Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements
Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through...
Saved in:
Published in | BMC genomics Vol. 21; no. 1; pp. 354 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
11.05.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype.
We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype.
We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation. |
---|---|
AbstractList | Background Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. Results We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. Conclusion We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation. Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation. Abstract Background Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. Results We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. Conclusion We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation. Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype.BACKGROUNDSpecies of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype.We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype.RESULTSWe found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype.We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.CONCLUSIONWe conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation. |
ArticleNumber | 354 |
Audience | Academic |
Author | Liesegang, Heiko Wendling, Carolin Charlotte Roth, Olivia Chibani, Cynthia Maria |
Author_xml | – sequence: 1 givenname: Cynthia Maria surname: Chibani fullname: Chibani, Cynthia Maria – sequence: 2 givenname: Olivia surname: Roth fullname: Roth, Olivia – sequence: 3 givenname: Heiko surname: Liesegang fullname: Liesegang, Heiko – sequence: 4 givenname: Carolin Charlotte orcidid: 0000-0003-4532-7528 surname: Wendling fullname: Wendling, Carolin Charlotte |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32393168$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_wA9ggS2zKIsV2bCfZIFUVlJEqIfHaWjfOTfDIsYudVPTf45kppVMhlEWs-DsnvsfnuDjwwWNRvGT0jLFGvU2MN0qUlNNS1ZUs5ZPiiImalZwpcfBgfVgcp7SmlNUNl8-Kw4pXbcVUc1SsL9GHyRpyA9HCbIMnMAU_EuNCQndLIjqYsSffbRdtIOBG64O7na1ZEklzBOsTsYm4YLZcNphCZx2SET1mjKDDCf2cnhdPB3AJX9y9T4pvH95_vfhYXn26XF2cX5VGtmIuuemUaqEdeuxBQsP7roZOtDQvEPpGccZbXnPaIK8FlZ2iA9BWQscHOrS0OilWO98-wFpfRztBvNUBrN5-CHHUEPPBHGoJA2sVUx1UIKqGtwwZF6aWgxHA1JC93u28rpduwt7kOSK4PdP9HW9_6DHc6DrHnsfJBqd3BjH8XDDNerLJoHPgMSxJc0FZw2TFqoy-foSuwxJ9jmpDiYpRLtRfaoQ8gPVDyP81G1N9rnIgQkjKM3X2Dyo_PebLzi0a8g3tC97sCTIz4695hCUlvfryeZ999TCU-zT-tCoDbAeYGFKKONwjjOpNc_WuuTo3V2-aq2XW1I80xs7bQm465v6j_A3pMfDy |
CitedBy_id | crossref_primary_10_3389_fevo_2021_626442 crossref_primary_10_3390_v12121359 crossref_primary_10_3390_microorganisms9061220 crossref_primary_10_3390_foods11233777 crossref_primary_10_1093_ismeco_ycae025 crossref_primary_10_1080_22221751_2024_2350164 crossref_primary_10_1016_j_fsi_2024_109978 crossref_primary_10_1098_rspb_2022_1070 crossref_primary_10_1099_mgen_0_000883 crossref_primary_10_1128_spectrum_04176_22 crossref_primary_10_1016_j_aquaculture_2024_740839 crossref_primary_10_1099_ijsem_0_005951 crossref_primary_10_3390_microorganisms11112725 crossref_primary_10_3390_pathogens10121605 crossref_primary_10_3390_ijms23094520 crossref_primary_10_1128_spectrum_02680_23 crossref_primary_10_1016_j_micpath_2022_105490 crossref_primary_10_3389_fmicb_2022_925747 |
Cites_doi | 10.1007/s00248-009-9596-7 10.1128/AEM.00314-13 10.1080/10635150490522304 10.3389/fmicb.2014.00073 10.1111/eva.12477 10.1016/j.mib.2016.03.013 10.4014/jmb.1712.12040 10.1016/j.aquaculture.2013.07.009 10.1007/s10142-015-0433-4 10.1016/S0092-8674(00)81985-6 10.1128/MMBR.68.3.403-431.2004 10.1099/ijs.0.64483-0 10.1016/j.margen.2016.05.003 10.1126/science.1157890 10.1016/j.cub.2019.08.012 10.1016/B978-0-12-385007-2.18001-5 10.1093/nar/gkt394 10.1093/sysbio/sys029 10.1128/JB.185.19.5822-5830.2003 10.1016/j.mib.2008.09.006 10.1111/j.1574-6941.2010.00937.x 10.1093/nar/gku1223 10.1111/eva.12452 10.1128/CMR.17.1.14-56.2004 10.1111/j.1558-5646.2012.01614.x 10.1039/C5AY02550H 10.1093/bioinformatics/17.8.754 10.1186/1471-2148-9-258 10.1128/AEM.01548-06 10.1128/JB.187.2.752-757.2005 10.1186/s12859-015-0517-0 10.1016/j.gde.2005.09.006 10.1002/wics.147 10.1186/s12862-017-0930-2 10.1186/1471-2164-12-402 10.1038/s41598-018-28326-9 10.1093/nar/gki008 10.1128/genomeA.01500-14 10.1016/S0966-842X(01)02173-4 10.1038/nmicrobiol.2017.40 10.1128/microbiolspec.MTBP-0014-2016 10.1128/JB.00619-08 10.1093/bioinformatics/btr039 10.1093/nar/gkv1248 10.1101/859181 10.1093/nar/gky1085 10.1111/j.1472-765X.1996.tb01121.x 10.1016/j.plasmid.2005.01.003 10.1007/s10482-017-0844-4 10.1016/S0966-842X(02)02461-7 10.1128/genomeA.00912-16 10.1016/S0723-2020(97)80053-7 10.1093/bioinformatics/btv421 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-020-6735-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_5af19616ba3a438291e124c75fc4a16f PMC7216594 A627444502 32393168 10_1186_s12864_020_6735_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: WE5822/1-2 – fundername: Deutsche Forschungsgemeinschaft grantid: WE 5822/ 1-1 – fundername: Deutsche Forschungsgemeinschaft grantid: RO462/4-2 – fundername: KAAD grantid: na – fundername: ; grantid: WE 5822/ 1-1; WE5822/1-2; RO462/4-2 – fundername: ; grantid: na |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c594t-2cb669a9fdeda5a82db7ab4902dbead86212927208e27405b60fa095ab2f0f903 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 00:48:13 EDT 2025 Thu Aug 21 18:02:20 EDT 2025 Fri Jul 11 04:27:50 EDT 2025 Fri Jul 25 10:44:07 EDT 2025 Tue Jun 17 21:29:47 EDT 2025 Tue Jun 10 20:49:48 EDT 2025 Fri Jun 27 04:23:36 EDT 2025 Thu Apr 03 06:50:17 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Tue Jul 01 00:39:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Niche-adaptation Genomic islands Mega-plasmids Pangenome Mobile genetic elements Horizontal gene transfer |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c594t-2cb669a9fdeda5a82db7ab4902dbead86212927208e27405b60fa095ab2f0f903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4532-7528 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-020-6735-5 |
PMID | 32393168 |
PQID | 2404310246 |
PQPubID | 44682 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5af19616ba3a438291e124c75fc4a16f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7216594 proquest_miscellaneous_2401815313 proquest_journals_2404310246 gale_infotracmisc_A627444502 gale_infotracacademiconefile_A627444502 gale_incontextgauss_ISR_A627444502 pubmed_primary_32393168 crossref_primary_10_1186_s12864_020_6735_5 crossref_citationtrail_10_1186_s12864_020_6735_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-11 |
PublicationDateYYYYMMDD | 2020-05-11 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | M Land (6735_CR35) 2015; 15 H Tettelin (6735_CR1) 2008; 11 F Ronquist (6735_CR47) 2012; 61 CC Wendling (6735_CR23) 2017; 17 6735_CR31 6735_CR30 J Huerta-Cepas (6735_CR46) 2019; 47 L Chen (6735_CR55) 2005; 33 NF Alikhan (6735_CR53) 2011; 12 MA Brockhurst (6735_CR8) 2019; 29 TH Hazen (6735_CR6) 2010; 74 DE Hunt (6735_CR13) 2008; 320 AJ Page (6735_CR43) 2015; 31 6735_CR27 J Huerta-Cepas (6735_CR45) 2016; 44 J Goris (6735_CR33) 2007; 57 DJ Banks (6735_CR14) 2002; 10 6735_CR20 F Le Roux (6735_CR26) 2015; 6 L Snipen (6735_CR44) 2015; 16 H Wickham (6735_CR56) 2011; 3 N Gonzalez-Escalona (6735_CR22) 2006; 72 JP Huelsenbeck (6735_CR48) 2001; 17 6735_CR24 O Roth (6735_CR28) 2012; 66 EA Groisman (6735_CR36) 1996; 87 B Austin (6735_CR4) 1997; 20 K Tamura (6735_CR49) 1993; 10 M Di Lorenzo (6735_CR17) 2003; 185 AK Dunn (6735_CR18) 2005; 54 MJ Sullivan (6735_CR54) 2011; 27 L Pritchard (6735_CR42) 2016; 8 6735_CR16 6735_CR19 HY Kim (6735_CR41) 2018; 28 MY Galperin (6735_CR40) 2015; 43 BK Dhillon (6735_CR51) 2013; 41 6735_CR11 6735_CR10 6735_CR7 6735_CR9 M Ohnishi (6735_CR15) 2001; 9 DA Rasko (6735_CR2) 2008; 190 AM Aagesen (6735_CR3) 2013; 79 KK Lee (6735_CR21) 1996; 22 SH Yoon (6735_CR34) 2017; 110 T Vesth (6735_CR38) 2010; 59 P Wang (6735_CR29) 2016; 28 BJ Shapiro (6735_CR39) 2016; 31 C Méhats (6735_CR52) 2000; 292 M Poirier (6735_CR25) 2017; 10 H Schmidt (6735_CR37) 2004; 17 D Medini (6735_CR5) 2005; 15 FL Thompson (6735_CR12) 2004; 68 K Okada (6735_CR32) 2005; 187 D Posada (6735_CR50) 2004; 53 |
References_xml | – volume: 59 start-page: 1 issue: 1 year: 2010 ident: 6735_CR38 publication-title: Microb Ecol doi: 10.1007/s00248-009-9596-7 – volume: 79 start-page: 3303 issue: 10 year: 2013 ident: 6735_CR3 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00314-13 – volume: 53 start-page: 793 issue: 5 year: 2004 ident: 6735_CR50 publication-title: Syst Biol doi: 10.1080/10635150490522304 – ident: 6735_CR20 doi: 10.3389/fmicb.2014.00073 – volume: 10 start-page: 603 issue: 6 year: 2017 ident: 6735_CR25 publication-title: Evol Appl doi: 10.1111/eva.12477 – volume: 31 start-page: 116 year: 2016 ident: 6735_CR39 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2016.03.013 – volume: 28 start-page: 816 issue: 5 year: 2018 ident: 6735_CR41 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1712.12040 – ident: 6735_CR24 doi: 10.1016/j.aquaculture.2013.07.009 – volume: 15 start-page: 141 issue: 2 year: 2015 ident: 6735_CR35 publication-title: Funct Integr Genomics doi: 10.1007/s10142-015-0433-4 – volume: 87 start-page: 791 issue: 5 year: 1996 ident: 6735_CR36 publication-title: Cell. doi: 10.1016/S0092-8674(00)81985-6 – volume: 68 start-page: 403 issue: 3 year: 2004 ident: 6735_CR12 publication-title: Microbiol Mol Biol R doi: 10.1128/MMBR.68.3.403-431.2004 – volume: 57 start-page: 81 issue: Pt 1 year: 2007 ident: 6735_CR33 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.64483-0 – volume: 28 start-page: 45 year: 2016 ident: 6735_CR29 publication-title: Mar Genomics doi: 10.1016/j.margen.2016.05.003 – volume: 320 start-page: 1081 issue: 5879 year: 2008 ident: 6735_CR13 publication-title: Science. doi: 10.1126/science.1157890 – volume: 29 start-page: R1094 issue: 20 year: 2019 ident: 6735_CR8 publication-title: Curr Biol doi: 10.1016/j.cub.2019.08.012 – ident: 6735_CR10 doi: 10.1016/B978-0-12-385007-2.18001-5 – volume: 41 start-page: W129 issue: Web Server issu year: 2013 ident: 6735_CR51 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt394 – volume: 61 start-page: 539 issue: 3 year: 2012 ident: 6735_CR47 publication-title: Syst Biol doi: 10.1093/sysbio/sys029 – volume: 185 start-page: 5822 issue: 19 year: 2003 ident: 6735_CR17 publication-title: J Bacteriol doi: 10.1128/JB.185.19.5822-5830.2003 – volume: 11 start-page: 472 issue: 5 year: 2008 ident: 6735_CR1 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2008.09.006 – volume: 74 start-page: 485 issue: 3 year: 2010 ident: 6735_CR6 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00937.x – volume: 43 start-page: D261 issue: D1 year: 2015 ident: 6735_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1223 – volume: 292 start-page: 817 issue: 2 year: 2000 ident: 6735_CR52 publication-title: J Pharmacol Exp Ther – ident: 6735_CR27 doi: 10.1111/eva.12452 – volume: 17 start-page: 14 issue: 1 year: 2004 ident: 6735_CR37 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.17.1.14-56.2004 – volume: 66 start-page: 2528 issue: 8 year: 2012 ident: 6735_CR28 publication-title: Evolution. doi: 10.1111/j.1558-5646.2012.01614.x – volume: 8 start-page: 12 issue: 1 year: 2016 ident: 6735_CR42 publication-title: Anal Methods-Uk doi: 10.1039/C5AY02550H – volume: 17 start-page: 754 issue: 8 year: 2001 ident: 6735_CR48 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/17.8.754 – ident: 6735_CR11 doi: 10.1186/1471-2148-9-258 – volume: 6 start-page: 830 year: 2015 ident: 6735_CR26 publication-title: Front Microbiol – volume: 72 start-page: 7925 issue: 12 year: 2006 ident: 6735_CR22 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01548-06 – volume: 187 start-page: 752 issue: 2 year: 2005 ident: 6735_CR32 publication-title: J Bacteriol doi: 10.1128/JB.187.2.752-757.2005 – volume: 16 start-page: 79 year: 2015 ident: 6735_CR44 publication-title: Bmc Bioinformatics doi: 10.1186/s12859-015-0517-0 – volume: 15 start-page: 589 issue: 6 year: 2005 ident: 6735_CR5 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2005.09.006 – volume: 3 start-page: 180 issue: 2 year: 2011 ident: 6735_CR56 publication-title: Wires Comput Stat doi: 10.1002/wics.147 – volume: 17 start-page: 98 year: 2017 ident: 6735_CR23 publication-title: BMC Evol Biol doi: 10.1186/s12862-017-0930-2 – volume: 12 start-page: 402 year: 2011 ident: 6735_CR53 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-402 – ident: 6735_CR16 doi: 10.1038/s41598-018-28326-9 – volume: 33 start-page: D325 issue: Database issue year: 2005 ident: 6735_CR55 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki008 – ident: 6735_CR31 doi: 10.1128/genomeA.01500-14 – volume: 9 start-page: 481 issue: 10 year: 2001 ident: 6735_CR15 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(01)02173-4 – ident: 6735_CR7 doi: 10.1038/nmicrobiol.2017.40 – ident: 6735_CR9 doi: 10.1128/microbiolspec.MTBP-0014-2016 – volume: 190 start-page: 6881 issue: 20 year: 2008 ident: 6735_CR2 publication-title: J Bacteriol doi: 10.1128/JB.00619-08 – volume: 27 start-page: 1009 issue: 7 year: 2011 ident: 6735_CR54 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr039 – volume: 44 start-page: D286 issue: D1 year: 2016 ident: 6735_CR45 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1248 – ident: 6735_CR19 doi: 10.1101/859181 – volume: 47 start-page: D309 issue: D1 year: 2019 ident: 6735_CR46 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1085 – volume: 22 start-page: 111 issue: 2 year: 1996 ident: 6735_CR21 publication-title: Lett Appl Microbiol doi: 10.1111/j.1472-765X.1996.tb01121.x – volume: 54 start-page: 114 issue: 2 year: 2005 ident: 6735_CR18 publication-title: Plasmid. doi: 10.1016/j.plasmid.2005.01.003 – volume: 110 start-page: 1281 issue: 10 year: 2017 ident: 6735_CR34 publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-017-0844-4 – volume: 10 start-page: 515 issue: 11 year: 2002 ident: 6735_CR14 publication-title: Trends Microbiol doi: 10.1016/S0966-842X(02)02461-7 – ident: 6735_CR30 doi: 10.1128/genomeA.00912-16 – volume: 20 start-page: 89 issue: 1 year: 1997 ident: 6735_CR4 publication-title: Syst Appl Microbiol doi: 10.1016/S0723-2020(97)80053-7 – volume: 31 start-page: 3691 issue: 22 year: 2015 ident: 6735_CR43 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv421 – volume: 10 start-page: 512 issue: 3 year: 1993 ident: 6735_CR49 publication-title: Mol Biol Evol |
SSID | ssj0017825 |
Score | 2.4123986 |
Snippet | Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and... Background Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation... Abstract Background Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 354 |
SubjectTerms | Adaptation Bacteria Chromosomes Colonization Drug Resistance - genetics Ecotypes Evolution, Molecular Fjords Gene transfer Gene Transfer, Horizontal Genes Genetic Variation Genome, Bacterial Genomes Genomic Islands Genomics Horizontal gene transfer Horizontal transfer Mega-plasmids Mobile genetic elements Niche-adaptation Niches Nucleotide sequence Pangenome Phylogeny Plasmids Shells Signatures Speciation Strains (organisms) Transposons Vibrio Vibrio alginolyticus Vibrio alginolyticus - classification Vibrio alginolyticus - genetics Vibrio alginolyticus - isolation & purification Vibrio alginolyticus - pathogenicity Virulence Virulence - genetics Waterborne diseases |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VU6IIglCubT62eTzF8xT0QT25t5CkyblSW7nsCvvfO5Nmly2Cvvi2NNOymZnMB5n5DSHPXSeVco0tGeOs5ApkAVGrKttOgbvibWgYNid_-CjPzvn7C3GxN-oLa8ImeOCJccfCBFCSWlrDDF5aqdqDS3ILERw3tQxofcHnbZOpfH8Afk_kO8y6lccRrLDkZUqVFkyUYuaFElj_nyZ5zyfN6yX3HNDpLXIzR470ZPrHh-SaH26T69Msyc0d8v2tTx3G9Bdkv4ndNA0Soq4fo-83NHWt-I5-xSL_kZr-cjmM_QbBNyKNaVREpMtI0bshHXzgx2jBaFDQMWx1pH4qNY93yfnpmy-vz8o8SKF0QvFV2TgrpTIqdL4zwrRNZxfGclXBD9AkSGrA6-OFbOshSa2ElVUwEHsZ24QqqIrdIwfDOPgHhCoVQLSGS19bHlRrIcWVoQ4e8h5jXFWQastY7TLKOO6g1ynbaKWeZKFBFlhTJrQoyMvdKz8niI2_Eb9Cae0IER07PQCd0Vln9L90piDPUNYa8S8GLLC5NOsY9bvPn_QJziLiXFRNQV5kojDCDpzJ_QrAB4TMmlEezSjhgLr58laldDYQUTcJ1QgCJFmQp7tlfBOL3gY_rhMNxF9gJFlB7k8auNs3Q-i6WrYFWcx0c8aY-cqw_JbgwxGuCdTi4f_g5CNyo8FThXC29RE5WF2t_WOI0lb2STqQvwEXfTh7 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivhy-G31lCiCIJTrR5I2T3KK5ynog3qybyFJk3Vlbe8uu8L-986k2fWKcG-lmZYmM5mPZuY3hLy0nZDSViava1bnTAIvwGuVedtJMFes9VWNxcmfv4iTU_Zpxmfph1tIaZVbnRgVdTdY_Ed-WEUYGLAo4s3ZeY5do_B0NbXQuE5uIHQZSnUz2wVcJVg_nk4yy1YcBtDFguUxYGpqnvOJLYqQ_f8r5kuWaZo1eckMHd8m-8l_pEcjw--Qa66_S26OHSU398ivDy7WGdM_EAPHRaexnRC1yyG45YbG2hXX0R-Y6j9QvZwv-mG5QQiOQENsGBHoIlC0cUgHL_g9GFAdFCQNCx6pGxPOw31yevz--7uTPLVTyC2XbJVX1gghtfSd6zTXbdWZRhsmC7gAeYLQBmw_Hsu2DkLVghtReA0emDaVL7ws6gdkrx9694hQKT0wWDPhSsO8bA0EusKX3kH0o7UtMlJsF1bZhDWOM1iqGHO0Qo28UMALzCzjimfk9e6RsxFo4yrit8itHSFiZMcbw8VcpS2nuPagXkphdK3xuFOWDpwZ23BvmS6Fz8gL5LVCFIwe02zmeh2C-vjtqzrCjkSM8aLKyKtE5AeYgdWpagHWAYGzJpQHE0rYpnY6vBUpldREUP-EOiPPd8P4JKa-9W5YRxrwwkBV1hl5OErgbt41AtiVos1IM5HNycJMR_rFzwgijqBNIBaPr_6sJ-RWhfsF4WrLA7K3uli7p-CFrcyzuNX-AvPUMDU priority: 102 providerName: ProQuest |
Title | Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32393168 https://www.proquest.com/docview/2404310246 https://www.proquest.com/docview/2401815313 https://pubmed.ncbi.nlm.nih.gov/PMC7216594 https://doaj.org/article/5af19616ba3a438291e124c75fc4a16f |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf2ISReEN_LGJVBSEhIgXzYTvyA0IY2BtImNCjqm2UndikKyWhaRP977py0LGLiibeqPlfyffju6rvfEfKsKIWURWLCNGVpyCTIAqJWGealBHfFcpek2Jx8di5Ox-zDhE-2yHq8Vc_A9trUDudJjefVy18_Vm_A4F97g8_FqxbuWMFCnwhlKQ_5NtkFx5ThQIMz9udRAZwh7x82r902cE0ewf_ve_qKoxoWUV7xSie3ya0-nKSHnfzvkC1b3yU3ugGTq3vk2zvr247pT0iJvQyony5Ei6ppbbWivpXFlvQLVv43VFfTWd1UK0TkaGnr50e0dNZSdHlIBz_wvTFwk1BQPOx_pLarP2_vk_HJ8ee3p2E_XSEsuGSLMCmMEFJLV9pSc50npcm0YTKCD6BekOlAKICvtLmFzDXiRkROQ0CmTeIiJ6P0Admpm9ruESqlA3lrJmxsmJO5gbxXuNhZSIa0LqKARGvGqqKHHscTVMqnILlQnSwUyAILzbjiAXmx2XLZ4W78i_gIpbUhRMhs_0Uzn6reAhXXDm6bWBidanz9lLGF2KbIuCuYjoULyFOUtUJQjBqrbqZ62bbq_acLdYgDihjjURKQ5z2Ra-AEhe6bGIAPiKM1oDwYUILVFsPltUqptdKrxEMdQdQkAvJks4w7sRKuts3S00BQBjdnGpCHnQZuzp0inl0s8oBkA90cMGa4Us--ekxxxHACtdj_H5x8RG4maFWIcRsfkJ3FfGkfQ-i2MCOynU2yEdk9Oj7_eDHyf4CMvJH-BqKCQ5w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggEEgJKSoedje-IBQeZQtfRygrfZmHMdeFi1JqXdB-6f4jcw42aURUm-9RfEkij3jecQz3xDy3FRCSpOVcZ6zPGYSeAFeq4yLSoK5YoXLcixO3j8QwyP2acRHa-TPshYG0yqXOjEo6qox-I98MwswMGBRxJuTnzF2jcLT1WULjVYsdu3iN4Rs_vXOe-Dviyzb_nD4bhh3XQViwyWbxZkphZBauspWmusiq8qBLplM4AKWFTx8MIF4OllYiNgSXorEaXBEdJm5xMkkh_deIpfxYzDYG4xWAV4K1pZ3J6dpITY96H7B4hCgDXIe857tCy0C_jcEZyxhP0vzjNnbvkGud_4q3WoF7CZZs_UtcqXtYLm4Tb5_tKGumf6CmDswmYb2RdRMG2-nCxpqZWxFj7G0oKF6Op7UzXSBkB-e-tCgwtOJp2hTkQ5e8KMpQVVRkGwssKS2TXD3d8jRhSz0XbJeN7W9T6iUDgRKM2HTkjlZlBBYC5c6C9GW1iaJSLJcWGU6bHOcwVSFGKcQquWFAl5gJhtXPCKvVo-ctMAe5xG_RW6tCBGTO9xoTseq2-KKawfqLBWlzjUer8rUgvNkBtwZplPhIvIMea0QdaPGtJ6xnnuvdr58VlvYAYkxnmQRedkRuQZmYHRXJQHrgEBdPcqNHiWoBdMfXoqU6tSSV_82UUSerobxSUy1q20zDzTg9YFqziNyr5XA1bxzBMxLRRGRQU82ewvTH6kn3wJoOYJEgVg8OP-znpCrw8P9PbW3c7D7kFzLcO8gVG66QdZnp3P7CDzAWfk4bDtKvl70Pv8Lyz9tgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+variation+among+closely+related+Vibrio+alginolyticus+strains+is+located+on+mobile+genetic+elements&rft.jtitle=BMC+genomics&rft.au=Cynthia+Maria+Chibani&rft.au=Olivia+Roth&rft.au=Heiko+Liesegang&rft.au=Carolin+Charlotte+Wendling&rft.date=2020-05-11&rft.pub=BMC&rft.eissn=1471-2164&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1186%2Fs12864-020-6735-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5af19616ba3a438291e124c75fc4a16f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |