908
20979621 - Genome Biol. 2010;11(10):R106
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
27144417 - Expert Rev Mol Diagn. 2016 Jul;16(7):751-5
24705333 - Nat Med. 2014 May;20(5):548-54
26878723 - Nat Genet. 2016 Apr;48(4):349-55
28685160 - NPJ Breast Cancer. 2017 Jul 3;3:24
26169266 - Genome Biol. 2015 Jul 14;16:140
25646427 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1317-25
28185561 - BMC Bioinformatics. 2016 Nov 8;17(Suppl 12):341
21376230 - Cell. 2011 Mar 4;144(5):646-74
22397650 - N Engl J Med. 2012 Mar 8;366(10):883-892
23836314 - Nat Rev Clin Oncol. 2013 Aug;10(8):472-84
18670422 - Nat Med. 2008 Sep;14(9):985-90
26899170 - Genome Biol. 2016 Feb 22;17:31
28614831 - Pathobiology. 2018;85(1-2):146-154
27428049 - PLoS Genet. 2016 Jul 18;12(7):e1006162
25931517 - Bioinformatics. 2015 Sep 1;31(17):2785-93
24658074 - Nat Med. 2014 Apr;20(4):430-5
24443148 - Bioinformatics. 2014 May 1;30(9):1198-204
26771485 - Cell. 2016 Jan 14;164(1-2):57-68
22912407 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14289-90
28732520 - Genome Biol. 2017 Jul 21;18(1):136
22300766 - Genome Res. 2012 Mar;22(3):568-76
21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5
24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24
23484798 - N Engl J Med. 2013 Mar 28;368(13):1249-50
25999502 - Science. 2015 May 22;348(6237):880-6
27356755 - BMC Genomics. 2016 Jun 23;17 Suppl 2:394
References_xml – volume: 108
  start-page: 9530
  issue: 23
  year: 2011
  ident: 2428_CR3
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1105422108
– volume: 6
  start-page: 224ra224
  issue: 224
  year: 2014
  ident: 2428_CR9
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3007094
– volume: 20
  start-page: 548
  issue: 5
  year: 2014
  ident: 2428_CR18
  publication-title: Nat Med
  doi: 10.1038/nm.3519
– volume: 17
  start-page: 125
  year: 2016
  ident: 2428_CR36
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0976-y
– volume: 85
  start-page: 146
  issue: 1-2
  year: 2017
  ident: 2428_CR4
  publication-title: Pathobiology
  doi: 10.1159/000473882
– volume: 3
  start-page: Article3
  year: 2004
  ident: 2428_CR34
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.2202/1544-6115.1027
– volume: 368
  start-page: 1249
  issue: 13
  year: 2013
  ident: 2428_CR10
  publication-title: N Engl J Med
  doi: 10.1056/NEJMe1301249
– volume: 16
  start-page: 140
  year: 2015
  ident: 2428_CR23
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0699-9
– volume: 348
  start-page: 880
  issue: 6237
  year: 2015
  ident: 2428_CR29
  publication-title: Science
  doi: 10.1126/science.aaa6806
– volume: 366
  start-page: 883
  issue: 10
  year: 2012
  ident: 2428_CR21
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113205
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  ident: 2428_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 39
  start-page: e90
  issue: 13
  year: 2011
  ident: 2428_CR15
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr344
– volume: 48
  start-page: 349
  issue: 4
  year: 2016
  ident: 2428_CR32
  publication-title: Nat Genet
  doi: 10.1038/ng.3511
– volume: 18
  start-page: 136
  issue: 1
  year: 2017
  ident: 2428_CR22
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1275-2
– volume: 17
  start-page: 394
  issue: Suppl 2
  year: 2016
  ident: 2428_CR33
  publication-title: BMC genomics
  doi: 10.1186/s12864-016-2727-x
– volume: 3
  start-page: 24
  year: 2017
  ident: 2428_CR13
  publication-title: NPJ Breast Cancer
  doi: 10.1038/s41523-017-0028-4
– volume: 17
  start-page: 341
  issue: Suppl 12
  year: 2016
  ident: 2428_CR31
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1190-7
– volume: 14
  start-page: 985
  issue: 9
  year: 2008
  ident: 2428_CR2
  publication-title: Nat Med
  doi: 10.1038/nm.1789
– volume: 17
  start-page: 31
  year: 2016
  ident: 2428_CR20
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0893-4
– volume: 20
  start-page: 430
  issue: 4
  year: 2014
  ident: 2428_CR14
  publication-title: Nat Med
  doi: 10.1038/nm.3511
– volume: 14
  start-page: 898
  issue: 10
  year: 2016
  ident: 2428_CR8
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-16-0044
– volume: 10
  start-page: 472
  issue: 8
  year: 2013
  ident: 2428_CR11
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2013.110
– volume: 30
  start-page: 1198
  issue: 9
  year: 2014
  ident: 2428_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt750
– volume: 500
  start-page: 415
  issue: 7463
  year: 2013
  ident: 2428_CR19
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 22
  start-page: 568
  issue: 3
  year: 2012
  ident: 2428_CR30
  publication-title: Genome Res
  doi: 10.1101/gr.129684.111
– volume: 12
  start-page: e1006162
  issue: 7
  year: 2016
  ident: 2428_CR5
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006162
– volume-title: Applied Bayesian statistics with R and OpenBUGS examples
  year: 2013
  ident: 2428_CR25
– volume: 5
  start-page: 22
  issue: 2
  year: 2012
  ident: 2428_CR26
  publication-title: J Res Educ Effectiveness
  doi: 10.1080/19345747.2011.618213
– volume: 31
  start-page: 2785
  issue: 17
  year: 2015
  ident: 2428_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv275
– volume: 11
  start-page: R106
  issue: 10
  year: 2010
  ident: 2428_CR35
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-10-r106
– volume: 112
  start-page: E1317
  issue: 11
  year: 2015
  ident: 2428_CR7
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1500076112
– volume: 164
  start-page: 57
  issue: 1–2
  year: 2016
  ident: 2428_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.050
– volume: 34
  start-page: 547
  issue: 5
  year: 2016
  ident: 2428_CR17
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3520
– volume: 16
  start-page: 751
  issue: 7
  year: 2016
  ident: 2428_CR12
  publication-title: Expert Rev Mol Diagn
  doi: 10.1080/14737159.2016.1184974
– volume: 109
  start-page: 14289
  issue: 36
  year: 2012
  ident: 2428_CR16
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1212246109
– ident: 2428_CR24
– reference: 26771485 - Cell. 2016 Jan 14;164(1-2):57-68
– reference: 22300766 - Genome Res. 2012 Mar;22(3):568-76
– reference: 22912407 - Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14289-90
– reference: 27018799 - Nat Biotechnol. 2016 May;34(5):547-555
– reference: 28732520 - Genome Biol. 2017 Jul 21;18(1):136
– reference: 28685160 - NPJ Breast Cancer. 2017 Jul 3;3:24
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 21576222 - Nucleic Acids Res. 2011 Jul;39(13):e90
– reference: 24705333 - Nat Med. 2014 May;20(5):548-54
– reference: 28185561 - BMC Bioinformatics. 2016 Nov 8;17(Suppl 12):341
– reference: 24443148 - Bioinformatics. 2014 May 1;30(9):1198-204
– reference: 24553385 - Sci Transl Med. 2014 Feb 19;6(224):224ra24
– reference: 23484798 - N Engl J Med. 2013 Mar 28;368(13):1249-50
– reference: 25646427 - Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1317-25
– reference: 26169266 - Genome Biol. 2015 Jul 14;16:140
– reference: 27356755 - BMC Genomics. 2016 Jun 23;17 Suppl 2:394
– reference: 18670422 - Nat Med. 2008 Sep;14(9):985-90
– reference: 21586637 - Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9530-5
– reference: 24658074 - Nat Med. 2014 Apr;20(4):430-5
– reference: 28614831 - Pathobiology. 2018;85(1-2):146-154
– reference: 25931517 - Bioinformatics. 2015 Sep 1;31(17):2785-93
– reference: 26968756 - BMC Bioinformatics. 2016 Mar 11;17:125
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 27428049 - PLoS Genet. 2016 Jul 18;12(7):e1006162
– reference: 22397650 - N Engl J Med. 2012 Mar 8;366(10):883-892
– reference: 26899170 - Genome Biol. 2016 Feb 22;17:31
– reference: 25999502 - Science. 2015 May 22;348(6237):880-6
– reference: 23836314 - Nat Rev Clin Oncol. 2013 Aug;10(8):472-84
– reference: 27422709 - Mol Cancer Res. 2016 Oct;14(10):898-908
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 26878723 - Nat Genet. 2016 Apr;48(4):349-55
– reference: 23945592 - Nature. 2013 Aug 22;500(7463):415-21
– reference: 27144417 - Expert Rev Mol Diagn. 2016 Jul;16(7):751-5
SSID ssj0017805
Score 2.3234792
Snippet Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring...
Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for...
Abstract Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 387
SubjectTerms Analysis
Background noise
Binomial distribution
Bioinformatics
Cancer
Care and treatment
Circulating Tumor DNA - genetics
Computer Simulation
ctDNA
Deoxyribonucleic acid
Development and progression
DNA
DNA Mutational Analysis - methods
DNA sequencing
Error detection
Error suppression
Evolution
Gene mutation
Genetic aspects
Genomes
High-Throughput Nucleotide Sequencing
Humans
Medical errors
Methodology
Mutation
Mutation - genetics
Neoplasms - genetics
Next-generation sequencing
Noise
Noise reduction
Normal Distribution
ROC Curve
Sample size
Single-nucleotide variant
Software
State of the art
Tumors
Variant calling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgifhutsoogCKFJ9tu3U1uq4D3UFvq27Gc9bDfl7iL0v-9OkjsuCPria3aWZGdmd2Yys79B6J0KQkWnSMk8VSUNypdKBFOSGDzJEZehDv53fJ_z4zP67Zyd77T6gpqwAR54YNxBYxplG68UjZwG6SVxPpttayIUQIr-Hnm2eZtgaswfAFL_mMOsJT9Y1YDTlsNmCSlQWZKJFerB-v88knds0rRecscAHT1A90fPEc-GL36I7oT0CN0deknePEbmdH548hEbnNrf4RJb437BjY3kcVgu2yVedddjzWvCQ9tonP1VfNUNuXjsw7qvykp4kbBbLF3f1ytd4HV3lem-zGdP0NnR4enn43Lsn1A6pui6JCSaqByVPJpA61jXVpBAfA6mmSXMNpZUkURbBcZ49rKFUMxmf8rIYJlVlDxFe6lN4TnClvs6MzwHK1xS2ThDK5NjW2p8IDHLoUDVhp_ajeDi0OPiUvdBhuR6EIHOItAgAk0K9GE75XpA1vgb8ScQ0pYQQLH7B1lV9Kgq-l-qUqC3IGINsBcJ6mouTLda6a8_TvQMcOqJYjK_6f1IFNu8AmfGawqZD4CUNaHcn1DmfemmwxtN0uO5sNJNTRhkfikr0JvtMMyEWrcU2g5oGsGZEBUv0LNB8bbrJoDYSLkskJio5IQx05G0-NmjhnOAERLNi__ByZfoXgObKdvwptpHe-tlF15l52xtX_f78BbOPTUr
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_1lCiCIJRrm48mvsiqt56C-3Dewb2FfK6Ld-3abgX_ezNtd70i3GszoW1mJjOTmfwGodfSlzJYSVLmqEyply6VpdcpCd6RGHFpauG849uCH5_Rr-fsfDxwa8eyyu2e2G_UrrZwRn5Y5IRBzoyy9-tfKXSNguzq2ELjJrqVR0sDEi7mn3dZBMDrHzOZueCHbQ5obTF4FpAIFSmZ2KIesv__jfmKZZpWTV4xQ_N76O7oP-LZwPD76IavHqDbQ0fJPw-RPl0cnbzDGlf1b3-BjbY_4d5G5bBvmrrBbbceK18rPDSPxtFrxZfdkJHHzm_62qwKrypsV43tu3tVS7zpLiPdp8XsETqbH51-PE7HLgqpZZJuUkKCDtJSwYP2NA95bkriiYshNTOEmcKQLJBgMs8Yj752WUpmolelhTfMSEoeo72qrvw-woa7PBQihixcUFFYTTMdI1yqnSchehoJyrbrqewIMQ6dLi5UH2oIrgYWqMgCBSxQJEFvd1PWA77GdcQfgEk7QoDG7h_UzVKNmqYKXUhTOClp4NQLJ4h10c8zOkDFbFkm6BWwWAH4RQXVNUvdta368v1EzQCtnkgm4pvejEShjn9g9XhZIa4D4GVNKA8mlFE77XR4K0lq3B1a9U-WE_RyNwwzoeKt8nUHNEXJWVlmPEFPBsHb_TcB3EbKRYLKiUhOFmY6Uq1-9NjhHMCEyuLp9Z_1DN0pQE2ijS6yA7S3aTr_PDpfG_Oi17C_zNUszQ
  priority: 102
  providerName: ProQuest
Title TNER: a novel background error suppression method for mutation detection in circulating tumor DNA
URI https://www.ncbi.nlm.nih.gov/pubmed/30342468
https://www.proquest.com/docview/2135036445
https://www.proquest.com/docview/2127657706
https://pubmed.ncbi.nlm.nih.gov/PMC6195972
https://doaj.org/article/2a29b2d994f64e8d83cd250baf282277
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELf2IdBeEN8ERmUQEhJSWBLbsY2EUAcdA2kVKqvUN8tO7FLRJSNtEfvv8SVpacTgJQ_xOZF9d7k73-V3CL2QlkuXSRKynMqQWpmHklsdEmdz4iMuTTM47zgbpqdj-nnCJjto3d6q3cDFtaEd9JMaV_PXv35cvfMK_7ZWeJEeLWJAYfNBsYAEpwjJLtr3holDJ4cz-iepAPD9bWLz2mkH6CYBRDwKuKtbVqoG8__7k71ls7r1lFsG6uQ2utV6lrjfiMIdtGOLu-hG02vy6h7S58PB6A3WuCh_2jk2OvsOf3QUObZVVVZ4sbpsa2IL3LSVxt6fxRerJlePc7usq7YKPCtwNquyuu9XMcXL1YWn-zDs30fjk8H5-9Ow7a8QZkzSZUiI005mVKROWxq7ODacWJL7YJsZwkxiSOSIM5FlLPVeOOeSGe9vaWENM5KSB2ivKAv7CGGT5rFLhA9mUkFFkmkaaR_7Up1b4rwPEqBovZ8qa8HHoQfGXNVBiEhVww3luaGAG4oE6NVmymWDvPE_4mNg0oYQQLPrG2U1Va0OqkQn0iS5lNSl1IpckCz3HqDRDmppOQ_Qc2CxAliMAupupnq1WKhPX0eqDzj2RDLh3_SyJXKlX0Gm298Y_D4AklaH8rBD6fU26w6vJUmtxV4lMWGQGaYsQM82wzATauEKW66AJuEp4zxKA_SwEbzNutfyGyDeEcnOxnRHitm3GlU8BZghnjz-5zOfoIMElMUb7iQ6RHvLamWfeo9saXpol0-4v4qTjz20fzwYfhn16tONXq2BvwFKGTQM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDeFAQaBkJCiJf6IbSSEBtvUsq0PY5P6ZmzHHhNbMtIWtH-KvxFfkpZFSHvba31JGt-d7y4-_34IvVZeqOAUTXjBVMK8KhIlvElo8AWNFZdhDr537I3z4SH7MuGTFfRncRYG2ioXa2KzUBeVg2_k6ySjHPbMGP949jMB1ijYXV1QaLRmsePPf8eSbfphtBn1-4aQ7a2Dz8OkYxVIHFdsllAaTFCOyTwYz7KQZVZQT4tYYnJLuSWWpoEGm3rO85h7CqG4jVmGkd5yqxiN972GrsfAm0ILoZgsC7wM-AG6ndNM5uvTDNDhYrEuYeNVJrQX-xqKgP8DwYVI2O_SvBD2tu-g212-ijdaA7uLVnx5D91oGSzP7yNzMN7af48NLqtf_gRb437AOZGywL6uqxpP52ddp22JW7JqHLNkfDpvOwBw4WdNL1iJj0vsjmvXsImVR3g2P41ym-ONB-jwSub3IVotq9I_RtjmRRaIjCVSLpkkzrDUxIqamcLTEDObAUoX86ldB2kOzBonuiltZK5bFeioAg0q0HSA3i0vOWvxPC4T_gRKWgoCFHfzQ1Uf6c6zNTFEWVIoxULOvCwkdUXMK60J0KErxAC9AhVrANsooZvnyMynUz36uq83AB2fKi7jk952QqGKb-BMdzgizgPgc_Uk13qScTVw_eGFJeluNZrqf74zQC-Xw3AldNiVvpqDDBE5FyLNB-hRa3jL96aAE8lyOUCiZ5K9iemPlMffG6zyHMCLBHly-d96gW4OD_Z29e5ovPMU3SLgMjE_IOkaWp3Vc_8sJn4z-7zxNoy-XbV7_wUM4Gng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TNER%3A+a+novel+background+error+suppression+method+for+mutation+detection+in+circulating+tumor+DNA&rft.jtitle=BMC+bioinformatics&rft.au=Deng%2C+Shibing&rft.au=Lira%2C+Maruja&rft.au=Huang%2C+Donghui&rft.au=Wang%2C+Kai&rft.date=2018-10-20&rft.eissn=1471-2105&rft.volume=19&rft.issue=1&rft.spage=387&rft_id=info:doi/10.1186%2Fs12859-018-2428-3&rft_id=info%3Apmid%2F30342468&rft.externalDocID=30342468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon